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Abstract  

Recommender systems are emerging in e-commerce as important promotion tools to 

assist customers to discover potentially interesting items. Currently, most of these are 

single-objective and search for items that fit the overall preference of a particular user. In 

real applications, such as restaurant recommendations, however, users often have 

multiple objectives such as group preferences and restaurant ambiance. This paper 

highlights the need for multi-objective recommendations and provides a solution using 

hypergraph ranking. A general User-Item-Attribute-Context data model is proposed to 

summarize different information resources and high-order relationships for the 

construction of a multipartite hypergraph. This study develops an improved balanced 

hypergraph ranking method to rank different types of objects in hypergraph data. An 

overall framework is then proposed as a guideline for the implementation of multi-

objective recommender systems. Empirical experiments are conducted with the dataset 

from a review site Yelp.com, and the outcomes demonstrate that the proposed model 

performs very well for multi-objective recommendations. The experiments also 

demonstrate that this framework is still compatible for traditional single-objective 

recommendations and can improve accuracy significantly. In conclusion, the proposed 

multi-objective recommendation framework is able to handle complex and changing 

demands for e-commerce customers.  
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1 Introduction 

Today, the volume of data on an e-commerce site may become extremely large. For 

example, Taobao.com announced that there are currently over 0.8 billion daily-active products 

on this C2C e-commerce site. Hence, it is challenging customers to choose items of interest from 

the large range of options. To alleviate this information-overload problem, recommender systems 

have emerged as useful tools to learn the personalized preferences of users and make 

personalized suggestions. A large number of recommendation applications have reportedly been 

deployed in specific areas [3, 25], and they are thought to enhance e-commerce sales by 

encouraging potential buyers, increasing cross-selling and building customer loyalty [48, 55]. 

Traditional recommender systems are single-objective: to find those items best fitting an 

individual user’s overall preference refined from historical data. In other words, a recommender 

system assumes users’ preferences are static and they do not have additional requirements from 

time to time. However, it is common for users to change their preferences frequently in e-

commerce environments. For example, a customer will not always go to the same restaurant even 

though it is the “best-fit” for his/her overall preference. Instead, the choice at a particular time is 

impacted by different factors such as different companions and time-location context, hence, the 

customer requires a restaurant with specific conditions to satisfy multiple objectives. Thus, the 

recommendation request becomes multi-objective rather than single-objective. It is worth 

mentioning that the existing context-aware recommender systems also consider a user’s different 

preferences in specific situations, such as time and location, but they do not take into account a 

user’s explicit requirements on item conditions. Figure 1 shows a simple comparison of single-

objective and multi-objective recommendation problems. Figure (a) is a traditional single-

objective recommender system, which is only, concerned a user’s preference for a restaurant 

based on a particular type of cuisine. As a result, the suggestions will be the same each time. 

Figure (b) indicates that multi-objective requests, however, are related to extra constraints such 

as the type of cuisine and restaurant ambiance at different times. Therefore, this study is 

motivated to propose a multi-objective recommendation framework to analyze the changing and 

flexible requirements as input and suggest appropriate items as output to satisfy the multi-

objective requirements of users.  
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Figure 1. Single-objective and multi-objective recommendation requests for restaurants 

 

Another significant challenge for modern e-commerce recommendations is that massive 

information entities and complex relationships may be involved with the development of Web2.0 

applications. In the early stage of recommender system development, the explicit rating data is 

the major or only input for collaborating filtering (CF) [38]. Today, we can extract more and 

different types of information in addition to user ratings from an e-commerce site to improve 

recommendation quality, including item content [26], user social connections [28], textual tags 

or comments [14, 30], environmental context [12], etc. Although these resources have been well 

studied separately in recent advanced CF models [38], there are few models which integrate all 

the involved information resources in one generalized model. Motivated by several pioneer 

studies of graph models [4, 8, 10, 11, 16, 27, 41], this paper introduces hypergraph to handle the 

possible information entities and complex relationships in e-commerce. Graph models generally 

consider information entities such as users and items as separate nodes and build connections for 

these nodes as edges, by which we can handle the recommendation problem as a ranking 

problem on graph data: to seek the nearest item nodes for a given user node. It is easy to extend a 

graph by adding new nodes or edges. As a result, some advanced graph structures have been 

utilized in the field of recommender systems, such as multi-partite graph [11], multigraph [27] 

and hypergraph [41]. In particular, the hypergraph is the most generalized graph structure that 

can theoretically handle any types of information entities and high-order relationships. For 

example, a hypergraph can model the multiple connections between a same pair of nodes or a 

group connection of multiple nodes.  

The hypergraph model is also suitable for multi-objective recommendations. Graph ranking-

based models usually transfer the recommendation problem to one that seeks a relative ranking 

order of item entities for a particular user entity on a graph structure. We also treat the multi-

Find a 
restaurant 

for me
Weekend 

quiet dinner 
for family
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young friends
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objective recommendation problem as one that ranks item entities according to the overall 

closeness to a group of entities, which may consist of multiple users and contextual entities. The 

main contributions of this study are three-fold:  

First, we propose a unified User-Item-Attribute-Context (UIAC) data model as a basis for 

the collection of valuable data sources for e-commerce recommendations. In this model, we 

summarize four types of information entities and six types of pairwise or group relationships that 

may appear in the e-commerce environment. The four types of entities are user, item, attribute 

and context entities. The six types of relationships are user-user, item-item, user-item, item-

attribute, user-attribute and user-context-item relationships. This model includes the most input 

resources adopted in existing recommender systems, such as social networks, context-aware 

preference, tag information, etc. In particular, we extend the context entities to all third-party 

information including textual comments and tags as well as traditional environmental 

information like time and location.  

Secondly, we propose a multi-objective recommendation framework to handle the flexible 

demands of e-commerce customers. We point out that a user in an e-commerce application does 

not always want to find the same items that best fit the overall preference, but often has extra 

requirements or constraints on item conditions or contextual information. With the proposed 

UIAC data model, we can decompose a multi-objective recommendation to requirements to 

multiple entities from user, item, attribute and context entities. Putting all groups of entities and 

pairwise or group relationships together, a most generalized graph structure, the multipartite 

hypergraph, is constructed. Then, we transfer the multi-objective recommendation problem to a 

ranking problem on a multipartite hypergraph structure. Finally, we develop a complete 

framework as a guideline to illustrate how multi-objective recommendations are queried by users, 

addressed using hypergraph ranking, and returned to the users. 

Thirdly, we propose a modified hypergraph ranking model called balanced hypergraph 

ranking (BHR) to improve the ranking performance for the unique multipartite hypergraph built 

from the UIAC data model. Different to common hypergraphs, the multipartite hypergraph is 

constructed from a wide range of relationships in an e-commerce application and is special in 

that the edge degrees (number of connected nodes) vary greatly from two (pairwise edges) to 

thousands (group edges) or even larger.  In this circumstance, we find that the traditional 

hypergraph ranking models suffer from a ranking bias problem. The modified BHR is able to 
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alleviate this problem to some extent and is more suitable for the proposed unique multi-

objective e-commerce recommendations. 

The rest of this paper is organized as follows. Section 2 is a brief review on e-commerce 

recommender systems and the existing related works in the fields of multi-criteria, group, 

context-aware recommendations. In particular, the developments in graph models for 

recommendations are introduced. Section 3 is a preliminary study about the hypergraph and 

hypergraph ranking theory. In Section 4, we propose a UIAC data model to discuss which kinds 

of information entities and relationships may appear in e-commerce, and how to construct a 

multipartite hypergraph structure. We also modify the traditional hypergraph ranking method and 

propose a balanced hypergraph ranking method for the unique multipartite hypergraph. Section 5 

presents a multi-objective recommendation framework based on the hypergraph and ranking 

model. In Section 6, we conduct an analysis using the data on a business review site Yelp.com. 

Our model is compared to the existing graph models for both single-objective and multi-

objective recommendations and is demonstrated to perform well. The last section concludes the 

findings of this study and suggests future research directions. 

2 Related Works 

This paper is motivated to develop a novel multi-objective framework for e-commerce 

recommender systems. It is partially related to existing multi-criteria recommendations, group 

recommendations and context-aware recommendations. We review the related works in these 

fields in the following sub-sections to analyze the connections and differences between our study 

and previous studies. 

2.1 E-commerce Recommender Systems 

Recommender systems have been deployed successfully in many domains including 

information retrieval, tourism review, e-learning, e-government and e-commerce [25]. In the 

field of e-commerce, recommender systems help individual customers to find potentially 

interesting items by learning personalized preferences from historical data including ratings, 

browsing and clicking records and so on [50]. Many of the largest commerce sites like Amazon 

and Taobao already use recommender systems to help their customers find products to purchase 

[15, 36, 37]. It has been reported that recommender systems are able to enhance e-commerce 
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sales by encouraging potential buyers, increasing cross selling and building customer loyalty [48, 

55].  

From the perspective of techniques, recommendation models are usually classified as 

content-based (CB) [32], collaborating filtering (CF) [38] and hybrid models that are 

combinations of the former two [18]. The key idea of CB is to find items that have similar 

content or attributes to the items previously chosen by the target user. The CF takes a different 

approach and extracts user preferences from user ratings that record explicit preferences for 

known items, and it can be further divided into memory-based and model-based [38]. Memory-

based CF predicts user preferences to unknown items by integrating the ratings of neighbor users 

who share similar preferences [35]. Model-based CF approaches, on the other hand, are based on 

unique prediction models in which some parameters have been trained with previous rating data 

as the input. Examples of model-based CF include probabilistic topic models [12] , fuzzy models 

[42], graph models [11], Bayesian network models [23], matrix factorization models [21], etc.  

From the perspective of input resources, e-commerce recommendation studies have been 

widely extended in recent years with the development of the Internet and Web2.0 applications. 

For example, the online social relations of users have become another important facet of 

information to enhance pure rating-based CF models [28]. More various user-contributed data 

like textual reviews [30],  social tags [14], social media [51] and more generalized side 

information [33] are also imported in e-commerce recommendations. Contextual information 

like temporal, special and weather information associated with user preferences have also 

motivated many studies in this field recently [9, 34]. For systems where it is difficult to collect 

rating data, knowledge-based recommender systems [6] have also been developed to build 

functional knowledge rules to describe how items meet the needs of users [5, 22].  

This review indicates that e-commerce recommender systems have attracted many studies in 

recent years. The recent developments show that one of the most urgent tasks in this field is to 

develop new recommendation models that are able to integrate various types of heterogeneous 

information to enhance performance.  

2.2 Multi-criteria and Group Recommendations 

Our work for multi-objective recommendations is also related to multi-criteria and group 

recommendations to some extent. Generally, multi-criteria recommender systems allow users to 
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issue multi-criteria ratings to evaluate items from a variety of perspectives, while acknowledging 

that the suitability of a recommended item for a particular user will probably depend on more 

than one utility-related criterion [17]. The additional information provided by multi-criteria 

ratings can represent more complex preferences of users and can thus help to improve 

recommendation quality. Multi-criteria recommendations mainly focus on the utilization of user 

preferences for different aspects of items but still aim to build the static preferences of users; 

therefore, they are still single-objective recommendations. 

Group recommender systems (GRS) produce suggestions for a group of users when group 

members are unable to gather for negotiation, or their preferences are not clear in spite of having 

met each other [7, 47]. Group recommender systems are able to generate corresponding 

suggestions for multiple participant users by combining their preferences based on certain 

strategies like least misery, average, most pleasure and so on [29]. Group recommender systems 

are a kind of multi-objective recommender systems because they have to satisfy the preferences 

of all members rather than a single user. However, existing GRSs are not able to handle the extra 

demands of group members for item conditions or context.  

2.3 Context-aware Recommendations 

This paper considers the changing user demands in different circumstances, which is 

partially related to existing context-aware recommender system (CARS) studies [2, 45]. One of 

the most cited definitions of context is the definition of Dey et al. [9] that describes context as 

any information that can be used to characterize the situation of an information entity in an 

application. In the review of Adomavicius et al. [1], context in the recommender system field is a 

multifaceted concept used across various disciplines, with each discipline adopting a certain 

angle and putting its “stamp” on this concept. With context awareness, the rating (preference) 

function is no longer a two-dimensional function (R:User×Item→Rating) but becomes a multi-

dimensional function (R:User×Item×Contex→Rating), where User and Item are the domains of 

users and items respectively, and Context specifies the domain of other entities associated with 

users and items. Thus, context-aware recommender systems consider users’ unique preferences 

in specific environments such as time, location and weather. This is particularly important for 

some applications in which it is not sufficient to consider only users and items, such as 

recommendations for tourism [20, 31], vacation package [40], or social events [13]. For example, 
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using a temporal context, a travel recommender system might make very different vacation 

suggestions in winter compared to summer [40]. The contextual information about students in 

technology enhanced learning environments has also been incorporated into recent E-learning 

recommendations [44]. From the perspective of techniques, different advanced models have been 

introduced in dealing the complex relationships between user, item and context entities. Some 

studies consider context information like “time” and “companion” as extra labels associated with 

user ratings, and propose a multi-label classification model to tackle the CARS problem [20, 52]. 

Unger et al. applied neural network learning models to learn the “latent” context information 

from multi-sensor data for recommendations [43]. Enhanced matrix and tensor factorization 

models have also been introduced to address CARS, such as the hierarchical factorization 

machine proposed in [46] and the modified tensor model in [49]. Moreover, graph models in 

CARS have been developed to ease extending different entities as graph nodes and relationships 

as edges. Because graph models are the basis of our study, a detailed review is given in the 

following sub-section. 

The multi-objective recommendations in our work share similarities with existing CARS by 

taking into account changing user demands in different contexts. The difference is that the user 

requirements in different circumstances of CARS is implicitly refined from data and still do not 

change frequently, but our study also allow users to state explicit requirements for items even in 

similar situations. For example, a traditional CARS may suggest the same restaurant to 

customers in the context of “Friday evening” by learning the time-aware preferences of users. 

However, a multi-objective recommender system will also allow users to specify the “topic” of 

the activity, such as “birthday party”, so more targeted suggestions will be generated. In 

summary, our work can be seen as an extension of existing context-aware recommendations that 

consider both explicit and implicit user demands in different circumstances. 

2.4 Graph Models for Recommendations 

The goal of a recommender system is to seek an appropriate ranking order for all the 

candidate items and then select the top listed ones as suggestions to users. If we place users and 

items as nodes into a graph, then the recommendation problem can be transferred to a ranking 

problem on graph data. In the early stage, Fouss et al. introduced random walk theory to rank 

item nodes on a user-item bipartite graph to generate recommendations [10]. In their model, user 
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ratings are treated as the weighted edges between user nodes and item nodes to perform random 

walking. Jamali and Ester combined user-user trust relationships and user-item ratings, and 

proposed a unique random walk manner on the bipartite graph structure [16]. Moreover, more 

types of information entities were imported as extra vertices and multipartite graph models were 

proposed by researchers [4, 8] and random walks jump between different types of vertices with 

different relationships. There are also some advanced graph structures being introduced to deal 

with high-order relationships. For example, to handle multiple relations between the same pair of 

nodes, our previous work proposed a multigraph ranking model for multi-relational social 

recommendations [27]. To handle group relationships between multiple nodes such as user-tag-

item connections, Tan et al. introduced a hypergraph and ranking model for music sharing 

recommendations [41]. In summary, graph models are advantageous to ease modelling and 

extending. Hence, this study is motivated to introduce a hypergraph model to incorporate 

different information entities and to handle multi-objective recommendations.   

3 Preliminary Study of Hypergraph Ranking 

Before constructing our multi-objective recommendation framework using hypergraphs, it is 

important to introduce the traditional definitions and ranking methods for hypergraphs, and the 

possible limitations in dealing with our research problem, as follows. 

3.1 Hypergraph 

An ordinary graph is a representation of a set of vertices in which each edge connects a pair 

of nodes, while a hypergraph is a generalization of an ordinary graph with hyperedges, a special 

type of edges that connects an arbitrary number of vertices [53]. In other words, a hyperedge 

represents a high-order relationship of two or more vertices. The formal definition of a 

hypergraph is given as follows: 

Definition 1 (Hypergraph). A hypergraph ( , )G V E  is a pair where 
1 2{ , , }V v v   is the 

vertex set representing a finite number of objects, and 
1 2{ , , }E e e   is the hyperedge set 

representing the high-order relationships between vertices. A hyperedge e E  is represented by 

the connected nodes, i.e., a non-empty subset of V, to which a weighting function :w E   is 

also assigned to denote the strength of this connection. 
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Let ( , ) 1h v e   denote that a vertex v is in a hyperedge e and ( , ) 0h v e   otherwise. We then 

obtain an incidence matrix H with size V E  in which each element is:  

 
1, if 

( , )
0, otherwise

i j

ij i j

v e
H h v e


  


  (1) 

The degree of a vertex is defined as    ( ) ,
e

d v w e h v e . Unlike the edge in a simple 

graph, the degree of a hyperedge is defined as the number of connected vertices, i.e., 

 ( ) ,
v

e h v e  . Thus, an ordinary graph is thought of a special case of hypergraph in which 

the edge degrees are always two. Throughout the rest of this paper, we define the following 

diagonal matrix forms for  w e ,  e  and  d v  as 
| | | |E EW , 

| | | |E E

e

D and 
| | | |V V

v

D , 

respectively. 

3.2 Regularization Framework for Hypergraph Ranking 

Ranking on graph data is a unique problem to sort most vertices based on the known labels 

of a small part of vertices as limited given knowledge. This problem is usually given by a 

weighted graph  ,G V E , together with a query vector 1 2 | |[ , , , ]T

Vy y y y , which denotes the 

input ranking sores of a small number of vertices. The objective is to seek a ranking function 

:f V   to label all vertices. There are two constraints for a good ranking. First, it should be 

“smooth” on the graph, meaning the ranking scores will not vary greatly for highly related nodes. 

Second, it should be close to the input query vector y such that the given knowledge is well 

accepted. The graph-ranking problem is therefore usually formalized to minimize the following 

cost function:  

      
:

ˆmin ;
f V

Q f S f R f y


    (2) 

In (2), 0   is a trade-off parameter; the term  S f  measures the smoothness of f; the 

term  ˆ ;R f y  measures the empirical error of f, which is usually represented by the 
2
 norm 

variance [32, 33]:      
2ˆ ;

T
R f y f y    f y f y . Note that f is the vector form of the 

ranking function  f, and we use them interchangeably in our paper. 
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Zhou et al. proposed the regularization framework for ordinary graph ranking and also 

extend it to hypergraph environments to rank objects with group relationships [53, 54]. In their 

work, the smoothness cost for hypergraph ranking function f is calculated by: 

 

2
| |

, 1

2| |

, 1

| | | |
2

1 1

( ) ( , ) ( , )1
( )

2 ( ) ( ) ( )

( ) ( , ) ( , )

( ) ( ) ( ) ( )

( , ) ( ) ( , ) ( , )( ) ( , )

( ) ( ) (

V
i j ji

i j e E i j

V
i j i ji

i j e E i i j

V V
j i i j ji

i

i e E ji

w e h v e h v e ff
S f

e d v d v

w e h v e h v e f ff

e d v d v d v

h v e f w e h v e h v e fw e h v e
f

d v e d v







 

 

  

 

 
  
 
 

 





  
| |

, 1

1/2 1 1/2

) ( ) ( )

( )

( )

V

i j e E i j

T T

v e v

T

e d v 

   

 



f I D HWD H D f

f I A f

  (3) 

In the above expansions, an intermediate matrix 
1/2 1 1/2T

v e v

  A D HWD H D  is defined. 

Taking (3) into (2), the overall cost function is rewritten: 

      min ( )
TTQ     

f
f f I A f f y f y  (4) 

Requiring that the gradient of Q(f ) vanish will give: 

    
*

0
Q





 


 *

f f

*
I A f+ yf

f
  (5) 

With algebraic steps, then we have the final optimal ranking result as 

 

 

1

*

REG

1

1

1 1



 







 
  

  



f I A y

I A y

  (6) 

In (6), a new parameter    1/ 1 0,1     is imported and the positive constant  1    

is omitted because it does not affect the ranking order. 

3.3 Random Walks on Hypergraph 

The graph-ranking problem can be solved in a different way by performing random walks 

on the graph with appropriate starting points. At the beginning, a starting point is selected 

randomly from the given labeled vertices according to the input query vector y. A walker is 

supposed to move randomly to adjacent nodes from the starting point following the edges 
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(hyperedges) in the graph (hypergraph). Finally, the stationary visiting probabilities are the 

ranking scores for all vertices.  

In traditional hypergraph random walk models [41, 53], the transition probability from one 

node to an adjacent node is 
,

( )
( | )

( ) ( )u v e

w e
p v u

d u e
  and the overall transition matrix for 

the whole hypergraph will be  
1 1 T

v e

 T D HWD H . Based on the random walk with restarts 

theory [19, 24], the walker will have two options for the next move each time: 1) continually 

walking to an adjacent node with a certain probability  0,1  ; 2) jumping back to the starting 

point with probability 1  . 

Let 
 t

p  be a column vector reporting the visiting probability of every vertex at a certain 

time t, and q the initial probability of being selected as the starting point. The visiting 

distribution of the whole vertex set updates in the following way according to the random walk 

with restarts model: 

 ( 1) ( ) (1 )t t    p Tp q   (7) 

Finally, the stationary distribution when (7) reaches convergence represents the long-term 

visiting rate of all vertices. Let 
    (1 )t t 

 p p p  then we obtain ( ) 1(1 )( )    p I T q . 

Because the positive constant  1   does not change the ranking order, the optimal ranking 

result will be: 

 
* 1

RW ( )  f I T q   (8) 

It is easy to find that (8) has the same structure as (6), and the intermediate matrix A in the 

regularization framework is a normalized version of the transition matrix T in the random walk 

model. The regularization framework is thus seen to be a normalized solution of the random 

walk-based ranking model, and some empirical studies report that the former performs better for 

recommendation applications [41]. 

3.4 Ranking Bias of Traditional Hypergraph Ranking 

We notice that the aforementioned traditional hypergraph ranking methods will produce a 

bias if the hyperedge degree varies significantly. Figure 2 gives a numerical example and we use 

random walks to explain the ranking bias.  
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Figure 2. Ranking bias of traditional hypergraph ranking 

 

In Figure 2, node A, which is supposed to be the starting point of random walks, is linked by  

two hyperedges 
1e  and 

2e . The edge strength indicates that the relationship between the nodes in 

1e  is equivalent to the relationship between the nodes in 
2e , so it is intuitively appropriate that 

the runner shall have equivalent probability to follow any one of the two hyperedges. With the 

settings of the traditional ranking in the above, however, the runner will strongly prefer to move 

via edge 
2e . Recall the transition formula 

,

( )
( | )

( ) ( )u v e

w e
p v u

d u e
  and suppose there is no 

jumping back, the probability of moving to the nodes in the two hyperedge will be 

1

1 1
)

2 2
(

0 40
n ep   


 and 2

1 1
)(

2 2 4
ep n  


, respectively. We can find that the probability 

of moving to a node in 
2e  is heavily overvalued only because the edge degree is much smaller. 

Hence, we consider the traditional hypergraph ranking models are not suitable for hypergraphs 

where the hyperedge degrees vary greatly. In the following section, we describe the building of a 

multipartite hypergraph model for e-commerce environments, in which the hyperedge consists of 

six types of pairwise or group relationships. It is our opinion that the traditional ranking models 

will not perform well in this circumstance, so we propose an improved balanced hypergraph 

ranking model in Section 4.3. 

4 Multipartite Hypergraph Construction and Ranking 

We use restaurant recommendations as an example for e-commerce recommender systems. 

In this scenario, information such as customer visiting history, restaurant attributes and 

contextual information is valuable for recommendation making. We propose a generic User-
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Item-Attribute-Context (UIAC) data model to summarize four types of information entities and 

six types of pairwise or high-order relationships, as shown in Figure 3.  

 
Figure 3: User-Item-Attribute-Context (UIAC) data model 

4.1 The UIAC Data Model 

Taking a restaurant recommender system (RRS) as an example, the four types of 

information entities are users, items (restaurants), restaurant attributes and context information. 

Users (U) are the registered customers and requesters in an RRS. Users are encouraged to 

review the restaurants they have visited using numerical ratings, as an explicit means of 

obtaining user preferences. 

Items (I) are the restaurants included in an RRS as recommended objects. The ultimate goal 

of an RSS is to suggest a list of restaurants as alternative options to the users’ requests. 

Attributes (A) are a set of taxonomy texts describing the conditions of restaurants, such as 

restaurant types (“breakfast”, “lunch”, “dinner”, etc.), restaurant ambience (“romantic”, 

“intimate”, “touristy”, etc.), noise level (“quite” or “loud”) and so on. Usually, an e-commerce 

platform will provide a standard taxonomy for the items and we can collect them directly. For 

example, Figure 6 in Section 6 shows the settings of restaurant taxonomy attributes in Yelp.com, 

a business review application. 

Context (C) refers to third-party information that may affect user choices [9]. Despite 

environmental information such as time and location, we also treat tags or short comments as 

context entities because the reviewing behavior also reflects user preference. Thus, we extend the 

context entities to all third-party resources beyond users and items that may affect or reflect user 

preferences for items. 
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Based on our analysis of the literature and real datasets, the possible pairwise or group 

relationships in an RRS are specified into the following six forms. 

User-User relationships (UU). This type of relationship refers to the correlations between 

users. The general considerable relationships could be user social networks [28], rating 

similarities [35], or implicit trust refined from common behaviors [39]. 

Item-Item relationships (II). In RSSs, restaurants may share connections because they are 

located in the same district or they belong to the same company. It is worth mentioning that some 

connections are multi-to-multi relationships rather than pairwise relationships. 

Item-Attribute association relationships (IA). In e-commerce applications, items usually 

come with descriptions of various attributes. Thus, we can collect the association relationships 

between items and attributes. 

User-Attribute preference relationships (UA). Users may prefer some items with particular 

attributes where the preference relationships between users and item attributes can be collected. 

User-Item preference relationships (UI). Personalized ratings of items are the most explicit 

preferences of users. In addition, if there are no explicit ratings, the visiting or purchasing history 

can be seen as implicit acceptance of users for items.  

User-Context-Item relationship (UCI). We point out that third-party context information is 

able to affect or reflect user preference. If user acceptance of an item is adjusted by a particular 

context, we then collect a high-order tripartite relationship for the user, the item and the context 

entities. 

The above elaborates four types of information entities and six types of relationships that 

may appear in an RSS. Because some relationships are high-order connections between multiple 

objects, the conventional pairwise graph models are unable to present them well. We therefore 

introduce a multipartite hypergraph in the following sub-section. 

4.2 Multipartite Hypergraph Construction 

With the UIAC data model, a hypergraph { , }G V E  will be constructed where the vertex 

set I CU AV      is the union of four types of objects: user nodes, item nodes, attribute 

nodes and context nodes, and the hyperedge set E consists of six subsets 
 1

E  to 
 6

E  generated 

from the six types of relationships, UU, II, IA, UA, UI and UCI. The general initialization of 

each type of edge is as follows. 



16 

 

The first subset of edges 
 1

E  is initialized from user-user relationships UU. For pairwise 

social relationships, a pairwise edge will be set to a pair of user nodes. Note that users could be 

connected by multiple edges if multi-relational connections exist, as studied in our previous 

research [27]. Hence, a hyperedge will be set to connect multiple user nodes for group social 

relationships. 

The second subset of edges 
 2

E  is initialized from item-item relationships II. Similarly, the 

items bundled by some relationships are connected with hyperedges. For example, we initialize a 

hyperedge for restaurants belonging to the same catering company or those that are located in the 

same district of a city. 

The third subset of edges 
 3

E  is initialized from item-attribute associations IA. The item-

attribute association relationships are usually represented by pairwise connections between item 

nodes and attribute nodes. With hypergraphs, in another way, we can instead build an overall 

hyperedge to include an item node and all its attributes. 

The fourth subset of edges 
 4

E is initialized from user-attribute preferences UA. The same 

as item-attribute associations, user preference to item attributes can be represented using 

pairwise edges or hyperedges.  

The fifth subset of edges 
 5

E  is initialized from user-item ratings UI. Like most 

recommendation models, the explicit rating given by a user to an item initializes a pairwise edge 

between them, together with a scaled number to indicate the preference degrees. 

The sixth subset of edges 
 6

E  is initialized from user-context-item relationships UCI. If a 

user’s preference for an item changes in different contexts, a hyperedge will connect the user 

node, the item node and the related context nodes. As an extension, textual comments or tags are 

also third-party context entities that reflect user preferences. Hence, the reviewing or tagging 

behavior of a user will initialize a hyperedge as a connection between the user, the item and 

several words.  

With these settings, a multipartite hypergraph will be formalized with the structural 

information as shown in Table 1.  

 Table 1 Structure of the formalized multipartite hypergraph 

 (1)E  (2)E  (3)E  (4)E  (5)E  (6)E  
 Hyperedge   

Vertex 
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UU II IA UA UI UCI  

 

4.3 Balanced Hypergraph Ranking (BHR) 

To overcome the possible ranking bias of traditional ranking for multipartite hypergraphs, 

we modify the vertex degree   ( )
ev

d w ev


  to an enhanced form: 

   ( ) ( )
v e

d w ev e



   (9) 

Different from the traditional vertex degree definition, the enhanced vertex degree of (9) 

also integrates the degree information of the involved edges. An enhanced node degree matrix 

D  can then be denoted with this new setting. Next, the cost function (4) of the hypergraph 

ranking model will be rewritten to: 
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 In (10), the first part of the right side, denoting the smoothness function  S f , can be 

simplified to matrix-vector form by the following steps: 

 

2
| |

, 1

2| |

, 1

| | | |
2

1 1

( ) ( , ) ( , )1
S( )

2 ( ) ( ) ( )

( ) ( , ) ( , )

( )( ) ( ) ( )

( , ) ( )( ) ( , ) ( )

( ) ( )

V
i j ji

i j e E i j

V
i j i ji

i j e E i i j

V V
j ii

i

i e E ji

w e h v e h v e ff
f

e d v d v

w e h v e h v e f ff

d ve d v d v

h v e f w e hw e h v e e
f

d v e









   

    

  

 
  
 
 

 
  
 
 

 





  
| |

, 1

1/2 1/2 1/2

( , ) ( , )

( ) ( ) ( )

( )

V
i j j

i j e E i j

T T T

e

T

v e h v e f

d v e d v   

  

 



 

 



f f f D HWD H D f

f I A f

  (11) 



18 

 

Here, a new intermediate matrix 
1/2 1/2 1/2T

e

  

  A D HWD H D  is introduced to replace the old 

matrix A in Section 3.2. 

Performing a similar calculation to (6), the optimized ranking order of BHR is obtained: 

 1

BHR ( ) 

 f I A y , (12) 

Correspondingly, the random walk version of BHR will be 1

BHR(RW) ( ) 

 f I T y , where 

1 1/2 T

e

 

 T D HWD H . It is easy to find that 
A is the normalized version of 

T . 

With the settings of the proposed BHR, the results of the example in Figure 2 will be 

recalculated as follows (using the random walk version). This indicates that our settings in BHR 

will alleviate the ranking bias of traditional methods to some extent. 

 

2

1

1 2 1
( ) 0.12 ( ) 0.25

21 2 1 20

1 20 1
(1 ) 0.038 (1) 0.025

201 2 1 20

new old

new old

p B e p B

p e p


     

  


     

  

  

In Section 6, the empirical experiments on large-scale data demonstrate that BHR performs 

better than the existing ranking models for multipartite hypergraphs consisting of different forms 

of edges. 

5 Multi-objective Recommendation Framework 

With the construction of multipartite hypergraphs, we elaborate how to transfer users’ multi-

objective requests to computable input and propose the multi-objective recommendation 

framework.  

5.1 Multi-objective Request Analysis 

In traditional graph ranking-based recommendation models, the current active user is the 

only query node as input, and the ranking aim is to find the closest (item) nodes to this single 

node. In this study, a multi-objective recommendation request can be seen as multiple 

requirements to a set of query nodes, and the ranking aim becomes to determine the closest 

nodes to all members in the query set rather than an individual user. Hence, a multi-objective 

request can be represented by an input query set containing multiple users, item attributes, 
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context information, etc. Figure 5 indicates the decomposing process of multi-objective requests, 

also with a comparison of single-objective requests. 

 

 
Figure 4. Decomposing single- or multi-objective requests to input query sets and making recommendations  

 

Based on this analysis, a multi-objective request can be decomposed to a query set qV V

with a number of vertices in the multipartite hypergraph model. A corresponding input query 

vector q is then generated with 1iq   if the i-th hypergraph vertex is included in the query set 

and zero otherwise. For a single-objective request, as a special case, the input query set contains 

only the current user so the input query vector will have only one positive element. 

Now we can transfer a multi-objective request to a computable query vector q as the input 

for hypergraph ranking. Generally, the query set is far smaller than the whole vertex set such that 

the input query vector would be very sparse.  Hence, we define a new query vector 
T

y A q  to 

replace q to enrich the input information. 

5.2 Recommendation Framework 

The overall framework for multi-objective recommendations is proposed in Figure 6 with 

restaurant recommendations as an example. This framework consists of four steps to complete a 

multi-objective recommendation task: query generation, hypergraph construction, hypergraph 

ranking, and recommendation generation. 
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Figure 5. Multi-objective recommendation framework for restaurants 

Step 1.  Query Generation. In this step, the active user sends a multi-objective 

recommendation request represented by a query set and the system will generate an 

input query vector. 

Step 2.  Hypergraph Construction. A multipartite hypergraph is constructed from historical 

data in the background. Different resources in the database will be utilized to 

generate the diverse relationships between different objects. 

Step 3.  Balanced Hypergraph Ranking. In this step, the obtained query vector and a 

multipartite hypergraph constitute the input of the proposed BHR model. Some 

intermediate matrices like 
D  and 

A  are trained in advance. A ranking vector f 

will be computed using BHR to evaluate the closeness of other vertices to the 

whole input query set. 

Step 4.  Recommendation Making. This step extracts the ranking order of only item vertices, 

and suggests the top ranked ones to satisfy the multi-objective recommendation 

requests of users. 
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6 Empirical Experiments 

Empirical experiments are conducted on a dataset of Yelp.com 
1
, which is a local business 

review site where users can give numerical ratings and also textual comments to the merchants 

they have known or visited in the past. There are various information entities and complex 

relations available in this dataset that it can be seen as a representative case of e-Commerce 

recommender systems. The main limitation of a generated test-set for our experiment is that all 

the mentioned six types of relationships in the UIAC model should be available. Few datasets 

provide such full information, especially context-aware information. The adopted Yelp dataset 

has no records about user preferences under different contexts, but it provides user comments, 

which can be treated as the extended context entities and user-context-item relationships defined 

in our UIAC data model. Thus, we can collect all types of entities and relationships in the UIAC 

model from the Yelp dataset for experiments, as explained as follows. 

6.1 Data Collection 

According to the idea of the proposed UIAC data model, we first analyze all the involved 

information entities in the Yelp dataset.  

(1) Restaurants (I): The original dataset contains local restaurants, hotels, grocery stores, 

etc. in a city, but we only select the restaurants from the dataset for the case of 

restaurant recommendations. Finally, 4119 restaurants are extracted as the 

recommended objects for our multi-objective recommendation problem. 

(2) Users (U): In the dataset, 1911 users in total have given more than 20 ratings or 

comments on the selected restaurants. We chose these users for our experiments. 

(3) Attributes (A): Based on the taxonomy settings in Yelp, the taxonomy of restaurants 

contains 24 attributes from five aspects: “type”, “ambience”, “alcohol”, “noise”, and 

“price range”, as shown in Figure 6. Therefore, we build an attribute set with 24 

attributes as a special group of nodes for the multipartite hypergraph. 

(4) Context (C): Traditional context information such as time and user location is missing 

in the dataset, but it contains many short comments (called “tips” in Yelp) that can be 

seen as a kind of third-party information entities. There are over 28,000 such “tips” 

                                                 

 
1
 The Yelp Dataset Challenge: http://www.yelp.com/dataset_challenge 
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made by users on the restaurants in the dataset. We split them into single words and 

remove the most common words 
1 

and meaningless symbols, resulting in the extraction 

of 7205 single words treated as third-party context entities. A “tip” behavior is thus 

considered as a high-order relationship between a user, a restaurant and certain words. 

 

 
Figure 6. The taxonomy attributes for restaurants in Yelp.com 

 

These four types of information entities are treated as four sets of nodes, U, I, A, C to build 

a multipartite hypergraph. The basic statistical information is shown in Table 2. 

Next, we analyze all the involved pairwise or group relationships for the four types of 

entities. With the UIAC dataset, the relationships can be divided to six types. For each type of 

relationship, the collection process is detailed as follows. 

(1) User-User relationships (UU). We collect this type of relationship from the online 

friendship information of the Yelp dataset. The dataset contains 43760 binary friendship 

relations between the selected 1911 users. Thus, we build a pairwise edge 
 

1 2

1
,u u E   if 

two users are friends and let the weightings be one.  

(2) Item-Item relationships (II). The Yelp dataset contains no precise location information on 

the restaurants, but it records the 16 business districts where the restaurants are located. 

Thus, we collect a type of item-item relationship from the neighborhood information of 

                                                 

 
1
 Based on the “Long Stopword List” of nature language processing provided in http://www.ranks.nl/stopwords 

A1 Type A2 Ambience A3 Alcohol A4 Noise A5 Price range

Restaurant

-breakfast

-lunch

-dinner

-dessert

-latenight

-romantic

-intimate

-touristy

-hipster

-divey

-classy

-trendy

-upscale

-casual

-none

-beer & wine

-full bar

-quiet

-average

-loud

-very loud

-cheap

-average

-high

-very high
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restaurants. Concretely, we build a hyperedge 
 

3

2

1 2, , ,i i i E   for those restaurants in 

the same business district, and the edge weighting is initialized to one. 

(3) Item-Attribute association relationships (IA). As previously discussed, 24 taxonomy 

attributes are used to describe restaurant conditions. By using the hypergraph structure 

that allows group relationships, we assign each item (restaurant) just one hyperedge 

 3

1 2, , ,i a a E   of this type to connect the restaurant itself and all the associated 

attributes. The edge weighting of this type of hyperedge is set to one. Because the 

taxonomy information of some restaurants is missing, we finally collect 4032 association 

relationships between items and attributes, as shown in Table 2. 

(4) User-Attribute preference relationships (UA). As the dataset does not provide explicit 

information about user preferences for attributes, we extract implicit preferences from 

user ratings on items. In Yelp, ratings range from 1 to 5. If a single user has visited more 

than five restaurants that all contain a particular attribute (e.g., “quiet”) and the average 

rating for these restaurants is over 3, we consider that this user has a positive preference 

for this attribute. A hyperedge  4

1 2, , ,u a a E  is then built for a user to connect this 

user and the preferred attributes, and the weighting is one. By removing some 

insignificant results, we build UA relationships for 1899 out of 1911 users, as shown in 

Table 2. 

(5) User-Item preference relationships (UI). The dataset contains 60688 ratings given by the 

selected users for the selected restaurants, ranging from 1 to 5. We build a pairwise edge 

 5
,u i E for a pair of users and the rated item and normalize the rating value to [0,1] as 

the edge weighting.  

(6) User-Context-Item relationship (UCI). As previously discussed, 7205 single words 

extracted from the “tips” in the dataset are collected as the set of context entities C. 

Accordingly, the tips of a user on a restaurant can be represented by a hyperedge 

 
1 2

6
, , , ,u c Ec i 

 
between the user u, the item i and the contained word nodes 1c , 2c  , 

etc. Finally, we collect 24541 relationships/hyperedges of this type from the dataset. 

In summary, Table 2 records the statistical information of the testing dataset with the four 

types of nodes and six types of relationships. 
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Table 2. Statistical information of the dataset 

vertex/hyperedge entity/relationship sample size* avg. degree** 

U users 1911 79.9 

I restaurants 4119 17.7 

A attributes 24 851.6 

C context 7205 19.2 

 1
E   

UU: friendship 43760 2 

 2
E  II: neighborhood 16 226.7 

 3
E  IA: category 4032 6.1 

 4
E  UA: preference 1899 3.4 

 5
E  UI: rating 60688 2 

 6
E  UCI: tips 24541 7.6 

* the total number of these types of vertices or hyperedges; 

** the average vertex degree or edge degree. 

 

It is worth mentioning that the edge degree of the constructed multipartite hypergraph varies 

greatly from two to hundreds. Recall the analysis of Section 3.4 where the traditional hypergraph 

rankings may suffer ranking bias and the improved BHR is expected to achieve better 

performance in this circumstance. 

6.2 Compared Models 

The core task of a recommender system is to guess items of potential interest to the users 

making a recommendation request. To simulate real usage, we randomly extract half of the 

positively rated items for every user as hidden knowledge, and test whether a recommendation 

model is able to predict these items correctly. To guarantee there are sufficient data for both 

training and testing, only users who have more than 10 positively rated items (rating is 4 or 5) 

are selected to build the test set. As a result, 1827 out of 1911 users and accumulatively 26632 

preferred restaurants are extracted from the whole dataset to build the test set, of which each user 

has on average 14.6 preferred items. 

We compare our model with three baseline recommendation approaches and three most 

related graph models. Second, a non-personalized recommendation approach (denoted as AVG) 

is produced. In this approach, restaurants are ranked by their reputations, i.e., the average ratings 

given by users.  Second, the standard user-based CF is selected and denoted as UCF. This is a 

memory-based CF model that first predicts the possible ratings of a user to unknown restaurants 

and then determines the best candidates [35]. The third is a model-based CF: the standard SVD 
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model that applies matrix factorization techniques to predict users’ ratings to unknown items 

[21]. Of the graph models, the first is the contextual graph model proposed by Bogers [4], which 

is a representative random walk model to handle various information entities and relationships. 

This model constructs an ordinary graph for random walking, denoted as SGRW. The second 

graph model is the regularization framework of hypergraph ranking reviewed in Section 3.2 [41], 

denoted as HGReg. The third one is the random walk version of hypergraph ranking, denoted as 

HGRW [53]. Our recommendation model using the balanced hypergraph ranking method is 

denoted as BHR. In addition, the random walk version denoted as BHR(RW) is also evaluated. It 

is worth mentioning that most CF techniques (both memory-based and model-based) aim to 

predict the missing ratings on unknown items and hereby rank all candidate items [38], while 

graph models estimate the closeness ranking order directly based on the various relationships 

between users and items.  

Table 3. A summary of the compared models 

Model Description 
Predict 

ratings 

Item 

ranking 
Input resources 

AVG Non-personalized rating averaging  Yes No single (rating) 

UCF [35] The standard Memory-based CF Yes No single (rating) 

SVD [21] The standard SVD model for CF Yes No single (rating) 

SGRW [4] Simple graph random walk model No Yes multi (context-aware) 

HGRW [53] Hypergraph random walk model No Yes multi (context-aware) 

HGReg [41] Regularized hypergraph ranking No Yes multi (context-aware) 

BHR(RW) Our random walk version of BHR  No Yes multi (context-aware) 

BHR Our balanced hypergraph ranking model No Yes multi (context-aware) 

 

6.3 Evaluation scheme and metrics 

In our experiments, every model is implemented to recommend the top-N interesting 

restaurants for each user, and we adjust the recommendation size N to make clearer comparisons. 

The five graph-based models, SRW, HGRW, BHR(RW), HGReg and BHR share a similar 

parameter α and we set α=0.95 for each model initially.  

For top-N recommendations, we test whether each model is able to precisely classify the 

items that are of potential interest to the users. However, differing to classical classification 

problems, we cannot classify all the most preferred items for a user because the rating data is 

incomplete, but instead we use the limited number of preferred items in the test set as substituted 
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“ground-truth” for verification [25, 38]. With this unique circumstance, our evaluation scheme 

consists of the following aspects:  

(1) Classification accuracy: the precision and recall ratios of the top-N recommended items 

compared to the test set. 

(2) Recommendation precision: whether the top-N recommendations are actually preferred 

by the users. The enhanced precision metric Mean Average Precision (MAP) is used. 

(3) Parameter sensitivity of the graph models. We need to test the influence of the graph 

ranking parameter α on the recommendation performance. 

(4) First-page recommendation: can a model successfully find the items of interest sooner?  

It is important for a recommender system to discover user interest even when the 

recommendation list is very short. Here, a new metric of user satisfaction is defined. 

(5) Multi-objective recommendation ability: can a model successfully predict items when 

the user demand is multi-objective? 

With the restaurant dataset, the precision metric is defined as the proportion of correctly 

recommended restaurants in the whole recommendation list and recall is the proportion of 

correctly recommended restaurants in the test set. Because the precision and recall metrics may 

be inconsistent, we also introduce the F1 metric as an overall evaluation: 

 
Precision Recall

Precision Recall

2
F1

 


   (13) 

Notice that the precision metric varies the recommendation size N. We introduce the MAP 

metric to test the overall recommendation precision with different recommendation sizes. For a 

single user, the average precision (AP) is defined as the average of precisions computed at each 

point of correctly recommended item in the recommendation order. Let 
iCorr be a Boolean value 

denoting whether the i-th recommendation is correct, and the AP can be written as: 

  
1,2,...,

AP= mean Precision@i
i N

iCorr


  (14) 

The MAP metric is the average AP scores over all tested users. 

We also propose a new metric SA to test the overall user satisfaction degree of a 

recommender system. Simply, we consider that a user’s request is satisfied if at least one 

acceptable item can be found from the recommendation list, and the proportion of satisfied 

requests is defined as the overall SA degree of a recommendation model, written as:  
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Number of satisfied requests

SA
Total number of recommendation requ

0
ests

10 %   (15) 

For multi-objective recommendations, it is hard to compute the recommendation accuracy 

because the data set does not provide preference information of a group of users in certain 

contexts. For this reason, we let each model predict a proper ranking order for the items in the 

test set, and test if the result is correct.  The detail of the experiment settings is presented in 

Section 6.8. Here, we introduce the Normalized Discounted Cumulative Gain (NDCG) to 

compare the ranking accuracy of each model. For a list sorted in descending order with N items, 

let 
irel  be the ranking score at the position i, and the Discounted Cumulative Gain (DCG) 

accumulated at the position N is calculated by (16) []. 

 
 21

2 1
DCG@

log 1

ir

i

ep l

N
i





   (16) 

Let IDCG be the ideal DCG value of the actual ranking order, then the NDCG score of a test 

ranking order is a normalized value between 0 and 1, as follows. 

 
DCG@

NDCG@
IDCG@

N
N

N
   (17) 

6.4 Classification accuracy 

We let each model recommend 10 restaurants (fixed N=10) and compare these against the 

ones in the test set. The performance in terms of precision and recall is presented in Figure 7, 

which preliminarily shows that our model BHR and the existing regularized hypergraph ranking 

model HGReg achieve the best performance. For the three random walk models, we find the 

existing hypergraph model HGRW performs worse than the simple graph model SGRW. With 

the modification mentioned in 4.3, our balanced hypergraph random walk model BHR(RW) 

improves accuracy significantly. This demonstrates that the proposed balanced hypergraph 

ranking models are able to alleviate the ranking bias of traditional models to some extent.  

Figure 7 also demonstrates that the rating prediction-based UCF and SVD suffer poor 

performance in dealing with top-N recommendation tasks. In our experiment, these models 

predict the ratings of unknown items first and then rank them according to the prediction. 

However, it is hard to predict ratings for many items because of the high sparsity of rating data, 

and the top-N recommendations that are finally selected become inaccurate. 
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Figure 7. The precision-recall curve of each model for top-N recommendations (N=10)  

 

6.5 Recommendation precision 

We test the recommendation precision of every model with different recommendation sizes. 

Figure 8 shows the variation in the MAP scores along with increasing recommendation sizes. It 

can be seen that the proposed BHR model achieves the best performance in all cases. Again, the 

superiority of BHR compared to HGReg indicates the success of our modification of the 

balanced hypergraph ranking model. This improvement is more significant when comparing the 

random walk models BHR(RW) and HGRW. Figure 7 and Figure 8 show that the unique settings 

of BHR are more suitable for the special multipartite hypergraph environment with various 

forms of relationships. Except for the graph models, however, the rating-prediction-based models 

SVD and UCF still suffer poor performance for top-N recommendations due to sparse rating data.  
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Figure 8. The MAP values of each model with different recommendation sizes 

6.6 Parameter sensitive of graph models   

Figure 9 presents the trends of recommendation accuracy of each graph model when 

parameter α increases from 0.6  to 0.99, showing that the best performance is achieved by BHR 

at 0.95  , significantly higher than the second best HGReg. Notice that BHR and HGReg are 

based on the traditional regularization hypergraph ranking framework and they both improve 

ranking accuracy compared to their pure random-walk versions BHR(RW) and HGRW. For the 

random walk models, the traditional hypergraph model HGRW acquires the lowest precision 

scores, even worse than the single graph model SGRW. However, with our modification, the 

balanced hypergraph model BHR(RW) increases accuracy significantly and performs slightly 

better than SGRW. 
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Figure 9. The recommendation precision trends with different parameter settings (N=10) 

 

These findings demonstrate that if we only simply import a hypergraph structure to deal 

with high-order relationships (like HGRW), it is hard to improve recommendation accuracy even 

compared to simple pairwise graph models (like SGRW). Taking the used data set as an example, 

some group relationships connect a large number of entities while some connect only a few, such 

that the traditional hypergraph ranking models suffer from the ranking bias problem discussed in 

Section 4.3. Thus, we propose a unique balanced hypergraph ranking model to deal with the 

complex environment of e-commerce recommender systems. 

6.7 First-page recommendations 

In general, e-commerce sites have limited space to show recommended items, especially 

mobile apps on smartphones. It is our opinion that user satisfaction will be increased if they can 

find interesting items earlier from a shorter recommendation list, such as the first 

recommendation page. Thus, we compare the “first-page” recommendation performance of each 

model with small recommendation sizes from 2 to 10. The results are given in Table 4, showing 

that the BHR model achieves the best performance in all cases. 
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Table 4. One-page recommendation performance comparison  

Recmend.size 

N 

(a) (b) (c) (d) (e) (f) (g) (h) improvement 

AVG UCF SVD SGRW HGRW HGReg BHR(RW) BHR (g)vs.(e) (h)vs.(f) 

N=2 

F1 0.000  0.004  0.009  0.093  0.065  0.114  0.097  0.122  48.9% 6.9% 

MAP 0.003  0.020  0.049  0.308  0.221  0.353  0.326  0.384  47.4% 8.6% 

SA(%) 0.2  1.7  4.3  22.0  17.1  27.2  22.2  28.1  29.8% 3.6% 

N=4 

F1 0.000  0.006  0.012  0.099  0.069  0.122  0.102  0.126  46.8% 3.6% 

MAP 0.002  0.036  0.063  0.327  0.238  0.378  0.343  0.400  44.1% 5.9% 

SA(%) 0.1  4.3  7.6  32.7  25.8  40.1  33.0  40.9  27.8% 2.1% 

N=6 

F1 0.000  0.008  0.013  0.101  0.070  0.122  0.102  0.127  45.1% 4.1% 

MAP 0.002  0.043  0.070  0.333  0.239  0.377  0.343  0.401  43.2% 6.3% 

SA(%) 0.2  7.4  11.9  47.3  37.0  57.6  47.1  58.4  27.4% 1.5% 

N=8 

F1 0.000  0.008  0.012  0.100  0.070  0.120  0.102  0.123  44.7% 2.5% 

MAP 0.002  0.043  0.069  0.332  0.238  0.372  0.342  0.394  43.8% 5.8% 

SA(%) 0.2  8.8  14.4  56.8  43.9  67.9  56.9  69.0  29.7% 1.6% 

N=10 

F1 0.000  0.008  0.012  0.100  0.068  0.119  0.101  0.122  47.9% 3.2% 

MAP 0.002  0.042  0.067  0.329  0.232  0.368  0.339  0.388  45.9% 5.4% 

SA(%) 0.2  10.1  16.3  65.3  50.1  78.7  64.7  79.7  29.0% 1.4% 

 

The F1 and MAP metrics show that our balanced hypergraph models BHR and BHR(RW) 

significantly improve recommendation accuracy compared to the existing models HGReg and 

HGRW respectively, especially when recommendation size is smaller. The user satisfaction 

metric SA demonstrates that our model BHR is able to satisfy users more quickly. In other words, 

users are able to find at least one preferred items from the few recommended item on the first 

page using the BHR model.  

 Moreover, we can see the pure rating prediction-based models ((a) to (c)) suffer poor 

performance for top-N recommendations when rating data is sparse, while the graph-based 

models ((d) to (h)) are able to alleviate this rating sparsity problem by utilizing wider 

connections between users, items and context information.  

6.8 Multi-objective Recommendations 

The above section demonstrates the strong performance of our model in dealing with 

traditional top-N recommendations for a single user. It is also essential to evaluate the ability of 

our model to deal with multi-objective recommendation problems. Our experiment settings and 

evaluation scheme are as follows. 

A multi-objective recommendation request is not explicitly available in the dataset, but can 

be manually generated by assigning several request nodes from the different types of entities, 

according to the analysis in Section 5.1. Specifically, we randomly select three users, three 
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restaurant attributes and three of the most frequently appearing words in the comments to build a 

multi-objective query set. We repeat this selection 1000 times to generate a test set. Table 5 is an 

example of a selected query set, which requires that recommended restaurants fit the best for 

these objectives, e.g., the group’s cuisine preferences, restaurant conditions and comment topics. 

 

Table 5. An example of random generated multi-objective request and the query set 

user IDs restaurant conditions 
frequently appearing 

words (topics) 

corresponding vertices 

in the hypergraph  
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Next, an ideal solution for each test multi-objective request needs to be generated as the 

ground truth to test the recommendation models. For each query set consisting of three users, we 

extract the restaurants preferred by any of these users from the test set to build an initial 

candidate set. Then it is expected to estimate the overall relevance of each candidate to the whole 

query set, to generate an ideal ranking order. We denote a query set as Q and the related 

candidate restaurant set as M.  Because a candidate restaurant m M  and a single object v Q  

may share multiple edges in the hypergraph model, we choose the maximum weighting of these 

edges as the closeness between them. The average correlation of a candidate m to all objects in Q 

is then seen as the ideal ranking score for this candidate, defined as    
,

max
m v

v
e

Q

rel m w e Q




 . 

In brief, if a candidate restaurant has connections with all objects in the query set, it will appear 

at the top of the recommendation list.  

The three graph models SGRW, HGRW and HGReg are able to make multi-objective 

recommendations using similar settings to BHR as introduced in 5.2. The rating prediction-based 

models AVG, UCF and SVD, however, cannot handle multi-objective recommendations directly. 

For these models, we use an “aggregating and filtering” method to generate multi-objective 

recommendations. Taking UCF for example, given a test multi-objective query set that involves 

three users, we first run UCF to predict the rating of each user to each restaurant and compute the 

average rating to generate an initial ranking list of the restaurants. Next, we remove the 

restaurants without any connections to the other six nodes (restaurant attributes and comment 
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topics) in the query set and generate a final ranking list. The top-ranked restaurants in this final 

ranking list are then returned as multi-objective recommendations. 

 

Table 6. Ranking accuracy comparison for multi-objective recommendations 

Recommend. 

size N 

(a) (b) (c) (d) (e) (f) (g) (h) improvement 

AVG UCF SVD SGRW HGRW HGReg BHR(RW) BHR  (g)vs.(e)  (h)vs.(f) 

NDCG@5 0.1980  0.2392  0.2731  0.1348  0.1336  0.4132  0.1392  0.4916  4.2% 19.0% 

NDCG@10 0.2652  0.2996  0.3302  0.1921  0.1884  0.5048  0.1961  0.5688  4.1% 12.7% 

NDCG@30 0.4826  0.5019  0.5233  0.4317  0.4087  0.6560  0.4142  0.6963  1.3% 6.1% 

NDCG@50 0.5521  0.5719  0.5843  0.5121  0.4982  0.6907  0.5021  0.7274  0.8% 5.3% 

NDCG@100 0.5789  0.5997  0.6032  0.5453  0.5373  0.7030  0.5403  0.7396  0.6% 5.2% 

 

Table 6 also demonstrates that our modified hypergraph random walk model BHR(RW) is 

slightly better than the traditional HGRW, but both may lose their advantage compared to the 

simple pairwise graph model SGRW at certain times. The regularized models BHR and HGReg, 

however, improve their performance significantly, e.g., the NDCG score increases from about 

0.13 to 0.41 (HGReg) and 0.49 (BHR). This illustrates that the regularized framework of the 

hypergraph ranking obtains higher accuracy in dealing with e-commerce recommendation 

problems compared to traditional random walk models. 

For the CF approaches, including memory-based UCF and model-based SVD, we adopt the 

aforementioned “aggregating and filtering” method to handle multi-objective recommendations, 

and we find the results are even better than some graph-based models. This is because the 

models tested in this session of experiments are only required to rank certain items in the test set 

rather than the whole item set so that the sparseness problem does not influence the performance 

of rating prediction-based approaches. We conclude that UCF and SVD are able to predict 

accurate ratings for users for certain items, but cannot generate a proper ranking order for all 

items nor can they generate precise top-N recommendations if the rating data are too sparse. 

For CF approaches including memory-based UCF and model-based SVD, we adopted the 

mentioned “aggregating and filtering” manner to handle multi-objective recommendations, and 

we find the results are even better than some graph-based models. That is because the tested 

models in this session of experiments are only required to rank the certain items in the test set 

rather than the whole item set, that the sparseness problem does not influence the performance of 

rating prediction-based approaches. We can conclude that UCF and SVD are indeed able to 
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predict accurate ratings for users to certain items, but cannot generate proper ranking orders for 

all items and generate precise top-N recommendations if the rating data are too sparse.  

To summarize all the aforementioned analyses, the proposed BHR model is able to improve 

recommendation quality compared to existing baseline and graph-based models for both 

traditional single-objective and the new multi-objective recommendations. The results support 

our expectation that the multi-objective recommendation framework performs well in complex e-

commerce environments with various information resources. 

7 Conclusions and Future Study 

In this paper, we highlighted that e-commerce users often raise multi-objective requests, 

which cannot be tackled by traditional single-objective recommender systems. We summarized 

the diverse information resources, such as users, items, item attributes and context in e-

commerce environments within a UIAC data model and discussed the construction of a 

multipartite hypergraph based on the pairwise or group relationships between different entities. 

In addition, multi-objective recommendation requests can be decomposed to special 

requirements to several query nodes in the multipartite hypergraph, and the multi-objective 

recommendation problem is transferred to a hypergraph ranking problem. We pointed out that 

traditional hypergraph ranking models might suffer from a ranking bias problem, so we 

developed an improved balanced hypergraph ranking to solve the ranking problem to determine 

the most appropriate items that best meet all requirements. A theoretical framework was then 

proposed as a guideline for e-commerce multi-objective recommender system implementations. 

We conducted empirical experiments on the data from Yelp to evaluate the performance of the 

proposed model. The results indicate that our model is able to handle and improve both single-

objective and multi-objective recommendations, especially when the recommendation size is 

small. It can be concluded that the multi-objective recommendation framework performs well for 

practical applications. More importantly, it is also flexible when people change their requests at 

particular times. 

A limitation of this study is the model scalability. The multipartite hypergraph model is easy 

to extend by adding new nodes or new edges when the system volume grows larger. However, 

we admit that the current solution may not be scalable enough because some large intermediate 

matrices need to be recalculated. To improve scalability, there is a need to develop a new 
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approximation strategy to solve the optimization function of our model, and this is left as an 

important direction of our future study. Another limitation is that graph models are not the only 

ones suitable for multi-objective recommendations. It is also practicable to build a tensor model 

to handle heterogeneous information according to the UIAC data model, but it lacks sufficient 

study currently. Furthermore, exploring a new unified tensor model for multi-objective or 

context-aware recommendations could be a new challenge and a contribution of our future study. 

We also mentioned a limitation in the selected test set, that is, the explicit context-aware 

preference information is not available. In future studies, we will crawl context-aware data from 

real applications to test the multi-objective and context-aware recommendation models.  
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