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a b s t r a c t 

Multi-label classification consists of assigning one or multiple classes to each sample in a 

given dataset. However, the project of a multi-label classifier is usually limited to a small 

number of supervised samples as compared to the number of all possible label combi- 

nations. This scenario favors semi-supervised learning methods, which can cope with the 

absence of supervised samples by adding unsupervised ones to the training set. Recently, 

we proposed a semi-supervised learning method based on optimum connectivity for single- 

label classification. In this work, we extend it for multi-label classification with consider- 

able effectiveness gain. After a single-label data transformation, the method propagates 

labels from supervised to unsupervised samples, as in the original approach, by assum- 

ing that samples from the same class are more closely connected through sequences of 

nearby samples than samples from distinct classes. Given that the procedure is more re- 

liable in high-density regions of the feature space, an additional step repropagates labels 

from the maxima of a probability density function to correct possible labeling errors from 

the previous step. Finally, the data transformation is reversed to obtain multiple labels per 

sample. The new approach is experimentally validated on several datasets in comparison 

with state-of-the-art methods. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Multi-label assignment is required in several scenarios, such as text categorization and computer-aided medical diagnosis

systems. In the former, a newspaper article may be categorized as belonging to religion and arts, while, in the latter, a

patient may be affected by multiple diseases simultaneously. Therefore, a sample may be assigned to one or multiple classes

in such scenarios. Existing methods either reduce the problem into several single-label classification problems, or create one

meta-class for each possible label combination, being divided into two main categories [34] : problem transformation and

algorithm adaptation strategies, respectively. In both cases, the samples are relabeled according to a different strategy in

order to use one or multiple well-known classification models. Algorithm adaptation methods modify supervised learning

approaches, such as k -nearest neighbors [33] , decision trees [10] , and artificial neural networks [32] aiming at identifying

the meta-classes of samples based on ranking and statistical information. Similarly, there are solutions that exploit label

correlation information [20] , methods that use this correlation to perform feature selection [8,9] , and works that investigate
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label dependencies [31] . In short, each category brings benefits but also has disadvantages that are desired to be known

beforehand. 

Once single-label datasets are created by problem transformation from multi-label samples, for instance, a supervised

classifier can be trained to assign single labels to new samples. These samples may then be reassigned to multiple classes

by the reverse data transformation process. However, the design of a multi-label classifier is often limited to a small num-

ber of supervised samples (those labeled by experts) as compared to the number of all possible label combinations, thus

favoring semi-supervised learning methods. In the case of algorithm adaptation strategies, one shall use a self-training ap-

proach [21,23,30] . 

The most interesting semi-supervised learning methods explore the distribution of supervised and unsupervised training

samples in the feature space for label propagation purposes [1,2,4,5,17–19,28] . Others use path-based similarity to capture

the structure of the data and maximize the separability among classes [7,35] . This process can be repeated a few times, such

that a final classifier is created from the most confident samples of the fully labeled training set. 

The method presented in this work is based on the Optimum-Path Forest (OPF) framework, initially proposed to the

design of image processing operators [15] and subsequently extended to clustering [29] and supervised classification [25–

27] . In OPF, training samples (supervised and/or unsupervised) are the nodes of a graph defined by a given adjacency relation ,

and the classifier is an optimum-path forest computed over the graph for a given connectivity function — i.e., a function that

assigns a value to any path in the graph, including the trivial ones formed by single nodes. The roots of the forest are

derived from the minima (maxima) of a connectivity map, that is minimized (maximized) by computing optimum paths

with the terminus at each node of the graph. The design of a classifier can be obtained by executing the OPF algorithm one

or multiple times for different input graphs and connectivity functions. 

In [1] , we proposed a semi-supervised learning method for the single-label assignment problem, which propagates la-

bels from supervised to unsupervised training samples by optimum connectivity. This method was recently improved in

accuracy and efficiency through a new algorithm, named OPFSEMI mst [2] . One can simply use OPFSEMI mst to directly assign

single labels to new samples and reversely transform those labels into the multiple classes per sample. In OPFSEMI mst , the

classifier is an optimum-path forest computed over the topology of a minimum-spanning tree. The roots of the forest are

the supervised samples and unsupervised samples are labeled by their most closely connected root — i.e., the one that of-

fers a path whose maximum arc-length is minimum. This label propagation process assumes that samples from the same

class are more closely connected than samples from distinct classes. In order to classify a new sample, all training examples

are connected to the new sample and extended paths are evaluated to assign the label of its most closely connected root.

This classifier has shown to be robust to a certain amount of label propagation errors in the training set for the single-label

assignment problem [2] . However, in the multi-label assignment problem, classification errors increase when wrong labels

are reversely transformed into multiple classes. 

Essentially, the multi-label assignment problem requires a more conservative classifier than OPFSEMI mst to better deal

with possible overlaps among classes. In this work, we observe that the label propagation errors of OPFSEMI mst are con-

centrated in feature space regions of lower probability density values — i.e., in the frontier among domes of a probability

density function (pdf) computed over the training set. Therefore, we propose to repropagate labels from the maxima of

the pdf to the remaining samples in the training set. This process is accomplished by a variant of the OPF clustering al-

gorithm [29] , in which the arcs of the graph are formed by connecting each training sample to its k -nearest nodes in the

feature space. The connectivity function assigns the minimum density value along a path and the connectivity map must be

maximized. In the resulting optimum-path forest (final classifier), each training sample belongs to one of the rooted trees

and is relabeled by the class of the corresponding root node. 

The new semi-supervised classifier is named OPFSEMI mst+ knn . For classification, the training samples closer to their roots

have higher priority to assign labels to new samples. Since mislabeled samples tend to be in the frontier among classes,

where the pdf values are lower, OPFSEMI mst+ knn can significantly outperform OPFSEMI mst in multi-label classification. 

In [29] , the best value of k results from the optimum-path forest that produces the minimum normalized cut in the k -nn

graph. In [24] , the authors use another variant of the OPF algorithm over a k -nn graph for supervised learning. They select

the value of k that minimizes the label propagation errors in the training set. In this case, the criterion leads to low values

of k (i.e., too many clusters), which also implies a poor estimation of the pdf. In this work, we estimate k such that the

number of labeling disagreements with OPFSEMI mst is less or equal to the number of the label propagation errors on half

of the supervised samples. The criterion tends to obtain a reasonable pdf estimation with higher values of k , and it also

reduces the number of mislabeled samples in the lower density regions of the pdf. 

In order to show the robustness of OPFSEMI mst+ knn , we assess its performance in multi-label classification problems

against three semi-supervised learning approaches adapted to four problem transformation strategies: its counterpart

OPFSEMI mst [2] , LapSVM [4] (manifold regularization), and Transductive Support Vector Machines (TSVM) [19] , being the

last two well-established methods. Additionally, we compare OPFSEMI mst+ knn against two algorithm adaptation techniques:

multi-label k NN (ML k NN) [33] and Back-Propagation Multi-Label Learning (BPMLL) [32] . In short, the main contributions

of this work are twofold: (i) to present an extension of OPFSEMI mst , namely OPFSEMI mst+ knn , which aims at reducing la-

bel propagation errors to unsupervised samples, and (ii) to propose a semi-supervised multi-label OPF classifier based on

OPFSEMI mst+ knn . 

The remainder of this paper is organized as follows. Section 2 explains algorithm adaptation and problem transformation

strategies, and Section 3 provides the theoretical background about the OPF framework. Section 4 introduces the proposed
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OPFSEMI mst+ knn , and the experimental results are presented in Section 5 . Finally, Section 6 states conclusion and future

work. 

2. Methods for multi-label classification 

In this section, we present a brief review concerning the two categories of multi-label learning, (i) algorithm adaptation

and (ii) problem transformation, and discuss how to propagate labels from supervised to unsupervised samples in each

strategy. 

2.1. Algorithm adaptation strategies 

The focus of the algorithm adaptation approaches concerns modifying existing algorithms so that they can deal directly

with the multi-label samples. Since the number of works in this topic has increased considerably, we will focus on the tech-

niques used for comparison purposes in the experimental section. The first one is the multi-label k NN [33] , which evaluates,

for each unseen example, its k -nearest neighbors in the training set. After that, based on statistical information gained from

the label sets of these neighboring samples, i.e. the number of neighboring instances belonging to each possible class, a

maximum a posteriori (MAP) principle is employed to determine the label set for that unseen sample. Another traditional

method in the area is the Back-Propagation Multi-Label Learning [32] . In principle, BPMLL is derived from the popular Back-

propagation algorithm by employing a novel error function that encodes the characteristics of multi-label learning — i.e.,

the labels belonging to an example should be ranked higher than those not belonging to that sample. 

A common and simple technique used for semi-supervised learning based on algorithm adaptation strategy is known

as “self-training”, in which the classifier uses its own predictions to teach itself. In this approach, an apprentice classifier

is first trained with a small number of supervised samples (an “initial” training set). Next, the classifier assigns labels to

the unsupervised samples and the most confidently labeled ones are used to augment the training set for retraining. This

procedure may repeat until all unsupervised examples have been labeled and moved to the training set. In this paper, we

use the self-training approach for the evaluation of both ML k NN and MPMLL methods. 

2.2. Problem transformation strategies 

In order to understand the difference among problem transformation strategies, let Z be a d -dimensional feature space 

and Y = { y 1 , y 2 , . . . , y L } be a label space with L possible class labels. Each sample s i ∈ Z can be assigned to a label set Y i ⊆ Y
by specifying the binary values y k 

i 
∈ { 0 , 1 } , 1 ≤ k ≤ L , where y k 

i 
= 1 denotes the sample s i belongs to class k , and y i 

k 
= 0

stands for the opposite situation 

1 A training set Z with l supervised samples and u unsupervised samples is then defined

by Z = Z 

l ∪ Z 

u , where Z 

l = { (s 1 , Y 1 ) , . . . , (s l , Y l ) } and Z 

u = { s l+1 , . . . , s l+ u } stand for the supervised and unsupervised sets

of samples, respectively. In this case, the learning problem aims at finding from Z a family of real-valued functions f i :

Z × Y → � , i = 1 , 2 , . . . , L such that f i (s i , Y i ) is the confidence that Y i is the true label set of s i (i.e., the label assigned to

the sample by the expert supervision). 

Binary Relevance (BR) decomposes the original multi-label Z 

l dataset into L single-label datasets Z 

l [ k ] =
{ (s 1 , y 

k 
1 
) , . . . , (s l , y 

k 
l 
) } , as well as L training-independent binary classifiers f k from Z 

l [ k ] in order to predict y k 
i 

∈ { 0 , 1 } ,
k = 1 , 2 , . . . , L , where y i [ k ] denotes the label of sample i with respect to class k . For instance, in a multi-label problem

with L = 3 classes, Z 

l [1] stands for the dataset in which samples that belong to class 1 are marked as positive, and the re-

maining ones (i.e., those from classes 2 and 3) are marked as negative samples. Label Powerset (LP) considers each possible

label combination from L as a single label, handling the problem with multiple classes. LP transforms Z 

l into a new dataset
ˆ Z 

l = { (s 1 , c 1 ) , . . . , (s l , c l ) } , where c i = g(Y i ) and g : { 0 , 1 } L → { 1 , . . . , 2 L } , i = 1 , 2 , . . . , l, stands for a function that maps each

single label combination to a new label representation. A multi-label classifier is then trained from new dataset to predict

the label of each new sample. 

Classifier Chain (CC) and Hierarchy of Multi-Label Classifiers (HOMER) are optimized extensions of BR and LP, respectively.

Classifier Chain performs the mapping into L binary datasets as BR, but it also extends the feature space for each Z 

l [ k ] by

adding the 0/1 labels from the previous Z 

l [ k − 1] . That is, Z 

l [ k ] = { (s ′ 
1 
, y k 

1 
) , . . . , (s ′ 

l 
, y k 

l 
) } and s ′ 

i 
= (s i · y k −1 

i 
) , where · stands

for the concatenation operator 2 , i = 1 , 2 , . . . , l. HOMER transforms a multi-label classifier into a hierarchy of simpler multi-

label classifiers, such that the classifier of a child node deals with a smaller set of labels than the classifier of the parent

node. The root node deals with L labels, which are grouped into k ≤ L disjoint children nodes. The grouping process repeats

for each node in a depth-first fashion until the nodes become leaves with L single-label classifiers. 

Therefore, one can apply a data transformation function T (Z 

l ) , propagate labels from T (Z 

l ) to Z 

u , and revert the pro-

cess T −1 (Z 

u ) for multi-label assignment. By projecting a semi-supervised classifier from T (Z 

l ) ∪ Z 

u and using it to assign

labels to new samples, the inverse T −1 discovers their multiple classes. Notice we use the transformation strategies for the

evaluation of OPFSEMI mst+ knn , OPFSEMI mst , LapSVM and TSVM methods. 
1 Notice Y i = { y 1 
i 
, y 2 

i 
, . . . , y L 

i 
} , i = 1 , 2 , . . . , l. 

2 Notice when k = 1 , the feature vector is not extended. 
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3. Optimum-path forest framework 

In this section, we present different ways to define graphs from training samples and connectivity functions, such that

the resulting optimum-path forest is a classifier built upon the training data. 

3.1. Training 

Let Z = Z 1 ∪ Z 2 be a dataset such that Z 1 and Z 2 stand for the training and testing sets, respectively. Additionally,

Z 1 = Z 

l 
1 

∪ Z 

u 
1 

consists of a supervised Z 

l 
1 

and unsupervised Z 

u 
1 

subsets of samples. Let also λ(s ) ∈ { 1 , 2 , . . . , L} be the true

label of each sample s ∈ Z and d ( s, t ) ≥ 0 be a distance function between the feature vectors of samples s , t ∈ Z . 

In the optimum-path forest framework, one can create a supervised classifier from Z 

l 
1 

and an unsupervised classifier from

Z 

u 
1 
, or a semi-supervised classifier from Z 1 by defining an adjacency relation A and a connectivity function f . The adjacency

relation A tells how training samples are connected in the feature space, thus forming a weighted graph (N , A , d) where

each pair (s , t ) ∈ A is an arc weighted by the distance d ( s, t ) between its corresponding nodes s , t ∈ N ⊆ Z 1 . We also use

t ∈ A (s ) to indicate an element from the set of nodes adjacent to s . The connectivity function f assigns a value f ( π t ) to any

sequence πt = 〈 s 1 , s 2 , . . . , s n = t 〉 of nodes, (s i , s i +1 ) ∈ A , i = 1 , 2 , . . . , n − 1 , with terminus at node t in the graph, including

trivial paths πt = 〈 t〉 . A trivial path value indicates the cost of starting a path from t , while the value of a path with terminus

s n = t indicates the cost of conquering t by a path that starts in some node s 1  = t . 

For a non-decreasing connectivity function f , the algorithm starts from trivial paths, such that the minima of the initial

cost map C 0 (t ) = f (〈 t 〉 ) , ∀ t ∈ N , compete among themselves by offering paths of lower costs to the remaining nodes. This

relaxation process creates a connectivity map C(t ) = min ∀ πt ∈ �t 
{ f (πt ) } ≤ C 0 (t ) , where �t is the set of all possible paths

with terminus at t and an optimum-path forest P rooted at the winner minima. The forest is an acyclic predecessor map P

that assigns to each node t its predecessor P ( t ) in the optimum path, or a distinct marker P (t ) = nil ∈ N when the node is

a root of the cost map. 

3.2. Classification 

The optimum-path forest P generated in the previous phase can be used for classification purposes. Let v ∈ Z 2 be a sample

to be classified. The classification process evaluates the cost of extending a path π s by a segment 〈 s, v 〉 , as follows: 

C(v ) = min ∀ s ∈N { f (πs · 〈 s , v 〉 ) } . (1)

Let s ∗ ∈ N be the node that satisfies the above equation. Therefore, the classifier assigns the label of s ∗ as the new class of

sample v . 

The main OPF algorithm is a variant of Dijkstra’s algorithm [12] for multiple sources and more general connectivity

functions [15] . Distinct operations may require other simple variants. For instance, a similar process can be defined for non-

increasing connectivity functions and roots at the maxima of the final connectivity map. The next section exemplifies its

application to the design of the proposed semi-supervised classifier — OPFSEMI mst+ knn . 

4. The semi-supervised classifier — OPFSEMI mst+ knn 

In this section, we present the semi-supervised learning method based on optimum-path forest, OPFSEMI mst [2] , and its

proposed extension OPFSEMI mst+ knn , which is more suitable for the multi-label assignment problem. 

First, in Section 4.1 , we explain the rationale about OPFSEMI mst+ knn . The semi-supervised learning process of OPF-

SEMI mst+ knn consists of three executions of the OPF algorithm for different choices of adjacency relation and connec-

tivity functions. The first execution closely connects supervised and unsupervised training samples in the feature space

( Section 4.2 ) – Algorithm 1 , and the second execution propagates labels from the supervised samples to the unsupervised

ones ( Section 4.3 ) – Algorithm 2 . The third execution estimates a probability density function, propagates labels from its

maxima, and creates a final Optimum-Path Forest classifier ( Section 4.4 ) – Algorithm 3 . Finally, Section 4.5 describes how

such classifier assigns labels to new samples. 

4.1. What is the rationale about OPFSEMI mst+ knn ? 

In regard to overlapping among classes, we showed in [2] the performance of OPFSEMI mst is better when the expert

annotates the samples in Z 

l 
1 

at the overlapped regions. However, by assuming a random choice of samples for Z 1 , they are

more likely to fall at the higher density regions of the feature space, wherein the center of the classes usually appear. In the

multi-label assignment problem, class overlap seems to increase when multiple classes are transformed into single labels.

This increases the label propagation errors of OPFSEMI mst , and when the single labels are reversely transformed into multiple

classes, the final performance of OPFSEMI mst is worse than the one observed for the single-label assignment problem. 

On the other hand, the errors in label propagation tend to concentrate in the lower density regions. Therefore, samples

at the maxima of the pdf (center of the classes) are more reliable to repropagate labels, which justifies our choice for

OPFSEMI mst+ knn . This scenario is illustrated in Fig. 1 . Fig. 1 a shows two overlapped classes (2D feature space) and the random
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Algorithm 1. The OPF algorithm for f mst on (Z 1 , A , d) . 

Algorithm 2. The OPF algorithm for f max on (Z 1 , B, d) . 
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Algorithm 3. The OPF algorithm for f min on (Z 1 , A k , d) . 

Fig. 1. (a) A dataset with two overlapped classes (2D feature space) with supervised, unsupervised, and test samples. (b) Result of label propagation by 

OPFSEMI mst , and classification results considering (c) OPFSEMI mst and (d) OPFSEMI mst+ knn . 
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Fig. 2. (a) Complete and weighted graph for a simple training set ( • supervised samples of class 1, ◦ supervised samples of class 2 and � unsupervised 

samples). (b) A minimum-spanning tree from (a). (c) A trivial connectivity map for optimum-path forest computation using f max on (b) and S = Z l 1 . (d) 

The resulting optimum-path forest. (e) Graph connected by means of a k -nearest neighbors adjacency relation (e.g. k = 3 ). The arrows point ( −� ) to the 

nearest neighbors. The entries (x,y) over the nodes are, respectively, their density value and label. The value within the node represents the radius (the 

median value). (f) Optimum-path forest computation using f min , where a test sample (triangle) is added in the graph, and classification result such that 

L 2 (v ) = L 2 (s ∗) . Nodes with dashed lines are the maxima that represent the classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

choice of supervised, unsupervised, and test samples. The results of label propagation and classification by OPFSEMI mst are

shown in Fig. 1 b and c, respectively. When labels are repropagated from the maxima of the pdf, the result of classification by

OPFSEMI mst+ knn reduces the errors ( Fig. 1 d), thus resulting in higher accuracies when single labels are reversely transformed

into multiple classes. 

4.2. Closely connecting supervised and unsupervised samples 

For a given training set Z 1 = Z 

l 
1 

∪ Z 

u 
1 

with supervised and unsupervised samples, OPFSEMI mst+ knn first defines a complete

and weighted graph (Z 1 , A , d) whose nodes are the training samples and arcs connect all pairs of samples (i.e., A = Z 1 ×
Z 1 ). The idea is to closely connect the supervised and unsupervised samples into a simpler representation — a Minimum

Spanning Tree (MST): an acyclic, weighted, and connected graph (Z 1 , B, d) , B ⊂ A , where 
∑ 

∀ (s , t ) ∈B d(s , t ) is minimum. This

representation assumes that samples from a same class are more closely connected through sequences of nearby samples

than samples from distinct classes, which makes it more efficient and suitable for label propagation. 

The MST of (Z 1 , A , d) can be computed by the OPF algorithm for a connectivity function f mst , as follows: 

f mst (〈 t 〉 ) = 

{
0 for an arbitrary node t ∈ Z 1 , 

+ ∞ otherwise, 
(2) 

f mst (πs · 〈 s , t 〉 ) = d(s , t ) . (3) 

Roughly speaking, Eq. (2) makes the OPF algorithm to start the path propagation process from some arbitrary node t ∈ Z 1 .

During the process, Eq. (3) computes the cost of extending a path π s by an arc ( s, t ) as the distance between the feature

vectors of its nodes. Function f mst cannot guarantee an optimum connectivity map. Instead, it degenerates the optimum-path

tree rooted at t into an MST, making the OPF algorithm equivalent to the Prim’s algorithm [12] ( Fig. 2 a and b). Notice the

symbol + ∞ (infinity) represents a real number strictly higher than any other generated in the process. 

Algorithm 1 describes the OPF algorithm modified for f mst on (Z 1 , A , d) . Lines 1–5 initialize the connectivity map and

select any node to start the MST computation. The main loop (Lines 6–19) computes the MST in a non-decreasing order

of minimum total cost. For each neighbor in Line 10, a path of minimum cost C ( s ) is obtained in P , as well as the current

arc that is being evaluated is added to the minimum spanning tree. The algorithm then outputs an MST (Z 1 , B, d) with

supervised and unsupervised samples connected into a single graph component. 
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4.3. Propagating labels to unsupervised samples 

In order to propagate labels from Z 

l 
1 

to Z 

u 
1 
, we use the MST generated in the previous section (Z 1 , B, d) together with

the connectivity function f max , which is defined as follows: 

f max (〈 t 〉 ) = 

{
0 if t ∈ Z 

l 
1 , 

+ ∞ otherwise, 

f max (πs · 〈 s , t 〉 ) = max { f max (πs ) , d(s , t ) } . (4)

Function f max essentially forces the roots of the forest to be the supervised samples, and assigns to extended paths the

maximum arc-weight along them as the connectivity value. The minimization of the connectivity map, as computed by

Algorithm 2 , outputs an optimum-path forest with cost and label attributes [ P 1 , C 1 , L 1 ] ( Fig. 2 c and d). 

The MST computation from (Z 1 , A , d) has time complexity O (|Z 1 | 2 ) , since the graph is complete, while the time com-

plexity of the optimum-path forest from (Z 1 , B, d) is O (|Z 1 | log |Z 1 | ) , since |B| � |Z 1 | log |Z 1 | . A label propagation error

occurs when L 1 ( t )  = λ( t ) for t ∈ Z 

u 
1 

. At this point, [ P 1 , C 1 , L 1 ] concerns the OPFSEMI mst classifier. It assigns labels to new

samples v ∈ Z 2 by evaluating the following equation: 

C 1 (v ) = min ∀ s ∈Z 1 
{ max { C 1 (s ) , d(s , v ) }} . (5)

Notice the above formula is quite similar to Eq. (1) , but now considering a different nomenclature. 

Let s ∗ ∈ Z 1 be the node that satisfies Eq. (5) , then the classifier assigns L 1 ( v ) ← L 1 ( s 
∗) and a classification error occurs

when λ( v )  = L 1 ( s 
∗). Eq. (5) connects all training samples with each new sample for classification purposes, without perform-

ing any analysis about the probability of the training samples be correctly labeled. When inversely transforming multiple

single-label datasets into a multi-label dataset, this becomes an issue that asks for a more conservative approach. We cir-

cumvent the problem by adding a last step to this training process, as follows. 

4.4. Generating the final classifier 

We may think of the training samples in Z 1 as points in the feature space, which can be observed from different perspec-

tives. From an infinity distance, all points are sought as a single cluster. As we approach, the scale in which the points are

observed changes, and multiple clusters may appear. The determination of the best scale that solves a clustering problem is

an application-dependent task. 

The OPF clustering algorithm [29] follows the above principle by defining the scale as an integer 1 ≤ k < |Z 1 | . For a given

scale k , the training samples in Z 1 are the nodes of a graph (Z 1 , A k , d) that connects the k -nearest neighbors in the feature

space to form directed arcs in A k . A probability density function (pdf) ρ is estimated to weight nodes as well: 

ρ(s ) = 

1 √ 

2 πσ 2 k 

∑ 

∀ t∈A k (s ) 

exp 

(
−d 2 (s , t ) 

2 σ 2 

)
, (6)

where σ = 

d f 
3 and d f = max ∀ (s , t ) ∈A k { d(s , t ) } . The OPF algorithm can be executed multiple times to search for the best value

of k ∈ [ k min , k max ], k min ≥ 1 and k max < |Z 1 | . Each time, labels from the maxima of the pdf (roots) are propagated to the

nodes in the optimum-path tree (dome or cluster) of each maximum, thus producing a cut in the graph. In [29] , the best

value of k is estimated as the one that produces the minimum normalized cut, and in [13] such value is computed by means

of meta-heuristic-based optimization. 

In our case, we propose a different approach, as explained later. Assuming, for the time being, a given best value

of k , the proposed variant of the OPF algorithm ( Algorithm 3 ) requires a connectivity function f min [15,29] , where δ =
min ∀ (s , t ) ∈A k | ρ(t )  = ρ(s ) | ρ(t ) − ρ(s ) | , as follows: 

f min (〈 t 〉 ) = 

{
ρ(t ) if t ∈ S ⊂ Z 1 , 

ρ(t ) − δ otherwise, 

f min (πs · 〈 s , t 〉 ) = min { f (πs ) , ρ(t ) } . (7)

The algorithm maximizes a connectivity map C 2 (t ) = max ∀ πt ∈ �t 
{ f min (πt ) } , such that the graph is partitioned into an

optimum-path forest P 2 (classifier) rooted at the maxima of the pdf. Indeed, it detects clusters on-the-fly, as well as only

one sample per maximum to compose the set S (i.e, prototype set), and guarantees a single optimum-path tree per dome

of the pdf. In order to guarantee that, we insert in A k (s ) the nodes t , such that s ∈ A k (t ) and ρ(s ) = ρ(t ) to make the

graph symmetric on plateaus of the pdf. The label L 1 ( s ) of each root s ∈ S is then propagated to each sample t of its tree.

The result is an optimum-path forest with attributes [ P 2 , C 2 , L 2 ] ( Fig. 2 e and f), and a sorted list Z 

′ 
1 

of nodes in Z 1 for the

purpose of speeding up classification, as described in the next section. 

Notice Algorithm 3 does not require color coding to control the status of nodes in Q . In the beginning, all nodes in Z 1

are root candidates, and one node per maximum of the pdf ρ is selected (set S) when P 2 (s ) = nil as root of the map in Line

7. This root node will then propagate the label L 1 ( s ) to all nodes on the same plateau (since A k is symmetric on plateaus),
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Fig. 3. A training set (2D feature space) with (a) unsupervised and a few supervised (colored) samples, (b) test samples inside the classes, and (c) test 

samples outside the classes. 

Fig. 4. Single-label assignment: label propagation to unsupervised samples, classification of test samples inside the classes, and classification of all test 

samples in Fig. 3 for (a–c) OPFSEMI mst+ knn with 0.0% of propagation error on Z u 1 and 100.0% accuracy inside the classes on Z 2 , (d–f) OPFSEMI mst with 0.0% 

of propagation error on Z u 1 and 100.0% accuracy on test samples inside the classes of Z 2 , (g–i) TSVM with 11.2% of propagation error on Z u 1 and 94.7% 

accuracy inside the classes of Z 2 , and (j–l) LapSVM with 0.0% propagation error on Z u 1 and 97.1% accuracy inside the classes of Z 2 , respectively. 

 

 

 

 

 

as well as on the same dome of the pdf. Note that, whenever a node s finds an adjacent node t , satisfying the condition in

Line 11, such node t will be in Q , and it will be conquered by the root of s . 

In order to choose the value of k , we first estimate the percentage of label propagation errors E that OPFSEMI mst might

have committed in the given training set. We then execute Algorithms 1 and 2 on Z 

l 
1 

by defining the roots of the forest on

half of the supervised samples, for further measuring E on the other half. This process can also be repeated a few times to

better estimate the percentage of label propagation errors. Finally, we execute Algorithm 3 on the k -nn graph (Z 1 , A k , d) for
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Table 1 

Experiment (ID - Identifier). Description of the benchmark problems in terms of application domain (domain), 

number of instances (#ins), number of attributes (#att), total number of labels ( l n ), label cardinality ( l c ) and 

label density ( l d ). 

ID–Dataset Domain #ins #att l n l c l d 

d 1 –Scene Multimedia 2047 294 6 1074 0.179 

d 2 –Yeast Biology 2417 103 14 4237 0.303 

d 3 –Emotions Multimedia 593 72 6 1869 0.311 

d 4 –Mediamill Multimedia 43,907 120 101 4376 0.043 

d 5 –Birds Audio 645 260 19 1014 0.053 

d 6 –Cal500 Music 502 68 174 26,044 0.150 

d 7 –Enron Text 1702 1001 53 3378 0.064 

d 8 –Medical Text 978 1449 45 1245 0.028 

Table 2 

Mean F -measure considering OPFSEMI mst+ knn and OPFSEMI mst . 

Z l 1 Z u 1 OPFSEMI mst+ knn 

LP BR CC HOMER 

d 1 10% 90% 0.6100 ± 0.069 0.5838 ± 0.080 0.5928 ± 0.037 0.5765 ± 0.027 

50% 50% 0.6659 ± 0.042 0.6479 ± 0.074 0.6479 ± 0.083 0.7086 ± 0.049 

d 2 10% 90% 0.6474 ± 0.051 0.5850 ± 0.055 0.6168 ± 0.094 0.5837 ± 0.061 

50% 50% 0.6529 ± 0.098 0.5999 ± 0.090 0.6357 ± 0.092 0.6695 ± 0.057 

d 3 10% 90% 0.6016 ± 0.047 0.5977 ± 0.072 0.5714 ± 0.052 0.5331 ± 0.014 

50% 50% 0.6299 ± 0.097 0.5966 ± 0.043 0.6375 ± 0.055 0.6516 ± 0.043 

d 4 10% 90% 0.4560 ± 0.028 0.4434 ± 0.043 0.4430 ± 0.065 0.4752 ± 0.043 

50% 50% 0.5326 ± 0.059 0.4859 ± 0.037 0.4870 ± 0.026 0.5158 ± 0.075 

d 5 10% 90% 0.5205 ± 0.032 0.5131 ± 0.041 0.5198 ± 0.044 0.4900 ± 0.048 

50% 50% 0.6144 ± 0.027 0.6088 ± 0.042 0.6070 ± 0.021 0.5622 ± 0.036 

d 6 10% 90% 0.4330 ± 0.026 0.4193 ± 0.082 0.3926 ± 0.051 0.4125 ± 0.011 

50% 50% 0.6750 ± 0.072 0.6308 ± 0.045 0.6831 ± 0.032 0.5936 ± 0.053 

d 7 10% 90% 0.4678 ± 0.075 0.4653 ± 0.053 0.4864 ± 0.031 0.4787 ± 0.067 

50% 50% 0.5118 ± 0.036 0.5076 ± 0.019 0.5100 ± 0.086 0.5172 ± 0.032 

d 8 10% 90% 0.3801 ± 0.025 0.3684 ± 0.036 0.4006 ± 0.056 0.4081 ± 0.036 

50% 50% 0.6384 ± 0.094 0.6134 ± 0.057 0.6368 ± 0.050 0.6475 ± 0.052 

Z l 1 Z u 1 OPFSEMI mst 

LP BR CC HOMER 

d 1 10% 90% 0.5512 ± 0.028 0.5371 ± 0.091 0.5649 ± 0.010 0.5534 ± 0.028 

50% 50% 0.6212 ± 0.089 0.6163 ± 0.026 0.6290 ± 0.094 0.6158 ± 0.020 

d 2 10% 90% 0.6225 ± 0.041 0.5537 ± 0.094 0.5308 ± 0.051 0.5612 ± 0.031 

50% 50% 0.6400 ± 0.018 0.5942 ± 0.096 0.5706 ± 0.045 0.6495 ± 0.044 

d 3 10% 90% 0.5604 ± 0.013 0.4393 ± 0.040 0.5603 ± 0.062 0.5194 ± 0.087 

50% 50% 0.6227 ± 0.079 0.6016 ± 0.033 0.6050 ± 0.090 0.6432 ± 0.028 

d 4 10% 90% 0.4408 ± 0.085 0.4281 ± 0.041 0.4282 ± 0.099 0.4560 ± 0.023 

50% 50% 0.5215 ± 0.069 0.4757 ± 0.095 0.4770 ± 0.043 0.5103 ± 0.023 

d 5 10% 90% 0.3852 ± 0.080 0.3775 ± 0.011 0.3934 ± 0.015 0.3938 ± 0.020 

50% 50% 0.5931 ± 0.098 0.5895 ± 0.066 0.5917 ± 0.045 0.5617 ± 0.092 

d 6 10% 90% 0.3979 ± 0.021 0.3820 ± 0.091 0.3898 ± 0.024 0.3782 ± 0.042 

50% 50% 0.6613 ± 0.013 0.6131 ± 0.099 0.6752 ± 0.059 0.5833 ± 0.017 

d 7 10% 90% 0.3272 ± 0.054 0.3062 ± 0.091 0.3100 ± 0.012 0.3514 ± 0.055 

50% 50% 0.3825 ± 0.068 0.3626 ± 0.032 0.3898 ± 0.063 0.3784 ± 0.047 

d 8 10% 90% 0.3250 ± 0.011 0.3135 ± 0.047 0.3114 ± 0.070 0.3443 ± 0.044 

50% 50% 0.4104 ± 0.094 0.3932 ± 0.072 0.4234 ± 0.033 0.4410 ± 0.026 

 

 

 

 

values of k ∈ [ k max , k min ] in order to select the highest value of k that maintains the percentage of labeling disagreement

between L 1 and L 2 less than or equal to E . This criterion tends to obtain a good pdf estimation with higher values of k , and

it also helps reducing mislabeled samples from Algorithm 2 , since samples in higher density regions will conquer the ones

in lower density regions (see Section 4.1 ). 

4.5. Classifying new samples 

In order to classify a new sample v ∈ Z 2 , the algorithm evaluates optimum paths in an incremental way as follows: 

C 2 (v ) = max 
∀ s ∈{Z 1 ∩A k (v ) } 

{ min { C 2 (s ) , ρ(v ) }} . (8)

Let node s ∗ ∈ Z be the one that satisfies the above equation. Classification simply assigns L ( v ) ← L ( s ∗). 
1 2 2 
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Table 3 

Mean F -measure considering LapSVM and TSVM. 

Z l 1 Z u 1 LapSVM 

LP BR CC HOMER 

d 1 10% 90% 0.6274 ± 0.045 0.5884 ± 0.077 0.6249 ± 0.090 0.5946 ± 0.031 

50% 50% 0.6944 ± 0.024 0.6255 ± 0.052 0.6847 ± 0.016 0.6 86 8 ± 0.095 

d 2 10% 90% 0.5701 ± 0.019 0.5728 ± 0.012 0.5902 ± 0.073 0.5639 ± 0.063 

50% 50% 0.5933 ± 0.014 0.5819 ± 0.040 0.6101 ± 0.095 0.5792 ± 0.053 

d 3 10% 90% 0.5873 ± 0.056 0.5731 ± 0.083 0.5769 ± 0.091 0.5770 ± 0.031 

50% 50% 0.6213 ± 0.028 0.5868 ± 0.043 0.6212 ± 0.054 0.6187 ± 0.099 

d 4 10% 90% 0.4454 ± 0.071 0.4349 ± 0.065 0.4391 ± 0.082 0.4583 ± 0.086 

50% 50% 0.4841 ± 0.046 0.4516 ± 0.043 0.4862 ± 0.044 0.4932 ± 0.089 

d 5 10% 90% 0.4783 ± 0.069 0.4717 ± 0.026 0.4703 ± 0.089 0.4957 ± 0.033 

50% 50% 0.5700 ± 0.045 0.5788 ± 0.039 0.5445 ± 0.019 0.5581 ± 0.095 

d 6 10% 90% 0.4250 ± 0.098 0.3502 ± 0.068 0.3474 ± 0.042 0.3641 ± 0.064 

50% 50% 0.5394 ± 0.058 0.4781 ± 0.025 0.4714 ± 0.011 0.4847 ± 0.019 

d 7 10% 90% 0.4454 ± 0.065 0.4214 ± 0.073 0.4398 ± 0.069 0.4350 ± 0.053 

50% 50% 0.4710 ± 0.073 0.4606 ± 0.068 0.4893 ± 0.098 0.4816 ± 0.064 

d 8 10% 90% 0.4061 ± 0.095 0.3837 ± 0.049 0.3936 ± 0.078 0.4174 ± 0.016 

50% 50% 0.6213 ± 0.054 0.5316 ± 0.018 0.5850 ± 0.084 0.6313 ± 0.020 

Z l 1 Z u 1 TSVM 

LP BR CC HOMER 

d 1 10% 90% 0.6034 ± 0.023 0.5182 ± 0.010 0.5338 ± 0.024 0.5845 ± 0.085 

50% 50% 0.6842 ± 0.069 0.6145 ± 0.079 0.6291 ± 0.069 0.6551 ± 0.026 

d 2 10% 90% 0.5437 ± 0.042 0.5236 ± 0.028 0.5220 ± 0.069 0.5934 ± 0.095 

50% 50% 0.6048 ± 0.090 0.6001 ± 0.008 0.6012 ± 0.026 0.6088 ± 0.043 

d 3 10% 90% 0.5116 ± 0.032 0.4382 ± 0.040 0.4567 ± 0.041 0.4892 ± 0.007 

50% 50% 0.5855 ± 0.027 0.5232 ± 0.026 0.5330 ± 0.091 0.5719 ± 0.092 

d 4 10% 90% 0.4091 ± 0.045 0.4420 ± 0.014 0.4 4 43 ± 0.002 0.4752 ± 0.065 

50% 50% 0.4386 ± 0.060 0.4538 ± 0.071 0.4481 ± 0.024 0.5069 ± 0.004 

d 5 10% 90% 0.4778 ± 0.060 0.4867 ± 0.012 0.4893 ± 0.010 0.4771 ± 0.012 

50% 50% 0.5991 ± 0.019 0.5991 ± 0.061 0.5977 ± 0.084 0.5337 ± 0.065 

d 6 10% 90% 0.3934 ± 0.066 0.3649 ± 0.073 0.3784 ± 0.029 0.3999 ± 0.030 

50% 50% 0.6543 ± 0.028 0.3791 ± 0.095 0.3581 ± 0.065 0.5421 ± 0.023 

d 7 10% 90% 0.3366 ± 0.075 0.3260 ± 0.071 0.3285 ± 0.062 0.34 4 4 ± 0.035 

50% 50% 0.4002 ± 0.028 0.3924 ± 0.054 0.3968 ± 0.010 0.4169 ± 0.038 

d 8 10% 90% 0.3298 ± 0.055 0.3140 ± 0.028 0.3487 ± 0.037 0.3612 ± 0.048 

50% 50% 0.4840 ± 0.077 0.4721 ± 0.069 0.4668 ± 0.038 0.4854 ± 0.045 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In [6] , the authors improved speed in label propagation to new samples based on the pdf by avoiding the computation

of A k (v ) for all v ∈ Z 2 . A similar idea applies to Eq. (8) . During training, a radius �( s ) can be estimated as the maximum

distance d ( s, t ) (the median value makes it more robust to outliers) between samples s , t ∈ Z 1 , such that t ∈ A k (s ) . If the

distance d ( s, v ) ≤�( s ) for a given s ∈ Z 1 and v ∈ Z 2 , then v is within the region defined by the k -adjacency of s . 

The list Z 

′ 
1 of training samples sorted in the non-increasing order of path values makes unnecessary to compute ρ( v ),

and by following the order of nodes in Z 

′ 
1 
, we set L 2 ( v ) ← L 2 ( s 

∗) for the first node s ∗ ∈ Z 

′ 
1 

that satisfies d ( s ∗, v ) ≤�( s ∗).

Note that nodes more strongly connected to their roots will have higher priority in label assignment to new samples. Since

mislabeled samples in Z 1 (due to the previous step described in Section 4.3 ) are more likely to have lower pdf values, they

will be the more weakly connected ones to their roots. This justifies the improvement of OPFSEMI mst+ knn over OPFSEMI mst 

for the multi-label assignment problem. 

Fig. 3 a presents a simple training set (2D feature space) with supervised (colored) and unsupervised samples. Consider

test samples inside the classes, as shown in Fig. 3 b, and outside the classes, as shown in Fig. 3 c. Fig. 4 illustrates the

label propagation from the supervised to the unsupervised training samples, the classification of the test samples inside

the classes, and the classification of all test samples for a single-label assignment problem using OPFSEMI mst+ knn ( Fig. 4 a–c),

OPFSEMI mst ( Fig. 4 d–f), TSVM [11] ( Fig. 4 g–i), and LapSVM [4] ( Fig. 4 j–l), respectively. 

The connectivity between labeled and unlabeled (training and test) samples in OPFSEMI mst+ knn , OPFSEMI mst and manifold

regularization in LapSVM can considerably reduce label propagation and classification errors in Z 

u 
1 

and Z 2 , respectively,

as compared to TSVM. Note also that, by assuming a problem transformation strategy in multi-label assignment, those

classification errors in single-label assignment tend to be amplified when the data transformation is reversed to obtain

multiple labels per sample. 

5. Experimental setup 

In this section, we present the experimental analysis employed to compare the proposed OPFSEMI mst+ knn against

OPFSEMI mst [2] , TSVM [19] and the manifold regularization approach [4] implemented in LapSVM 

3 using four problem
3 http://manifold.cs.uchicago.edu/manifold _ regularization/ . 

http://manifold.cs.uchicago.edu/manifold_regularization/
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Table 4 

Mean Hamming Loss considering OPFSEMI mst+ knn and OPFSEMI mst . 

Z l 1 Z u 1 OPFSEMI mst+ knn 

LP BR CC HOMER 

d 1 10% 90% 0.1154 ± 0.059 0.1110 ± 0.018 0.1162 ± 0.087 0.1203 ± 0.088 

50% 50% 0.1187 ± 0.076 0.1089 ± 0.040 0.1116 ± 0.072 0.1076 ± 0.059 

d 2 10% 90% 0.2161 ± 0.045 0.2452 ± 0.054 0.2231 ± 0.044 0.2338 ± 0.046 

50% 50% 0.2091 ± 0.025 0.2385 ± 0.041 0.2143 ± 0.027 0.2018 ± 0.021 

d 3 10% 90% 0.2207 ± 0.041 0.3263 ± 0.077 0.2359 ± 0.028 0.2667 ± 0.063 

50% 50% 0.2066 ± 0.054 0.2630 ± 0.056 0.2266 ± 0.084 0.2125 ± 0.034 

d 4 10% 90% 0.0445 ± 0.059 0.0485 ± 0.015 0.0459 ± 0.040 0.0445 ± 0.084 

50% 50% 0.0413 ± 0.078 0.0470 ± 0.060 0.0457 ± 0.072 0.0413 ± 0.081 

d 5 10% 90% 0.1388 ± 0.043 0.1441 ± 0.055 0.1320 ± 0.070 0.1218 ± 0.041 

50% 50% 0.0993 ± 0.017 0.1402 ± 0.084 0.1295 ± 0.080 0.0991 ± 0.030 

d 6 10% 90% 0.2269 ± 0.083 0.2558 ± 0.049 0.2467 ± 0.031 0.2123 ± 0.078 

50% 50% 0.2168 ± 0.059 0.2401 ± 0.065 0.2318 ± 0.031 0.2070 ± 0.045 

d 7 10% 90% 0.2950 ± 0.055 0.3110 ± 0.070 0.3009 ± 0.061 0.2596 ± 0.058 

50% 50% 0.2168 ± 0.071 0.3043 ± 0.022 0.2816 ± 0.057 0.2140 ± 0.083 

d 8 10% 90% 0.0347 ± 0.022 0.0557 ± 0.028 0.0435 ± 0.013 0.0347 ± 0.070 

50% 50% 0.0339 ± 0.017 0.0401 ± 0.027 0.0366 ± 0.084 0.0311 ± 0.077 

Z l 1 Z u 1 OPFSEMI mst 

LP BR CC HOMER 

d 1 10% 90% 0.1103 ± 0.054 0.1172 ± 0.011 0.1151 ± 0.090 0.1417 ± 0.072 

50% 50% 0.0817 ± 0.069 0.0892 ± 0.016 0.0889 ± 0.034 0.1167 ± 0.065 

d 2 10% 90% 0.2411 ± 0.072 0.2472 ± 0.052 0.2488 ± 0.053 0.2833 ± 0.084 

50% 50% 0.2057 ± 0.043 0.2053 ± 0.060 0.2027 ± 0.039 0.2359 ± 0.056 

d 3 10% 90% 0.2877 ± 0.079 0.2950 ± 0.084 0.3041 ± 0.022 0.3277 ± 0.023 

50% 50% 0.2241 ± 0.079 0.2275 ± 0.058 0.2382 ± 0.041 0.2410 ± 0.036 

d 4 10% 90% 0.0360 ± 0.016 0.0343 ± 0.083 0.0341 ± 0.063 0.0380 ± 0.028 

50% 50% 0.0348 ± 0.055 0.0339 ± 0.069 0.0338 ± 0.021 0.0358 ± 0.066 

d 5 10% 90% 0.1418 ± 0.067 0.1456 ± 0.085 0.1356 ± 0.022 0.1253 ± 0.030 

50% 50% 0.1009 ± 0.031 0.1439 ± 0.059 0.1310 ± 0.025 0.1012 ± 0.070 

d 6 10% 90% 0.2320 ± 0.049 0.2594 ± 0.010 0.2525 ± 0.029 0.2170 ± 0.025 

50% 50% 0.2191 ± 0.080 0.2461 ± 0.049 0.2360 ± 0.040 0.2123 ± 0.044 

d 7 10% 90% 0.2991 ± 0.063 0.3159 ± 0.038 0.3064 ± 0.038 0.2664 ± 0.068 

50% 50% 0.2201 ± 0.030 0.3111 ± 0.071 0.2866 ± 0.012 0.2180 ± 0.059 

d 8 10% 90% 0.0356 ± 0.033 0.0569 ± 0.087 0.0439 ± 0.060 0.0350 ± 0.041 

50% 50% 0.0347 ± 0.084 0.0406 ± 0.070 0.0373 ± 0.037 0.0318 ± 0.078 

 

 

 

 

 

 

 

 

 

C  

 

 

 

transformation methodologies: Label Powerset, Binary Relevance, Classifier Chains and Hierarchy of Multi-label Classifiers.

We also evaluated two adaptation algorithms using self-training (BPMLL and ML k NN), as implemented in the Mulan Java

Library. 4 This package includes implementations of a number of multi-label classification methods. 

Each experiment was repeated 100 times with random generated sets partitioned into two parts: 70% for the training

set Z 1 and 30% for the test set Z 2 . We also evaluated different proportions between the sizes of the supervised Z 

l 
1 

and

unsupervised Z 

u 
1 

training sets 5 The results were evaluated by means of the F -measure and Hamming Loss [22] , that are

two standard evaluation metrics for multi-label classification. Eight multi-labels 6 datasets were used in the experiments,

as presented in Table 1 . These datasets come from five domains: multimedia (‘Emotions’, ‘Scene’ and ‘Mediamill’), biology

(‘Yeast’), audio (‘Birds’), music (‘Cal500’) and text (‘Enron’ and ‘Medical’). 

5.1. Parameter tuning 

In regard to TSVM, we used SVMLight [19] . In both implementations (TSVM and LapSVM), we considered radial ba-

sis kernels, being their parameters optimized by a 5-fold cross validation in Z 

l 
1 
. In our experiments, we considered

 ∈ { 10 −5 , 10 −3 , 10 −1 , 10 , 10 3 , 10 5 } and γ ∈ { 10 −5 , 10 −3 , 10 −1 , 1 , 10 } . With respect to OPFSEMI mst+ knn and OPFSEMI mst , we

used the LibOPF library 7 . In regard to HOMER, we evaluated five different numbers of clusters (i. e, 2 − 6 ), and selected

the best one to build the hierarchy of multi-label classifiers. The remaining parameters used their default values. 

5.2. Evaluation of multi-label assignment 

Tables 2 and 3 present the classification performance according to the following format a ± b , where a and b denote, re-

spectively, the mean F -measure and its standard deviation concerning OPFSEMI mst+ knn , OPFSEMI mst , LapSVM and TSVM over
4 http://mulan.sourceforge.net/ . 
5 The percentages were empirically chosen. 
6 http://mulan.sourceforge.net/datasets-mlc.html . 
7 http://www.ic.unicamp.br/ ∼afalcao/libopf . 

http://mulan.sourceforge.net/
http://mulan.sourceforge.net/datasets-mlc.html
http://www.ic.unicamp.br/~afalcao/libopf
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Table 5 

Mean Hamming Loss considering LapSVM and TSVM. 

Z l 1 Z u 1 LapSVM 

LP BR CC HOMER 

d 1 10% 90% 0.0930 ± 0.065 0.1252 ± 0.084 0.0981 ± 0.062 0.1236 ± 0.023 

50% 50% 0.0955 ± 0.046 0.1187 ± 0.049 0.0942 ± 0.022 0.1208 ± 0.025 

d 2 10% 90% 0.2495 ± 0.077 0.2538 ± 0.059 0.2511 ± 0.085 0.2636 ± 0.064 

50% 50% 0.2530 ± 0.012 0.2560 ± 0.041 0.2412 ± 0.040 0.2563 ± 0.061 

d 3 10% 90% 0.2523 ± 0.084 0.2663 ± 0.066 0.2698 ± 0.044 0.2511 ± 0.061 

50% 50% 0.2421 ± 0.033 0.2432 ± 0.077 0.2592 ± 0.060 0.2466 ± 0.058 

d 4 10% 90% 0.0459 ± 0.028 0.0493 ± 0.040 0.0462 ± 0.048 0.0451 ± 0.039 

50% 50% 0.0457 ± 0.018 0.0473 ± 0.082 0.0458 ± 0.044 0.0352 ± 0.039 

d 5 10% 90% 0.1404 ± 0.019 0.1456 ± 0.058 0.1335 ± 0.041 0.1237 ± 0.088 

50% 50% 0.1011 ± 0.057 0.1427 ± 0.072 0.1316 ± 0.073 0.1008 ± 0.063 

d 6 10% 90% 0.2299 ± 0.038 0.2605 ± 0.067 0.2503 ± 0.026 0.2161 ± 0.042 

50% 50% 0.2191 ± 0.031 0.2438 ± 0.022 0.2360 ± 0.044 0.2111 ± 0.023 

d 7 10% 90% 0.2983 ± 0.060 0.3172 ± 0.073 0.3050 ± 0.057 0.2631 ± 0.037 

50% 50% 0.2206 ± 0.024 0.3084 ± 0.056 0.2870 ± 0.034 0.2179 ± 0.017 

d 8 10% 90% 0.0352 ± 0.029 0.0567 ± 0.071 0.0441 ± 0.072 0.0342 ± 0.030 

50% 50% 0.0345 ± 0.063 0.0406 ± 0.076 0.0370 ± 0.029 0.0315 ± 0.056 

Z l 1 Z u 1 TSVM 

LP BR CC HOMER 

d 1 10% 90% 0.1534 ± 0.016 0.1546 ± 0.021 0.1543 ± 0.056 0.1541 ± 0.033 

50% 50% 0.1340 ± 0.011 0.1355 ± 0.081 0.1356 ± 0.080 0.1348 ± 0.014 

d 2 10% 90% 0.2667 ± 0.062 0.2695 ± 0.062 0.2698 ± 0.074 0.2731 ± 0.061 

50% 50% 0.2502 ± 0.038 0.2550 ± 0.029 0.2548 ± 0.010 0.2584 ± 0.087 

d 3 10% 90% 0.3001 ± 0.074 0.3007 ± 0.070 0.3012 ± 0.063 0.3170 ± 0.020 

50% 50% 0.2461 ± 0.079 0.2483 ± 0.031 0.2466 ± 0.057 0.2506 ± 0.022 

d 4 10% 90% 0.0509 ± 0.083 0.0511 ± 0.031 0.0511 ± 0.055 0.0489 ± 0.041 

50% 50% 0.0478 ± 0.034 0.0480 ± 0.029 0.0411 ± 0.076 0.0462 ± 0.012 

d 5 10% 90% 0.1406 ± 0.026 0.1466 ± 0.087 0.1358 ± 0.014 0.1259 ± 0.061 

50% 50% 0.1028 ± 0.068 0.1424 ± 0.033 0.1308 ± 0.032 0.1017 ± 0.076 

d 6 10% 90% 0.2293 ± 0.078 0.2643 ± 0.045 0.2513 ± 0.012 0.2175 ± 0.020 

50% 50% 0.2239 ± 0.077 0.2476 ± 0.049 0.2398 ± 0.035 0.2137 ± 0.038 

d 7 10% 90% 0.3028 ± 0.010 0.3169 ± 0.013 0.3078 ± 0.029 0.2666 ± 0.049 

50% 50% 0.2198 ± 0.024 0.3127 ± 0.073 0.2875 ± 0.023 0.2205 ± 0.069 

d 8 10% 90% 0.0355 ± 0.073 0.0577 ± 0.022 0.0440 ± 0.027 0.0353 ± 0.081 

50% 50% 0.0344 ± 0.080 0.0414 ± 0.047 0.0374 ± 0.077 0.0321 ± 0.073 

Table 6 

Mean F -measure and Hamming Loss considering ML k NN and BPMLL. 

Z l 1 Z u 1 ML k NN BPMLL 

F -measure Hamming Loss F -measure Hamming Loss 

d 1 10% 90% 0.5614 ± 0.087 0.1607 ± 0.026 0.5581 ± 0.027 0.2572 ± 0.019 

50% 50% 0.6166 ± 0.016 0.1434 ± 0.033 0.6205 ± 0.057 0.1542 ± 0.012 

d 2 10% 90% 0.5942 ± 0.065 0.2918 ± 0.037 0.6083 ± 0.029 0.2321 ± 0.032 

50% 50% 0.5968 ± 0.084 0.3021 ± 0.036 0.6193 ± 0.042 0.2300 ± 0.045 

d 3 10% 90% 0.5279 ± 0.023 0.3287 ± 0.071 0.5801 ± 0.018 0.24 4 4 ± 0.035 

50% 50% 0.5948 ± 0.067 0.2879 ± 0.060 0.6440 ± 0.051 0.2032 ± 0.016 

d 4 10% 90% 0.4747 ± 0.089 0.0489 ± 0.055 0.4637 ± 0.074 0.0696 ± 0.053 

50% 50% 0.5103 ± 0.063 0.0479 ± 0.010 0.4707 ± 0.072 0.0651 ± 0.085 

d 5 10% 90% 0.4639 ± 0.054 0.0830 ± 0.016 0.4605 ± 0.060 0.1579 ± 0.081 

50% 50% 0.4821 ± 0.062 0.0822 ± 0.044 0.5129 ± 0.024 0.0772 ± 0.085 

d 6 10% 90% 0.3519 ± 0.012 0.2172 ± 0.046 0.4017 ± 0.041 0.2882 ± 0.070 

50% 50% 0.3801 ± 0.034 0.2075 ± 0.016 0.4417 ± 0.063 0.2694 ± 0.011 

d 7 10% 90% 0.3383 ± 0.057 0.0858 ± 0.013 0.3717 ± 0.040 0.1367 ± 0.045 

50% 50% 0.4521 ± 0.019 0.0809 ± 0.069 0.4106 ± 0.026 0.1425 ± 0.075 

d 8 10% 90% 0.3140 ± 0.010 0.0373 ± 0.075 0.3840 ± 0.072 0.0351 ± 0.062 

50% 50% 0.5053 ± 0.011 0.0317 ± 0.018 0.5536 ± 0.011 0.0313 ± 0.049 

 

 

 

 

all transformation methods. Similarly, Tables 4 and 5 present the classification performance with respect to the mean Ham-

ming Loss measure and its standard deviation. Finally, Table 6 shows the mean F -measure and Hamming Loss as well as their

standard deviation for ML k NN and BPMLL techniques. The values in bold indicate the best results considering the triplet

(dataset, percentage of Z 

l 
1 

and Z 

u 
1 
, problem transformation method or algorithm adaptation). For instance, OPFSEMI mst+ knn 

(using F -measure) was the best technique in the Scene dataset (identifier dataset - d ) with HOMER as problem transforma-
1 
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Table 7 

Percentage of label propagation errors ( E) on Z u 1 for OPFSEMI mst+ knn , OPFSEMI mst , and the best value k ∗ obtained for each dataset concerning 

OPFSEMI mst+ knn . 

Z l 1 Z u 1 OPFSEMI mst+ knn OPFSEMI mst 

LP BR CC HOMER LP BR CC HOMER 

d 1 10% 90% 35.37 ( k ∗ = 17) 37.50 ( k ∗ = 20) 39.12 ( k ∗ = 20) 38.30 ( k ∗ = 16) 36.63 40.79 43.16 40.71 

50% 50% 18.40 ( k ∗ = 13) 18.86 ( k ∗ = 18) 17.86 ( k ∗ = 17) 17.40 ( k ∗ = 15) 20.16 23.66 22.56 20.46 

d 2 10% 90% 39.50 ( k ∗ = 9) 37.60 ( k ∗ = 15) 37.47 ( k ∗ = 13) 37.75 ( k ∗ = 11) 43.87 40.05 40.15 40.74 

50% 50% 16.63 ( k ∗ = 9) 16.09 ( k ∗ = 13) 14.77 ( k ∗ = 12) 15.94 ( k ∗ = 10) 17.79 20.51 16.81 17.17 

d 3 10% 90% 39.06 ( k ∗ = 17) 37.54 ( k ∗ = 19) 36.87 ( k ∗ = 20) 36.51 ( k ∗ = 21) 39.21 37.83 37.35 40.30 

50% 50% 17.51 ( k ∗ = 13) 16.33 ( k ∗ = 16) 15.83 ( k ∗ = 18) 14.29 ( k ∗ = 16) 21.16 16.72 19.40 17.62 

d 4 10% 90% 39.32 ( k ∗ = 12) 39.91 ( k ∗ = 17) 39.98 ( k ∗ = 15) 37.11 ( k ∗ = 14) 39.59 41.34 41.15 38.48 

50% 50% 16.30 ( k ∗ = 11) 19.48 ( k ∗ = 13) 18.12 ( k ∗ = 13) 16.21 ( k ∗ = 10) 19.71 21.31 18.96 17.67 

d 5 10% 90% 25.93 ( k ∗ = 5) 27.74 ( k ∗ = 8) 26.06 ( k ∗ = 9) 20.34 ( k ∗ = 12) 29.97 31.62 30.65 27.18 

50% 50% 10.25 ( k ∗ = 4) 12.91 ( k ∗ = 7) 11.80 ( k ∗ = 5) 7.46 ( k ∗ = 8) 14.13 16.32 15.20 9.63 

d 6 10% 90% 40.34 ( k ∗ = 12) 41.64 ( k ∗ = 14) 41.84 ( k ∗ = 12) 42.02 ( k ∗ = 15) 45.02 46.11 46.58 44.27 

50% 50% 16.44 ( k ∗ = 5) 18.40 ( k ∗ = 7) 19.11 ( k ∗ = 12) 18.49 ( k ∗ = 10) 25.02 29.34 30.72 29.56 

d 7 10% 90% 38.29 ( k ∗ = 30) 39.05 ( k ∗ = 34) 38.71 ( k ∗ = 32) 37.11 ( k ∗ = 27) 43.32 42.01 40.81 42.64 

50% 50% 18.39 ( k ∗ = 21) 19.62 ( k ∗ = 24) 18.50 ( k ∗ = 18) 16.47 ( k ∗ = 20) 23.42 23.59 21.77 22.19 

d 8 10% 90% 32.89 ( k ∗ = 32) 34.24 ( k ∗ = 40) 33.02 ( k ∗ = 36) 30.14 ( k ∗ = 25) 35.29 36.55 35.57 32.54 

50% 50% 14.87 ( k ∗ = 22) 18.56 ( k ∗ = 25) 17.43 ( k ∗ = 20) 12.08 ( k ∗ = 18) 16.82 20.34 18.61 17.71 

Fig. 5. Comparison of all classifiers using transformation methods against to each other with the Nemenyi test (using F -measure values). Groups of clas- 

sifiers that are not significantly different (at p = .05) are connected: (a) Label Powerset, (b) Binary Relevance, (c) Classifier Chain, and (d) Hierarchy of 

Multi-Label Classifiers, and (e) all transformation methods. 

 

 

 

 

 

tion method using 50% of Z 1 for Z 

l 
1 
. Table 7 presents the percentage of the label propagation error on Z 

u 
1 

( E) concerning

OPFSEMI mst+ knn and OPFSEMI mst . Additionally, Table 7 shows the best value k ∗ obtained for each dataset in OPFSEMI mst+ knn .

In general, the best results were obtained by the transformation methods LP/HOMER with the OPFSEMI mst+ knn clas-

sifier. Optimum connectivity between supervised and unsupervised samples allows a considerable performance for OPF-

SEMI mst+ knn , which makes it to generalize better than LapSVM and TSVM when capturing the shapes of the classes in the

feature space. 
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Fig. 6. Comparison of all classifiers using transformation methods against to each other with the Nemenyi test (using Hamming Loss values). Groups of 

classifiers that are not significantly different (at p = .05) are connected: (a) Label Powerset, (b) Binary Relevance, (c) Classifier Chain, and (d) Hierarchy of 

Multi-Label Classifiers, and (e) all transformation methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conceptually, a good condition for both OPFSEMI mst+ knn and OPFSEMI mst [2] concerns the graph, which should reveal the

true intrinsic complexity or dimensionality of the data points (say through local linear relationships), as well as it should

capture certain global structures of the data as a whole (i.e. clusters or subspaces), even after the transformation of the

data/ to single-label problems. A possible shortcoming refers to the situations that do not ensure the criterion of smoothness

among classes, or when we have irrelevant supervised data (e.g., mislabeled samples due to human errors, which might be

a problem in large-scale studies). This can impair the label propagation to the unsupervised samples, and such information

might not represent the actual relationship among classes, making even worse the classification results than using only

supervised data. 

The results usually show improvements as the size of Z 

l 
1 

increases. In most cases, when using a smaller set of super-

vised data (i.e, 10% of Z 1 ), OPFSEMI mst+ knn with LP exceeds the best results under the same conditions for the majority of

the cases analyzed, while BPMLL obtained the best performance among the algorithm adaptation strategies. On the other

hand, for larger supervised sets (i.e 50% of Z 1 ), OPFSEMI mst+ knn with HOMER seems to be a better choice. We believe that LP

preserves better the relation among the actual labels than HOMER after data transformation when using smaller sets of su-

pervised samples, which is usually the case in multi-label classification. The Classifier Chain results are due to an improved

relation between the supervised and unsupervised samples, due to the fact that there is a sequence of binary classifiers,

making each label be classified considering the prediction of labels previously analyzed. Unfortunately, the BR technique

without any treatment is not a good solution to this problem, as it treats each class individually, thus ignoring the possi-

ble relations among them. A possible improvement would be an individual treatment of clusters to help maintaining the

relationships among samples. Roughly speaking, LapSVM and OPFSEMI mst have very similar behavior, highlighting LapSVM

by the number of top results in different domains of datasets. Another interesting observation concerns the robustness of

the semi-supervised techniques with respect to the number of supervised samples. This may be explained by the margin

correction of the classifier due to the presence of unsupervised samples in Z 

u 
1 
, which are correctly supervised from Z 

l 
1 
. 

5.3. Results of the statistical analysis 

In order to provide a statistical analysis of the results, we performed a Friedman test [16] to evaluate all methods. The

Friedman test provides reliable conclusions when the assumptions (normal distributions and sphericity) of the traditional



W.P. Amorim et al. / Information Sciences 465 (2018) 86–104 101 

Fig. 7. Comparison of all methods together with algorithm adaptation strategies against to each other with the Nemenyi test. Groups of classifiers that are 

not significantly different (at p = .05) are connected: (a) using F -measure values and (b) using Hamming Loss values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

multiple hypotheses testing ANOVA are violated. The purpose of this statistical evaluation is to validate the results, as well

as to show the behavior of different data transformation models and algorithm adaptation strategies for semi-supervised

approaches. In the first scenario, we evaluate all semi-supervised algorithms using transformation methods, and in the sec-

ond round we considered all techniques together with the ones that make use of algorithm adaptation strategies. Therefore,

we can make clearer the robustness of OPFSEMI mst+ knn against all techniques addressed in this paper concerning different

evaluation measures and multi-label assignment strategies. Fig. 5 –6 (first scenario) and Fig. 7 (second scenario) illustrate

the post-hoc Nemenyi test, since we rejected the null hypotheses that all classifiers are equivalent to each other according

to the Friedman test. In regard to Nemenyi test, groups of similar classifiers (with significance of 0.05) are connected using

a critical distance (CD), where the far right classifier (i.e. numbered as 1) is the best one. On the other hand, the far left

technique stands for the worst one. 

Roughly speaking, the results of both tests (Nemenyi test, F-measure and Hamming Loss) in the two assessment scenarios

are equivalent. The experimental results highlighted the best results were obtained by OPFSEMI mst+ knn followed by LapSVM,

OPFSEMI mst and BPMLL. Also, we can stress OPFSEMI mst+ knn as being the best approach using BR ( Fig. 5 b), and in general

the best classifier using transformation methods ( Figs. 5 e–6 e) with results equivalent to the ones obtained by LapSVM and

OPFSEMI mst . 

In order to perform a deeper analysis, we compared the pair of classifiers OPFSEMI mst+ knn and OPFSEMI mst by means of

the Wilcoxon signed-rank test [14] . Such test is an important analysis that turns out to be more sensitive since it does not

assume normal distributions. In case of F -measure values using a significance of 8 . 017 −8 and Hamming Loss values using a

significance of p = . 045 , the techniques can be considered statistically different. This assumption confirms the improvement

of OPFSEMI mst+ knn over its previous version OPFSEMI mst . The OPFSEMI mst+ knn shows the gain in using the proposed structure

based on the MST with OPF and a final classifier with a k -nn graph, thus ensuring stronger relationship among classes even

after the binary transformation of multi-label problems as compared against other semi-supervised approaches. 
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Fig. 8. Accuracy curves of OPFSEMI mst , OPFSEMI mst+ knn , OPF, and LapSVM on the Cowhide dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Evaluation of single-label assignment on a real application 

In this section, we verify if the comparative results for multi-label assignment are confirmed for single-label assignment

on a real application — the classification of leather defects. For that, we introduce the Cowhide [3] dataset, with 1690

samples, 160 attributes, and five types of regions of interest (categories) for classification in the Wet-Blue 8 processing stages:

scabies, ticks, hot-iron, cut, and regions without defect. This is a challenging problem, especially in areas close to the vicinity

of different defects. 

The dataset was randomly divided into 70% of the samples for the training set Z 1 and 30% for the test set Z 2 . We then

evaluated the proposed methods, OPF, and the most competitive one for the multi-label assignment problem (LapSVM) with

different proportions of randomly selected samples for the supervised set Z 

l 
1 

and unsupervised set Z 

u 
1 
, using Z 

l 
1 

∪ Z 

u 
1 

= Z 1 .

The sizes of Z 

l 
1 

and Z 

u 
1 

ranged from 10%–90% to 90%–10% with respect to the size of Z 1 . As a supervised method, OPF is

trained on Z 

l 
1 

only, while the semi-supervised methods, OPFSEMI mst , OPFSEMI mst+ knn , and LapSVM, first propagate labels

from Z 

l 
1 

to Z 

u 
1 

before training on Z 1 . They are all tested on the same set Z 2 . Accuracy is measured as proposed in [25] and

the resulting effectiveness curves are presented in Fig. 8 . 

The results confirm that OPFSEMI mst+ knn is the best approach among the evaluated techniques, being OPFSEMI mst the

most competitive. OPF and LapSVM, are only competitive when the number of supervised samples is above 70%. 

6. Conclusion 

We presented a novel semi-supervised approach for multi-label classification tasks named OPFSEMI mst+ knn , using the

Optimum-Path Forest framework. The method can reduce the label propagation errors of OPFSEMI mst in the training set by

repropagating labels from the maxima of a probability density function, since misclassified samples usually appear at the

boundaries among clusters, i.e., far from the maxima. Additionally, during classification, the training samples closer to their

maxima have higher priority to assign labels to new samples. We then demonstrated that this more conservative approach

can outperform OPFSEMI mst in the multi-label assignment problem using several datasets, as well as it can be more accurate

than some state-of-the-art techniques. We also showed a similar result on a single-label assignment problem from a real

application using the effectiveness curves of the methods. 

The advances in data acquisition create large datasets to support research and technological development. However, the

supervision (sample labeling) of large training sets by experts is infeasible in applications from several areas of the Sciences

and Engineering. In this context, the choice of a minimum number of relevant samples for expert supervision becomes
8 Wet-Blue leather is an intermediate stage between untanned and finished leather. 



W.P. Amorim et al. / Information Sciences 465 (2018) 86–104 103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

crucial. At the same time, the choice of a considerably larger set of unsupervised training samples is important to the

design of a more effective semi-supervised classifier. 

Active learning approaches have addressed the above problem with the aim of producing an effective classifier with

minimum user effort in sample supervision, through learning iterations until user satisfaction. We strongly believe that the

semi-supervised OPF methods can be used to accomplish that aim. As relevant samples are selected for expert supervision,

the label propagation errors in the unsupervised set are expected to reduce, speeding up the expert satisfaction with the

semi-supervised classifier under design. We then intend to explore OPFSEMI mst and OPFSEMI mst+ knn for active learning in

single-label and multi-label assignment problems, and a more comprehensive evaluation of the impact of self-paced learning

to select unsupervised training samples. 
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