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Abstract

Keyword Extraction is an important task in several text analysis endeavours.

In this paper, we present a critical discussion of the issues and challenges in

graph-based keyword extraction methods, along with comprehensive empirical

analysis. We propose a parameterless method for constructing graph of text that

captures the contextual relation between words. A novel word scoring method is

also proposed based on the connection between concepts. We demonstrate that

both proposals are individually superior to those followed by the sate-of-the-

art graph-based keyword extraction algorithms. Combination of the proposed

graph construction and scoring methods leads to a novel, parameterless keyword

extraction method (sCAKE) based on semantic connectivity of words in the

document.

Motivated by limited availability of NLP tools for several languages, we also

design and present a language-agnostic keyword extraction (LAKE) method.

We eliminate the need of NLP tools by using a statistical filter to identify

candidate keywords before constructing the graph. We show that the resulting

method is a competent solution for extracting keywords from documents of

languages lacking sophisticated NLP support.

Keywords: Automatic Keyword Extraction, Text Graph, Semantic

Connectivity, Parameterless, Language Agnostic

∗Corresponding author
Email address: sduari@cs.du.ac.in (Swagata Duari)

Preprint submitted to Journal of Information Sciences November 28, 2018

ar
X

iv
:1

81
1.

10
83

1v
1 

 [
cs

.I
R

] 
 2

7 
N

ov
 2

01
8



1. Introduction

Modern search engines and document databases are tasked with identifying

and locating information with high efficiency. This is typically done using key-

words - a small set of relevant and important terms that sufficiently describe

the given document. Keyword extraction task is associated with extracting such

terms from a document. According to Ohsawa et al. [31], assigning representa-

tive terms to a document is a process called indexing and the terms assigned are

known as keywords. Indexing significantly reduces the human effort in sifting

through vast amounts of information. With monotonically growing reposito-

ries of digital documents, study of automatic keyword extraction methods has

attracted serious attention [5, 7, 8, 13, 19, 25, 29, 30, 32, 33, 44]. Effective key-

word extraction methods lead to improved indexing in massive text repositories,

thereby enhancing the quality of retrieved search results.

Automatic keyphrase extraction is a natural extension of keyword extraction

problem, where instead of only unigrams, phrases (n-grams) are identified as

potentially relevant descriptors of a document. Mihalcea et al. suggest that

keyphrases can be constructed from keywords as post-processing step by col-

lapsing co-occurring candidates into phrases [30]. The phrases are then ranked

by averaging the scores of the individual terms contained in it. The primary

task still remains efficiently extracting quality keywords from the documents,

which is why we focus on automatic keyword extraction problem.

Earliest works on automatic keyword extraction employed purely statistical

techniques based on term frequency to gauge importance of the words [27, 37].

Harter [16] and Bookstein et. al. [3] explored probabilistic approaches for auto-

matic keyword indexing using 2-Poisson distribution model to represent specialty

words. According to another hypothesis, keywords follow a non-homogeneous

distribution and tend to form clusters [32, 48]. In recent years two lines of

development of keyword extraction methods have gained prominence. First of

these is the machine learning based approaches and the second is based on the

graph representation of text.
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Machine learning approaches come in supervised [19, 39, 42] and unsuper-

vised [25, 29, 30] flavors. Supervised learning methods require labelled training

data to induce the model. Each instance in the training set represents a term in

the document with label 1 (keyword) or 0 (not a keyword). Creation of training

set requires manual annotation of the text, making the task tedious, subjective,

and possibly inconsistent. Because of the intense human intervention required,

supervised methods for keyword extraction have not been able to sustain inter-

est and popularity. Due to this reason, unsupervised methods are favored as

alternative approach for identifying keywords.

Graph-based approaches denote candidate keywords as nodes and the rela-

tionship between two nodes as an edge. Different types of scoring functions are

used to rank the candidates based on specific graph property, e.g., centrality

measure [13, 24, 25, 30], k-degeneracy [33, 38], etc. Performance of graph-

based approaches is influenced by the pre-processing steps, graph construction

method, and nature of the scoring function.

Existing state-of-the-art graph-based keyword extraction methods suffer from

three limitations. First, the methods require user parameters during graph con-

struction and word scoring stages [30, 33, 38], which cast the burden of careful

tuning of the parameters on the user. Second, the scoring methods rely only on

co-occurrence relation between the candidate keywords, while completely ignor-

ing semantic relationship. Finally, these methods use linguistic tools to filter

candidates from the document, limiting their use for many tool-poor languages.

These observations motivate - (i) design of parameterless graph-based method for

improving usability; (ii) design of word scoring methods that account for seman-

tic connectivity among the words, and (iii) development of language-independent

keyword extraction methods. Research in these directions is quintessential for

advancing the state-of-the-art.

1.1. Our contribution

In this paper we present an in-depth study of current state-of-the-art graph-

based keyword extraction methods. We advance the state-of-the-art by propos-
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ing two algorithms for automatic keyword extraction - one for languages with

support of sophisticated NLP tools, and the other for languages that lack sup-

port of NLP tools, e.g., Indian languages. Specifically, our contributions are:

i critical discussion of the issues and challenges of graph-based keyword

extraction methods (Section 4).

ii design of a novel, parameterless method for constructing a context-aware

graph of text (Section 5).

iii design of a novel word scoring method that aims to capture (i) contex-

tual hierarchy, (ii) semantic connectivity, and (iii) positional weight of the

words in the text (Section 6).

iv experimental evaluation of items (ii) and (iii) individually, and comparison

with counterparts in state-of-the-art methods (Sections 5.2 and 6.6).

v design of a novel parameterless, semantic Connectivity Aware Keyword

Extraction method (sCAKE) by integrating (ii) and (iii), and its perfor-

mance evaluation (Section 7).

vi design of Language Agnostic Keyword Extraction method (LAKE) to ex-

tend keyword extraction service to languages that lack support of sophis-

ticated NLP tools (Section 8).

We review existing literature in Section 2, followed by experimental setup

and dataset details in Section 3. Please note that we are compelled to place

experimental setup early in the paper because of our intention to investigate,

both individually and together, the graph construction and word scoring meth-

ods in the state-of-the-art. Section 9 concludes the paper. We apologize for

disappointing the reader who is looking for an explicit section on performance

evaluation.

2. Related works

Works related to automatic keyword extraction methods emanate from largely

four approaches. Statistics-based approaches use simple and intuitive statistics
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like frequency [27, 37] and spatial distribution of terms [3, 17, 18, 32, 48] to

identify candidate keywords. Linguistic approaches for identifying keywords use

some form of linguistic analysis including lexical, semantic, and discourse analy-

sis [10, 11, 19, 34]. Machine Learning approaches (supervised and unsupervised)

have found immense popularity in recent years, which involves training a model

for identifying keywords from texts [5, 14, 19, 25, 29, 30, 39, 42, 46]. Graph-based

approaches represent the text as graph, where nodes denote unique terms and

edges define the relationship among nodes. Candidate terms are ranked using

either local or global graph properties [13, 25, 29, 30, 31, 33].

Since statistic- and graph-based approaches are closely related to our work,

we review selected research works from these areas in the following subsections.

2.1. Statistics-based Methods

Statistical methods are the earliest keyword extraction techniques. The pri-

mary objective of early methods was to solve the problem of automatic indexing

using term frequency [27, 37]. Luhn introduced Term Frequency (TF) to mea-

sure the extent of relevance of the words in a text document [27], which was later

improved by introducing Inverse Document Frequency (IDF) [37]. Words with

high TF-IDF scores are considered important, and are used for indexing. One

major limitation of TF-IDF method is its being corpus dependent, which re-

stricts its applicability to dynamic collections. Later, Harter [16] and Bookstein

et al. [3] explored the use of 2-Poisson distribution model to identify relevant

terms in the document. Harter introduced a measure of indexability to reflect

the relative significance of words in a document [17].

According to another hypothesis, keywords tend to exhibit high degree of

self-attraction leading to non-homogeneous distribution that manifests as clus-

ters [32, 48]. Ortuno et al. conjectured that the standard deviation of positions

of occurrence of a word w indicates its degree of relevance in the document,

with higher values interpreted as higher degree of relevance [32]. Zhou and

Slater advanced this idea and proposed two measures - σ-index and Γ-index to

quantify relevance of words in text [48]. Computation of σ-index is similar to
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the approach proposed in [32], with minor modifications in the boundary con-

ditions. Both Γ-index and σ-index exploit the spatial distribution of the words

in the text document. Herrera et al. [18] proposed an index for keyword extrac-

tion based on Shannon’s entropy. Carratero et al. empirically showed that the

entropy-based methods are sensitive to the choice of partition [8], which is an

undesirable property.

2.2. Graph-based Methods

With words in the text represented as nodes, and relationship among them

represented as edges, graph of text proved to be a rich and popular data model

for analyzing text [13, 25, 29, 30, 31, 33, 38]. Blanco et al. describe different

types of edge relationships that can be established among the nodes in a graph

of text [2]. Term co-occurrence is the most commonly used relation, where

the graph is constructed by linking the terms co-occurring within a window

of pre-specified size. Subsequently, a word scoring mechanism that exploits

discriminating properties of nodes is used to identify keywords.

KeyGraph method proposed by Ohsawa et al. segments the co-occurrence

graph into clusters [31], where each cluster corresponds to a concept. The terms

in each cluster are ranked using a probability-based measure that quantifies

the relationship of each term to the parent cluster, and top ranking terms are

extracted as keywords. Mutsuo et al. established that co-occurrence text graphs

exhibit ‘small-world’ property [29]. They proposed KeyWorld scoring method

based on the contribution of each node of the graph to the small world property.

TextRank [30] is the most popular graph-based keyword extraction method so

far. The method scores a node using PageRank [6] algorithm, which takes into

account the global topology of the text graph. Litvak and Last proposed a degree

based keyword extractor, DegExt, which exploits degree property of nodes and

is computationally more efficient than TextRank [25]. PositionRank [13] is an

extension of TextRank that takes into account the positional information of

terms in the document to assign weights to the candidate keywords, favoring

words occurring towards the beginning of the text. This method reaffirms the
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positional importance of the words accorded by statistical methods.

Rousseau et al. hypothesized that the nodes participating in the most cohe-

sive connected component of the text graph are apt candidates for keywords [33].

They performed core-based decomposition [36] of the graph to obtain the key-

words. On a similar note, Tixier et al. [38] performed truss-based decompo-

sition [9] to retain words from the top-truss as keywords. These methods are

parameter-free since the number of keywords extracted by these methods adapt

to the structure of the graph.

We build over several of these ideas, including hierarchy used in [33, 38],

concepts in text [31], and importance of position of the word proposed in [13],

and propose a parameterless keyword extraction algorithm.

3. Experimental Setup

We use R (version 3.3.1) and Python (version 2.7.12) for implementation1,

using functions from NLP, igraph, openNLP, tm, foreach, and doSNOW pack-

ages2. We execute the programs on a 64-bit PC with 8GB RAM, and Intel Core

i7-6700 CPU @ 3.40GHz 8-core Processor running Ubuntu 16.04 LTS.

We use four benchmark datasets shown in Table 1 for empirical observa-

tions and comparisons. These datasets have been used extensively to evaluate

keyword extraction algorithms [4, 19, 30, 33, 35, 43]. Table 1 presents general

properties of the four datasets, including number of documents in corpus, av-

erage document length, average number of gold-standard keywords along with

standard deviation, and average percentage of candidate keywords. Hulth2003

documents, which are abstracts, are the shortest. Krapivin2009 documents have

least average number of keywords assigned to them. It is noteworthy that the

average number of candidates lies in the range of 40-45% of the document length.

For evaluation, we use the uncontrolled list of keywords for Hulth2003,

gold-standard keywords for Krapivin2009 and NLM500, and author-and-reader-

1The code for implementation is available at https://github.com/SDuari/sCAKE-and-LAKE
2https://cran.r-project.org/web/packages/
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Table 1: Overview of experimental datasets. |D|: Number of documents in corpus, L: average

document length, Avg/sd: average number of gold-standard keywords per document/standard

deviation, C: average percentage of candidate keywords (nouns and adjectives)

Dataset |D| L Avg/sd C Dataset Description

Hulth2003*[19] 1500 129 23/12.44 45.97 Abstracts from Inspec database

NLM500 [1] 500 4854 27/10.38 44.08 Full papers from PubMed database

Krapivin2009 [23] 2304 7961 11/6.44 40.5 ACM full papers

SemEval2010*[22] 244 8085 34/10.35 40.05 ACM Digital Library papers

* We use Test and Training Sets.

assigned keywords for Semeval2010. We use classical F1-measure to evaluate

performance of the compared algorithms for top-k extracted keywords. The

results are macro-averaged at the dataset level. We consider TextRank [30],

DegExt [25], k-core retention [33], and PositionRank [13] as our prime competi-

tors and evaluate the proposed approaches against them.

For each dataset, we experimented with all algorithms to find the value of k

that yields the best F1-measure. It was observed that the highest F1-measure

was obtained for k = 25 for Hulth2003, k = 10 for Krapivin2009, and k = 30

for NLM500 and SemEval2010 datasets. We use these values of k for reporting

results for corresponding datasets in subsequent experiments. It is pertinent

to note that the values correlate with the average number of gold-standard

unigrams (Column 4 of Table 1) annotated for the datasets.

4. Graph-based Keyword Extraction: Issues and Challenges

Graph-based keyword extraction algorithms perform three generic steps in

sequence - (i) pre-processing of text to identify candidate keywords, (ii) trans-

forming text to graph with candidates as nodes, and (iii) scoring the candidates

based on some local or global graph property. Figure 1 depicts the process of

graph-based automatic keyword extraction. It is the variation in design of the

core steps and their execution that produces a bouquet of graph-based keyword

extraction algorithms [12, 13, 15, 25, 26, 29, 30, 31, 33]. In the following subsec-

tions, we discuss the variations of these three steps and deliberate on the issues
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and challenges faced by graph-based keyword extraction approaches. Each sub-

section focuses on one task, delineates the challenges, and describes how the

challenges are addressed by the existing algorithms. We support our arguments

with empirical evidences, wherever relevant.

Figure 1: Sequence

of sub-tasks in graph-

based keyword extrac-

tion methods

4.1. Pre-processing of Text

Pre-processing of text significantly affects the resulting keywords because

the output from this step is the primary input to the graph construction phase.

A different combination of pre-processing sub-steps has a defining effect on per-

formance of the methods. Tokenization and stopword3 removal are performed

by all algorithms [13, 25, 30, 33]. Barring DegExt, all algorithms perform POS

tagging and agree that nouns and adjectives are the prime candidates for key-

words [13, 30, 33]. DegExt doesn’t inflict any restriction over the candidates ex-

cept for stopwords, which are similarly disregarded in all methods. Only k-core

retention algorithm [33] uses stemming, and claims that it boosts performance.

Average recall for any algorithm for a particular document is bounded by

the percentage of gold-standard keywords actually present in the document.

We studied the gold-standard keyword lists of the four datasets and found that

stemming increases the upper bound for recall in all datasets. First column in

Table 2 shows this bound without stemming the documents, and the second

column shows the bound after stemming.

3Frequently used words, called stopwords, are disregarded during automatic keyword ex-

traction.
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Dataset w/o stemming With stemming

Hulth2003 89.86013 92.0831

NLM500 70.58481 79.2508

Krapivin2009 96.88258 98.17081

SemEval2010 95.91513 98.95135

Table 2: Percentage of gold-standard

keywords present in text with and

without stemming

The issue of effective sequence of pre-processing steps for keyword extraction

is more or less settled. However, a vast majority of languages fail to benefit

from existing keyword extraction methods due to the lack of sophisticated NLP

tools required for pre-processing by these methods. We address this issue later

in Section 8.

4.2. Graph Construction

Existing keyword extraction algorithms exhibit wide variations in the process

of constructing graph from text. The resulting structural differences naturally

cascade into differential in graph properties. Since graphs are principal inputs

for ranking the candidates, the word scores and the set of extracted keywords

veritably differs for different algorithms.

Variations in graph construction methods align primarily in two dimensions.

First, the set of candidate keywords obtained after pre-processing the text. This

impacts the order4 of the graph and its properties. For example, candidate lists

produced after stemming creates a smaller graph as compared to those produced

without stemming. Second is the scheme for defining relationship between the

nodes (i.e. the edge set), which affects the construction and size5 of text graph.

Edge direction and edge weight are other considerations for graph construction.

DegExt [25] constructs unweighted, directed graph corresponding to the order

of words in original text. Other methods construct weighted, undirected graph

of text where edge weight is the frequency of co-occurrence of the two words.

Variations in the text graphs are more conspicuous because of the second

dimension. Two parameters, viz. window-size and source text for sliding the

4Order of a graph is the cardinality of the node set.
5Size of a graph is the cardinality of the edge set.

10



window emerge as fundamental causes of differences in edge sets and the resul-

tant graphs. Though all existing algorithms use co-occurrence of words within

a specified window as the relationship, it is the size of the window that induces

pronounced differences. Different keyword extraction methods recommend dif-

ferent window sizes. TextRank suggests window size of 2-10 and compares 2,

3, 5, and 10 for experimental evaluation (Page 5, Table 1 of [30]). DegExt uses

window of size 2 that does not connect words separated by punctuation marks

(Page 3, [25]), while k-core retention algorithm uses window of size 4 (Page 4,

[33]). Apparently, the choice of window size parameter in all works is based on

empirical observation over the experimented datasets.

Differences in the text graphs are further accentuated by the source text

where the relationship is examined. Some methods recommend sliding the win-

dow on raw text [13, 30], while others slide on pre-processed text [25, 33]. There

is no systematic and scientific study of these two parameters (window size and

source text) of graph construction methods to the best of authors’ knowledge.

Lack of consensus on these two issues poses difficult decision choices for the

users and the designers of the algorithm.

Graph
Graph construction

w Directed Weighted? Source Overspan

TG 2 to 10 No Yes Original Yes

GoW 4 No Yes Processed Yes

DG 2 Yes No Processed No

Table 3: Comparison of graph-

construction methods. w: win-

dow size parameter, Source:

text to slide window, Over-

span: connect words separated

by punctuation marks.

Table 3 summarizes the differences in graph construction approaches adopted

by the state-of-the-art keyword extraction methods. In this table (and all others

following), we use acronyms for graphs created by TextRank and PositionRank6

(TG), DegExt (DG), and k-core retention (GoW) algorithms. Figure 2 shows

the graphs constructed by three different algorithms (2b, 2c, and 2d) for the

6PositionRank uses same settings as TextRank for pre-processing and graph construction.
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same sample text (2a), highlighting the differences among the graph construc-

tion approaches.

(a) Text document

(b) Graph-of-Word (GoW) [33]

(c) TextRank Graph (TG) [13, 30].
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(d) DegExt Graph (DG) [25]

Figure 2: Text graphs created by different algorithms for document id 2015 of Hulth2003 Test

dataset. Edge width is proportional to the corresponding edge weight. TG and GoW graphs

are constructed with window-size 4 and DG graph with window-size 2.

4.3. Word Scoring

Word scoring methods are crucial discriminators between keyword extraction

algorithms. TextRank [30] uses PageRank [6] algorithm to assign importance

to candidates by recursively taking into account importance of its neighbors.

Thus, the knowledge drawn from the global graph structure is used to rank the

words. TextRank uses a parameter called damping factor7 d, which is set to

0.85 following [6]. We examine the impact of damping factor on performance

of the algorithm. Our experiments on Hulth2003 dataset (used for evaluation

by TextRank) reveal that best performance is achieved for different values of

damping factor for different window sizes. Specifically, the best result in terms

of F1-score is obtained for window-sizes 2, 3, and 4 when d is set to 0.85, 0.9,

and 0.95, respectively. Among different combinations of the two parameters,

window-size 4 and d = 0.95 yields best result. This is purely an empirical

observation specifically for this dataset. We are not in position to ascribe any

7Damping factor is associated with the concept of random jump in web search.
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theoretical reason to the phenomenon, but state this to highlight the sensitivity

of the end results towards the algorithmic parameters. We use window-size 4

and d = 0.95 for subsequent experiments in accordance with our observation.

DegExt [25] uses degree centrality to score the relevance of candidates. Au-

thors claim to achieve performance comparable to TextRank with lesser com-

putational complexity. K-core retention algorithm [33] doesn’t score candidates

explicitly. Instead, it uses core decomposition of the weighted graph and retains

words from the top core as keywords. PositionRank [13] uses position-biased

PageRank to rank the candidates by favoring words that occur towards the be-

ginning of the text, and uses same parameters as TextRank. Table 4 summarizes

the word-scoring methods and their respective parameters for four methods.

KE

Algorithms

Word Scoring

Scoring Method Sparams Value

TextRank PageRank

d 0.85

t 1e-4

n Top 1/3

K-core
Weighted k-core

decomposition
- -

DegExt Degree Centrality n U

PositionRank
Position-biased

PageRank

d 0.85

t 1e-3

n U

Table 4: Comparison of word scoring

methods for different Keyword Ex-

traction algorithms. Sparams: Algo-

rithmic parameters for word scoring

method as used by published works,

d: damping factor, t: convergence

threshold, n: Number of keywords to

be extracted, U: User parameter.

To the best of authors’ knowledge, investigation of the combination of pre-

processing and graph construction methods that yields best performance for key-

word extraction methods is pending.

4.4. Evaluation of Keyword Extraction Methods

No system is capable of definitive assessment of relevance of the words in a

document because relevance is subjective not only with respect to the reader of

the document, but also with respect to time. Further, evaluation of keyword

extraction method is based on the assumption that importance of words is a

dichotomous variable that is user-specific, and is defined outside the system.

It is therefore imperative to evaluate keyword extraction methods against a
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gold-standard keywords list.

Automatic keyword extractors are judged on the basis of how precisely they

extract and how well they recall the keywords that exist in gold-standard key-

words list [13, 19, 25, 30, 33, 42]. Gold-standard keywords are manually an-

notated, and hence often subjective and noisy. Over- and under-annotation

in gold-standard lists influence the performance of keyword extractors. Conse-

quently, performance of one algorithm may be different for different datasets.

Recently, Florescu et al. [13] used mean reciprocal rank (MRR) to evaluate

the performance of their algorithm, which is based on the single highest-ranked

relevant item. However, we believe that MRR is better suited for evaluation of

web search methods where the single highest-ranked relevant item is important

for the user. Since number of keywords required is more than one, MRR could

be misleading for evaluating performance of automatic keyword extractors.

Most algorithms accept the number of keywords to be extracted as a user

parameter [13, 25, 39] or a pre-decided value [30]. Alternatively, this number can

be set to take a value based on the structure of the text graph [33, 38]. Higher

value of this parameter is often associated with higher recall and low precision,

while lower value is associated with lower recall and high precision [28]. Al-

gorithms may choose to match either unigrams [33, 38] or keyphrases [13, 30]

against the gold standard list. However, there is no consensus in literature re-

garding evaluation of keyphrase extraction approaches, as it is not clear whether

to reward or penalize a method that over- or under-estimates keyphrases given

the gold-standard list [33].

Performance of keyword extraction methods varies depending on the parame-

ter settings used, as well as the properties of experimental datasets. No algorithm

is able to perform uniformly well across domains and corpora.

5. Context-aware Graph Construction Method

Motivated by the desideratum to design parameterless graph construction

method, we propose to construct co-occurrence graph based on pragmatics of
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written communication. Unlike semantics, which studies the meaning coded

in the language, pragmatics involves study of transmission of meaning depend-

ing on the context of utterance. The context set by a sentence is often used

by the consecutive sentences, imparting continuity in communication. This

phenomenon, called entailment, is a well studied concept in linguistics. Trans-

mission of context from one sentence to another is the core idea underlying the

proposed co-occurrence graph construction method.

In this method, the window slides over two consecutive sentences and the

candidates co-occurring therein are linked. This eliminates the need of integer-

valued window-size parameter, and captures contextual co-occurrence of words8

(terms) in text. The resulting graph, called Context-Aware Text Graph (CAG),

is formally represented as GCAG = (V,E,W ). Here, V is the set of nodes

representing the candidate words, E is the set of edges (co-occurrence relation),

and W is the set of corresponding edge weights. Weight wij for an edge eij

indicates the co-occurrence frequency of two words vi and vj in the text. Higher

value of wij indicates stronger contextual relationship between words vi and vj .

For graph creation, we consider two consecutive sentences (sk and sk+1)

in the given text as one document (dk), and create a Boolean term-document

matrix C, where

cik =

1, if term ti occurs in dk

0, otherwise

In accordance with the convention, we use the set of nouns and adjectives

as candidates to construct matrix C. Let T = CCT denote the term-term ma-

trix where τij represents the number of co-occurrences of terms ti and tj in

the documents (pairs of consecutive sentences). Note that T is the symmet-

ric adjacency matrix of an undirected, weighted graph G. The context-aware

text graph, GCAG(V,E,W ), is constructed from T after zeroing the diagonal

elements. Figure 3 shows a sample graph created using the proposed CAG

8We use ‘word’, ‘node’ and ‘term’ interchangeably in the rest of the paper.

16



method for the text shown in Figure 2a. We observe that the graph created by

CAG method is denser than those in Figure 2. This is because of the bigger

co-occurrence span (two consecutive sentences) used in CAG method.

Figure 3: Context-Aware

Text Graph for the sample

text shown in Figure 2a.

5.1. Comparison of Graph Properties

We analyze the structural properties of the TG, DG, GoW, and CAG graphs

for the four datasets mentioned in Section 3. We construct four types of graphs

for each document in the datasets, and compute number of nodes and edges,

global clustering coefficient9 [45, p 101], average path length [45, p 98], and

density [41, p 101]. Tables (5a-5d) show the variations in topological properties

of graphs by averaging the results at the dataset level.

Even though the four algorithms consider nouns and adjectives as candi-

dates, average number of vertices in each graph type differs depending on the

nature of edge connections. The variation in edge relation resulting due to dif-

ferent window size yields distinct sets of isolated vertices, which when excluded

from the graphs results in different node sets. Some observations about CAG

graphs are - (i) number of nodes is minimum in CAG method for all datasets, (ii)

number of edges is highest for CAG because the co-occurrence span is usually

larger than the window sizes adopted in other methods, and (iii) CAG graphs

are denser than other graphs. The number of edges created per window slide

9Also called transitivity of graph G.
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Table 5: Topological properties of graphs constructed using TextRank (TG), DegExt (DG),

k-core (GoW), and CAG for four dataset. |V |: number of nodes, |E|: number of edges, CC:

global clustering coefficient, APL: average path length, ∆: Density

(a) Hulth2003 dataset.

Method |V| |E| CC APL ∆

TG 39 67 0.40 3.37 0.11

DG 37 37 0.05 3.91 0.033

GoW 35 143 0.49 2.10 0.27

CAG 33 370 0.85 1.30 0.70

(b) Krapivin2009 dataset.

Method |V| |E| CC APL ∆

TG 716 2930 0.15 3.32 0.012

DG 697 1636 0.078 5.11 0.004

GoW 555 5022 0.21 2.57 0.035

CAG 471 19664 0.51 1.87 0.16

(c) NLM500 dataset.

Method |V| |E| CC APL ∆

TG 589 2083 0.17 3.62 0.013

DG 540 938 0.06 6.04 0.004

GoW 479 3647 0.22 2.67 0.036

CAG 397 11514 0.44 1.90 0.151

(d) Semeval2010 dataset.

Method |V| |E| CC APL ∆

TG 770 3085 0.15 3.35 0.012

DG 727 1528 0.071 5.32 0.003

GoW 617 5385 0.20 2.63 0.029

CAG 507 13441 0.38 1.99 0.105

depends on the number of candidates present within the co-occurrence span.

Maximum number of edges created each time the integer-valued window of size

w slides is (w− 1), whereas for CAG it is bounded by (|Si|+ |Si+1| − 1), where

|S| is the number of words in the sentence. This makes the CAG graph denser

than the other algorithms.

Due to the dense nature of CAG graphs, clustering coefficient is higher and

average path length is lower for CAG. Other graphs are visibly less dense as

compared to CAG graphs (Figures 2 and 3). DG graphs are the most sparse

among these four types and thus have lowest clustering coefficient and highest

average path length. This is due to the fact that DG uses a window-size of 2 as

co-occurrence span for connecting nodes, which results in nodes being connected

to a fewer nodes than the other three methods. Variations in the structural

properties of graphs play an instrumental role in word scoring, as discussed in

the following subsection.

5.2. Performance Evaluation of CAG

We compare effectiveness of the four state-of-the-art graph construction

methods with the proposed CAG method by applying native word scoring meth-
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ods on the respective graphs, as well as on the context-aware graphs. Following

the approach adopted by Rousseau et al. [33], we match k keywords (as defined

in Section 3) extracted from each document against the gold-standard keywords

(as unigrams) to compute the performance evaluation metrics. Table 6 shows

the experimental results as macro-averaged F1-score.

Table 6: Comparative Evaluation of original vs. CAG graphs for native scoring methods in

terms of macro-averaged F1-score. PageRank, Degree, k-core, bised PageRank: word scoring

methods for TextRank, DegExt, K-core, and PositionRank respectively

Word Scoring

Methods
Graph

Datasets

Hulth2003 Krapivin2009 NLM500 Semeval2010

PageRank
Original 18.37 13.72 10.73 13.65

CAG 49.54 35.05 25.68 41.54

Degree
Original 18.22 13.34 10.91 14.36

CAG 49.42 34.92 25.59 40.81

k-core
Original 43.41 22.70 20.20 29.34

CAG 34.84 3.46 2.12 3.60

biased PageRank
Original 50.41 37.07 21.94 27.50

CAG 51.01 42.86 27.54 35.80

We observe that CAG graphs significantly boost F1-score of all scoring meth-

ods except k-core retention. Applying k-core decomposition on CAG graphs

results in fewer nodes at the top core. This decreases recall significantly even

though the precision is high, leading to a drastic drop in F1-score. We also

note that PositionRank outperforms TextRank, K-core retention, and DegExt

when applied on CAG graphs. This experiment establishes the effectiveness

of context-aware graph construction method.This also affirms that capturing

the context in the window that spans two consecutive sentences highlights the

important words irrespective of the scoring method used.

5.3. Timing Comparison for Graph Construction

In order to gauge the computational efficiency, we compare the time taken by

the four graph construction methods (including pre-processing). Table 7 shows

average time required per document to construct text graphs of four datasets.

The timings (in seconds) are averaged over three executions for each data set.
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Table 7: Average time (in seconds) taken per document by the four algorithms on each dataset.

Best timings are presented in bold.

Methods
Datasets

Hulth2003 Krapivin2009 NLM500 Semeval2010

TG 0.5245 35.30 30.94 52.84

DG 0.3937 20.88 8.022 12.78

GoW 0.0859 16.88 20.97 43.71

CAG 0.079 3.080 1.895 3.412

CAG method is found to execute significantly faster than other three meth-

ods on all datasets. It is important to note that the number of sentences is

much less than the number of distinct windows of size w. For a document of

length N consisting of S sentences (N � S), the co-occurrence identification in

sliding window based algorithms is processed (N −w) times, while in CAG it is

processed (S − 1) times. This explains the speedy execution of CAG method.

6. Semantic Connectivity based Word Scoring Method

We exploit semantic connectivity between words in a document to identify

important and relevant words, and propose a novel word scoring method. The

proposed method leverages - (i) the level of hierarchy of a word in text graph,

(ii) its semantic relationship with neighbors, (iii) the extent of its semantic

connectivity, and (iv) its positions of occurrence in the text. It is pertinent to

note that we do not use any linguistic tool to capture semantic aspects.

6.1. Level of Hierarchy

Recently, it has been established that hierarchy of nodes (words) in co-

occurrence graphs is the sole determinant of the importance of the word [33,

38]. Rousseau et al. [33] used core-based decomposition and Tixier et al. [38]

used truss-based decomposition to obtain the hierarchy. Though efficient, these

methods have two major limitations. First, not only the keywords but even the

number of keywords in the text is determined singularly by the hierarchy. This
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may result in too few keywords, thereby degrading the recall. Second, both

decomposition methods have low semantic interpretability when used singly.

Subscribing to the view advanced by Tixier et al., which shows truss-based

decomposition works better than core-based decomposition, we use trussness [9]

to elicit hierarchy of words in the graph. Truss-based decomposition is a graph

peeling algorithm that results into a sequence of subgraphs (called trusses), each

of which is denser than the previous one. Cohen observed and we quote “The

k-truss provides a nice compromise between the too-promiscuous (k − 1)-core

and the too-strict clique of order k” [9]. We briefly introduce k-truss and the

concept of trussness below, adapting definition from [9].

Definition 6.1. For a weighted, undirected, simple graph G = (V,E,W ), a

k-truss subgraph of G is the maximal subgraph, Gk = (Vk, Ek,Wk), such that

each edge eij ∈ Ek belongs to at least (k − 2) triangles.

Thus, truss based decomposition results in a hierarchy of subgraphs with

G itself being a 2-truss graph. Gi+1 (at level (i + 1)) is a subgraph of Gi (at

level (i)). An edge eij is said to be at trussness level lij = k if it lies in k-

truss but not in (k + 1)-truss. Higher truss level of an edge eij indicates its

participation in more triangles and hence, more number of common neighbors

for nodes vi and vj . An example graph G and its k-trusses are shown in Figure

4. In this example (Figure 4b), darker colors indicate higher truss level of the

edges. Graph G is decomposed into 3 subgraphs - 2-truss (graph G itself), 3-

truss (graph G excluding light grey edges), and 4-truss (only dark grey edges).

Hierarchy of edges naturally translates to the hierarchy of nodes linked by

the edges. Extending the concept of trussness to nodes, Kaur et al. [21] define

truss level λi of node vi as follows.

Definition 6.2. Truss level λi of node vi is defined as

λi = maxvj∈Ni
{lij} (1)

where Ni is the set of neighbors of node vi and lij is the truss level of edge eij .
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(a) Graph G (b) k-truss subgraphs of G

Figure 4: Truss-based decomposition of graph G

Higher truss level of a node is the evidence of greater extent of its connec-

tivity to other nodes. Figure 5 shows truss-based decomposition and the cor-

responding node truss levels for the sample graph in Figure 3. Different colors

indicate different truss levels, with darker colors representing higher truss level

of the nodes. The graph is decomposed into 4 subgraphs10 - 9-truss (the graph

itself), 12-truss (the graph G excluding light grey nodes), 16-truss (graph G

induced by two darker shades), and 22-truss (graph induced by darkest shade).

In the context of text graph, existence of a node at a particular truss level

indicates the hierarchy level at which the word (node) vi is embedded in the

text. Thus the truss levels of the nodes depict contextual hierarchy of the words

in text. SC-based scoring method recognizes truss level λi of a node as a factor

that determines the importance of the word.

To determine the k-truss subgraphs of G, a naive algorithm iteratively re-

moves those edges which are not part of (k − 2) triangles (Please see Cohen [9]

for details). The algorithm has a polynomial time complexity and is bounded

10All intermediate k-truss subgraphs are same. For example, in Figure 5 10-, 11-, and

12-truss subgraphs are same.
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Figure 5: Truss-based de-

composition of CAG graph

in Fig. 3

above by (nm2 + n), where n is the number of vertices and m is the number of

edges in G [9]. Wang et al. proposed an algorithm for in-memory truss-based

decomposition of the graph, which has time complexity O(m1.5) and space com-

plexity O(n + m) [40]. We implement this algorithm to perform truss-based

decomposition of context-aware graphs in our experiments.

6.2. Semantic Strength of a Word

Importance of a word in the text is a function of (i) the strength of its

semantic relationship with other words co-occurring in the same context, and

(ii) the level of these words in contextual hierarchy. Strength of relationship

between two words vi and vj is marked by the number of times the two words co-

occur in same context, and is captured by weight wij of edge eij . The semantic

strength of a word (node) is defined as follows.

Definition 6.3. For a node vi with neighborhood Ni in graph G, the semantic

strength of vi is defined as

χi =
∑
vj∈Ni

wij × λj (2)

where wij is the weight of edge eij and λj is the truss-level of vj ∈ Ni.

According to Equation 2, semantic strength of word w is the additive func-

tion of the co-occurrence frequency with its neighbors and their respective hier-
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archical levels. A word gains strength when it co-occurs frequently with other

words at higher levels of hierarchy.

6.3. Semantic Connectivity

A document comprises multiple concepts that are semantically related. Key-

Graph algorithm proposed by Ohsawa et al. finds important terms that hold the

rest of the document together via inter-term connectivity between the concepts

manifesting as clusters in a text graph [31]. We extend this idea to quantify im-

portance of a word by counting the number of concepts in which it participates.

In order to avoid computationally expensive task of graph clustering (O(m2)

in [31]), we use truss as proxy for cluster (concept). The assumption is rea-

sonable since clusters and trusses both highlight denser regions of the graph.

Thus truss-based decomposition of the text graph yields not only the position of

words in the hierarchy, but also the hierarchy of concepts. Experimental results

presented in Section 7.2 validate this assumption.

The extent of semantic connectivity of a word is measured by examining

the number of distinct concepts that it links. If more of its neighbors belong

to different concepts, its removal is likely to leave bigger semantic gap in the

document. On the other hand, if all neighbors of a word belong to the same

concept, removal of the word leads to little loss of meaning since the semantic

relation among remaining words in the concept remains more or less intact.

Based on this premise, we approximate semantic connectivity of a word by

examining the set of co-occurring words to ascertain the number of distinct

concepts it links. Semantic Connectivity SCi of node vi is the count of distinct

concepts (hierarchy levels) to which its neighbors belong, normalized by the

highest hierarchy level in the graph. We express this measure as follows.

Definition 6.4. For a node vi ∈ G with neighborhood Ni, the semantic con-

nectivity index of vi is defined as

SCi =
|{λk : vk ∈ Ni}|
maxtruss

(3)

where maxtruss is the highest truss (hierarchy) level of G.
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Thus, a word connected to more words from different levels of hierarchy

(truss) binds together more concepts in the text, and is considered important.

6.4. Positional weight

Previous studies hypothesize that keywords tend to occur at the beginning

of the document [13, 19, 47]. PositionRank [13] is a recent development which

capitalizes on this assumption to identify keywords, and is found to be an im-

provement over the previous methods. Following this premise, we take the

positional weight of each word into account while computing the word score.

As prescribed by [13], each term ti is assigned a weight based on the positional

information as follows.

ωi =

ni∑
j

1

pj
(4)

where ni is the frequency of term ti and pj is the jth position of its occurrence

in the document.

Thus, words occurring towards the beginning of the text documents are

considered better candidates for keywords and are assigned higher weight than

those occurring towards the end of the text document.

6.5. Word Score

Overall relevance of a word in the document is a function of the level at which

the word is embedded (λ), semantic strength it derives from its co-occurring

words (χ), extent to which it is linked to the concepts present in the document

(SC), and its positional weight (ω). Assuming that these factors have a multi-

plicative effect on the relevance of the word in a document, word score of the

candidate keyword (node) vi is defined as follows.

SCScore(vi) = λi ∗ χi ∗ SCi ∗ ωi (5)

Admittedly, more sophisticated functions for word scoring can be designed

and explored empirically. We choose to go with Eq. 5 because of its computa-

tional efficiency, simplicity and ease of interpretation.
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Experimental evaluation establishes effectiveness of the proposed scoring

function. For the example text in Figure 2a, PositionRank is not able to ex-

tract words like “logarithmic” and “invariant” as the positional weights of these

words pull down their ranks. On the other hand, sCAKE correctly extracts

these words because it takes into account the semantic connectivity among

words. This observation establishes that positional information alone is not

sufficient for weighting relevance score for words. Semantic connectivity plays

an important role in identifying important words in a document.

6.6. Empirical Evaluation of SCScore function

We evaluate effectiveness of the SCScore function by applying it on four

types of graphs (TG, DG, GoW, and CAG) and comparing the results using

respective native scoring functions. Table 8 reports F1-scores for each of the

graph types on the four datasets, macro-averaged at the dataset level. For ease

of comparison, we repeat the result of the corresponding native scoring methods

from Table 6.

Table 8: F1-score obtained by applying SCScore on different graph types. TGTR: TextRank

on TG graphs, TGPR: PositionRank on TG graphs

Graph
Hulth2003 Krapivin2009 NML500 Semeval2010

native SCScore native SCScore native SCScore native SCScore

TGTR 18.37 51.14 13.72 38.97 10.73 23.28 13.65 34.93

TGPR 50.41 51.14 37.07 38.97 21.94 23.28 27.50 34.93

DG 18.22 46.55 13.34 21.24 10.91 16.01 14.34 23.07

GoW 43.41 43.06 22.70 30.01 20.20 20.80 29.34 29.05

CAG - 51.09 - 43.52 - 28.29 - 40.14

We observe that the performance of SCScore is significantly superior than

the native word scoring methods of the four competing algorithms. We further

conclude that the combination of CAG graphs and SCScore scoring method

outperforms the four state-of-the-art methods .
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7. sCAKE: semantic Connectivity Aware Keyword Extraction

Having illustrated the superiority of CAG graph construction method and

semantic connectivity based word scoring method individually, we now integrate

the two and propose a novel automatic keyword extraction algorithm named

sCAKE. Three stages of the algorithm are as follows:

i Candidate Filtration: Following [33], we identify the candidate keywords

as nouns and adjectives, retained after POS tagging11. This step is fol-

lowed by stopword removal12 and stemming13 of the retained list. The

stemmed version of the list is considered as candidates, and is passed on

to the next stage along with the stemmed version of the original text.

ii Graph Construction: We create Context-Aware Text Graphs (CAG) as

described in Section 5. This approach captures the pragmatics of written

communication and connects words that are closely related to each other

depending on the context of their occurrence. Unlike other methods, the

proposed graph construction method is parameter-free.

iii Word Score: We compute word score for the candidates using the proposed

semantic connectivity based word scoring method (SCScore) as presented

in Section 6. This method is based on the intuition that a word derives im-

portance from its neighbors and its own position in the text. The SCScore

method exploits the semantic connectivity between words in a document

based on their contextual hierarchy. This method tries to capture the se-

mantic aspects solely on the basis of word-to-word relation without using

any linguistic tools.

The candidates are ranked according to their respective SCScore, and the

user can extract top-k candidates.

11https://opennlp.apache.org/docs/1.8.2/manual/opennlp.html
12http://www.lextek.com/manuals/onix/stopwords2.html
13https://tartarus.org/martin/PorterStemmer/
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7.1. Illustration of Keyword Extraction by Different Methods

We compare the set of keywords extracted by sCAKE and the four state-

of-the-art methods. Table 9 shows keywords extracted by the five methods

against gold-standard keywords for the example text shown in Figure 2a. In this

example, we measure commonality of keywords between gold-standard set and

the set extracted by each of the five algorithms using Jaccard Index (JI) [20]. It

is evident that JI for sCAKE is highest among all the methods. K-core performs

poorly on this document because it extracts words belonging to the highest core

irrespective of the number of keywords to be extracted.

Table 9: Comparative lists of top-27 keywords extracted by sCAKE and competing methods

against 27 gold-standard keywords for text in Figure 2a. r: Number of keywords that match

to gold standard, JI = Jaccard Index. Words in italics do not match with gold-standard.

Method Keywords r JI

Gold-

standard

optical, recognition, object, scale, invariance, classical, convergent,

correlator, realtime, method, information, deformed, fringe,

patterns, fourier, transform, profilometry, technique, property, mellin,

radial, harmonic, decomposition, logarithmic, filter, invariant, factors

27 -

sCAKE

optic, recognit, object, scale, invari, correl, classic,

converg, method, inform, radial, harmon, deform, fring,

pattern, fourier, profilometri, techniqu, properti, approach,

mellin, decomposit, logarithm, filter, target, interv, factor

24* 0.80

TextRank

scale, invariance, objects, d, radial, threedimensional, harmonic,

fourier, patterns, mellin, method, correlator, results, filter, factors,

convergent, classical, logarithmic, decomposition, deformed,

fringe, profilometry, technique, approaches, experimental,

recognition, invariant

21 0.64

PositionRank

optical, recognition, objects, scale, invariance, classical,

threedimensional, convergent, correlator, method, information,

radial, harmonic, patterns, deformed, fringe, fourier, profilometry,

technique, property, d, filter, mellin, decomposition, approaches,

logarithmic, invariant

23 0.74

K-core classic, method, object, three-dimension 3 0.11

DegExt

scale, d, objects, convergent, harmonic, invariance, radial,

threedimensional, approaches, changes, classical, correlator,

decomposition, fringe, information, invariant, logarithmic, mellin,

method, recognition, deformed, different, experimental,

factors, filter, interval, optical

19 0.54

* The keyword ‘invari’ matches two of the gold-standard keywords ‘invariance’ and ‘invariant’.
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7.2. Comparative Evaluation of sCAKE with PositionRank

We empirically evaluate and compare sCAKE with PositionRank algorithm.

We choose only PositionRank for comparison with sCAKE because it outper-

forms other three state-of-the-art methods in the earlier experiments. We ex-

tract top k candidates14 as keywords and compute precision, recall, and F1-score

for both methods on the four datasets. The empirical results are reported in

Table 10. Bold-faced values indicate maximum F1-score for each dataset.

Datasets
PositionRank sCAKE

P R F1 P R F1

Hulth2003 45.68 64.45 50.41 45.41 66.81 51.09

Krapivin2009 36.95 40.90 37.07 42.48 48.78 43.52

NLM500 19.69 26.60 21.94 24.88 34.99 28.29

Semeval2010 25.31 31.29 27.50 35.82 47.37 40.14

Table 10: Performance

evaluation of sCAKE

vs. PositionRank

We observe that the performance of sCAKE is consistently and significantly

better than PositionRank on all four datasets. The improvement for longer

documents is significantly higher. It is reasonable to conclude that sCAKE

extracts markedly better keywords from documents of varied length compared

to the competing method.

8. LAKE: Language-Agnostic Keyword Extraction

Most of the existing automatic keyword extraction algorithms use sophisti-

cated NLP tools, which prohibits their application to texts of languages with

meager NLP support. We mitigate this problem by proposing a language agnos-

tic keyword extractor (LAKE) for eliciting keywords from a document written in

language with deficient set of NLP tools. The method profits from the strength

of statistical and graph based methods, sans the burden of linguistic tools.

Like classical graph-based keyword extraction methods, LAKE is orches-

trated in three stages. It is the first stage of candidate filtration that makes

14k refers to the values as mentioned in Section 3
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LAKE unique and imparts language independence. In the following subsec-

tions, we describe the candidate filtration approach for LAKE.

8.1. Candidate keywords selection

Unlike existing graph based keyword extraction methods that accept nouns

and adjectives as candidate keywords, LAKE method identifies candidate key-

words by application of a statistical filter. The only input this method uses

is a stopwords list curated by the user. The statistical filter is based on the

computation of σ-index proposed by Ortuno et al. [32]. The idea is based on

the hypothesis that the spatial distribution of a word is prime determinant of

its relevance, irrespective of its frequency. The relevance is quantified by mea-

suring the standard deviation of the distance between successive occurrences of

the word in the text [32]. The use of this filter substantially reduces the search

space, and imparts language independence to this stage.

We consider Zhou et al. [48] for implementation of σ-index, which considers

boundary values for computation. Consider a word w that occurs n times in a

document of length N . Let pi denote the position of ith occurrence of w, with

boundary values p0 and pN+1 set to 0 and N + 1, respectively. Then (pi+1− pi)

denotes the distance between two consecutive occurrences of w. The average

distance between occurrences of w is given by µ(w),

µ(w) =
(p1 − p0) + (p2 − p1) + ...+ (pN+1 − pn)

n+ 1
=
N + 1

n+ 1
,

and the standard deviation is given by

s(w) =

√√√√ 1

n− 1

n∑
i=0

((pi+1 − pi)− µ(w))2

The σ-index σ(w) of w, is defined as

σ(w) =
s(w)

µ(w)
, (6)

Table 11 shows the comparative performance of POS tag-based filter and

statistical filter. The values in each cell present the overlap between the gold-

standard keywords and the set of candidates obtained by each of these filters. It
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is evident from the table that the best candidate list is obtained after performing

stemming on the list of nouns and adjectives. σ-index produces noisy candidates

list, which is the price paid for language independence.

Dataset σ PoST PoST+stem

Hulth2003 - 85.38 87.33

NLM500 53.12 69.54 76.90

Krapivin2009 88.13 92.94 95.45

SemEval2010 80.55 89.93 94.45

Table 11: Percentage overlap of gold-

standard keywords and candidate lists ob-

tained by: σ: σ-index, PoST: retaining

nouns and adjectives using POS tagging,

stem: with stemming enabled.

In order to find the threshold σ-index for retaining candidate keywords, we

inspected the ranks of gold-standard keywords by σ-index scores. Rugplots in

Figure 6 show higher density in the region corresponding to higher ranks (lower

values correspond to higher ranks). We found that on an average, more than 92%

gold-standard keywords out of those occurring explicitly in the text15 occur in

the top 33% words ranked using σ-index. Based on this observation, we decide

to retain top-33% candidates ranked based on σ-index. Since σ-index is not

suitable for small length documents, we do not apply this filter for Hulth2003

dataset in the experiments reported in Section 8.2.

Figure 6: Distribution of normalized σ-index ranks of gold-standard keywords contained in

the candidate lists

It is evident from Figure 6 that gold-standard keywords are usually ranked

15Some gold-standard keywords do not appear in the text.
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higher based on their corresponding σ-index. For NLM500 dataset, the σ-index

based ranks of gold-standard keywords tend to gather towards top-33% with

anomalies lying towards lower ranks. This affects the performance for NLM500

dataset, which is reflected in the empirical results.

8.2. Experimental Evaluation: LAKE vs. sCAKE

We compare the performance of LAKE with sCAKE to assess the amount of

performance degradation due to non-adoption of NLP tools in LAKE method.

Table 12: Performance evaluation of LAKE vs. sCAKE

Datasets
sCAKE LAKE Performance

Loss in F1 (%)P R F1 P R F1

Hulth2003 45.41 66.81 51.09 41.67 59.31 46.14 9.69

Krapivin2009 42.48 48.78 43.52 37.60 41.56 37.69 13.4

NLM500 24.88 34.99 28.29 19.60 26.55 21.87 22.69

Semeval2010 35.82 47.37 40.14 29.48 36.48 32.08 20.08

It is evident from the above table (Table 12) that there is a consider-

able performance gap between NLP-enabled and language-agnostic variation.

For English-like languages that enjoy the support of sophisticated NLP tools,

sCAKE is a better choice as it outperforms the other state-of-the-art keyword

extraction methods. However, for languages that lack the support of sophis-

ticated NLP tools, there is no alternative approach provided by the existing

methods to enable language-independence feature. Thus, LAKE seems to be

a fair solution which can be applied on languages without linguistic support,

albeit with an associated cost of performance degradation.

8.3. Comparative Evaluation of Competing Methods

Figures 7(a-d) show comparative line graphs for sCAKE, LAKE, Position-

Rank, and K-core methods per dataset. It is evident that sCAKE (red opaque

diamond line) outperforms all other methods. Performance of LAKE is at par

with PositionRank, outperforming K-core in all four datasets. F1-score for K-

core does not improve with increasing keywords because K-core always extracts
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words belonging to the top-most core as keywords. As stated earlier, F1-score

for all methods drop for very low and very high number of keywords. This is

because for less number of keywords, precision is usually high but recall is low.

On the other hand, for very large number of keywords, recall is high but pre-

cision is low. This ultimately affects the F1-score, bringing it down to a lower

value.

(a) Hulth2003 dataset (b) Krapivin2009 dataset

(c) NLM500 dataset (d) Semeval2010 dataset

Figure 7: Lineplot of F1-score for sCAKE, LAKE, PositionRank, and k-core on each dataset.

8.4. Experimentation on Indian Languages

India is a country with 23 official languages, including English. According

to Census of India of 2001, India has 122 major languages and 1599 other

languages. With such a wide variety of written and spoken languages, there is a

huge collection of literature available. However, due to scarcity of sophisticated

NLP tool, automatic analysis of such documents is challenging.
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We evaluated LAKE method for automatic keyword extraction from an

Wikipedia article on ‘Animation’ written in Assamese. We removed English

characters from this document as an additional pre-processing step. The stop-

words list used for this exercise is downloaded from TDIL website16. Top-10

extracted keywords, with their respective translations to English, are shown in

Table 13.

Table 13: Sample keywords extracted from Assamese text

The document along with the set of programs and stopwords list are available

at GitHub17. Due to non-availability of gold-standard keywords set, we could

not evaluate the performance of LAKE on Assamese text. We leave it to the

readers to judge the performance based on the extracted keywords.

9. Conclusion

We present a commentary on graph-based keyword extraction methods, and

propose two new parameter-free methods sCAKE and LAKE. The two methods

are based on novel sentence-based graph construction approach (CAG) that

is mindful of the carriage of pragmatics from each sentence to its following

one. The novel word scoring approach (SCScore) computes the relevance of

words by taking into account its contextual hierarchy, semantic connectivity,

and positional weight in the text.

16https://www.tdil-dc.in/index.php?option=com_download&task=

showresourceDetails&toolid=1634&lang=en
17https://github.com/SDuari/LAKE-on-Assamese-text
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We first evaluate the proposed graph construction and word scoring meth-

ods individually, and subsequently integrate as sCAKE algorithm. Four state-of-

the-art keyword extraction methods - TextRank, DegExt, k-core Retention, and

PositionRank were compared using four benchmark datasets. Experimental re-

sults reveal that the native word scoring methods perform better on CAG graphs

compared to the corresponding graphs. We also observe that the proposed word

scoring method performs consistently better than other scoring methods irre-

spective of the graph construction approach. Further, we show that the pro-

posed keyword extraction method sCAKE outperforms PositionRank in terms

of F1-score.

A language-agnostic variant of sCAKE (called LAKE) is proposed which

employs statistical filter to identify candidate keywords. As expected, LAKE

suffers performance degradation compared to sCAKE on the studied datasets,

all of which consists of English texts. We conclude that for languages with so-

phisticated NLP support, it is better to exploit the linguistic features. However,

LAKE method can be applied on languages that are not supported with sophis-

ticated NLP tools, albeit with an associated cost of performance degradation.

Top-10 keywords extracted (after stemming) by sCAKE method from this

manuscript18 are - “keyword”, “scake”, “extract”, “semant”, “connect”, “method”,

“text”, “awar”, “graph”, and “word”. All the words in the title are included in

the top-10 keywords list, which is desirable.

In future, we intend to apply LAKE on documents written in Indian Lan-

guages to see how well it performs on multiple languages and domains. We

also intend to make LAKE a benchmark, on the basis of which future keyword

extraction algorithms for Indian languages could be tested upon.

18Excluding conclusion, references, and other non-text entities like tables and figures with

captions
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[10] Dostal, M., Ježek, K., 2011. Automatic Keyphrase Extraction based on

NLP and Statistical Method, in: Proceedings of the Dateso 2011, VŠB -
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