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Abstract

Randomized neural networks (NNs) are an interesting alternative to

conventional NNs that are more used for data modeling. The random

vector functional-link (RVFL) network is an established and theoretically

well-grounded randomized learning model. A key theoretical result for

RVFL networks is that they provide universal approximation for continu-

ous maps, on average, almost surely. We specialize and modify this result,

and show that RFVL networks can provide functional approximations

that converge in Kullback-Leibler divergence, when the target function is

a probability density function. Expanding on the approximation results,

we demonstrate the the RFVL networks lead to a simple randomized mix-

ture model (MM) construction for density estimation from random data.

An expectation-maximization (EM) algorithm is derived for the maximum

likelihood estimation of our randomized MM. The EM algorithm is proved
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to be globally convergent and the maximum likelihood estimator is proved

to be consistent. A set of simulation studies is given to provide empirical

evidence towards our approximation and density estimation results.

Keywords: Density estimation; Expectation-maximization algorithm; Func-

tional approximation; Mixture models; Neural networks; Random vector functional-

link networks

1 Introduction

Neural networks (NNs) have become a ubiquitous tool for predictive model-

ing and data analytics across numerous application domains. As noted in the

introduction of [12], the usefulness of NNs can be attributed to their numer-

ous beneficial attributes such as their learning and representational capabilities,

when applied to the analysis of nonlinear data and signals.

Randomized NNs have become an increasingly popular topic of modern re-

search, and there are now many available randomized NNs in the literature.

Such networks include the randomized radial basis functions networks [2], the

random vector functional-link networks [14], and the stochastic configuration

networks [31]. A recent review of the randomized NNs literature can be found

in [27].

Mixture models (MMs; [22]) can be viewed as NNs that are adapted for

functional approximation in the spaces of probability distributions or density

functions (see for example [26], and [33]). There is a folk theorem which states

that the class of MM densities can approximate any probability density function

(PDF) if the number of mixture components of the MM is taken to be sufficiently

large. Examples of such statements include “any continuous distribution can

be approximated arbitrarily well by a finite mixture of normal densities with

common variance (or covariance matrix in the multivariate case)” [22, p. 176]

2



and “provided the number of component densities is not bounded above, certain

forms of mixture can be used to provide arbitrarily close approximations to a

given probability distribution” [28, p. 50].

We note that MM forms have been explored in the randomized NN litera-

ture, such as in [13] and [30]. In the former publication, the author utilizes MMs

in order to model probabilistic uncertainty around an RVFL mean regression

model. In the latter publication, the authors utilize a kernel density estimator

(a kind of non-parametric MM) in order to determine penalty weights for obser-

vations that are used to train an SCN. Both of these contributions are different

to our contributions in this article.

Let D (X) =
{
f ∈ C (X) : f ≥ 0,

∫
X fdx = 1

}
be the class of valid PDFs,

where X ⊂ Rd be compact for some d ∈ N (zero exclusive) and C (X) be

the class of continuous functions with support X. Define a function f to

be in the class Lp (X) if ‖f‖p,X =
(∫

X |f |
p dx

)1/p
< ∞, where we refer to

‖·‖p,X as the Lp (X) norm. Furthermore, say that a function φ is a “hump-

shaped” marginal PDF (cf. [20, Sec. 9.3.4]) if φ ∈ H (R), where H (R) =
{
φ ∈ D (R) : φ (x) = ψ

(
x2
)
, ψ is decreasing on R+

}
and R+ = (0,∞). Let

x> = (x1, . . . , xd) ∈ Rd and y> = (y1, . . . , yd) ∈ Rd, where (·)> is the trans-

position operator. The following version of [5, Thm. 33.1] provides a concrete

form of the folk theorem (see also [23]).

Theorem 1. Let f be a PDF in D
(
Rd
)
and let φ be a PDF in H (R). Define

the class of location-scale mixtures of φ to be

Mφ =



m : m (x) =

∫

R+

∫

Rd

wd
d∏

j=1

φ (wxj − wyj) pY (y) pW (w) dydw



 ,

where pY and pW are PDFs on the supports Rd and R+, respectively. If ε > 0
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and p ∈ [1,∞], then there exists an m ∈Mφ such that ‖f −m‖p,X < ε, for any

compact X ⊂ Rd.

Using theoretical tools from functional analysis, and from [14] and [33], we

provide a version of Theorem 1 for randomized MMs. That is, we prove that

a mixture of n randomly sampled hump-shaped PDFs from some probability

measure can approximate any PDF in the C (X) norm, under mild regularity

conditions as n approaches infinity. The precise nature of our theoretical results

will be elucidated in the sequel. Furthermore, we demonstrate that control of

the L2 (X) norm also allows for control of the Kullback-Leibler (KL) divergence

[16].

Apart from our approximation results, we also demonstrate how our derived

randomized MMs can be applied to density estimation from sampled data from

an unknown population. We construct density estimators using a modified EM

algorithm (see [6] and [21]) for maximum likelihood estimation given some ran-

domly sampled mixture components. A guarantee of large-sample performance

is provided via a consistency result.

To conclude our article, we perform a pair of short simulation studies. The

first simulation study seeks to demonstrate the function approximation capac-

ity of our randomized MMs. The second simulation demonstrates the density

estimation capabilities of our randomized MMs when fitted to sampled data.

The remainder of the article proceeds as follows. The main approximation

results are presented in Section 2. Density estimation results are presented in

Section 3. Simulations are performed in Section 4. Conclusions are drawn in

Section 5.
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2 Main Results

Retain the notation from Section 1 and let I = [0, 1]
d be the unit hypercube of

dimension d. Further define w> = (w1, . . . , wd) ∈ Rd+ and utilize the convention

of lowercase letters for realizations and uppercase letters for random variables.

For n ∈ N, let Z>n =
(
W>

1 , . . . ,W
>
n ,Y

>
1 , . . . ,Y >n

)
and let Ai = a (Yi) for each

i ∈ [n] = {1, . . . , n}, where a (y) is a real-valued function. Define the distance

ρX (f, g) between two potentially stochastic functions f and g via the equation

ρ2
X (f, g) = E

∫

X
[f (x)− g (x)]

2 dx,

where the expectation (i.e. E) is taken over the data generating process of f

and g. Suppose that f ∈ C
(
Id
)
and approximate f via the random mixture

f (x;Zn) =
1

n

n∑

i=1

Ai

d∏

j=1

Wijφ (Wijxj −WijYij) . (1)

The following result can be inferred from Theorem 2 of [14] and establishes the

capacity of (1) as an approximator for f .

Theorem 2. If X ( Id is compact, f ∈ C
(
Id
)
, and φ ∈ D

(
Id
)
, then: (a)

Uniformly over X, we have

f (x) = lim
w1→∞

· · · lim
wd→∞

∫

Id
g (x;w,y) dy

and

lim
w1→∞

· · · lim
wd→∞

∫

Id
g (x;w,y) dy = lim

ω→∞
ω−d

∫

Id×Ωd

g (x;w,y) dydw,

where Ω = [0, ω] and g (x;w,y) =
∏d
j=1 wjφ (wjxj − wjyj) f (y). (b) For any

fixed ω ∈ R+ , there exists data generating processes for W and Y and a real-
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valued function a (y), such that

ρX

(
f (x;Zn) ,

1

ωd

∫

Id×Ωd

g (x;w,y) dydw
)
→ 0,

as n→∞.

A deficiency of Theorem 2 is the restriction to the unit hypercube domain,

which is unnatural in many density approximation and estimation problems.

The following result resolves this deficiency and is better suited for the problem

of density approximation.

Theorem 3. If X ⊂ Rd is compact, f ∈ C
(
Rd
)
, and φ ∈ D

(
Rd
)
, then: (a)

Uniformly over X, we have

f (x) = lim
w1→∞

· · · lim
wd→∞

∫

Rd

g (x;w,y) dy (2)

and

lim
w1→∞

· · · lim
wd→∞

∫

Rd

g (x;w,y) dy = lim
ω→∞

ω−d
∫

Rd×Ωd

g (x;w,y) dydw, (3)

where Ω = [0, ω] and g (x;w,y) =
∏d
j=1 wjφ (wjxj − wjyj) f (y). (b) For any

fixed ω ∈ R+ and compact set K ⊃ X, there exists data generating processes for

W and Y and a real-valued function a (y), such that

ρX

(
f (x;Zn) ,

1

ωd

∫

K×Ωd

g (x;w,y) dydw
)
→ 0, (4)

as n→∞.

The proof of Theorem 3 follows in the same vein as that of Theorem 2.

For completeness, we provide the proof of Theorem 3, below. Define ‖·‖ to be

the usual Euclidean norm and ? to be the convolution operator. The following
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lemma appears in [3, Ch. 20].

Lemma 1. Let h1, h2, . . . be a sequence of functions in L1

(
Rd
)
such that (a)

supw ‖hw‖1 < ∞ and (b)
∫
Rd hw (x) = 1, for all w ∈ N. If we further assume

that (c) limw→∞
∫
‖x‖>δ |hw (x)| = 0 for every δ ∈ R+, then for each bounded

function f ∈ C
(
Rd
)
, we have hw ? f → f as w → ∞, uniformly over every

compact subset of Rd.

Let hw (x) =
∏d
j=1 wj (w)φ (wj (w)xj), where wj (w) is an increasing se-

quence in w ∈ N, wj (w) ∈ R+ for each w, and wj (w)→∞ for each j ∈ [d]. We

seek to show that the sequence {hw} satisfies assumptions (a)–(c) of Lemma 1.

Firstly, note that φ ∈ H (R), which implies that φ ∈ D (R). This implies that

φ is the marginal PDF of some random variable X ∈ R. Using the change-of-

variable formula (cf. [1, Thm. 3.6.1]), we know that wφ (wx) ∈ D (R) is also a

marginal PDF of some random variable X, for any w ∈ R+. Thus, hw ∈ D
(
Rd
)

is a joint PDF of independent random variables Xj , each with marginal PDFs

wj (w)φ (wj (w)xj), for j ∈ [d]. We have therefore validated Assumptions (a)

and (b). Write wj = wj (w) for each j ∈ [d] and by Tonelli’s theorem

∫

‖x‖<δ
hw (x) dx ≤

∫

|x1|<δ
· · ·
∫

|xd|<δ

d∏

j=1

wjφ (wjxj) dx

=

d∏

j=1

∫

|ξj |<wjδ

φ (ξj) dξj

→ 0,

as w → 0, since wj is increasing and the tail of φ ∈ H (R) is decreasing in

volume. We have therefore validated (c) and can state the following result.

Lemma 2. If hw (x) =
∏d
j=1 wj (w)φ (wj (w)xj), where wj (w) is an increasing

sequence in w ∈ N, wj (w) ∈ R+ for each w, and wj (w)→∞ for each j ∈ [d],

then the sequence {hw} satisfies the assumptions and permits the conclusion of
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Lemma 1.

By the definition of a convolution, we have Equation 2 from Theorem 3.

Repeated applications of l’Hôpital’s rule, as per [14, Eqn. 27], yields Equation

3.

Fix ω ∈ R+ and let W1, . . . ,Wn and Y1, . . . ,Yn be two IID (independent

and identically distributed) samples from data generating processes that are

characterized by the density functions pW and pY , respectively. Let U1, . . . Un

be an IID random sample with finite first and second moments, and define

Ūn = n−1
∑n
i=1 Ui to be the sample mean. By the definition of the variance, we

have E
(
Ūn − EŪn

)2
= n−1

(
EU2

1 − [EU1]
2
)
. Notice that EŪn = EU1.

Write the left-hand side (LHS) of (4) as

E
∫

X

[
f (x;Zn)− 1

ωd

∫

K×Ωd

g (x;w,y) dydw
]2

dx,

which equals

∫

X
E
[
f (x;Zn)− 1

ωd

∫

K×Ωd

g (x;w,y)dydw
]2

dx

by Fubini’s theorem. Define Ui = Ai
∏d
j=1Wijφ (Wijxj −WijYij) for each

i ∈ [n] and suppose that EU1 = ω−d
∫
K×Ωd g (x;w,y) dydw. We require an

appropriate function a, and densities pW and pY , in order to ensure compati-

bility of the aforementioned definitions. Take pW (w) = ω−d to be the uniform

distribution over the hypercube Ωd and select any pY ∈ D (K) that is bounded

away from zero. Further, let a (y) = f (y) /pY (y). We can check that our

definitions are now compatible, and thus we can write

ρ2
X

(
f (x;Zn) ,

1

ωd

∫

K×Ωd

g (x;w,y) dydw
)

=
1

n

∫

X

(
EU2

1 − [EU1]
2
)
.
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Finally, it suffices to note that EU2
1 − (EU1)

2 exists and independent of n by

the assumptions on the spaces from which f , φ, and pY are drawn. The desired

conclusion can be obtained by taking the limit as n→∞.

We note that Theorem 2 can be obtained from Theorem 3 by setting X ( Id

and K = Id. Furthermore, we draw the following interesting corollaries from

Theorem 3.

Corollary 1. If we assume that f ∈ D
(
Rd
)
in addition to the conditions of

Theorem 3, then: (a) For any fixed zn and x ∈ X, f (x; zn) ≥ 0. (b) If

c =
∫
K fdx and pY = c−1f , then we can set a (y) = c in order satisfy (4). (c)

If we let K be a hypercube that with sides of length β, and we let pY (y) = β−d

be the uniform distribution over K, then we can set a (y) = βdf (y) in order to

satisfy (4).

Proof. Part (a) can be proved by observing that a = f/p must always be posi-

tive, as are w and φ. Thus their products and positive sums are always positive.

Part (b) can be proved substituting pY = c−1f (the division by c is to make

pY a proper PDF) into the equation for a. Similarly Part (c) can be proved by

substituting pY = β−d into the equation for a.

Part (a) of implies that we always obtain a positive function when con-

struction an approximation of form f (x; zn) for any sampled zn from the data

generating process for Zn. Unfortunately there is no guarantee that f (x; zn)

is in D
(
Rd
)
as the coefficients ai are not enforced to sum up to 1. However,

upon obtaining an approximation of form f (x; zn), we can simply normalize it

in order to obtain f̃ (x; zn) = (
∑n
i=1 ai)

−1
f (x; zn), which is in D

(
Rd
)
. The

approximation properties of f̃ (x; zn) versus that of f (x; zn) is unknown, how-

ever.

Part (b) demonstrates that if we ideally know the form of the approximand f ,

then we can construct an approximation f (x; zn) that has constant coefficients
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ai = c. Furthermore, if
∫
K fdx = 1 then we can set ai = 1, for each i ∈ [n].

This implies that the approximation is in fact in D
(
Rd
)
but not necessarily in

D (K).

Finally, Part (c) of Corollary 1 can be viewed as an analog to the data

generating processes that are suggested by [14]. In the aforementioned paper,

the authors only consider the sampling of Zn from uniform distributions over

hypercubes.

2.1 Kullback-Leibler Divergence

Define the KL divergence between any two functions that satisfy the necessary

integrability assumptions, f ≥ 0 and g ≥ 0, over some domain X as KLX (f, g) =
∫
X f log (f/g) dx. Further, for every b > 0, define the class of lower-bounded

square-integrable functions as Sb (X) = {f ∈ L2 (X) : f ≥ b}. The following

lemma was proved in [33].

Lemma 3. Let b > 0 and X ⊂ Rd. If f and g are two functions in Sb (X), then

KLX (f, g) ≤ b−1 ‖f − g‖22,X .

Lemma 3 allows us to bound the KL divergence between two functions by

their L2 distance. Subsequently, we may also use the lemma to provide a bound

on the expected KL divergence via the expected L2 distance, also. The following

corollary utilizes Lemma 3 in order to provide a specialized version of Theorem

3 for density approximation.

Corollary 2. If X ⊂ Rd and K ⊃ X are compact, f ∈ D
(
Rd
)
∩ Sb (K) (for

some b > 0), and φ ∈ D
(
Rd
)
, then: (a) Uniformly over X, we have

f (x) = lim
w1→∞

· · · lim
wd→∞

∫

Rd

g (x;w,y) dy

10



and

lim
w1→∞

· · · lim
wd→∞

∫

Rd

g (x;w,y) dy = lim
ω→∞

ω−d
∫

Rd×Ωd

g (x;w,y) dydw,

where Ω = [0, ω] and g (x;w,y) =
∏d
j=1 wjφ (wjxj − wjyj) f (y). (b) For any

fixed ω ∈ R+, there exists data generating processes for W and Y and a real-

valued function a (y), such that

E
[
KLX

(
f (x;Zn) ,

1

ωd

∫

K×Ωd

g (x;w,y) dydw
)]
→ 0, (5)

as n→∞.

Proof. Part (a) is exactly the same as that of Theorem 3. To prove Part (b),

we use Lemma 3 to bound

KLX

(
f (x;Zn) ,

1

ωd

∫

K×Ωd

g (x;w,y) dydw
)

(6)

from above, by
∫
X

[
f (x;Zn)− 1

ωd

∫
K×Ωd g (x;w,y) dydw

]2
dx. Following from

the proof of Theorem 3, we know that the expectation of the aforementioned

squared integral has finite expectation for well-chosen data generating processes

over W and Y , and thus is bounded from above by a term of order O
(
n−1

)
.

Now, since the expectation operator preserves inequalities (cf. [4, Sec. 3.2]), we

have the fact that the expectation of (6) is also bounded from above by a term

of order O
(
n−1

)
times a constant b−1, under the same data generating process.

The limit (5) is then obtained by taking n→∞.

In statistical estimation and inference, it is often advantageous to work with

the KL divergence, as opposed to other loss criteria or objectives. This is due

to the close connection between the KL divergence and the popular maximum

likelihood criterion (see, e.g. [1, Sec. 7.3]). Corollary 2 justifies the use of
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maximum likelihood estimation (MLE) for density estimation that is presented

in the following section.

3 Density Estimation

LetX1, . . . ,XN be a random sample ofN ∈ N observations that is drawn from a

data generating process with unknown PDF f ∈ D
(
Rd
)
∩Sb (K), where K ⊂ Rd

is compact. Sample parameters W1, . . . ,Wn from the uniform distribution on

Ωd = [0, ω]
d, and sample the parameters Y1, . . . ,Yn from a distribution with

continuous PDF pY over K. Select a φ ∈ D
(
Rd
)
and propose an estimator for

f of form (1), which we will denote as

f (x;Zn,α) =

n∑

i=1

αi

d∏

j=1

Wijφ (Wijxj −WijYij) , (7)

where αi ≥ 0 plays the role of the now unknown Ai/n, for each i ∈ [n] (where

n ∈ N is constant), and α> = (α1, . . . , αn).

Fix the realized samples w1, . . . ,wn and y1, . . . ,yn (i.e. zn), and suppose

that we wish to obtain an estimate of form (7) (f̂ (x; zn), say), which minimizes

the average KL divergence

1

N

N∑

k=1

KLRd (f (Xk) , f (Xk; zn,α)) ,

with respect to α under the unit simplex constraint α ∈ Sn, where

Sn =

{
s> = (s1, . . . , sn) : si ≥ 0 for all i ∈ [n] ,

n∑

i=1

si = 1

}
.

We note that the constraint α ∈ Sn is natural since the resulting estimator

f̂ (x; zn) will always be an element of D
(
Rd
)
.

It is well known that minimizing the average KL divergence is equivalent to
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MLE (see, e.g. [32, Sec. 1.3]). That is, we can write f̂ (x; zn) as f (x; zn, α̂N ),

where

α̂N = arg max
α∈Sn

lN (α; zn) , (8)

and lN (α; zn) = N−1
∑N
k=1 log f (Xk; zn,α) is the log-likelihood function. We

will refer to f̂ (x; zn) as the maximum likelihood estimator (MLE) of f (x; zn,α),

and α̂N as the MLE of α. Note that we do not refer to an MLE of the estimand

f , itself. This is because f may not have an exact representation of form (7),

for a given fixed n. However, as n increases, the best approximation of form (7)

will become closer in divergence, on average, to f .

Additionally, it is notable that α̂n always exists since Sn is a compact set

and lN (α; zn) is a continuous function. Further observe that lN (α; zn) is a

concave function by composition, since it is the sum of concave functions (e.g.

logarithms) of linear functions of α. Thus, since lN (α; zn) is also twice differ-

entiable, any stationary point is also a global maximum (i.e. any α∗ ∈ Sn that

satisfies ∇lN (α∗; zn) = 0, where ∇ (·) and 0 are the gradient operator and zero

vector, respectively).

Unfortunately, the stationary points of the log-likelihood function cannot be

obtained in closed form. We therefore require an iterative algorithm that is able

to obtains a sequence that converges towards the set of stationary points.

3.1 Expectation-Maximization Algorithm

Suppose that we wish to maximize some function g (θ) = log (
∑n
i=1 θi), where

θ> = (θ1, . . . , θn) ∈ Rn+. By the definitions of [17], g can be minorized at

ψ ∈ Rn+ by

Q (θ;ψ) =
n∑

i=1

τi (ψ) log (θi)−
n∑

i=1

τi (ψ) log τi (ψ) , (9)
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where τi (ψ) = ψi/
∑n
j=1 ψj . This minorizer is the special case of the Jensen’s

inequality minorizer (cf. [17, Sec. 4.3]).

Let α(0) ∈ Sn be some initial value and α(r) ∈ Sn be the rth iterate of

our EM algorithm. Upon application of (9) on the log-likelihood at the rth

iteration, we obtain the minorizer

Q
(
α;α(r−1)

)
=

N∑

k=1

n∑

i=1

τi

(
xk;α(r−1)

)
log


αi

d∏

j=1

wijφ (wijxkj − wijyij)




−
N∑

k=1

n∑

i=1

τi

(
xk;α(r−1)

)
log τi

(
xk;α(r−1)

)
,

where x>k = (xk1, . . . , xkd) and

τi (x;α) =
αi
∏d
j=1 wijφ (wijxj − wijyij)

∑n
k=1

[
αk
∏d
j=1 wkjφ (wkjxj − wkjykj)

] .

We obtain the rth iterate of the sequence
{
α(r)

}
by obtaining a solution

vector α∗ ∈ Sn, such that ∇Q
(
α∗;α(r−1)

)
= 0. Via a calculus argument, we

obtain the solution α∗> = (α∗1, . . . , α
∗
n) (see, e.g. [17, Eqn. 4.4]), where

α∗i =
1

N

N∑

k=1

τi

(
xk;α(r−1)

)
. (10)

The EM algorithm is defined by setting α(r) = α∗ at each iteration r ∈ N

until some convergence criterion or some limiting number of iterations is met.

The final iteration is then declared to be the MLE α̂N . We can check that the

assumptions of [25, Thm. 1] are met. We have the following convergence result

via the the aforementioned theorem and the properties of log-likelihood function

that were previously discussed.

Proposition 1. Let α(r) ∈ Sn be defined by (10) and let α(∞) = limr→∞α(r)

to be the limit point of the sequence
{
α(r)

}
. If the sequence

{
α(r)

}
is initialized

14



by some valid α(0) ∈ Sn, then the limit point α(∞) is a global maximizer of the

realized log-likelihood function lN (α; zn).

Proposition 1 is a standard convergence result for EM-type algorithms. The

convexity of the objective lN (α; zn) and the compactness of Sn allowed us to

establish the global optimality of the EM algorithm, defined by (10).

3.2 Consistency of the Maximum Likelihood Estimator

We seek to establish the consistency of the MLE α̂N as N → ∞, for fixed n.

The following result can be obtained by checking the assumptions of [29, Thm.

5.14].

Proposition 2. Let α0 ∈ Sn satisfy the equation

Ef
(
X;Zn,α

0
)

= sup
α∈Sn

Ef (X;Zn,α) ,

and define

S0
n =

{
α ∈ Sn : Ef (X;Zn,α) = Ef

(
X;Zn,α

0
)}

.

If α̂N is an MLE, as defined by (8), then for every ε > 0 and compact set

K ⊂ Sn, we have

lim
N→∞

P

(
sup
α∈S0n

‖α̂N −α‖ ≥ ε and α̂N ∈ K

)
= 0. (11)

Proof. There are two conditions that need to be checked in order to prove the re-

sult. Firstly, we verify that the individual log-densities f (X;Zn,α) are contin-

uous in α, for all X and Zn. Secondly, we check that supα∈Sn Ef (X;Zn,α) <

∞. Since pW and pY is continuous and compactly supported, the expectation

Ef (X;Zn,α) exists and is finite for every α, due to the fact that both f and
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φ are in D
(
Rd
)
. Since Sn is compact, the supremum also exists and is finite.

This completes the proof.

The additional statement that α̂N ∈ K for compact K ⊂ Sn in (11) is a

technical artifact of [29, Thm. 5.14]. We can simply set K = Sn and interpret

(11) as if the condition was not present. Proposition 2 then states that the MLE

converges in probability towards one of the global maxima of Ef (X;Zn,α) as

N → ∞, for fixed n. This implies that the MLE process provides a pointwise

asymptotically unbiased estimator of the best fitting approximation of form (7),

with fixed n randomly sampled component density functions with Zn generated

from a data generating process that is characterized by PDFs pW and pY .

It may serve as a minor dissatisfaction that we do not state a consistency

result that allows for n to increase as N does. We believe that such a result may

be available via the use of method of sieve estimators, such as those that are

described by [8] and [9]. Such a result would require a great deal more technical

expertise than we currently have available. We therefore defer such explorations

to future work.

4 Simulation Studies

We perform a set of simulation studies in order to provide empirical evidence

that support our theorems from Sections 2 and 3. The first of the simula-

tions (Simulation 1) demonstrates how Corollary 1 can be applied to obtain

approximations of known PDFs, and the second simulation (Simulation 2) will

demonstrate the use of the density estimation ability of the MLE for randomly

sampled MMs.

When considering functional approximation using randomized NNs, it has

become convention to utilize the following function as a target (see, e.g. [10]
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and [19]):

f0 (x) = 0.2e−(10x−4)2 + 0.5e−(80x−40)2 + 0.3e−(80x−20)2 ,

for x ∈ X, where X = [0, 1]. Unfortunately, f0 is neither in D (R), nor in D (X).

In order to produce a target in D (R), we normalize each of the exponential

components that make up the convex sum of f0. The resulting PDF over R is

f1, and has the form

f1 (x) = 0.2ϕ

(
x− µ1

σ1

)
+ 0.5ϕ

(
x− µ2

σ2

)
+ 0.3ϕ

(
x− µ3

σ3

)
,

where ϕ (x) = (2π)
−1/2

e−x
2/2 is the standard normal PDF, µ1 = 4/10, µ2 =

40/80, µ3 = 20/80, σ1 = 2−1/2/10, σ2 = 2−1/2/80, and σ3 = 2−1/2/80. A plot

of f1 is provided in Figure 1. We also take φ = ϕ in all of our approximation

constructions.

4.1 Simulation 1

We seek to demonstrate the PDF approximating capacity of random functions of

form (1), using the data generating processes and coefficients that are described

in Corollary1. Let n ∈ {100, 1000, 10000} and let ω ∈ {50, 100, 200}. For each

combination of n and ω in the aforementioned sets, we firstly (i) construct

functions of form (1) (i.e. f (x; zn)) by realizing Zn using a data generating

process that is characterized by the PDFs pW = 1/ω, and and pY = c−1f1,

where c =
∫
X f1dx ≈ 1 (recall that X = [0, 1]). We set a (y) ≈ 1 to comply

with Part (b) of Corollary 1. The construction is repeated R = 100 times for

each combination of n and ω, and we average over the R numerical estimates

of KL divergences and squared L2 distances between the target PDF f1 and

each constructed approximation f (x; zn). That is, we average over R realized
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Figure 1: Plot of f1 on the interval X = [0, 1].
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Table 1: Results for Part (i) of Simulation 1.

AKL (n, ω)
n\ω 50 100 200
100 7.34E-01 3.90E-01 2.00E-01
1000 7.25E-01 3.81E-01 1.65E-01
10000 7.24E-01 3.77E-01 1.62E-01

Aρ (n, ω)
n\ω 50 100 200
100 6.44E+00 3.84E+00 1.83E+00
1000 6.40E+00 3.77E+00 1.60E+00
10000 6.39E+00 3.75E+00 1.59E+00

numerical estimates of KLX (f1 (x) , f (x;Zn)) and ρ2
X (f1 (x) , f (x;Zn)). We

denote these averages as AKL (n, ω) and Aρ (n, ω), respectively, for each n and

ω. The numerical estimates are computed via an adaptive Simpson’s quadrature

method (cf. [24, Ch. 9]). The results of this simulation are reported in Table 1.

Next we (ii) construct functions of form (1) by realizing Zn using a data

generating process that is characterized by the PDFs pW = 1/ω and pY = 1.

We then set a (y) = f1 (y), in order to comply with Part (c) of Corollary 1. The

construction is repeated R = 100 times and we again compute AKL (n, ω) and

A2 (n, ω), for each combination of n and ω (in the aforementioned sets). The

results of this simulation are reported in Table 2.

4.2 Discussions on the Results from Simulation 1

In order to put the numbers from Tables 1 and 2 into context, we compute the

KL divergence and L2 distance between the uniform distribution over X and the

target function f1. These quantities are KLX (f1, 1) = 1.976 and ρ2
X (f1, 1) =

10.502, respectively, and can be used as a benchmark for the computed approx-

imations. In comparison to the benchmarks, we find that both approximations

using the data generating processes from Parts (i) and (ii) improve upon the inte-
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Table 2: Results for Part (ii) of Simulation 1.

AKL (n, ω)
n\ω 50 100 200
100 9.03E-01 6.44E-01 5.51E-01
1000 7.51E-01 3.94E-01 1.84E-01
10000 7.29E-01 3.82E-01 1.65E-01

Aρ (n, ω)
n\ω 50 100 200
100 7.07E+00 5.37E+00 4.71E+00
1000 6.52E+00 3.91E+00 1.88E+00
10000 6.42E+00 3.79E+00 1.63E+00

grated deviations from the uniform distribution. We visualize approximation in-

stances of form (1) for the settings (n, ω) ∈ {(100, 50) , (1000, 100) , (10000, 200)},

using the protocols from both Parts (i) and (ii), in Figure 2.

From Tables 1 and 2, we observe that both AKL (n, ω) and Aρ (n, ω) are

decreasing in n and ω. The decrease in Aρ (n, ω) due to increases in ω lends

empirical support to Part (a) of Theorem 3, whereupon the approximand f can

be expressed as a limit in ω (i.e. the LHS of Equation (3)). Thus, as ω gets

larger, the LHS of (3) gets closer to the approximand f , with respect to the

uniform norm.

Decreases in Aρ (n, ω) due to increases in n lend empirical support to Part (b)

of Theorem 3. This is due to the fact that the limit (4) goes to zero with respect

to n. Similarly, the decreases in AKL (n, ω) due to ω and n lend support to Parts

(a) and (b) of Corollary 2, respectively, for the same reasons. In Figure 2, we

can visually observe the decreases in deviations of the random approximations

to the approximand (with respect to increases in n and ω).

In comparing Table 1 to Table 2, we observe that there is an effect due to the

choice of the PDF pY . Setting pY = f1 appears to yield better approximations

than the uniform sampling scheme characterized by pY = 1. The choice to set
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Figure 2: Approximations of f1 (in black) using functions of form (1) (in red)
with generating processes described in Parts (i) and (ii) of Simulation 1. Sub-
plots 1, 2, and 3 correspond to the generating process described in Part (i), with
(n, ω) set to (100, 50), (1000, 100), and (10000, 200), respectively. Sub-plots 4,
5, and 6 correspond to the generating process described in Part (ii), with (n, ω)
at the same values as those of Sub-plots 1, 2, and 3 (in order).
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pY = f1 is unrealistic in practice, as it requires access to the function f1, which

we are trying to approximate for some reason. These reasons may be due to the

computational burden of evaluating or simulating from f1 or the lack of a closed

for its representation. Thus, to access it in the way that we do is unrealistic in

applications of functional approximation. These difficulties arise again in the

density estimation computations of Simulation 2, and will be discussed in the

sequel.

4.3 Simulation 2

We now seek to demonstrate the density estimation capacity of MLEs of random

MMs of form (7), fitted using the EM algorithm that is described in Section 3.

We set ω = 200 and let n ∈ {100, 500, 1000} and N ∈ {1000, 5000, 10000} . For

each combination of n and N , we realize a sample x1, . . . , xN , where each xk

(k ∈ [N ]) is a realization of the random variable X that is generated from the

distribution that is characterized by the PDF f1. We then obtain a realization

zn of the random variable Zn in order to construct an estimator of form (7).

The components wi (i ∈ [n]) are realizations of the random variable W with

PDF pW = 1/ω. The components yi are realizations of the random variable Y

with PDF (i) pY = 1 (i.e. uniformly distributed over X = [0, 1]).

Using the EM algorithm that is defined by Equation (10), we then esti-

mate the parameter vector α by the MLE α̂N in order to obtain the density

estimator f̂ (x; zn). We repeat the process R = 100 times for each combina-

tion of n and N , we compute averages over R realized numerical estimates of

KLX
(
f1 (x) , f̂ (x;Zn)

)
and ρ2

X

(
f1 (x) , f̂ (x;Zn)

)
. We denote these averages

as AKL (n,N) and Aρ (n,N), respectively, for each n and N . Results of the

described simulation are presented in Table 3.

As noted in Section 4.2, there are potential differences in achievable approx-
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Table 3: Results for Part (i) of Simulation 2.

AKL (n,N)
n\N 1000 5000 10000
100 2.17E-01 1.99E-01 1.95E-01
500 2.41E-02 1.76E-02 1.57E-02

1000 1.50E-02 7.51E-03 6.67E-03

Aρ (n,N)
n\N 1000 5000 10000
100 2.40E+00 2.40E+00 2.43E+00
500 2.67E-01 2.39E-01 2.18E-01

1000 1.29E-01 6.86E-02 7.13E-02

imation accuracy levels by way of varying the sampling distribution pY . Since

the target PDF is unknown in any given estimation problem (or else it would be

trivialized), the uniform PDF pY = 1 is a natural choice and somewhat obvious

choice.

Alternatively, and less obviously, is the choice to realize yi via a random vari-

able with distribution function equal to the empirical distribution function con-

structed from the realized sample x1, . . . , xN (i.e. FN (x) = N−1
∑N
i=1 [xi ≤ x]),

where [ς] is the Iverson bracket, which takes value 1 if the statement ς is true

and 0, otherwise. By the Glivenko-Cantelli theorem, it is known that FN uni-

formly converges towards the distribution function of X, almost surely. Thus,

for sufficiently large N , the characterization of Y as a process with distribution

FN closely approximates the characterization of Y as a process with pY equal

to the target PDF. This process is closely related to the well-known bootstrap

method for statistical inference (see, e.g. [7]). We repeat the process described

in Part (i), with the uniform sampling of yi replaced by a sampling from a pro-

cess with distribution FN . The resulting random MMs share some similarity

in concept to the proportion and bandwidth-varying versions of the maximum

likelihood kernel density estimators that were proposed by [15]. We refer to the
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Table 4: Results for Part (i) of Simulation 2.

AKL (n,N)
n\N 1000 5000 10000
100 1.75E-02 1.11E-02 1.09E-02
500 1.24E-02 4.73E-03 3.85E-03
1000 1.22E-02 4.30E-03 3.54E-03

Aρ (n,N)
n\N 1000 5000 10000
100 8.24E-02 5.01E-02 4.55E-02
500 6.25E-02 2.06E-02 1.57E-02
1000 7.21E-02 1.71E-02 1.27E-02

simulation using this new generating process as Part (ii), and we report on its

results in Table 4.

4.4 Discussions on the Results from Simulation 2

Upon inspection of Tables 3 and 4, we observe that all approximations have

small deviations towards the approximand f1, when comparing with the uniform

benchmark results that were reported in Section 4.2. Further, when compared

to the results that are presented in Tables 1 and 2, the random density estima-

tors yield approximations that can have KL divergences and L2 distances that

are multiple orders of magnitude smaller than those achieved by the random

approximations of Section 4.1. We visualize approximation instances of form

(7), for the settings (n,N) ∈ {(100, 1000) , (500, 5000) , (1000, 10000)}, using the

protocols from both Parts (i) and (ii), in Figure 2.

Both Tables 3 and 4 indicate that AKL (n,N) and Aρ (n,N) are decreasing

in N , which lends empirical support to the consistency result of Proposition 2,

which indicates that the estimator f̂ (x; zn) provides an increasingly accurate

pointwise approximation to the optimal random MM Ef (X;Zn,α0), as N in-

creases, for each fixed number of components n. We observe that AKL (n,N)
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Figure 3: Estimations of f1 (in black) using MMs of form (7) (in red) with
generating processes described in Parts (i) and (ii) of Simulation 2. Sub-plots 1,
2, and 3 correspond to the generating process described in Part (i), with (n,N)
set to (100, 1000), (500, 5000), and (1000, 10000), respectively. Sub-plots 4, 5,
and 6 correspond to the generating process described in Part (ii), with (n,N)
at the same values as those of Sub-plots 1, 2, and 3 (in order).
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and Aρ (n,N) are decreasing in n in every column of Tables 3 and 4, except for

the N = 1000 column of the Aρ (n,N) results in Table 4. This would again lend

support to Theorem 3 and Corollary 2, which both suggest that accuracy, as

measured by both the KL divergence and the L2 distance, can be improved by

increasing n.

The case of the N = 1000 column of the Aρ (n,N) results in Table 4 can

perhaps be explained by the overfitting phenomenon (see, e.g. [11]). Here, there

are too few observations (i.e. N = 1000) that are being used to construct models

with numbers of parameter elements that are too large. Thus, idiosyncrasies of

the data are being modeled and hence the obtained estimators are not generally

representative of the target PDF f1. We therefore recommend that a sensible

number N be used when constructing random MMs of form (7).

5 Conclusions

Although popular, deep NNs can often be difficult to implement due to the com-

plexity of the structures requiring complicated training processes. Because of

these complications, the research area of randomized shallow NNs have become

increasingly popular.

A popular and theoretically well-founded framework for randomized NNs is

the RFVL construction of [14]. In this article, we proved a theorem that removes

a limitation of the radial-basis form of the RFVL framework, which restricted

its only being applicable for approximation of functions with supports in the

unit hypercube. We also specialized the RFVL framework for application to

the problem of approximating PDFs. Via a theorem of [33], we demonstrated

that the usual L2 convergence of the RFVL framework can be replaced by a

convergence in KL divergence, which is more natural in the problem domain of

PDF approximation.
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Extending upon the random functional approximation results, we also demon-

strated that one can construct random density estimators via mixture modeling

and MLE. We derived an EM algorithm for computing the MLE of our random

MMs and demonstrated that the EM algorithm is globally convergent towards

a global maximum of the log-likelihood function. A consistency result for the

MLE is also proved.

A set of simulation studies was presented. The first study provided empirical

evidence towards the random approximation theory that we had proved. The

second study provided empirical evidence towards the estimation capability of

the random MMs.

We note that we had consciously and purposefully left out any comparison

between our methodologies and established methods for functional approxima-

tion or density estimation. This choice was made due to the novelty of our

approach, and its immaturity. We believe that the theoretical results that we

have presented are the prime elements of interest and wish to concentrate the

attention of the audience on these aspects of our article. We believe that the

inclusion of an abundant battery of comparisons at this stage of methodological

development would be premature and superfluous.

To conclude the article, we note that there are a number of identifiable

directions that require further investigation. The first of these directions is to

pursue potential asymptotics that allow for increasing values of n, as a function

of N . This can be achieved, as earlier mentioned, via the method of sieves

that is described in [8] and [9]. Another potential direction is to investigate

alternative density estimation process to the MLE approach that was discussed

in Section 3. Although successful, as was discussed in Section (4.4), the MLE

can be computationally burdensome for very large n and N , simultaneously.

One method to alleviate this burden is to adapt a greedy estimation methods
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as was considered in [18] and [34]. Greedy procedures for random NNs have

been applied to successful effect in the incremental RVFLs of [19] and the SCNs

of [31]. The exploration of greedy estimation procedures for random MMs is

therefore an interesting and potentially fruitful direction for future work.

References

[1] T Amemiya. Introduction to Statistics and Econometrics. Harvard Univer-

sity Press, Cambridge, 1994.

[2] D S Broomhead and D Lowe. Multivariate functional interpolation and

adaptive networks. Complex Systems, 2:321–355, 1988.

[3] W Cheney and W Light. A Course in Approximation Theory. Brooks/Cole,

Pacific Grove, 2000.

[4] K L Chung. A Course in Probability Theory. Academic Press, San Diego,

2001.

[5] A DasGupta. Asymptotic Theory Of Statistics And Probability. Springer,

New York, 2008.

[6] A P Dempster, N M Laird, and D B Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical

Society Series B, 39:1–38, 1977.

[7] B Efron and R J Tibshirani. An Introduction to the Bootstrap. Chapman

and Hall, London, 1993.

[8] S Geman and C-R Hwang. Nonparametric maximum likelihood estimation

by the method of sieves. Annals of Statistics, 10:401–414, 1982.

28



[9] C R Genovese and L Wasserman. Rates of convergence for the Gaussian

mixture sieve. Annals of Statistics, 28:1105–1127, 2000.

[10] A N Gorban, I Y Tyukin, D V Prokhorov, and K I Sofeikov. Approximation

with random bases: pro et contra. Information Sciences, 364:129–145, 2016.

[11] D M Hawkins. The problem of overfitting. Journal of Chemical Information

and Modeling, 44:1–12, 2004.

[12] S Haykin. Neural Networks and Learning Machines. Prentice Hall, New

York, 2009.

[13] D Husmeier. Neural Networks for Conditional Probability Estimation:

Forecasting Beyond Point Predictions. Springer, London, 1999.

[14] B Igelnik and Y-H Pao. Stochastic choice of basis functions in adaptive

functional approximation and functional-link net. IEEE Transactions on

Neural Networks, 6:1320–1329, 1995.

[15] M C Jones and D A Henderson. Maximum likelihood kernel density es-

timation: on the potential of convolution sieves. Computational Statistics

and Data Analysis, 53:3726–3733, 2009.

[16] S Kullback and R A Leibler. On information and sufficiency. Annals of

Mathematical Statistics, 22:79–86, 1951.

[17] K Lange. MM Optimization Algorithms. SIAM, Philadelphia, 2016.

[18] J Q Li and A R Barron. Mixture density estimation. In S A Solla, T K

Leen, and K R Mueller, editors, Advances in Neural Information Processing

Systems, volume 12, Cambridge, 1999. MIT Press.

29



[19] M Li and DWang. Insights into randomized algorithms for neural networks:

practical issues and common pitfalls. Information Sciences, 382-383:170–

178, 2017.

[20] B Makarov and A Podkorytov. Real Analysis: Measures, Integrals and

Applications. Springer, New York, 2013.

[21] G J McLachlan and T Krishnan. The EM Algorithm And Extensions.

Wiley, New York, 2 edition, 2008.

[22] G J McLachlan and D Peel. Finite Mixture Models. Wiley, New York, 2000.

[23] H D Nguyen and G J McLachlan. On approximations via convolution-

defined mixture models. arXiv, page 1611.03974v3, 2018.

[24] A Quarteroni, R Sacco, and F Saleri. Numerical Mathematics. Springer,

New York, 2000.

[25] M Razaviyayn, M Hong, and Z-Q Luo. A unified convergence analysis of

block successive minimization methods for nonsmooth optimization. SIAM

Journal of Optimization, 23:1126–1153, 2013.

[26] B D Ripley. Pattern Recognition And Neural Networks. Cambridge Uni-

versity Press, Cambridge, 1996.

[27] S Scardapane and D Wang. Randomness in neural networks: an overview.

WIREs Data Mining and Knowledge Discovery, 7:e1200, 2017.

[28] D M Titterington, A F M Smith, and U E Makov. Statistical Analysis Of

Finite Mixture Distributions. Wiley, New York, 1985.

[29] A van der Vaart. Asymptotic Statistics. Cambridge University Press, Cam-

bridge, 1998.

30



[30] D Wang and M Li. Robust stochastic configuration networks with kernel

density estimation for uncertain data regression. Information Sciences,

412-413:210–222, 2017.

[31] D Wang and M Li. Stochastic configuration networks: fundementals and

algorithms. IEEE Transactions on Cybernetics, 47:3466–3479, 2017.

[32] S Watanabe. Algebraic geometry and statistical learning theory. Cambridge

University Press, Cambridge, 2009.

[33] A J Zeevi and R Meir. Density estimation through convex combinations

of densities: approximation and estimation bounds. Neural Computation,

10:99–109, 1997.

[34] T Zhang. Sequential greedy approximation for certain convex optimization

problems. IEEE Transactions on Information Theory, 49:682–691, 2003.

31


