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Abstract

There are typically two types of consistency of fuzzy preference relations (FPR), namely
additive and multiplicative consistency. They are defined based on the assumption that decision
makers are rational and can provide strictly consistent FPRs. To take into consideration the
bounded rationality of decision makers, the current study relaxes this assumption and proposes a
new measure called triangular bounded consistency. To define triangular bounded consistency, a
directed triangle is used to represent three FPRs among any three alternatives, with each directed
edge representing an FPR. The condition of restricted max—max transitivity (RMMT) in the
directed triangle is quantitatively examined. Under the assumption that the bounded rationality of
a decision maker is characterized by their historical FPRs, which are represented by directed
triangles that satisfy RMMT, triangular bounded consistency is determined using the historical
FPRs. We then illustrate how triangular bounded consistency can be used to verify the consistency
of FPRs that are newly provided by decision makers and how to estimate some missing FPRs that
are not provided by decision makers. Finally, to demonstrate the application of triangular bounded
consistency of FPRs in multi-attribute decision analysis, we investigate a problem that involves

selecting areas to market products for a company.
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1. Introduction

Decision makers generally use preference relations to express their preference information

when analyzing decision problems (Herrera et al., 2001; Massanet et al., 2016; Wan et al., 2018).

The two types of preference relations commonly accepted in the context of pairwise comparison

of alternative courses of action (or simply, alternatives) (Geng et al., 2010; Chen et al., 2015; Wan

et al.,, 2017) are multiplicative preference relation (MPR) (Saaty, 1977) and fuzzy preference

relation (FPR) (Orlovsky, 1978). As the two types of preference relations can be transformed into

each other (Herrera-Viedma et al., 2004), this study focuses on FPR. FPR was first proposed by

Orlovsky (1978) to represent the opinion of a decision maker when comparing a set of alternatives.

FPR can not only reflect whether an alternative is superior to another but also characterize the

degree to which an alternative is preferred (Pan et al.,, 2017; Zhang et al., 2018). The full

definition of FPR is given in Section 2.

Consistency is a prerequisite for using FPRs to model and analyze decision problems (Chen et

al., 2014; Li et al., 2018). Verifying whether the required consistency is reached is an important

step in the process of analyzing decision problems modeled by FPRs (Urefia et al., 2015; Zhang et

al., 2016). Decisions made using inconsistent FPRs may be irrational and of poor quality (Xu et al.,

2016; Herowati et al., 2017). A basic requirement for consistency is transitivity. Different types of

transitivity, such as weak transitivity, triangular condition, and restricted max—max transitivity

(RMMT), have been defined and investigated in existing studies (Liao and Xu, 2015; Liu et al.,

2018). RMMT is stricter than weak transitivity and triangular condition (see Section 2) and is



considered as a necessary condition of consistent FPRs (Liu et al., 2014).

To verify the consistency of FPRs, different types of consistency measure of FPR have been

developed (Chiclana et al., 2009; Deng et al., 2014; Deng et al., 2015). Representative and

commonly accepted types include additive consistency (Pérez et al., 2016; Al Salema and Awasthi,

2018) and multiplicative consistency (Wu and Chiclana, 2014; Krej¢i, 2017). Both of these types

of consistency satisfy RMMT (Herrera-Viedma et al., 2004). More importantly, they are based on

the assumption that decision makers are strictly rational, and thus the FPRs strictly satisfy the

given mathematical conditions for the two types of consistency (Herrera-Viedma et al., 2004; Xu

et al., 2014). However, it is very difficult or even impossible in practice for decision makers to

offer such exact FPRs as they may not have access to all the information required; even if they do,

they may not be able to process it properly within a given time limit (Wang and Chen, 2008; Yan

and Ma, 2015). This phenomenon is referred to as bounded rationality by Simon (1982). Therefore,

in many situations, decision makers may seek to offer “good enough” judgments that may not be

perfectly rational or consistent, but reasonably acceptable. Hence, we must consider which

judgements are reasonably acceptable and can be used for decision-making.

Therefore, we propose a new consistency concept called triangular bounded consistency to

measure the consistency of FPRs. Firstly, the difference between the two commonly accepted

types of consistency of FPR, i.e., additive and multiplicative consistency, and then their limitations

are analyzed. Secondly, inspired by triangular condition (Dasgupta and Deb, 1996), which is a

type of transitivity of FPR, we propose the use of a directed triangle to represent the three FPRs

among any three alternatives in which each FPR is represented by a directed edge. Because

RMMT is considered as a necessary condition for consistent FPRs, we then examine what the



triangles should look like if the FPRs they represent satisfy RMMT by specifying the range of

angles formed by two adjacent edges. Here, adjacent edges represent the two directed edges whose

arrows do not both leave or point to the angles they form. That is, the arrow of one directed edge

should point to the angle, whereas the arrow of the other edge should point away from the angle.

When the collected preference information satisfies RMMT, it is regarded as reasonably

acceptable. Otherwise, it should be further revised or ignored. In other words, we assume that all

decision makers are at least reasonably rational in the sense that their preferences satisfy RMMT.

Thirdly, we introduce the concept of triangular bounded consistency to measure the consistency of

FPRs provided by a decision maker. To estimate triangular bounded consistency of given FPRs,

the pairwise preference judgments provided by the decision maker previously, or currently to a set

of sample alternatives if no previous judgments are available, should be collected. From the

collected information, the preferences satisfying the RMMT can be represented by directed

triangles and then used to estimate the lower and upper bounds of triangular bounded consistency

of FPRs for this particular decision maker.

One important use of triangular bounded consistency is estimating missing FPRs, as decision

makers generally offer only minimal preference information (Sen and Yang, 1994) or an

acceptable incomplete FPR matrix (which is defined in Section 2) to avoid inconsistency issues

when there are many alternatives under consideration. For example, among alternatives i, j, and k,

a decision maker may specify how much they prefer i to j and j to & without mentioning their

preference between i and k. When this is the case, we can estimate their preferences between i and

k using triangular bounded consistency estimated for them. As the estimated preference is

normally a range, to find a point estimate of the missing FPR, an optimization model is



constructed using the least squares method to minimize the difference between the point estimate

and the decision maker’s usual or historical consistency behavior characterized by the middle

point of the range of their triangular bounded consistency.

To demonstrate the application of triangular bounded consistency, we applied this concept to

analyze multi-attribute decision analysis (MADA) problems modeled by acceptable incomplete

FPR matrices. The main contributions of this study can be summarized as follows: (1) we analyze

the difference between additive and multiplicative consistency of FPRs, (2) we specify the value

range of the angle formed by two adjacent edges of the directed triangle representing FPRs that

satisfy RMMT, (3) we introduce a new consistency concept called triangular bounded consistency

to verify the consistency of newly provided FPRs by a decision maker to follow their usual

consistency behavior, (4) we apply triangular bounded consistency to find the missing FPRs in an

incomplete FPR matrix provided by a decision maker, and (5) we develop a solution process to

MADA problems modeled by acceptable incomplete FPR matrices.

The remainder of this paper is organized as follows. Section 2 presents the basics of our

proposed consistency concept. Section 3 provides an analysis of additive and multiplicative

consistency of FPRs. Section 4 introduces triangular bounded consistency and uses it to estimate

missing elements in acceptable incomplete FPR matrices. Section 5 describes the application of

triangular bounded consistency to MADA problems modeled by FPRs. This application is

demonstrated in Section 6 by analyzing a problem of selecting areas to market the products of a

company. Finally, Section 7 presents conclusions and future work to be considered.

2. Preliminaries



In this section, we introduce the basic concepts of FPRs, some representative definitions of

consistency and transitivity of FPRs, and the validity judgment on an incomplete FPR matrix with
missing elements.
Definition 1. (Orlovsky, 1978) Let X = {xi, x, ..., x,} be a set of alternatives. P = (p;j).«, is called
an FPR matrix on X x X such that p;;[0,1], p; + pi =1, Vi,je{l, ..., n}, where p; denotes the
degree to which alternative x; is preferred to x;. Specifically, p; = 0.5 indicates an indifference
between x; and x; (denoted as x;: x;), 0.5 < p; < 1 indicates that x; is preferred to x; (denoted as
x;f x;), and p; = 1 indicates that x; is absolutely preferred to x;.

As mentioned in Section 1, consistency is an important property with respect to FPRs. In
previous studies, the two commonly accepted definitions of consistency, namely additive and
multiplicative consistency, were used to determine whether an FPR matrix is consistent.
Definition 2. (Tanino, 1984) Given a set of alternatives X = {xi, x2, ..., X}, let P = (p;;),» be an
FPR matrix on X x X. P is considered additively consistent if it satisfies the following condition:

pitprktpa=15, Vi jke{l, .. n}. (1)
Definition 3. (Tanino, 1984) Given a set of alternatives X = {xi, x2, ..., X}, let P = (p;;),» be an
FPR matrix on X x X. P is considered multiplicatively consistent if it satisfies the following
condition:

DiiPjkPii = PikPigPjis Y I, j, ke {1, ..., n}. (2)

From the above two definitions, it can be observed that additive and multiplicative consistency
are very strict conditions for FPRs to satisfy. Compared with the two types of consistency,
transitivity is a weaker condition for FPRs to satisfy. Representative types of transitivity include

weak transitivity, RMMT, and triangular condition.



Definition 4. (Tanino, 1984; Herrera-Viedma et al., 2004) Given a set of alternatives X = {xi,
X2, ..y Xn}, 16t P = (pjj)uxn be an FPR matrix on X x X. P is said to be weakly transitive if it satisfies
the following conditions:
(1)if0.5<p;<land 0.5<py<1,then0.5<py<1, Vijke{l,...,n}, and
(2)if0<p;<0.5and 0<py <0.5,then0<p;<0.5, Vi jke{l, ... n}.
Definition 5. (Herrera-Viedma et al., 2004) Given a set of alternatives X = {x, xp, ..., X,}, let P =
(Dif)nxn be an FPR matrix on X x X. P is said to have RMMT if it satisfies the following conditions:
(1)if 0.5 <p;<1and 0.5 <py <1, then max{p;,ps} <pa<1, Vi j ke{l,..., n}, and
(2)if0<p;<0.5and 0 < py<0.5, then 0 < py < min{pypu},V i,j, ke {1, ..., n}.
Definition 6. (Dasgupta and Deb, 1996; Herrera-Viedma et al., 2004) Given a set of alternatives X
= {X1, X2, ..., Xp}, let P = (pj)uxn be an FPR matrix on X x X. P is said to satisfy triangular
condition if
Pi t P> pis Vi j, kell, ..., n}. 3)
RMMT is stricter than weak transitivity and triangular condition, and it is generally regarded as
a necessary condition for a consistent FPR matrix. An FPR matrix satisfying additive or
multiplicative consistency implies that RMMT is satisfied in the matrix, which is formally
described in the following theorems.
Theorem 1. (Herrera-Viedma et al., 2004) Given a set of alternatives X = {xi, xo, ..., x,}, let P =
(Pi)nxn be an FPR matrix on X x X. If P satisfies multiplicative consistency, i.e., if it satisfies
DiPikPki = Pik Pig'Pji» ¥ I, J, k€ {1, ..., n}, i#j#k, then P must satisfy RMMT.
Theorem 2. (Herrera-Viedma et al., 2004; Liao and Xu, 2014) Given a set of alternatives X = {xy,

X2, ..oy Xn}, let P = (pj)uxs be an FPR matrix on X x X. If P satisfies additive consistency, i.e., if it



satisfies p; + py + pic =1.5, Vi,j, ke {l, ..., n}, i#j#k, then P must satisfy RMMT.

When some elements in an FPR matrix P cannot be provided by a decision maker, P is called an
incomplete FPR matrix.
Definition 7. (Urena et al., 2015) Given a set of alternatives X = {xy, xa, ..., X}, let P = (p;;)xn be
an FPR matrix on X x X. If some elements other than the diagonal ones in P cannot be provided,
then P is called an incomplete FPR matrix, which satisfies

piel01], py+pi=1, Vi, je{l, ..., n}. 4

Next, we discuss whether an incomplete FPR matrix is acceptable or not.
Definition 8. (Xu et al., 2014) Given a set of alternatives X = {xy, x2, ..., X,}, let P = (p;)uxs be an
incomplete FPR matrix on X x X. If the missing elements of P can be determined by its provided
elements, then P is called an acceptable incomplete FPR matrix; otherwise, P is not an acceptable
incomplete FPR matrix.
Theorem 3. (Xu et al., 2014) Given a set of alternatives X = {xi, x2, ..., X,}, let P = (p;;),xn be an
incomplete FPR matrix on X X X. Only when there exists at least one provided element in each
row or column of P, with exception of the diagonal elements (p;; = 0.5, i =1, ..., n), the matrix can
be considered acceptable.
3. Analysis of existing consistency of FPRs

Section 2 presents the two commonly accepted types of consistency of FPRs, i.e., additive and
multiplicative consistency. In the following, they are analyzed to show their difference and
possible limitations in real applications.

Given an MPR matrix 4 = (@;)nx, on X X X with a;;€[1/9, 9], where X = {x,, x, ..., x,,} denotes

a set of alternatives, it is said to be consistent if we have a;ay = ayx, Vi, j, k. Owing to the



transformation of an MPR matrix to an FPR matrix, which is demonstrated by Proposition B.1 of
Section B.1 in Appendix B of the supplementary material, a consistent MPR matrix can result in a
consistent FPR matrix satisfying the condition in Definition 2 presented in Section 2. It can be
inferred from the equivalence between the consistency of an MPR matrix and the additive
consistency of an FPR matrix that a decision maker is said to be perfectly rational when they
provide a consistent FPR matrix. However, multiplicative consistency of an FPR matrix cannot
reflect the perfect rationality of a decision maker because a difference exists between additive and
multiplicative consistency of an FPR matrix. To facilitate a quantitative measurement of the

deviation between additive and multiplicative consistency, the following proposition is given first.

Xy

———— —(x + y — 0.5) is a two-variable function
l-x—-y+2xy

Proposition 1. Suppose that f{x, y) =
with 0 <x, y < 1. Then, the function satisfies

(1) when x, y€[0.5, 1], flx, v) is a monotonously decreasing function with respect to x or y.

(2) when x, y€ [0, 0.5], flx, v) is a monotonously decreasing function with respect to x or y.

(3) when (x — 0.5)(y — 0.5) <0, the lower bound of f{x, y) tends to —0.5 if (x, y) = (0, 17) or (x, )
= (17, 0) while the upper bound of f{x, y) tends to 0.5 if (x, y) = (0", 1) or (x, y) = (1, 0.

(4) when (x — 0.5)-(y — 0.5) > 0, f{x, y) reaches the maximum value, i.e., 0.5, if (x, ) = (1, 1),
while f{x, y) reaches the minimum value, i.e., 0.5, if (x, y) = (0, 0).

The proof of Proposition 1 is presented in Section A.1 of Appendix A in the supplementary
material. It can be deduced from Definitions 2 and 3 presented in Section 2 that p; = p;; + pjr — 0.5
(Vi j, ke {l, ..., n}) holds in an additively consistent FPR matrix, and p; =

pg/pjk
1=py =Py +20;py

(Yi,j, ke{l, ..., n}) holds in a multiplicatively consistent FPR matrix.

Assume that p; =p;+ px— 0.5 (Vi,j, ke {l, ..., n}) is an additively consistent FPR matrix,



pijpjk
1- pg/ - pjk + 2pijpjk

and pjy = (Vi,j, ke{l, ..., n}) is a multiplicatively consistent FPR

matrix. Then, the function f{x, y) in Proposition 1 can represent the deviation between p; and
p; given that p;; and pj are two variables. Proposition 1 also reveals that —0.5 < p; —p; <0.5
when (p; — 0.5)-(py — 0.5) >0, and —0.5 < p} — pi < 0.5 when (p; — 0.5)(py — 0.5) < 0. It can
be easily concluded that multiplicative consistency of an FPR matrix is different from additive
consistency of the matrix, particularly when (p; — 0.5)(pix — 0.5) <0 (V i, j, ke {l, ..., n}). As
such, multiplicative consistency is incapable of characterizing the perfect rationality of a decision
maker.

Example 1. For a set of alternatives X = {xi, ..., x5}, suppose that P = (p;))s.s is an FPR matrix on
X x X with p1p = 0.7, pr3 = 0.6, p34 = 0.98, and pss = 0.1. The deviations between p; and pj;

and between pi. and pj, are calculated in the following.

As for pi; and py3, we have pf, =pp+prz—05=08and p/; = PiaPas =

1= piy = Py +2p), Py

0.78; therefore, the deviation between p;; and p/; is —0.02. When ps4 and p4s are used to

consistently decide pss, it can be similarly calculated that pi. =pss+ pss—0.5=0.58 and p;; =

P34 Pss
L= Py = Dus +2D3u Pas

= 0.84, which implies that pJ; — pis= 0.26. The results in these two

situations are clearly limited to the lower and upper bounds given in Proposition 1.

Specifically, pi1» = 0 and p3 = 0.999 lead to p; - pj5= —0.499, and p34 = 0.001 and pus = 1
resultin pi — pis= 0.499. This verifies Proposition 1 under the condition that (p; — 0.5)-(px — 0.5)
< 0. As a whole, a clear difference can be noted between multiplicative and additive consistency of
an FPR matrix from perfect rationality.

In addition, another important difference is noted between multiplicative and additive

consistency of an FPR matrix. That is, given p; and pj, the domain of p; for multiplicative

10



consistency is different from the domain of p; for additive consistency. To facilitate such

comparison, the following proposition is given first.

Xy

Proposition 2. Suppose that f{x, y) = ——
l-x—-y+2xy

is a two-variable function with 0 <x, y < 1.
Then, the function is monotonously increasing with respect to x or y.

The proof of Proposition 2 is presented in Section A.2 of Appendix A. This proposition
indicates that p;; generated by multiplicative consistency is always limited to the interval [0, 1]
given p;; and pj; such that 0 < py;, p < 1. In detail, it can be determined from Proposition 2 that p;;
= 0 when (py, pjir) = (0, 0), and py = 1 when (p;;, pir) = (1, 1) under the condition that multiplicative
consistency is satisfied. On the other hand, when p;; and pj such that 0 < p;;, pi < 1 are given to
determine p; using additive consistency, the range of py is limited to the interval [—1.5, 1.5].
When (p;, pir) = (0, 0), pi is equal to —1.5, whereas p; becomes 1.5 when (py, p) = (1, 1). As a
result, the range of p; from additive consistency is clearly different from the range of
multiplicative consistency given p;; and pj such that 0 < p;;, px < 1.

Although the range of pj from additive consistency given p;; and pj such that 0 < p;;, pix < 1 can
be mapped into the interval [0,1] in some way (Herrera-Viedma et al., 2004), the decision maker
providing the FPRs is assumed to be perfectly rational. Meanwhile, the assumption of perfect
rationality is relaxed when multiplicative consistency is applied. In real applications, it is very
difficult or even impossible for a decision maker to be perfectly rational and provide an additively
consistent FPR matrix. More importantly, both additive and multiplicative consistency cannot
reflect the real preference of a decision maker with bounded rationality. In other words, for any
pair of p; and pj, pi can be generated directly by additive or multiplicative consistency without

consideration of the preference of a decision maker. As such, the resulting p; cannot be

11



guaranteed to be the one that the decision maker wishes to provide. In the context of
decision-making, the direct application of additive and multiplicative consistency is doubtful,
owing to a lack of consideration of the preferences of a decision maker with bounded rationality.
For these reasons, we develop a new consistency measure of an FPR matrix based on triangular
condition in consideration of the preference information of a decision maker with bounded
rationality, as described in the next section.
4. Triangular bounded consistency

In this section, starting from triangular condition in Definition 6 presented in Section 2, we
quantitatively explain the relationship among three edges of a valid triangle and the RMMT in a
triangular context. Then, we propose triangular bounded consistency of an FPR matrix with
coverage of the preferences of a decision maker.
4.1 Quantitative description of triangular condition

In Definition 6, the basic condition of a triangle is used to geometrically explain the consistency
condition of an FPR matrix. In the following, we quantitatively describe the relationship among
three edges of a directed triangle with the angle between two edges.

From an abstract angle, suppose that x, y, and z with 0 < x, y, z < 2 denote the three edges of a

U uuu uu

directed triangle AABC, i.e., edges 4B, BC,and CA in Fig. 1. The angle between x and y is

denoted by 6.

12



Fig. 1. Directed triangle A4BC.
When x, y, and z form a triangle, they must satisfy the following conditions:
Hx+y=>z,
(2)x+z>y,and
B)y+tz=x.

From the above conditions, we can deduce that [x — y| <z < x + y. The angle between x and y

2 2 2

X +y - . .

can be constructed from x, y, and z as 8 =arccos% . The relationship between 6 and z
Xy

and the relationship between 6 and x (or y) are revealed in the following.
Property 1. Suppose that x, y, and z with 0 < x, y, z < 2 are the lengths of three edges of the

uuu uuu
triangle AABC plotted in Fig. 1 with the angle between edges AB and BC denoted by 6. Then,

we have

(1) 8 is monotonously increasing with respect to z, and

(2) 0 is monotonously decreasing with respect to x or y when z > |x2 - y2| .

The proof of Property 1 is presented in Section A.3 of Appendix A. Given x and y such that 0 <
X,y <2 and x >y, it can be determined that x — y <z <x + y. In this situation, we can deduce from
Property 1 that 0 < @ <= This is formally presented in the following.

Property 2. Suppose that x, y, and z, such that 0 <x, y, z < 2 and x > y, are the lengths of three
edges of the triangle AABC plotted in Fig. 1 with the angle between edges % and lbil%
denoted by 6. Then, we have

1Ho0=<0<m,

(2)0=0whenz=x—y, and

(3)0=mwhenz=x+y.

13



4.2 Description of RMMT in directed triangles of three FPRs

As demonstrated in Section 2, although RMMT is covered by additive and multiplicative
consistency, it is stricter than weak transitivity and triangular condition. In the developed
triangular bounded consistency of an FPR matrix, it is also intended to satisfy RMMT.

Given an FPR matrix P = (pj)mn on X X X, where X = {x|, x5, ... , x,} denotes a set of
alternatives, assume that x;, x;, and x; are the three vertices of a triangle, and FPRs pj;, pi, and pi
represent the lengths of directed edges from vertexes x; to x;, x; to xy, and x; to x;, respectively. The
directed edge from vertex x; to x; means that alternative x; is superior or equivalent to x;, which
results in p; > 0.5. In general, there are two situations where (p; — 0.5)-(pjx — 0.5) = 0 and (p; —
0.5)-(pjx — 0.5) <0, as plotted in Fig. 2. In the first situation, alternative x; is superior or equivalent
to x;, and x; is superior or equivalent to x;; thus, x; is certainly superior or equivalent to x;. In other
words, p; > 0.5 and p; > 0.5 must lead to p; > 0.5. In the second situation, alternative x; is
superior or equivalent to x;, and x; is inferior or equivalent to x;; whether x; is superior or
equivalent to x; depends on whether p;; is larger than or equal to py; (i.e., 1 — pj;). Situation (b) in

Fig. 2 indicates that p; > py;. In the following, we discuss RMMT in these two situations.

. i X; X
X Pis X % Py ’

(a) (h)

Fig. 2. Two situations of directed triangle Axx;x;.

4.2.1 RMMT in the first situation

In the situation of Fig. 2 (@), as demonstrated in Section 4.1, given p;; and py, if the combination

14



of pi with p;; and pj can form a triangle, then we can determine that |p; — pj| < pir < pj; + pjr. This
condition covers RMMT.
Proposition 3. Let P = (p;)),x, be an FPR matrix on X x X, where X = {x, x,, ... , x,} denotes a set
of alternatives. For any three alternatives x;, x;, and x; (i #j # k), when p;; (the degree to which x; is
superior to x;) and pj (the degree to which x; is superior to x;) are known, if p;;, pji, and py satisfy
RMMT, then the three edges with lengths of p;;, pj, and p; must form a triangle.
Given p; and pj; such that p; > 0.5 and pj > 0.5 in Fig. 2 (@), under the assumption that RMMT
is satisfied, Proposition 3 clearly holds because |p; — pj| < max{p;, pyr} and 1 <p;; + py. In such a
. um .
triangle composed of py, pu, and py, the angle between edge x,x; with length of p; and edge
w . . .
x,x, with length of pj is determined by

2 2 2
Pyt Py — Py

2pijpjk

6 = arccos

)

When pj; is limited to [max{p;, pjr}, 1], the range of 0 can be determined.

Property 3. Let P = (p;})ux» be an FPR matrix on X x X, where X = {x;, x2, ... , x,,} denotes a set of
alternatives. For any three alternatives x;, x;, and x; (i #j #k), if their pairwise comparisons py;, pjk,
and py satisfy 0.5 < py;, pi < 1 and max{p;, pi} < px < 1, then we can determine that the angle

uu uuuu
between edge x,x; with length p; and edge x,x, with length pj in triangle Ax;x;x; satisfies

. 2 2
minip.,p. S+ py —1
arccosM <0< arccosM, (6)
2max{p;, pyf 2P
minyp.,p.
/3 < arccos{p—ypjk} <0.4196x, and @)
2max{p,~,-,p,»k}
2 2
S+ py—1
/3 < arccosM < ®)
2pijpjk

The proof of Property 3 is presented in Section A.4 of Appendix A. In order to clearly

15



demonstrate Property 3, Example B.1 is given in Section B.3 of Appendix B in the supplementary
material. In triangle Axaxx;, where the lengths of edges x,x; and x,x, (p;and py, respectively)
. um .

are provided, and the length of edge x,x, (pj) is unknown, when p; > 0.5 and pj > 0.5, p; can be
calculated under the assumption that RMMT is satisfied.

Definition 9. Let P = (p;)),x, be an FPR matrix on X x X, where X = {xi, x, ..., x,} denotes a set
of alternatives. For any three alternatives x;, x;, and x; (i # j # k), assume that their pairwise
comparisons p;; and pj satisfy 0.5 < p;, pj < 1 and RMMT is satisfied. Then, in triangle Axpxpx;

composed of three edges with lengths of p;;, pjr, and pi, pi is determined by

Pik = \/p,f + pjz.k —2p,pycost , 9)

uuu Ul
where 0 represents the angle between edges xx; and xx, in triangle Axpxpx, such that

. 2 2
—mm{pij’pjk} <f< arccos—p’j Pk _1.
2max{p;py} 2pyPy

arccos
4.2.2 RMMT in the second situation

In the situation of Fig. 2 (b), where p;; > 0.5, py < 0.5, and p;; > 1= pj = py;, the problem changes

L T

to one considering the angle between edges xx, and x,x; in triangle Axppx, under the
assumption that RMMT is satisfied. First, the situation where the triangle exists is formally
presented.
Proposition 4. Let P = (p;)),x, be an FPR matrix on X x X, where X = {x, x,, ... , x,} denotes a set
of alternatives. For any three alternatives x;, x;, and x; (i # j #k), when their pairwise comparisons
Dij» Dk and py satisfy p; > 0.5, p < 0.5, and p;; > 1— pjy = py;, if py, pi;, and py satisfy RMMT and
Pii — Pi < Pit» then three edges with lengths of pj;, py;, and p; must form a triangle.

Given p;; and pj such that p; > 0.5, p < 0.5, and p;; > py; in Fig. 2 (b), under the assumption that

RMMT is satisfied and p;; — py; < pir, Proposition 4 clearly holds because max {p, pi} < p; can be
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used to directly deduce that py < p; + py. In such a triangle, the range of angles between edge
x,x, with length py and x,x; with length py; can be determined.

Property 4. Let P = (p;})ux, be an FPR matrix on X x X, where X = {x;, x2, ..., x,,} denotes a set of
alternatives. For any three alternatives x;, x;, and x; (i # j # k), if their pairwise comparisons pj;, pji,
and py satisfy p; > 0.5, py < 0.5, p; > 1= pix = pij» and 0.5 < py < p;;, then we can determine that

U uuuu
the angle between edge x,x, with length py, and edge x,x, with length p; in triangle Axpx,

satisfies
min{p..,pk.} 0.5+ p;. — p;
arccos —————— < @< arccos————", (10)
2max{pij,pkj} 2-0.5- Dy
MIny Py Py
/3 < arccosM < 0.41967, and (11)
2max{p,. p,
0.5° +p;. — p;
/3 < arccosﬁ < (12)

2:05-p,;
The proof of Property 4 is presented in Section A.5 of Appendix A. Example B.2 in Section B.3
UL uuuu
clearly demonstrates Property 4. In triangle Axpxjx, where the lengths of edges x,x; and x,x;
UL .
(p;; and py;, respectively) are provided and the length of edge x,x, (pi) is unknown, when p;; > py;
> 0.5, pi; can be calculated under the assumption that RMMT is satisfied.
Definition 10. Let P = (p;),x, be an FPR matrix on X x X, where X = {x, x5, ..., x,} denotes a set
of alternatives. For any three alternatives x;, x;, and x; (i # j # k), assume that their pairwise
comparisons p; and py; satisty p; > piy > 0.5 and RMMT is satisfied. Then, in triangle Axxpx;
composed of three edges with lengths of p;;, py;, and pi, pi is determined by

pic=piycosd+ \[p; - prsin0, (13)

wm uuuu min { Dyj» Py }
where 6 represents the angle between edges xx, and x,x; such that arccos————~ <
2max{pl.j ’pk/‘}
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0.5% + p,fj —p;
2:0.5-p,

6 < arccos

Eq. (13) is inferred from p;; = \/pjc + p,fj —2p, pycos presented in Eq. (9).
4.3 Introduction of triangular bounded consistency

By using directed triangles to represent the FPRs for any three alternatives, the RMMT of an
FPR matrix is reconstructed in Section 4.2. Taking this as an important foundation, this section
introduces a new consistency of an FPR matrix called triangular bounded consistency, which is
developed depending on the bounded rationality of a decision maker. Thus, triangular bounded
consistency is clearly different from additive and multiplicative consistency. The developed
consistency is then applied to estimate the missing elements in an acceptable incomplete FPR
matrix.
4.3.1 Concept of triangular bounded consistency

As demonstrated in Section 3, when a decision maker provides an FPR matrix, which is
additively consistent, they are assumed to be perfectly rational. In contrast, multiplicative
consistency relaxes this assumption to guarantee that all FPRs are limited to [0, 1]. In practice,
however, the two types of consistency cannot characterize the bounded rationality of a decision
maker. This negatively influences the applicability of the two types of consistency in real cases. To
address such a problem, a new consistency of an FPR matrix called triangular bounded
consistency is proposed under the condition that RMMT is satisfied.

Triangular bounded consistency is defined under the assumption that a decision maker may not
have access to all relevant information or may not be able to process the information consistently
and rationally in an efficient way (Yan and Ma, 2015). This guarantees that preferences of the

decision maker are reasonably acceptable but not perfectly consistent. The basic idea of checking
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triangular bounded consistency of a known triangle denoted by Ax.xx; as plotted in Fig. 2 (a) is
comprised of four steps:

(1) collecting preferences of a decision maker as directed triangles,

(2) using each directed triangle to determine the third edge ;t;c.: of Axpxpx; from the two edges

uuuu uuuu
xx; and xx,,

(3) creating a consistency interval based on the mean and standard deviation of the resulting
third edges, and

(4) judging whether the known third edge is limited to the created consistency interval to
confirm the consistency of the known triangle.

These steps are described in detail below.

(1) Collection of preferences

There are typically two ways to collect the preferences of a decision maker. One is to choose
them from historical evaluations represented by FPRs. The other is to obtain the preferences of the
decision maker by asking them to compare given alternatives in pairs in a similar field they are
very familiar with. Suppose that the preferences of a decision maker are gathered and expressed
by & triangles {(p., py, p), ..., (", pi, p')}. Because the triangles in the second situation
presented in Section 4.2 can be transformed into those in the first situation in accordance with the
basic characteristics of FPRs in Definition 1 presented in Section 2, the /4 triangles are assumed in
the first situation, where p’>0.5, p, 205, and p! >max{p’,p,} (m =1, ..., h) are

satisfied. The angle between the two edges associated with p” and p," is denoted by 6,,, which

. m m m 2 m 2 —
M , arccos (pa ) +(pb ) : ], as indicated by

is limited to [ &, mom
2max{p,’1",pl',"} 2p, py

m 2

6;1 = [ arccos

Property 3 in Section 4.2.
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(2) Determination of the third edge
Given that a known triangle Axxx; in the first situation is provided, where the lengths of edges

Ui uuuu
xx; and x,x, (p;and py, respectively) are larger than or equal to 0.5, a direct method of using

1

the / triangles to calculate the length of edge ;;.: (pi) 1s to regard 6, as the angle 0 between

L uuuu ) o min{pij,pjk}
edges xx; and xx, . We can determine from Eq. (6) that 0 [0, 0" ] = [arccos ———
2max{p[/,pjk}

b

2

2
Y2 + P —
arccos

: ]. For the / triangles, however, 6,, cannot be always guaranteed to be limited to
2P,-jp ik
this interval. For example, given (p', p,', pr)=(0.6, 0.7, 0.85) and (p;, pyx) = (0.8, 0.8), 6,, =
045157 and [67, 0] =[0.33337, 0.42987] can be obtained using Eqgs. (5) and (6), respectively. It is
clear that 6,,¢ [0, 0], and a direct method is unavailable in this situation.
Therefore, a ratio method is developed to determine € in the triangle Ax.xx;. The idea of such a
method is that the ratio of 6,-6, to 6, -6, is equal to the ratio of -6~ to 6" -6, as

m

plotted in Fig. 3. Following this idea, we can easily determine that

6, -0,
+ .
0, -0,

0= 6 @ -67). (14)
The value of py is then determined using Eq. (9). When all 7 triangles are applied, p; (m=1, ...,

h) is generated.

Fig. 3. Equivalent transformation between triangle Ax;xx; and the triangle ( p”", p,', pI)

provided by the decision maker.
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(p;” )2 +(p;" )2 ! and 0'= arccosm
2p. py 2P

It should be noted that ' =arccos are assumed

in the above analysis to follow the basic property of FPRs that the maximum value of an FPR is 1.
This property is not ensured by additive consistency; thus, it inspires multiplicative consistency. In
theory, the length of the third edge in a triangle may be larger than 1 if the other two edges have
lengths larger than 0.5. From this perspective, additive consistency rather than multiplicative
consistency covers all possible situations that may not follow the basic characteristics of FPRs.
From the viewpoint of the triangle, #" should be set to 7 to cover all possible situations. Otherwise,
some counterintuitive results may be obtained, which is illustrated by the following example.

Example 2. For a set of alternatives X = {xi, ..., x5}, suppose that P = (p;)s.s is an FPR matrix on
X x X with p12=0.61, ps3 = 0.75, p34 = 0.66, and pss = 0.75. For simplicity, given (p., p,, p.)=

(0.6, 0.7, 0.78), p;3 and p;s are calculated under the condition that 65 =

1)? 1\? 2 2
p,) +lp,) -1 o+ p -1
arccos% and "= arccosM aswellas " =mwand 0" =r.
2p.Ps 2pPy
12 1y 2, 2
+p,) -1 4+ p -1
1 g = arccos( ) g T) and 0"=arccos 2L+
2P,y 2P,y
o o min{p} . p} |
In this situation, it can be calculated that [ 6 , 6" ] = [ arccos——————

2max{p;,pfl)} ’

12 1 (1)
arccos( ) 2p$p1;) 1=10.3597, 0.5571x], and 6, = arccos (pa) 2(]};'271 (Pc) =0.4071x.
al’b al’b

min {pIZ > P }

When p;; and py; are considered, we can determine that [0~ ,0"] = [arccos s
2max{p12,p23}

2 2
arccospl;Jr—pBl] = [0.3667, 0.52287]. From [@ .6 ] and [@~,0" ], it can be calculated that 0
PPy

= 0.40467 using Eq. (14), and it can be further deduced from Eq. (9) that p;,= 0.8151. As for p34

min {p34 > Pys }

and p4s, in a similar way, we can determine that [  , 8" ] = [ arccos ,
2max {P34 > Pas }
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2 2
arccos 25 Pis T1 1 _ 103557 0.50067], 6 = 0.39037, and p!, = 0.8147. The conclusion that
2Py Dys
p113 > p§5 is clearly counterintuitive because p1, < ps34 and pa3 = pss.
2) §=mwand 0'=1x
When 6 and 6" are changed to z, with respect to pj, and pa3, 6 is changed to 0.4142z, in
which it can be further deduced that pll3: 0.8313. Under the same condition, 6 between ps4
and py; and between pys and pi; are converted into 0.4034z and 0.838, respectively. The

conclusion that pj, < p}; makes sense because it is in line with the given conditions.

. m m
min{ 2.

, ] for the A triangles and [0~ ,0"] =
2max {p;" , pg"}

Example 2 reveals that [0, ] = [ arccos

m?>“m

min{p,.9,)

, m] because the triangle Axxx; should be specified to guarantee the
2max{p,~,«,p,-k}

[ arccos

rationality of pj; calculated based on the 4 triangles. Note that 6"=z may resultin p; >1.As
shown in Definition 1 presented in Section 2, pj; = 1 means that the alternative x; is absolutely
preferred to x;. With this consideration, the situation of p;’ > 1 can be reduced to the situation of
p; =1 without information loss. From this, Property 3 presented in Section 4.2 is also satisfied.

(3) Creation of consistency interval

Each of the 4 triangles represents the preference of a decision maker and none of them can be
considered to be more representative than another without further information provided by the
decision maker. In this situation, a feasible method of considering the preferences contained in the
h triangles is to find a consistency interval to cover p; (m =1, ..., h). Because the mean and
standard deviation are two statistics commonly used to measure the central tendency and
dispersion among a set of discrete numbers, the mean and standard deviation of p; (m =1, ...,

h), denoted by
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_ 1 m
P = Zz’,:,:]pik and (15)

Se = s Zh(ri-p) (16)
respectively, are applied to construct the consistency interval [ p, =S, , P, + Sy |-

(4) Triangular bounded consistency

Using the constructed consistency interval derived from the /4 triangles provided by a decision
maker, whether a triangle Axx;x; is of triangular bounded consistency is judged as follows.
Definition 11. Suppose that h triangles denoted by {(p., pi, p.), ..., (P, pr, p!)} are
provided by a decision maker to characterize their preferences, where p >0.5, p;>0.5, and
pl = max{p”,p;}(m=1, ..., h). Given a triangle Axxx; with lengths p;, py, and py such that p;
> 0.5, pir =2 0.5, and py > max{p;, pjr}, assume that p; (m =1, ..., k) is generated by using Eqs.
(9) and (14) and the mean p, and the standard deviation Sy of p;; (m =1, ..., h) are known.
Then, p;, pir, and py are considered to satisfy triangular bounded consistency if they satisfy the
following condition:

Pi =Sy SPikS Dy +Sy- 17)

Based on Definition 11, triangular bounded consistency of an FPR matrix is defined.
Definition 12. Given a set of alternatives X = {x;, xa, ..., X}, let P = (p;),x, be an FPR matrix on
X x X. Suppose that / triangles denoted by {(p., p,, pl),....(p", pl, p")} are provided by a
decision maker to characterize their preferences, where p”>0.5 , p/”205 , and
pr zmax{p),p,}(m=1, ..., h). Under the given conditions, P is said to have triangular bounded
consistency if pj, pi, and px (Y i, j, ke {1, ..., n}) are verified to be of triangular bounded

consistency.

Note that for any three alternatives, we can always find a triangle in the first situation shown in
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Section 4.2, which is similar to the situation of the % triangles and potentially assumed in
Definition 12.
4.3.2 Estimation of missing FPRs

In real-world applications, it could be a burden on a decision maker to have to compare all
alternatives in pairs and guarantee consistency of the comparisons. To relieve this burden, the
decision maker is allowed to provide comparisons between some alternatives rather than all
alternatives. This gives rise to the question of how to estimate the missing comparisons in an
acceptable incomplete comparison matrix as defined in Definition 8 presented in Section 2. This
question is addressed using triangular bounded consistency of the matrix for each of the two
situations presented in Section 4.2.

(1) Analysis of the first situation

Assume that the 4 triangles in the first situation, denoted by {(p., p,, p)), ..., (p!, p!,
p’)}, are provided by a decision maker. Under the condition that p;; and pj with p; > 0.5 and pj >
0.5 are provided and py is unknown, p; (m =1, ..., h) limited to [0.5, 1], p,,and S, can be
obtained in accordance with Subsection 4.3.1. When pj; is limited to [ p,, =S, Py +Si |, Pi» Pito
and p;; can be considered to have triangular bounded consistency.

(2) Analysis of the second situation

Suppose that p; and py; with p; > pi; > 0.5 (or py; > p; > 0.5) are provided; then, the angle

uuui UL
between edges xx, and x,x;, in triangle Axxx; represented by ¢ is limited to [67,0"] =

min{ p,, py . 0.5" + py, — p,
M, 7]. The reason that the upper bound is # instead of arccos#
2max{pg./.,pkj} 2:05-py

[ arccos

is similar to that in the first situation, which is explained in Example 2, so is not discussed here.

For each reference triangle (p, p,', p!'), 6 is also determined from Eq. (14) and is used to
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calculate p; (m =1, ..., h) in accordance with Eq. (13). Note that pj > 0.5 is specified by
Property 4; thus, p; =0.5is set when p;'<0.5 because §° =z Basedon p; (m=1, ..., h)
limited to [0.5, 1], the consistency interval [ p, —S,,, p, +S,]is created from Eqs. (15) and (16).
Similar to the first situation, any point in the interval can be given to p; to ensure that p;;, py;, and

pu are of triangular bounded consistency.

The above analyses indicate that any value in the consistency interval [ p, —S,, p, +S,] can

be considered as the estimation of a missing FPR. An important issue is how to find an estimation
in which the information contained in p; (m =1, ..., h) is considered as much as possible. To
address this issue, a fair rule is designed to identify such an estimation, which is nearly or even
completely equidistant from p; (m =1, ..., h). In other words, the estimation selected from the
consistency interval [ p, —S,, p, +3S,] is fair for the given 4 triangles. To find this estimation,

1

an optimization model is constructed as described below.
MIN Y (pi-pi) (18)
s.t. Pu—Si< Py < Du+Su, (19)
where p, symbolizes a decision variable to differentiate it from the optimized pj.
Suppose that f{ p;, ) = ZZZI( Py — Do )2; then, solving the optimization model shown in Egs.

(18) and (19) changes to finding the minimum value of the function f{ p, ) within the range

d