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Abstract

This paper aims at solving the sparse reconstruction (SR) problem via a mul-
tiobjective evolutionary algorithm. Existing multiobjective evolutionary algo-
rithms for the SR problem have high computational complexity, especially in
scenarios of high-dimensional reconstruction. Furthermore, these algorithms
focus on estimating the whole Pareto front rather than the knee region, thus
leading to solutions with limited diversity in the knee region and causing a
waste of computational effort. To tackle these issues, this paper proposes an
adaptive decomposition-based evolutionary approach (ADEA) for the SR prob-
lem. Firstly, we employ the decomposition-based evolutionary paradigm to
guarantee a high computational efficiency and the diversity of solutions in the
whole objective space. Then, we propose a two-stage iterative soft-thresholding
(IST)-based local search operator for improving the convergence. Finally, we
develop an adaptive decomposition-based environmental selection strategy, by
which the decomposition in the knee region can be adjusted dynamically. This
strategy makes it possible to focus the selection effort on the knee region, hence
involving low computational complexity. Experimental results on images, and
simulated and benchmark signals demonstrate the superiority of ADEA in terms
of reconstruction accuracy and computational efficiency, compared to five state-
of-the-art algorithms.

Keywords: sparse reconstruction, multiobjective evolutionary algorithm,
adaptive decomposition, reference vector

∗Corresponding author
Email addresses: yanbai@emails.bjut.edu.cn (Bai Yan), qzhao@emails.bjut.edu.cn

(Qi Zhao), wangzhihai@bjut.edu.cn (Zhihai Wang), Andrew.Zhang@uts.edu.au (J.
Andrew Zhang)

Preprint submitted to Elsevier May 31, 2018



1. Introduction

The sparse reconstruction (SR) problem widely exists in the under-determined
system of linear equations [19, 8], especially in the field of signal/image process-
ing. There have been many successful applications in this field, such as action
recognition [50], image super-resolution [21] and image classification [11], hu-
man detection and background subtraction. In the SR problem, we want to
recover the unknown sparse signal x from the measurement b in the following
under-determined system

b = Ax (1)

where x is an unknown sparse vector with k nonzero elements (x ∈ <n, k �
n), A is a full-rank sensing matrix (A ∈ <m×n,m < n) and should satisfy
the restricted isometry property (RIP) [8], and b is the measurement vector.
Sometimes the signal x is not sparse but has a sparse representation w with5

respect to some bases Ψ, such as the Fourier bases and the wavelet bases. In
this case, equation (1) can be transformed to b = AΨw, and we only need to
reconstruct w before solving x by x = Ψw. In this paper, matrices and vectors
are denoted by boldface upper-case and lower-case letters respectively.

For simplicity, here we focus on the case when the signal x itself is sparse.
The compressed sensing theory [9] can be employed to reconstruct x by solving
the following SR problem:

min
x
‖x‖0, s.t. Ax = b (2)

where ‖x‖0 represents the number of nonzero elements in x, and ‖·‖ denotes the
standard Euclidean norm for a vector. If noise is included in the measurements,
this problem is updated to

min
x
‖x‖0, s.t. ‖b−Ax‖22 6 σ (3)

where σ > 0 is a given constant related to the noise.10

The problem in (2) is known to be NP-hard [34]. Quite a few algorithms have
been developed to solve this l0-norm SR problem, such as orthogonal matching
pursuit (OMP) [37, 7], compressive sampling matching pursuit [35] and iterative
hard thresholding methods [41, 5]. They perform well only when the measure-
ment samples are much more than nonzero elements in x. The l0-norm problem
can also be transformed to a convex optimization problem [10], or relaxed by
the l1-norm [18, 42, 4, 39] or lp(0 < p < 1)-norm [31, 48, 43, 45]. The l1-norm
algorithms are more robust to noise and can recover signals with better recon-
struction quality. But in some cases (e.g., the matrix A does not satisfy the low
coherence conditions), they are unable to guarantee the equivalence between l1-
norm and l0-norm. The lp(0 < p < 1)-norm is nonconvex and nonsmooth. Its
convergence is yet to be proven theoretically, and it is very challenging to derive
fast and efficient solutions for lp(0 < p < 1)-norm problems. For these relax-
ation algorithms, the problem in (2) is commonly transformed to the following
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continuous optimization problem

x = F (x) = argmin
x

λ‖x‖p +
1

2
‖b−Ax‖22 (4)

where p ∈ [0, 1] and λ denotes the regularization parameter. There exists the
problem of determining λ to balance the objective term and the penalty function
term ‖x‖1 ‖x‖p, since λ is closely related to the reconstruction quality. However,
there is no exact method for finding the optimal λ value in practical applications.

All of the algorithms mentioned above are single objective, and they solve
the combined objective function in an independent way, where the solution path
is fixed. To exploit joint optimization and provide adaptability to the solution
path, a new approach is proposed to transform Problem (4) to a multiobjective
sparse reconstruction (MOSR) problem:

f(x) = min
x

(‖x‖0, ‖Ax− b‖22) (5)

where ‖x‖0 and ‖Ax− b‖22 represent the sparsity and the measurement errors,15

respectively.
Multiobjective evolutionary algorithms (MOEAs), such as NSGA-II [16],

differential evolution [36] and MOEA/D [49], are widely used to tackle opti-
mization problems with two or more objectives. MOEAs optimize all of the
objectives simultaneously, and are capable of providing a variety of trade-off so-20

lutions (termed as Pareto front, PF) among the objectives. Recently, MOEAs,
such as the soft-thresholding evolutionary multiobjective (StEMO) algorithm
[30], are applied to solve the MOSR problem. StEMO is based on the NSGA-II
framework and is combined with the soft-thresholding algorithm [24] for local
search to further improve the convergence performance. The knee region on25

the final PF is proved to provide the best trade-off, because it has the largest
marginal rates of return [30]. It is selected as the final solution and can be
identified by the angle-based method [6]. Another two algorithms are able to
find a local part of Pareto front near the knee region, accounting for preference.
The first is an improved MOEA/D with L1/2 solver (MOEA/D-L1/2) [28], and30

the second is sparse preference based local search (SPLS) [29]. Both algorithms
integrate iterative threshold algorithms into MOEAs. They first use a single
starting solution from chain search results and weakly Pareto front respectively
for local search, and then execute multiple truncations to update the solution
set and increase the diversity of population. In [44], the LBEA algorithm is35

developed by embedding a linear Bregman-based [25] local search operator into
the differential evolution paradigm. An adaptive strategy is designed for the lin-
ear Bregman-based local search, where the number of individuals and iterations
for local search is set to be adaptive for accelerating convergence.

These algorithms demonstrate the advantages of MOEA in solving the MOSR40

problem. However, they cannot provide fast reconstruction due to the use of
the Pareto nondominance principle. This can be verified by a simple experi-
ment. Consider a sparse signal with length N = 1000 n = 1000 and sparsity
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Figure 1: Comparison for the running time of each component in StEMO and LBEA

ratio k
n = 0.05. The nonzero elements are randomly chosen from the Gaussian

distribution. The sensing matrix is a Gaussian random matrix with the dimen-45

sion 400 × 1000. The population size and the maximum number of generation
are both set to 100. Use StEMO and LBEA as examples. The average running
time is shown in Fig.1. We can see that the Pareto dominance-based selection
operators have larger running time in both algorithms.

On the other hand, the reconstruction quality of these algorithms is limited.50

For StEMO and LBEA, they put search effort uniformly over the whole PF.
However, the knee region has the solutions with the maximal marginal rates of
return, hence requiring more search effort. Even if in cases when the knee region
does not provide the best approximation for the ground-truth data, the solu-
tions in this region are still Pareto optimal [30]. Therefore, the computational55

effort of StEMO and LBEA is likely to be wasted in estimating the area far from
the knee region, and the diversity of final solutions in the knee region will be
poor due to the lack of sufficient solutions there. We implement an experiment
with the same setting as that in Fig. 1 to illustrate this issue, and the results
are presented in Fig. 2. From Fig. 2, the distribution of solutions around the60

knee region is not uniform, and the curve generated from those solutions is not
sufficiently smooth, potentially leading to the wrong estimation of knee point.
For MOEA/D-L1/2 and SPLS, they implement local search on one selected so-
lution, treating the solution obtained from local search as the potential knee
point, and maintaining the diversity around this knee point by multiple trun-65

cations. However, they only select one solution from the local search, and it is
possible that this single solution may not be located in the true knee region.
This can misguide the evolutionary process. Furthermore, it is difficult to find
the optimal inner parameters of MOEA/D-L1/2 and SPLS for various problems.

To address the above problems, this paper proposes an adaptive decompo-70

sition based evolutionary approach (ADEA). In ADEA, we employ predefined
reference vectors to partition the whole population of the objective space into
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Figure 2: Final solutions obtained by (a) StEMO and (b) LBEA. The points in blue are the
actual knee points.

a number of subpopulations, and these subpopulations will converge along the
reference vectors toward the true PF. Compared to dominance-based MOEAs,
this approach has demonstrated its efficiency in reducing computational cost75

and improving solution quality on multiobjective optimization problems, e.g.,
[12, 47]. Then we introduce an improved two-stage IST-based strategy for local
search. This strategy significantly improves the convergence and diversity of
the solutions. We further propose an environmental selection strategy based on
adaptive decomposition. This strategy devotes additional search effort to the80

potential knee region in each generation to improve the diversity of the knee
region. At the same time, the search effort on the whole PF and hence the
overall diversity of solutions in the whole objective space are still maintained.
Our major contributions in this paper are summarized as follows:

• We introduce a decomposition-based evolutionary paradigm for the MOSR85

problem. In this scheme, the population is decomposed into a number of
subpopulations by uniformly distributed reference vectors in the objective
space. This evolutionary scheme can maintain a good diversity of solu-
tions and direct search results towards the true PF. At the same time,
the computational efficiency is substantially better compared to existing90

MOEAs for the MOSR problem.

• We propose an improved two-stage IST-based local search operator. The
population is divided into two sets, one containing the best solutions for
each subpopulation and the other containing the rest. The first stage is
convergence-oriented, i.e., selecting two solutions from both sets for local95

search to push the solutions to converge to the true PF. The second stage is
diversity-oriented, updating solutions by the first set to spread them along
the PF. In addition, an extra constraint is added to the λ vector to exclude
zero solutions. This local search strategy improves the exploitation ability
of ADEA.100

5



• We propose an adaptive decomposition-based environmental selection strat-
egy. In each generation, this strategy identifies the potential knee region,
then adds additional reference vectors in this region. Following this pro-
cedure, more promising solutions in the potential knee region will be se-
lected, which improves the diversity of solutions in the knee region and105

finally enhances the quality of the overall solution.

• We provide extensive experimental results for the proposed algorithm.
We compare the proposed algorithm with six state-of-the-art SR algo-
rithms using simulated signals, benchmark signals and images. The results
demonstrate the superiority of our proposed ADEA scheme.110

The rest of the paper is organized as follows. Section II presents the back-
ground technology. Section III introduces the framework and detailed compo-
nents of the proposed ADEA scheme. Experimental results are provided in
Section IV. Finally, Section V concludes the paper.

2. Background and Basis115

In this section, we briefly introduce the basis basics of the proposed algo-
rithm, including the decomposition, population normalization, individual asso-
ciation and the iterative soft-thresholding (IST) algorithm.

2.1. Decomposition

In the decomposition-based evolutionary paradigm, predefined reference vec-120

tors partition the population into several subpopulations. The reference vectors
assist in selecting the elitism solutions from each subpopulation, thus guaran-
teeing the convergence and diversity simultaneously. To generate the reference
vectors uniformly in the two-dimensional objective space, the normal-boundary
intersection method [13] is adopted. Firstly, H uniformly distributed reference125

points on the hyperball are generated, so that the hyperball will be divided
into (H − 1) parts. Then, the unit vectors from the coordinate origin to each
reference point are used as reference vectors.

For the MOSR problem, an example with 100 reference vectors in the two-
dimensional objective space is shown in Fig. 3. The reference points and ref-130

erence vectors are marked in blue and red respectively. We can see that the
hyperball is partitioned by 100 evenly distributed reference points, and then
the 100 unit vectors from the origin to each reference point form reference vec-
tors in the objective space.

2.2. Population Normalization135

Since the two objective functions are disparately scaled and all the refer-
ence vectors always start from the coordinate origin, the adaptive normaliza-
tion method [15] [46] is used. Let the M -th (M =1,2) objective function of the
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Figure 3: An example with 100 reference vectors in the two-dimensional objective space.

individual xi be fM(xi). It can be normalized to f̃M(xi):

f̃M(xi) =
fM(xi)− z∗M
znadM − z∗M

(6)

where z∗M is the M -th dimension of the ideal point (the ideal point is deter-
mined by the minimum value of each objective function) and znadM is the M -th
dimension of the nadir point obtained from the current generation. The ap-
proach of evaluating znadM is given in [15]. Firstly, the extreme points of the
two objective axes are calculated. Then a hyper ball is determined based on140

the extreme points. Its intercepts on each objective axis are calculated. Finally,
znadM is updated based on the intercepts.

2.3. Individual Association

After population normalization, each solution will be associated with its
closest reference vector, so that the population can be partitioned into several
subpopulations. Specifically, for a solution xi ∈ P, the acute angles between
f(xi) and each reference vector vj(j = 1, 2, ...N) are first calculated:

θxi,vj
= arccos(

f(xi) · vj
‖f(xi)‖

). (7)

Then, xi is associated with vj if and only if the angle between them is minimal.
As a result, the solutions associated with vj constitute the subpopulation Pj :

Pj = {xi|j = arg min θxi,vj
}. (8)

An example is given in Fig. 4, where v1 and v2 are two reference vectors, f̃(x)
is the normalized objective function of individual x, and x is associated with v1145

as θ1 < θ2.
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Figure 4: An example of individual association

2.4. Iterative Soft-thresholding Algorithm

Iterative soft-thresholding (IST) algorithm [24] is a SR algorithm which
solves Problem (4). It updates solutions based on the approximation

x(l+1) ≈ arg min
x

(x− x(l))T5F(x(l)) +
α(l)

2
‖x− x(l)‖22 + λ‖x‖1

= arg min
x

1

2
‖x− u(l)‖22 +

λ

α(l)
‖x‖1, (9)

where u(l) = x(l)− 1
α(l)5F(x(l)), and 5F(x(l)) = AT (Ax(l)−b) is the negative

gradient vector. The IST algorithm includes three major steps: adaptive step-
size, gradient descent, and thresholding truncation. The procedure is given in
Algorithm 1. There are two main methods for determining λ in the IST algo-
rithm. The first method uses a fixed value from experience. The other is known
as the “Continuation method”[22], where λ decreases with increasing iterations.
The stepsize parameter α(l) is determined by the Barizilai-Borwein method, [3],
and is used to accelerate convergence. The term αI is approximated by the
hessian 52F(x). Let s(l) = x(l) − x(l−1) and r(l) = 5F(x(l)) − 5F(x(l−1)).
Then α(l) can be obtained in the least-squares sense, i.e.,

α(l) = arg min
α
‖αs(l) − r(l)‖22 =

(s(l))T r(l)

(s(l))T s(l)
(10)
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Algorithm 1: The IST Algorithm

Input: x(l), x(l−1), λ, A, b
Output: x(l+1)

1 /*Adaptive Stepsize*/

2 s(l) = x(l) − x(l−1);

3 r(l) = 5F(x(l))−5F(x(l−1));

4 α(l) =
(s(l))T r(l)

(s(l))T s(l)
;

5 /*Gradient Descent*/

6 u(l) = x(l) − 1
α(l)5F(x(l));

7 /*Thresholding Truncation*/
8

x(l+1) =

sign(u(l))(|u(l)| − λ

α(l)
) if u(l) >

λ

α(l)

0 otherwise.

3. The Proposed ADEA Scheme

3.1. Motivations and New Features

Our proposed ADEA scheme is mainly motivated by the following observa-150

tions and facts, and addresses these associated problems.
Firstly, existing MOSR algorithms employ the principle of Pareto nondomi-

nance, which has a limited computational speed. To address this issue, we apply
a decomposition-based evolutionary paradigm in our proposed ADEA scheme,
which can significantly reduce the computational cost of the selection process.155

Furthermore, as the population is decomposed evenly into subpopulations by
reference vectors, faster convergence and higher diversity can be achieved in
ADEA.

Secondly, it is proved that nearly optimal solutions exist in the knee region
of the objective space [30]. However, StEMO and LBEA uniformly allocate160

selection effort over the whole objective space and only consider the knee region
in the last generation. As a result, only a limited number of solutions can
be obtained from the knee region, which leads to solutions with insufficient
diversity there. MOEA/D-L1/2 and SPLS focus on maintaining the diversity
in the knee region by truncating a single solution generated by the local search.165

This may have low search efficiency at early iterations because of misguidance
of knee region. To address this problem, we propose an adaptive decomposition-
based environmental selection strategy. It searches the whole Pareto front (PF),
and meanwhile carries on additional selection of solutions in the knee region by
adding more and denser reference vectors in the knee-approximation region at170

each generation. Hence more solutions can be obtained in this region and the
diversity of solutions can be improved.
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Thirdly, the local search ability is closely related to the convergence perfor-
mance and computational time. In light of this, we propose a two-stage local
search strategy based on the IST algorithm in ADEA. The first stage provides175

a high-efficiency local search method for speeding up the convergence, while
the second stage helps disperse solutions over the Pareto front PF. Compared
with StEMO, which executes the local search over the whole population, ADEA
constraints constrains the search among subpopulations, which can reduce the
reconstruction error while maintaining the diversity. Furthermore, ADEA ap-180

plies an extra constraint to the regularization parameters, which avoids the
generation of useless zero solutions.

3.2. Framework of ADEA

The procedure of our proposed ADEA scheme is summarized in Algorithm
2. In the algorithm, ∆r represents the number of added reference vectors in the185

knee-approximation region, and is used for adjusting the diversity of solutions
in the knee region; t denotes the index of the generation.; P0 and V0 represent
the initial population and reference vectors respectively.

The algorithms start with initialization, where the initial population P0 is
generated with N randomized individuals, and N uniformly distributed refer-190

ence vectors are yielded (refer to Section 2.1), denoted as V0. Iterative genera-
tions follow the initialization. In each generation, the recombination operator,
including the simulated binary crossover[1] and the polynomial mutation [14],
are employed to generate offspring solutions Qt without any explicit mating
selection strategies (Line 4). In Line 5, Qt is combined into Pt. Then, the IST-195

based local search operator is implemented to obtain Lt (line 6). The population
Pt is updated again, and then the adaptive decomposition-guided environmental
selection operator is employed to select the elitism solutions for the next gen-
eration and to automatically add reference vectors into the knee-approximation
region (line 8), where rl is the lower bound for interpolation section of the200

reference vector index. When the stopping criterion is met, the Pareto knee
point is obtained by the kink method [32] and treated as the final solution.
The IST-based local search operator and the adaptive decomposition-guided
environmental selection operator are detailed in the following subsections.

3.3. Improved IST-based Local Search205

Since the existing MOEA shows a slow convergence speed in solving the
SR problems, we integrate the improved IST algorithm into ADEA as a local
search operator for accelerating the convergence. According to Section 2.4, x(l),
x(l−1) and λ should be determined first. Next, we discuss how to choose these
variables for our improved IST-based local search operator.210

3.3.1. Selection of x(l) and x(l−1)

According to the theorem in [30], in the solution sequence, {x(l)} is generated
by the IST algorithms, and x(l+1) 4 x(l) 4 x(l−1), hence the newly generated
solution is always as good, or even better than the last one. From Therefore,
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Algorithm 2: Framework of ADEA

Input: A, b, ∆r
Output: x

1 P0 ← PopulationInitialization;
2 V0 ← ReferenceV ectorInitialization;
3 while ”the stopping criterion is not met” do
4 Qt =Recombination(Pt);
5 Pt = Pt ∪Qt;
6 Lt =IST−basedLocalSearch(Pt,Vt);
7 Pt = Pt ∪ Lt;
8 (Pt+1,Vt+1, rl)=Selection (Pt,Vt,V0,∆r, rl);
9 t = t+ 1;

10 end
11 x← FinalSolutionIdentification(Pt);

the selection of x(l) and x(l−1) in our improved IST-based local search operator215

should also follow this theorem.
In addition, the local search in ADEA is expected to be executed with the

guidance of reference vectors. This can lead the search to converge to the
coordinate origin and the diversity of solutions can also be achieved at the same
time. More specifically, the current population Pt should first be normalized220

(refer to Section 2.2), then in the normalized objective space, each solution in Pt

associates with its closest reference vector (refer to Section 2.3), and finally Pt

is partitioned into several subpopulations Pt
j by these reference vectors, where

j, j = 1, 2, . . . N are the indexes of the reference vectors.
We introduce the metric fitness evaluation function in [46] as the selection

criterion. The fitness of a solution xi can be represented by

Dxi = d1xi + 5× d2xi (11)

where d1xi
= ‖f(xi)‖× cos(θxi,vj

) and d2xi
= ‖f(xi)‖× sin(θxi,vj

) measure the225

convergence and diversity of xi respectively. The physical meaning of d1xi
and

d2xi can be seen from Fig. 4. We can see that a smaller d1xi leads to better
convergence, and a smaller d2xi leads to better diversity. Based on the fitness of
solutions, we divide Pt into two sets B and S, where B is made up of the solution
with the best fitness in each subpopulation (i.e. B = {xi|i = arg minDxi

, xi ∈230

Pt
j , j = 1, 2, ...N}), and the remaining solutions in Pt constitute S (namely

S = Pt \B). It can be found that most solutions in B are better than those in
S.

Now we discuss two cases when selecting x(l) and x(l−1) from B and S, as
illustrated in Fig. 5. In Fig. 5(a), x(l) and x(l−1) are selected from the sets235

B and S respectively. We call it as convergence-oriented local search, since the
newly generated solution x(l+1) is more likely to converge to the true PF thanks
to x(l) ≺ x(l−1). In Fig. 5(b), both x(l) and x(l−1) are chosen from the set B.
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We call it as diversity-oriented local search. Since x(l) and x(l−1) are prone to
be nondominant with respect to each other, this method disperses the updating240

solutions over the true PF with high probability.

(a) (b)

Figure 5: (a)Convergence-oriented local search, x(l) and x(l−1) are selected from the set B and
S respectively, which pushes the solutions to converge to the true Pareto front. (b)Diversity-
oriented local search. x(l) and x(l−1) are both randomly selected from the set B without
repetition, which disperses the solutions over the Pareto front with high probability.

3.3.2. Determining λ

The IST algorithms employ the steady-state strategy, namely only a λ scalar
is utilized in each generation. This strategy provides a rather fixed search path
and may fall into suboptimal solutions. Existing MOSR algorithms avoid se-
lecting λ values, and they execute more effective parallel searching by using a
vector Λ = [λ1, λ2, . . . , λK ] in each generation, where every element is randomly
selected between 0 and 1. However, in (4), it can be found that if the chosen λi
is too large, for example, λi ≥ ‖ATb‖∞, the zero vector would be the unique
solution [20][26]. Therefore, jointly considering this phenomenon and the ad-
vantage of the parallel search strategy, we propose a more accurate local parallel
search strategy: in each generation, we use a vector Λ whose elements follow a
uniform distribution:

‖ATb‖∞ · {rand(0, 1)}1×|B|. (12)

Equation (12) guarantees that no zero solutions will be attempted, thus improv-
ing the local search efficiency.

3.3.3. The Complete IST-based Local Search Strategy245

Based on the above discussions, the pseudocode of IST-based local search
strategy is given in Algorithm 3. First, the population Pt is normalized. Then,
in the normalized objective space, each individual is associated with its nearest
reference vector, hence Pt is divided into a number of subpopulations Pt

j (j =
1, 2, . . . N). The solution with the best fitness in each subpopulation is moved250

to the set B, and the rest are placed into S. The Λ vector is generated by

12



Algorithm 3: IST-based Local Search Operator

Input: Pt, Vt

Output: Lt

1 f̃ t = PopulationNormalization(Pt);

2 Pt
j = IndividalAssociation(Pt, f̃ t,Vt);

3 B = {xi|i = arg minDxi
,xi ∈ Pt

j , j = 1, 2, ...N};
4 S = Pt \B;

5 Λ1×|B| ← ‖ATb‖∞ · {rand(0, 1)}1×|B|;
6 /*Two-stage manner*/
7 for i = 1 : |B| do
8 L1 = IST (Bi,Si,Λ

1×|B|);
9 end

10 for i = 1 : b|B|/2c do
11 L2 = IST (Bi,B|B|−i,Λ

1×b|B|/2c);
12 end
13 Lt = L1 ∪ L2;

equation (12). After that, the two-stage manner is executed to obtain the new
population Lt: the convergence-oriented local search is conducted to accelerate
the convergence in the first stage (line 8), and the diversity-oriented local search
is implemented to spread the solutions over the PF in the second stage (line 11).255

3.4. Adaptive Decomposition-based Environmental Selection

The pseudo-code of the adaptive decomposition-based environmental selec-
tion operator is given in Algorithm 4. In order to use reference vectors to guide
the evolutionary process, we first apply population normalization and individual
association, as introduced in Section 2.2 and 2.3 respectively. The fitness of each260

solution is measured by equation (11) (line 6). We then apply the strategy of
adaptive decomposition-based environmental selection that includes two main
steps: Elitism selection and Reference vector adaptation. In elitism selection,
the reference vectors guide the subpopulations to converge when maintaining
the diversity of solutions. In reference vector adaptation, uniformly distributed265

reference vectors can be dynamically added into the knee-approximation region,
thus assisting in selecting more promising solutions in the knee-approximation
region in the next generation.

3.4.1. Elitism Selection

The elitism selection step (line 10∼22 of Algorithm 4) is proposed to select270

elitism individuals for the next generation. Firstly, each subpopulation Pt
j is

updated by solutions sorted through their fitness D in ascending order (line 11).
Then, the solution xi with fitness ranked the u-th in Pt

j is collected to the set
Eu (line 13). Thereafter, several levels {E1,E2, ...E|Vt|} are obtained. Finally,
|Vt| solutions are selected from the highest level E1 to low levels and placed275
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Algorithm 4: Adaptive Decomposition-based Environmental Selec-
tion Operator

Input: Pt, Vt, V0, ∆r, rl, Pt+1 = φ
Output: Pt+1, Vt+1, rl

1 f̃ t = PopulationNormalization(Pt);

2 Pt
j = IndividualAssociation(Pt, f̃ t,Vt);

3 /*fitness Measurement*/
4 for j = 1 : |Vt| do
5 for i = 1 : |Pt

j | do
6 Dxi

= d1xi
+ 5× d2xi

;
7 end

8 end
9 /*Elitism Selection*/

10 E = {E1,E2, ...E|Vt|} = {φ, φ, ...φ};
11 Pt

j ← sort Pt
j based on D in ascending order;

12 for u = 1 : max |Pt
j | do

13 Eu ←the u-th solution in Pt
j , j ∈ 1, 2, . . . |Vt|;

14 end
15 u = 1;
16 while

∑
|Eu| < |Vt| do

17 Pt+1 = Pt+1 ∪Eu;
18 u = u+ 1;

19 end
20 if |Pt+1| > |Vt| then
21 Pt+1 = Pt+1 \RandomSelect(Eu−1);
22 end
23 /*Reference Vector Adaptation*/

24 Compute the fitness of solutions: Fxi,vj = λ0 · ‖xi‖1 + 1
2‖Axi − b‖22,

where xi ∈ Pt+1, j ∈ 1, 2, . . . , |Vt|, and λ0 = rand(0, 1)× ‖ATb‖∞;
25 ro← {j|xi = arg minFxi,vj};
26 if ro > N then
27 ro = ro−N + rl;
28 end
29 rh = min(N, ro+ ∆r);
30 rl = max(1, ro−∆r);
31 Vt+1 ← V0;
32 Vt+1 ←add (rh− rl) new reference vectors between rl and rh and

place them after the last row of Vt+1;
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Figure 6: An example of reference vector adaptation.

into Pt+1 (Line 16-19). Once the number of selected solutions exceeds |Vt|, the
extra selected solutions from the last accepted level will be randomly removed
(Line 20-22).

3.4.2. Reference Vector Adaptation

It has been proved that a nearly optimal solution exists in the knee re-280

gion [30], so the selection should be more focused on the knee-approximation
region in each generation. Therefore, the reference vector adaptation is in-
troduced (line 23∼32 of Algorithm 4) to add extra reference vectors into the
knee-approximation region. By the proposed reference vector adaption strat-
egy, more solutions in the knee-approximation region will be selected in the next285

generation. There is the problem of estimating the knee-approximation region
in each generation here. To solve this problem, equation (4) is used to evaluate
the quality of each solution, and the solution with the smallest value can be
regarded as the knee-approximation point in the current generation. For each
generation, we employ (12) to determine the λ scalar in (4).290

The pseudo-code of reference vector adaptation is shown in line 23∼32 of
Algorithm 4. Firstly, the fitness of each solution is computed according to (4).
Then, the solution with the best fitness is treated as the knee-approximation
point, and the index of its associating reference vector is assigned to ro. As the
reference vector adaptation strategy adds new reference vectors to the bases of295

V0, the ro-th reference vector should belong to V0. If not, ro will be updated by
ro = ro−N + rl. Next, the reference vector interpolation section [rl, rh] in V 0

can be obtained by line 29∼30. Finally, 4r new reference vectors are inserted at
both sides of V0

ro to generate Vt+1. An example of reference vector adaptation
is given in Fig. 6, where V0

rl and V0
rh determine the reference interpolation300

section via the position of V0
ro, and 2 ×4r new reference vectors are inserted

in this section.

3.5. Final Solution Identification

The knee region provides a good trade-off between the two objectives, and
it has been proved that a nearly optimal solution exists in this region [30]. A305
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number of methods have been proposed to find the knee solution [6, 33]. The
process of identifying the final solution is shown in Algorithm 5. The Pareto
nondominant solutions from the final solution set are selected and normalized
in the interval [0, 1]. Then, the normalized solutions are fitted by B-splines and
sampled evenly. Finally, the kink method [32] is used to locate the knee point310

as the final solution.

Algorithm 5: Final Solution Identification

Input: Pt

Output: x
1 PF← Find the nondominant solutions from Pt;
2 Normalize PF;
3 Employ B-splines to yield the PF fitting curve P̄F;
4 Sample evenly on P̄F;
5 x← find knee point on P̄F using the kink method;

In the kink method, the solution with the largest slope variance is determined
as the nearly optimal solution. To be specific, for a solution xi and its objective
values (f1(xi), f2(xi)), its slope variance of ∆βi is

βi = arctan(
f1(xi)− f1(xi+1)

f2(xi)− f2(xi+1)
),

4 βi =
βi
βi−1

,

(13)

where β0 = 2/π. Thereafter, the solution with the largest 4β value is defined
as the nearly optimal solution.

3.6. Computational Complexity Analysis

As shown in Algorithms 2 to 5, in each generation, the computational315

complexity of ADEA is dominated by the improved IST-based local search
and the adaptive decomposition-based environment selection procedures. The
complexity of the proposed IST-based local search method is upper bounded
by o( 3

2 (N + 2∆r)n2). In the proposed selection procedure, the complexity
of individual association, elitism selection and reference vector adaptation is320

o(2× (N + 2∆r)2), o((N + 2∆r)2) and o(2×∆r) in the worst case, respectively.
Since N � n,the overall computational complexity of our proposed ADEA
scheme is o( 3

2 (N + 2∆r)n2) in the worst case.
Comparatively, the computational complexity of StEMO and LBEA is o(2Nn2)

and (15Nn2) in the worst case respectively. Hence ADEA achieves reduced com-325

putational complexity, in addition to the improved performance as will be seen
from the experimental results in next Section.
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4. Experimental Results

4.1. Experiment Settings

In this section, numerical experiments on simulated signals, benchmark prob-330

lems and images are provided to compare the reconstruction quality between
the proposed ADEA and other state-of-the-art algorithms, i.e. basis pursuit
(BP) [10], orthogonal matching pursuit (OMP) [7], Homotopy [27], fast iter-
ative shrinkage-thresholding algorithm (FISTA) [42], StEMO [30] and LBEA
[44]. Among them, BP, OMP, Homotopy and FISTA belong to single-objective335

SR algorithms, and StEMO, LBEA and ADEA are MOSR algorithms. The
reconstruction error (RE) is used to evaluate the reconstruction quality, which
is defined by RE = ‖x − xtrue‖/‖xtrue‖, where xtrue and x are the real and
estimated signal respectively. All experiments are implemented in MATLAB
R2014a on the PC with 3.3GHz Intel Xeon E3 processor and 8G memory on340

Window 7 system. The λ value for BP, OMP, Homotopy and FISTA is set to
0.02. The major parameters of ADEA include crossover probability, distribu-
tion index of crossover, mutation probability and distribution index of muta-
tion, which are set to 1, 20, 1/n and 20 respectively. For a fair comparison,
the population size for StEMO, LBEA and ADEA are set to 120, 120 and 100345

respectively, because of the reference adaptation strategy in ADEA.

4.2. Comparison Using Simulated Signals

In the following experiments, a sparse signal xtrue is generated from k Gaus-
sian random nonzero elements (k � n). The measurement vector b is obtained
by the product of xtrue and the Gaussian matrix A. The measurement vector350

is corrupted by white noise whose standard deviation is δ. The sampling rate
and sparsity ratio are m

n and k
n respectively. Each algorithm runs 20 times in

each test case. We first investigate the reconstruction quality of the MOSR
algorithms, and then compare all seven algorithms.

4.2.1. Comparisons of the MOSR algorithms355

The reconstruction performance and running time of the MOSR algorithms
are compared under different sampling rates, sparsity ratios, noise levels and
length of signals as shown in Figs. 7∼10 . The stopping criterion is that all
the algorithms stop running when the number of iterations reach reaches the
maximum generation tmax.360

In Fig. 7, the average RE results and running time of StEMO, LBEA and
ADEA are compared under different sampling rates from 0.25 to 0.65 under
noiseless condition. The signal parameters are n = 1000 and k = 50. The maxi-
mum iterations tmax is 100. As can be observed from Fig. 7, when the sampling
rates increase, the reconstruction quality for all three algorithms improves. The365

running time for LBEA and ADEA roughly remains unchanged, but for StEMO,
it rapidly increases. ADEA outperforms StEMO and LBEA in reconstruction
quality under all the sampling rates, even when the sampling rate is relatively
small. ADEA always runs much faster than StEMO and LBEA.
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Figure 7: Comparisons of the MOSR algorithms under different sampling rates from 0.25 to
0.65 under noiseless condition, n = 1000, k = 50, (a) RE. (b) Running Time.
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Figure 8: Comparisons of the MOSR algorithms under different sparsity ratios from 0.05 to
0.30 under noiseless condition, n = 1000, m = 400, (a) average RE. (b) average running time.

In Fig. 8, the average RE results and running time of StEMO, LBEA and370

ADEA are compared under different sparsity ratios from 0.05 to 0.30 under
noiseless condition. The signal parameters are n = 1000 and m = 400. As it
becomes harder to recover less-sparse signals, the maximum iterations tmax is
increased to 200. Fig. 8(a) shows that the reconstruction quality of all there
three algorithms deteriorate with higher sparsity ratio, but ADEA is always375

superior to StEMO and LBEA. Fig. 8(b) illustrates that the average running
time of all the algorithms remains unchanged with the increasing sparsity ratio,
and ADEA is always the fastest among the three.

In Fig. 9, the average RE results and running time for StEMO, LBEA and
ADEA are compared under different noise levels from 0 to 0.018. The signal380

parameters are n = 1000, m = 400 and k = 50. Fig. 9(a) indicates that
the performance of ADEA is slightly better than that of StEMO and LBEA
when the noise level δ surpasses 0.009. While in other cases, ADEA achieves
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Figure 9: Comparisons of the MOSR algorithms under different noise levels from 0 to 0.018,
n = 1000, m = 400, k = 50, (a) average RE. (b) average running time.
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Figure 10: Comparisons of the MOSR algorithms under different lengths of signals from 500
to 2000, m = 400, k = 50 and δ = 0. (a) average RE. (b) average running time.

the smallest reconstruction errors. In Fig. 9(b), it is shown that the average
running time is independent of noise levels, and ADEA has faster reconstruction385

speed than StEMO and LBEA.
The average RE results and running time of StEMO, LBEA and ADEA

are compared under different lengths of signals from 500 to 2000. The signal
parameters are m = 400, k = 50, δ = 0 and tmax = 100. As can be seen from
Fig. 10(a), all algorithms get worse reconstruction quality with larger n, but390

the performance of ADEA still surpasses that of StEMO and LBEA. In Fig.
10(b), the running time of three algorithms increases as n grows, and ADEA
has the fastest reconstruction speed under all conditions.

To summarize, ADEA outperforms StEMO and LBEA in reconstruction
quality, regardless of the changes in measurement times, sparsity, noise levels,395

or lengths of signals. Furthermore, due to the low computational complexity of
the decomposition-based paradigm, ADEA requires much less running time in
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Figure 11: Comparisons of all seven algorithms under different sampling ratios from 0.25 to
0.65 under noiseless condition, n = 1000, k = 50. (a) Average RE, and (b) Average running
time.

all test scenarios.

4.2.2. Comparison of MOSR and single-objective SR algorithms

This part compares the reconstruction quality and runtime for all the seven400

algorithms, i.e., BP, OMP, Homotopy, FISTA, StEMO, LBEA and ADEA with
increased times of measurement or sparsity levels. The parameter of stopping
criterion is set to be 0.1. First, the parameters of the simulated signal are set
to n = 1000 and k = 50 under noiseless measurement condition.

Fig. 11 shows the average RE results and running time under different sam-405

pling rates (0.25 ∼ 0.65). Fig. 11(a) demonstrates that our method ADEA
achieves the best reconstruction performance compared with other five algo-
rithms. It is worth noting that ADEA performs quite well even with limited
measurements, which is desired for real applications. Fig. 11(b) shows that
single-objective SR algorithms (i.e. BP, OMP, Homotopy and FISTA) run faster410

than MOSR algorithms. However, it is worth noting that ADEA achieves the
fastest reconstruction among the evolutionary optimizers.

Fig. 12 shows the average RE results and running time under different
sparsity levels and noiseless conditions. From Fig. 12(a), it can be observed
that ADEA outperforms other algorithms in terms of reconstruction quality,415

except when the sparsity ratio is equal to or greater than 0.2. From Fig. 12(b),
we can see that the average running time of the MOSR algorithms is larger than
that of traditional CS algorithms, but ADEA runs much faster than StEMO and
LBEA.

Therefore, ADEA achieves the best reconstruction quality in all test cases,420

particularly when the measurement times are small. Evolutionary optimizers
typically run more slowly than traditional methods, mainly because they search
multiple solutions in a single run. In spite of this, ADEA achieves enormous
improvement over existing MOSR algorithms on running time.
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Figure 12: Comparisons of all seven algorithms under different sparsity levels from 0.05 to
0.3 under noiseless condition, n = 1000, m = 400. (a) Average RE, and (b) Average running
time.

4.3. Comparison on Benchmark Problems425

In this section, experimental results on practical benchmark problems are
presented to compare the reconstruction performance of the seven algorithms.
The Sparco toolbox [38] is used to provide a variety of benchmark problems, in
which five signals, including sgnspike, gausspike, cosspike, gcosspike and jitter,
are adopted to compare the reconstruction quality of the seven algorithms. The430

sgnspike and gausspike signals are sparse themselves, which can be sampled
and directly reconstructed. The cosspike, gcosspike and jitter signals x are not
sparse themselves, but they have a sparse representation w regarding to some
basis vectors Ψ. We need to reconstruct w and then obtain x by x = Ψw. All
the measurements are corrupted by additive Gaussian noise, with mean 0 and435

standard deviation 0.01.
Our ADEA scheme performs very well in reconstructing these benchmark

signals, as can be seen from Fig.13, which demonstrates the average reconstruc-
tion errors for these seven algorithms. All the seven algorithms show good
performance for reconstructing sgnspike, and ADEA achieves the smallest re-440

constructing error. For the gausspike problem, BP, FISTA and ADEA perform
best, while StEMO is the worst. Except for Homotopy, other algorithms can
roughly realize exact reconstruction on the cosspike problem, and ADEA pro-
vides superior reconstruction performance, together with OMP and FISTA. In
regard to gausspike, Homotopy and StEMO fail to reconstruct this signal, and445

FISTA ranks first, and both BP and ADEA rank second, in terms of reconstruc-
tion performance. Finally, ADEA is placed in the leading position in regards to
achieving excellent performance for reconstructing the jitter signal.

4.4. Comparison on Images

This section further evaluates the performance of ADEA on image recon-450

struction. The test images include Fruits, Lena, Cameraman and Peppers
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Figure 13: Average reconstruction errors of seven algorithms on the benchmark problems
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Figure 14: Original images of 256 × 256 pixels. (a) Fruits. (b) Lena. (c) Cameraman. (d)
Peppers.

images with the size of 256 × 256, as shown in Fig. 14. Many state-of-the-
art algorithms can robustly recover k-sparse and compressible signals from
m ≥ O(k log(n/k)) noisy measurements [2]. Sparser x may lead to better recon-
struction quality with the same number of measurements. Use the Lena image455

as an example. Fig. 15 (a) and (b) shows its histogram in the image and wavelet
domain, respectively. We can see that the histogram in the image domain is not
sparse, but in the wavelet domain, it has a large peak near zero indicating the
sparsity of wavelet coefficients. Therefore, Haar wavelets are employed as the
sparse basis matrix Ψ in order to achieve better reconstruction results. In this460

experiment, we sample the wavelet coefficients of those images with a Gaussian
random matrix. The sampling rate is fixed at 0.5, and the measurement data is
corrupted by white noise (δ = 0.01). The parameter σ for the stopping criterion
is set to 0.1. The reconstruction quality is measured with respect to PSNR and
SSIM [40].465

Table 1 lists the reconstruction performance for the seven algorithms, and
the best results are highlighted in bold. We can see that ADEA achieves at
least 1 dB better PSNR values than other algorithms for the first three im-
ages. For peppers image, ADEA has the similar reconstruction performance to
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Figure 15: Histograms of Lena image in (a) image domain. (b) wavelet domain.

Table 1: Comparisons of PSNR and SSIM values for seven algorithms on image reconstruction
Algorithms Fruits Lena Cameraman Peppers

BP 25.7499(0.9655) 28.3154(0.9708) 26.7079(0.9819) 25.7079(0.9718)
OMP 24.2819(0.9527) 26.2946(0.9713) 23.3382(0.9623) 24.8741(0.9674)

Homotopy 26.0502(0.9702) 28.3491(0.9799) 25.9777(0.9791) 26.9523(0.9779)
FISTA 26.9525(0.9711) 28.5824(0.9815) 26.0053(0.9792) 26.9563(0.9779)
StEMO 28.3582(0.9843) 29.8972(0.9880) 26.2489(0.9804) 27.3173(0.9805)
LBEA 28.3299(0.9810) 30.5323(0.9897) 27.1543(0.9849) 27.4767(0.9812)
ADEA 29.9721(.9893) 31.5485(0.9928) 28.4509(0.9923) 27.4582(0.9824)

StEMO and LBEA, and is substantially better than the single-objective algo-470

rithms. Fig. 16 also displays the visual quality of the reconstructed Lena image,
corresponding to the quantitative results as shown in Table 1. In the figure, the
odd rows show the original or reconstructed images and the even rows show the
corresponding enlarged local parts. ADEA demonstrates the best visual quality
among the seven algorithms, and OMP is the worst due to speckles.475
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Figure 16: Original and reconstructed Lena images by seven algorithms.

5. Further Study of ADEA

In this section, the advantages of ADEA operators, diversity of solutions
in knee region, and robustness of final solutions, are further investigated to
demonstrate the superior performance of the proposed ADEA scheme.

5.1. Study of ADEA Operators480

Each operator in ADEA plays a specific role in reconstruction. The decomposition-
based evolutionary paradigm partitions the current population into several sub-
populations and carries out the collaborative evolution on those subpopulations.
It therefore searches the potential solutions globally and improves the diver-
sity of solutions across the PF. The IST-based local search operator improves485
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Figure 17: (a) Comparisons of DEA and ADEA under different sampling rates from 0 to
0.018 under noiseless condition, n = 1000, k = 50. (b) Comparisons of DEA and ADEA
under different sparsity ratio from 0.05 to 0.30 under noiseless condition, n = 1000, m = 400.

the scheme’s exploitation ability and accelerates its convergence. The adaptive
decomposition-based environmental selection operator acts on elitism selection
with improved convergence and diversity. In particular, this reference vector
adaptation strategy assists in selecting more valuable solutions in the knee re-
gion, which improves the convergence speed.490

In this subsection, we present experimental results to further study the im-
pact of IST-based local search operator and the reference vector adaptation
strategy on reconstruction performance. We compare the reconstruction re-
sults for the proposed ADEA, the ASEA version without the IST-based local
search operator (termed as ADEA-noLS), and the one without reference vector495

adaptation (termed as DEA).
Fig. 17 (a) and (b) shows the reconstruction results under different sampling

rates and sparsity ratios respectively. The parameter settings are the same with
those in Fig.(7) and Fig.(8) respectively. It can be seen that, ADEA-noLS fails
to reconstruct the original signals, and ADEA achieves better reconstruction500

quality than DEA in most cases with various sampling rates or sparsity ra-
tios. These results further validate the importance of IST-based local search
operator and reference vector adaptation strategy in improving the convergence
performance of ADEA.

5.2. Diversity of Solutions in the Knee Region505

In this subsection, we study the diversity of solutions in the knee region
for the three MOSR algorithms (i.e. StEMO, LBEA and ADEA). This further
helps us understand the importance of the proposed reference vector adaptation
strategy in ADEA. We choose two hard measurement cases, where the signal is
generated in the same way as that in Section 4.2. In Case 1, some parameters510

of the signal are n = 1000, m = 250 and k = 50, without additive noise. In
Case 2, the length and sparsity of signal are n = 1000 and k = 50 respectively,
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Figure 18: Comparison of the diversity in the knee region for MOSR algorithms in Case 1.
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Figure 19: Comparison of the diversity in the knee region of MOSR algorithms in Case 2.

the sampling measurement m is set to 400, and the measurement is corrupted
by white noise with mean zero and standard deviation 0.02.

The diversity of the final solutions for the MOSR algorithms in Case 1 is515

shown in Fig. 18. The red points denote all the final solutions and the blue
point represents the knee point. ADEA achieves the best performance, and
most of the solutions in ADEA are concentrated in the knee region. The curve
fitted by those solutions in ADEA is more smooth than those in StEMO and
LBEA. However, the solutions in StEMO’s knee region are the most sparse and520

non-uniform, and the corresponding fitting curve is rough. This may lead to
bad robustness and low accuracy, as we have seen from the reconstruction of
the gausspike and gcosspike benchmark problems in Fig. 13.

Fig. 19 illustrates the final solutions for the three MOSR algorithms in Case
2. ADEA has the best RE values and provides more solutions in the knee region,525

in comparison to StEMO and LBEA. The solutions in the knee region of ADEA
are distributed more uniformly than those in the other two algorithms, which
offers strong potential for resisting PF distortion (see Fig. 6(a) in [30]).

Therefore, it can be concluded that ADEA provides solutions that are more
evenly distributed with higher density in the knee region, and hence improving530

the success rate of finding the knee point and the reconstruction accuracy.
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Figure 20: The boxplots of reconstruction results of thirty indipendent trials(n = 1000, k = 50
and tmax is 100)

5.3. Robustness of ADEA

Since the evolutionary searching process is random and unpredictable, and
the λ value is not unique, the final solutions given by ADEA may be not unique.
However, thanks to the exhaustive searching process in exploring multiple so-535

lution paths (i.e., we searched N solutions in the iteration process of ASEA,
rather than adopting the steady-state search in conventional SR algorithms), a
good approximate to the ground-truth signal can still be obtained. To verify
this, we conducted thirty independent trials with varying sampling rates. The
experimental settings are the same with those in Fig. 7 (n = 1000, k = 50 and540

tmax is 100). Fig. 20 presents the boxplot results for the reconstruction error.
We can see that the final solutions have little RE difference at each sampling
rate. Therefore, it can be concluded that ADEA is very robust.

6. Conclusions

In this paper, an adaptive decomposition-based evolutionary algorithm (ADEA)545

is proposed for the multiobjective sparse reconstruction problem. The ADEA
scheme includes three major innovations: (1) a decomposition based evolu-
tionary is introduced into ADEA to provide high computational efficiency and
reconstruction accuracy; (2) an improved iterative soft thresholding-based local
search is applied to further improve the exploitation ability of the algorithm;550

(3) an adaptive decomposition-based environmental selection operator with a
reference vector adaptation strategy is developed to adaptively adjust the di-
versity in the knee region and to enable the finding of elitism solutions at low
computational complexity.

The performance of ADEA on signal and image reconstruction problems is555

investigated by comparing it to five state-of-the-art algorithms. According to the
experimental results, ADEA consistently achieves best reconstruction quality in
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most cases. Furthermore, ADEA requires much less running time than existing
evolutionary optimizers. Therefore, ADEA is a very competitive evolutionary
optimizer for the SR problem. Given its medium computational complexity,560

ADEA can be applied to real-time applications, such as reconstructing slowly
time-varying signals. To further accelerate the running speed of ADEA, parallel
implementation [17] or distributed clusters [23] could be employed.

In the future, the decomposition-based selection strategy could be incorpo-
rated into other advanced global and local search operators to further improve565

the performance of evolutionary optimizers for MOSR. Since locating the knee
point is the key to identifying the final solution, future work can focus on study-
ing more robust and effective methods for finding the knee point.
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