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Abstract

In regression, a predictive model which is able to anticipate the output
of a new case is learnt from a set of previous examples. The output
or response value of these examples used for model training is known.
When learning with aggregated outputs, the examples available for model
training are individually unlabeled. Collectively, the aggregated outputs
of different subsets of training examples are provided. In this paper,
we propose an iterative methodology to learn linear models from this
type of data. In spite of being simple, its competitive performance is
shown in comparison with a straightforward solution and state-of-the-art
techniques. A real world problem is also illustrated which naturally fits the
aggregated outputs framework: the estimation of marine litter beaching
along the south-east coastline of the Bay of Biscay.

Index terms— Machine learning, Regression, Linear models, Aggregated
outputs, Expectation-Maximization, Marine litter beaching

1 Introduction

In supervised learning, a model is learnt from a set of previous examples of the
problem of interest in order to predict, for new unseen examples, the value of
the response or output variable. When the response variable is categorical, the
framework is known as classification, whereas it is named as regression when the
output is continuous. In both frameworks, the term supervised learning indicates
that all the examples used for model training are provided together with their
real output value, a.k.a. ground truth. However, obtaining the ground truth is
usually hard and costly and normally the supervision of the training examples
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is not complete. Many methodologies have been proposed to learn from these
partially or weakly supervised datasets [19].

In this paper, we focus on the aggregated outputs (AO) framework [27], a
weakly supervised regression problem. The characteristic training dataset of
this framework is divided into disjoint subsets of examples and the individual
real output value of each training example is not provided. Alternatively, for
each subset of examples, a single output value is available: the total output value
aggregated from all the examples of the subset. Musicant et al. [27] approached
the problem for the first time with the adaptation of three classical regression
techniques: support vector regression (SVR), k-nearest neighbor (KNN) and ar-
tificial neural network (ANN). Afterward, it received little attention in compari-
son with learning from label proportions [21, 36, 5, 38, 43, 18, 31], its equivalent
framework in classification. Here, the response values of a subset of examples
are aggregated in the form of proportions of examples belonging to each label.
The related literature covers support vector machines [38, 47, 35], discriminant
analysis [31], boosting [34], clustering-based approaches [5, 43] or Expectation-
Maximization based probabilistic approaches [18]. Theoretical guarantees have
also been provided [30, 11]. These methods have been applied to real domains
such as spam filtering [36], poll prediction [31, 44], embryo selection [17], fraud
detection [38], manufacturing [43], brain-computer interfaces [20], high energy
physics [8], etc. In regression, on the contrary, this genuine aggregated response
has only been described, so far, for estimating the amount of black carbon in
aerosol particles [27].

The problem of marine litter beaching estimation, from the area of environ-
mental sciences, fits the AO framework as well. Marine litter is defined as any
persistent, manufactured or processed material abandoned or disposed of in the
marine environment [14]. In recent times, concern about its ecological, social
and economic impact [7, 42, 26, 15] has grown. Beach litter has a negative
impact on marine ecosystems [9, 15], with well-known issues such as ghost fish-
ing [22, 23, 25] or plastic ingestion [1, 24, 29, 41]; international institutions [12]
have warned that by 2050 oceans might contain more plastic than fish. Beach
litter also harms the recreational and aesthetic value of coastal areas, affects
public health [16, 3] and impacts on industrial sectors such as fisheries, ship-
ping or tourism [28, 16]. Accumulated beach litter is mostly related with (i)
holiday tourism [32], (ii) waste unburied by spring tides [2], (iii) fishing appara-
tus [46], and (iv) organic material or inland produced litter deposited by rivers
and tides [40]. Beach cleaning services spend large amounts of money annually
on removing this waste. Cleaning on a daily basis is unfeasible due to its high
economic cost. Alternatively, cleaning services need to plan and set up resource
allocation and, to do so, an estimation of the accumulation of litter is necessary.

Our aim here is to learn a model that daily predicts the accumulation of
waste on a beach based on environmental conditions. To describe an example
(a day), metocean and environmental variables are used [33, 37]. The output
variable represents the amount of litter accumulated on a beach during 24 hours.
Metocean and environmental observations are collected everyday by automatic
stations. However, the amount of waste is only measured when service members
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Figure 1: Simulated example of datasets of regular regression (left) and aggre-
gated outputs (right), together with the respective graphical descriptions.

personally visit the beach to remove it. In this way, the training data consists
of a set of examples, each of which describes the coastal line of a municipality
on a specific day by means of a complete vector of metocean and environmental
measurements, and an output value which might be missing. Moreover, on a
day without cleaning service, waste is neither measured nor collected and, thus,
it accumulates for the following day. Therefore, when a cleaning team visits
the beach, the accumulated waste is an aggregated measurement for the period
starting right after the previous removal, possibly covering a few days (a subset
of training examples).

The main contributions of this paper are two-fold:

• A novel strategy to infer regression models from a dataset with aggregated
outputs and its illustration with linear models.

• A novel approach to marine litter beaching prediction, with a case study
on real data from the Basque coastline.

The use of linear models offers a simple, yet efficient, solution with a closed-
form expression for its learning procedure. Nevertheless, the underlying strategy
could be straightforwardly adapted to learn other types of (non-)linear models.
An extensive empirical study shows that the approach presented is competi-
tive with respect to previous proposals in both synthetic and real data. This
estimation of marine litter beaching may provide the environmental research
community with an alternative predictive approach, which makes the most of
the available information for model training.

The paper continues as follows. Firstly, after the presentation of background
concepts and techniques, a formal description of the AO problem is given and our
method for inferring linear models is presented. Its performance is tested and
compared on synthetic AO data with state-of-the-art learning methods. Next,
the case study is presented and the previously considered methods are applied.
Finally, after the discussion of the experimental results, open questions are put
forward and conclusions are drawn.
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2 Background

In this paper, we deal with the AO framework by means of linear models. Linear
models are a typical solution to regression problems. In the standard completely
supervised framework, where each training example is individually supervised
and standard supervised learning techniques can be used, linear models are
mainly learned by means of the method of least squares.

2.1 Regression

A supervised learning problem is described by a set of n explanatory features
and a special feature, the response or output variable. Specifically, the response
value of a regression problem is continuous. In a regression problem, the objec-
tive is to train, using a set of examples, a regression model which anticipates
the response value of new examples. A problem example (x, y) is a (n + 1)-
tuple where each feature takes a specific value. For model training, a dataset of
m fully supervised examples, {(x1, y1), (x2, y2), . . . , (xm, ym)}, which are sup-
posed to be independently and identically distributed (i.i.d.) samples from some
underlying probability distribution, is provided. An example is fully supervised
if the value of the response variable y is known and not missing.

The training data is sometimes represented in matrix form by means of a
(m × n)-matrix X and a (m)-vector y. The j-th row of matrix X represents
the j-th example of the training data, xj , whereas the corresponding response
value, yj is the j-th entry of vector y. The entry xjv in matrix X represents
the value of the v-th explanatory variable for the j-th example.

2.2 Linear models

The objective of linear regression is to infer a linear model (LM) that approaches
the relationship between the explanatory variables and the response. The exis-
tence of a vector of parameters, β, such that the response variable is a linear
function of the explanatory variables, is assumed,

yj = xt
jβ + εj , ∀j ∈ {1, . . . ,m}

where εj are the regression residuals. In matrix form, the problem can be stated
as,

y = Xβ + ε

where ε is the vector of residuals. Generally, in practice, the original explanatory
vectors xj (and also the matrix X) are enlarged with a constant value (1,xj).
This imposes the use of an extra parameter, β0, called the intercept, which
guarantees that the sum of the residuals εj is zero. In this standard supervised
learning framework, the vector of responses y is assumed to be complete (fully
supervised examples).

Least squares is the most common method to train a linear model for multiple
regression. Let us define the regression residuals considering that a (linear)
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model might not fit every single data point. Thus, a residual εj is defined as
the difference between the estimated response value, xt

jβ, and the real response
value, yj ,

εj = yj − xt
jβ

for a given fit β of the model. Note that a measure of the error of a model fit β
can be obtained as the sum of squared residuals,

s(β) =

m∑
j=1

(yj − xt
jβ)2 (1)

The least squares method produces the set of parameters β̂ that minimizes
the sum of squared residuals (Equation 1),

β̂ = arg min
β∈R(n+1)

s(β) (2)

which, in matrix form, has the following closed-form expression,

β̂ = (Xt ·X)−1 ·Xt · y (3)

where y is the original response vector and (Xt ·X)−1 ·Xt is the pseudo-inverse
of matrix X. When it is used for prediction, given a new explanatory vector,
x, an estimation of its response value is obtained as,

ŷ = xtβ̂ (4)

3 Aggregated Outputs

The main novelty of the learning with aggregated outputs framework is the
lack of a fully supervised set of training examples (see Figure 1). The m
explanatory vectors are individually unsupervised (without associated response
value) and grouped into b bags, {x1,x2, . . . ,xm} = B1 ∪B2 ∪ · · · ∪Bb, where
Bi ∩Bi′ = ∅,∀i 6= i′. Each bag Bi = {xi1,xi2, . . . ,ximi

} groups mi instances,

with
∑b

i=1mi = m. Together with each bag, a limited piece of supervision
is provided: the aggregated output ȳi is the sum of the individual response
values of all the examples in Bi (ȳi =

∑mi

j=1 yij , where the individual values
yij are missing). In matrix form, the descritive (m×n)-matrix X is completely
available, in contrast with the instance-wise (length m) response vector y, which
is missing. Alternatively, a bag-wise (length b) vector, ȳ, of aggregated responses
is available, where the i-th entry represents the aggregated output of Bi. The
rest of the framework is defined similarly to the standard regression framework
previously presented. Among these similarities, the most important one is that
the objective of the AO framework is also to learn a regression model that
predicts the response value of new unseen examples.

An aggregated output involves uncertainty in the measurement of the output
variable. Specifically, the level of uncertainty depends on the characteristics of
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the corresponding bag. Intuitively, the larger the bag, the more possible ways
there are to distribute the aggregated response, ȳi, among the mi individual
responses, yij , and, thus, the higher the degree of uncertainty in the response
of the individual examples of the bag. On the contrary, the smaller the number
of examples in the bag, mi, the larger the certainty. In the extreme, a bag with
a single example (mi = 1) involves full certainty as yi1 = ȳi. In problems with
large bags, therefore, the performance of the learning techniques is expected to
be compromised.

3.1 Linear models from aggregated outputs

Although the learning procedure is necessarily different, the linear models learnt
with AO are essentially similar to those learnt with complete supervision. As
the instance-wise response vector, y, is not complete, ordinary least squares
cannot be applied as explained in the previous section. The bag-wise vector
of aggregated outputs, ȳ, is the available information of supervision. At this
initial point, in order to apply the aforementioned techniques for training linear
models, one possibility is to transform the vector of aggregated outputs, ȳ, into
an instance-wise vector, y′, that assigns a certain response to each example.

A naive transformation of the aggregated response vector, ȳ, is to equally
distribute (disaggregate) the aggregated response, ȳi, among all the instances
of bag Bi, y

′
ij = ȳi/mi,∀i, j : i ∈ {1, . . . , b} ∧ j ∈ {1, . . . ,mi}. In matrix form,

it can be defined as,
y′ = At(ȳ � (Ao)) (5)

where A is the assignment (b×m)-matrix —it codifies the assignment of exam-
ples to bags: Aij = 1 if example xj belongs to bag Bi, and Aij = 0 otherwise—,
o is an m-tuple with all its entries oj = 1, and � represents the Hadamard divi-
sion or entry-wise division of two equal-sized vectors (a = b�c ≡ ai = bi/ci,∀i).
As vector y′ is instance-wise, it can be used together with matrix X to infer the
linear model parameters, β′, by means of Equation 3. This procedure provides
a first fit of a linear model. However, this fit is likely to be deficient as the
response vector y′, a naively disaggregated instance-wise output, is used for its
training.

Inspired by the Expectation-Maximization strategy [6], the proposed learn-
ing approach is an iterative methodology of two steps. Firstly, given an instance-
wise response vector y′ (disaggregated from the aggregated outputs ȳ) and ma-
trix X, a linear model is inferred. In turn, the current fit of the model is used
to improve the disaggregation of ȳ to obtain a new estimate of y′. From an al-
ternative point of view, the method reduces to the iterative re-estimation of two
instance-wise response vectors: (i) an unconstrained prediction of the current
fit of the linear model for all the training examples,

y′′ = X β′ = X (Xt X)−1 Xt y′ (6)

and, (ii) a transformation of the current estimate y′′ to guarantee that the
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instance-wise outputs sum up to the bag-wise aggregated outputs, ȳ,

y′ = At (ȳ � (A y′′))� y′′ (7)

where � represents the Hadamard product or entry-wise product of two equal-
sized vectors (a = b� c ≡ ai = bi · ci,∀i).

In other words, in Equation 6 a fit β′ of the linear model is learnt given y′

(by Equation 3) and used to obtain an estimation of the responses of each train-
ing example y′′ (by Equation 4). The produced estimation is not guaranteed
to fulfill the only available information of supervision: the aggregated outputs.
Taking full advantage of the information of supervision, Equation 7 transforms
y′′ into a proportional estimate, y′, that does concur with the aggregated out-
puts, ȳ. This new instance-wise estimation, y′, can be used to feed Equation 6
again.

To sum up, our proposal obtains an initial estimation of y′ by Equation 5
and, subsequently, iterates Equations 6 and 7 until the minimum β̂∗ param-
eters that lead to the best results are reached. The calculation of the model
parameters, β̂, is an implicit sub-step of Equation 6.

This iterative technique is empirically compared in the following sections
with straightforward approaches and with state-of-the-art methods presented
by Musicant et al. [27].

3.2 Experimental design

The lack of publicly available real AO datasets makes any attempt to test a
novel technique hard. In this first part of the paper, we test our proposal
in synthetically aggregated outputs obtained from the transformation of fully
supervised regression data. Specifically, up to 16 regular regression datasets were
collected from three public repositories [4, 45, 13] (see Table 1). The strategy of
Musicant et al. [27] was followed to transform a fully supervised dataset into an
AO dataset: (i) examples are ordered by increasing order of their response value
({(xj , yj)}mj=1 : yj > yj′ → j > j′) (ii) a certain rate r of pairs of examples are
randomly selected, (iii) for each pair of examples, their positions in the ordering
are swapped, (iv) groups (bags) of mi consecutive examples in the ordering are
formed, and (v) the individual responses are aggregated by bag ({yj}mj=1 into

{ȳi}bi=1), and then removed. It is worth noting that the order confers some sort
of information of supervision. In order to control the experimental settings,
two parameters allow us to simulate scenarios of different complexity: the bag
size, mi, and the swap rate, r, defined as a proportion of the total size of the
dataset. For example, a value r = 0.5 implies that, after ordering the dataset,
0.5 · m (half the size of the dataset) randomly selected pairs of examples are
swapped. By shuffling larger proportions of examples before the division into
larger bags, a higher degree of uncertainty is induced. Small values of both mi

and r parameters tend to produce AO datasets with more certain information
of supervision.

Model validation with only weakly supervised data is an open issue. In this
paper, as aggregated outputs are synthetically aggregated, we do have real class
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labels for model validation. The original dataset is first divided into training
and validation data. The partition of the data devoted for model training is
transformed following the aforementioned procedure, whereas the partition used
for model validation remains untouched. All the experiments are evaluated by
means of 10× 5-fold cross validation.

Our experimental setting is two-fold. Firstly, in order to test the usefulness
of the aggregated outputs, our proposal is compared with linear models learnt in
the fully supervised scenario and a control approach. Secondly, our proposal is
compared with other methods previously presented in the related literature. The
numerical results of all these experiments are publicly available in the website
associated with this study1.

3.3 Assessing the contribution of the aggregated outputs
to learn linear models

In this first set of experiments, we aim to show the benefits of using a learn-
ing technique specifically designed to learn with aggregated outputs. Our AO
solution is compared with two baselines: (i) a fully supervised approach (lin-
ear regression models learnt with the original untransformed response variable),
and (ii) a control approach (linear models learnt with a response vector naively
disaggregated using Equation 5).

In these experiments, different scenarios of aggregated outputs are designed
by the use of up to 16 different datasets, four different bag sizes, mi = {3, 5, 10, 20},
and seven different numbers of swapped instance pairs, r = {0, 0.05, 0.1, 0.2, 0.4, 1, 2}.
A detailed collection of the experimental results is shown in Figure 2, where per-
formance is measured by means of root mean square error (RMSE), with each
each subfigure showing a different y-axis (error) range. Additionally, the aver-
aged experimental results with all the datasets are summarized in Figure 3. Due
to the large divergences among the error ranges of the different datasets, this
figure shows the average error relative to the result of the linear model learnt
with full supervision.

According to the results in Figure 2, the linear models learnt with AO out-

1http://www.sc.ehu.es/ccwbayes/members/jeronimo/aobeaches/

Table 1: Real datasets used [4, 45, 13] described by number of examples (m)
and number of explanatory variables (n).

Dataset m n Dataset m n
machine 209 6 mg 1385 6
bodyfat 252 14 airfoil 1503 6
eunite2001 336 16 space ga 3107 6
mpg 392 7 abalone 4177 8
boston housing 506 13 winequality 6497 12
stock 950 9 kinematics 8192 8
swd 1000 11 cpusmall 8192 12
concrete 1030 9 bank 8192 32
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Figure 2: Results in terms of root mean square error of linear models learnt with
aggregated outputs and with equally distributed outputs (control) in different
simulated AO scenarios, and also with full supervision in the original scenario.
For generating synthetic AO scenarios, different bag sizes, mi = {3, 5, 10, 20}
and swap rates, r = {0, 0.05, 0.1, 0.2, 0.4, 1, 2}, are used. Each subfigure shows
the results of the experiments in a different dataset.
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Figure 3: Results in terms of average relative root mean square error of models
learnt with aggregated outputs and with the control approach. Results are
relative to those of a linear model learnt with full supervision and averaged over
all the datasets (Table 1). Different AO scenarios are simulated using different
bag sizes, mi = {3, 5, 10, 20} and swap rates, r = {0, 0.05, 0.1, 0.2, 0.4, 1, 2}.
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perform those learnt with the control approach when the number of swaps per-
formed during the AO simulation procedure increases. Note that the first point
in each line of the figure represents an experiment carried out without swaps,
that is, the examples are ordered by response value before bag aggregation. In
this scenario, by definition, the first bag has the smallest aggregated response
value and, incrementally, the last bag has the largest. This configuration, which
guarantees the lowest variance in the bags, brings determinant information of
supervision: the control version consistently performs as accurately as the fully
supervised approach. Moreover, with large datasets (second column, Table 1),
there always exist aggregated scenarios where the AO models are competitive
regarding the fully supervised approach. This is an indicator that, also in the
AO framework, a larger number of examples enhances the performance of the
learnt models. Finally, the bag size, mi, seems to affect both the control and the
AO approaches in a similar way. In most of the subfigures of Figure 2, the plots
for the different bag sizes are similar, with proportionally enlarged differences.

It is worth noting that the aforementioned behaviors are extreme in the
case of large datasets (m > 1000), where the control and the AO approaches
show opposite behaviors. The control approach (notably) outperforms the AO
solution when few swaps are used for AO simulation, and, with a large number of
swaps, it is the other way around. With cpusmall and bank domains, the largest
datasets in terms of number of samples (m) and explanatory variables (n), the
control approach is only competitive with no or few swaps. These results are
in line with the idea that the number of explanatory variables determines the
sample size required to learn a robust model.

The summarized relative results in Figure 3 verify the previously exposed
behaviors. The bag size, mi, affects both approaches (AO and control) similarly.
As the swap rate, r, is enlarged, the performance of both approaches differs.
With no swaps, the control approach stands out and, with very small swap
rates (r ∼ 0.05), it is still competitive with (although not better than) the AO
approach. With a considerable number of swaps, the AO solution systematically
outperforms the control approach.

3.4 Comparison with state-of-the-art

Once the benefits of using a specifically designed AO strategy have been shown,
our proposal is compared with state-of-the-art strategies. All three methods
developed by Musicant et al. [27] (SVR, KNN and ANN) were tested, although
the results of ANN models are not shown in this paper as they were consis-
tently worse than those of the rest of techniques. Their inclusion would hardly
provide any valuable insight and, nevertheless, would make the appreciation of
differences among the rest of the techniques difficult.

Similar to the previous experiments, different AO scenarios are designed by
the use of the 16 datasets, four different bag sizes, mi = {3, 5, 10, 20}, and
seven different swap rates, r = {0, 0.05, 0.1, 0.2, 0.4, 1, 2}. The results in terms
of RMSE are displayed in Figure 4 for each dataset separately. Additionally,
Figure 5 summarizes the results over all the datasets by means of the average
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Figure 4: Results in terms of root mean square error of linear, KNN
and SVR models learnt with aggregated outputs, in different simulated AO
scenarios. Different bag sizes, mi = {3, 5, 10, 20} and swap rates, r =
{0, 0.05, 0.1, 0.2, 0.4, 1, 2}, are used for generating synthetic AO scenarios. Each
subfigure shows the results of the experiments in a different dataset.
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Figure 5: Results in terms of average relative root mean square error of linear,
KNN and SVR models learnt with aggregated outputs. Results are relative to
those of a linear model learnt with full supervision and averaged over all the
datasets (Table 1). Different AO scenarios are simulated using different bag
sizes, mi = {3, 5, 10, 20} and swap rates, r = {0, 0.05, 0.1, 0.2, 0.4, 1, 2}.
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relative error. As aforementioned, the relative error is defined as the error
obtained by an AO technique divided by that of a linear model learnt in the
fully supervised scenario.

The experimental results displayed in Figure 4 show the competitive behavior
of our proposal based on linear models learnt from AO. In several datasets,
such as machine or eunite2001, our solution outperforms KNN and SVR in
all the simulated AO scenarios. In general, its predominance is particularly
notable when the swap rate, r, is intermediate. Although KNN is competitive
in AO simulations with no (or few) swaps, its performance rapidly degrades
as r increases. Its behavior is noticeably stable across domains and bag sizes.
The increase in terms of RMSE is simply explained by the larger uncertainty
associated to larger bags. Finally, SVR performs similarly to our solution based
on linear models (LM). Its usual robust behavior against swaps is noteworthy:
the larger the swap rate, r, the better its performance. A quick degradation of
the performance of the linear models when r reaches 0.4 is discernible in several
datasets (mpg, boston housing, stock, cpusmall). In other domains such as bank,
bodyfat or mg, as bag size mi grows, the performance of SVR drops when r is
small and that of LM also drops when r is large. Regarding the bag size, mi,
its comparative influence in these experiments is limited, as it affects all the
methods similarly.

Figure 5 summarizes the results over domains. Regarding the swap rate, r,
KNN only outperforms the rest of the methods in experiments without swaps,
SVR stands out when the value of r is large, and the proposed LM solution is
the best approach in scenarios with intermediate values of r. SVM is remarkably
robust to swaps and its performance even improves as r increases. Our solution
is robust for small swap rates (r ≤ 0.4) but, as r grows, its performance draws a
notable slope. The effect of the bag size, mi, is consistent for all three method-
ologies: as larger values of mi are considered, the aforementioned differences
become more noticeable.

Once our solution and the state of the art approaches have been validated
in simulated data, a real-world application of the AO framework is presented
and these techniques are tested in real data.

4 Case study: marine litter beaching

Our interest in the AO framework is motivated by the study of a real problem
where the response variable naturally shows aggregated outputs: the marine
litter beaching prediction.

The objective is to build a model for predicting the waste accumulated dur-
ing a single day on the beaches of seven different municipalities (1-3 beaches
per locality) on the Basque coastline. Given such a prediction, local authori-
ties could arrange the daily cleaning activities, set up resource (both workforce
and machinery) allocation, or even take precautionary measures. Thus, each
problem example represents a specific day, and it is described by a set of river-
flow, metocean and environmental explanatory variables (see Table 2 for a com-
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Table 2: Identifier and explanatory variables of the dataset.
Variable Range Description
Site {1, . . . , 7} Municipality-Beach(es) id.
Date {01/01/2009, . . . , 12/31/2016} Date of the measurements
Day {Su, Mo, Tu, We, Th, Fr, Sa} Day of the week
Season {Spr,Sum,Aut,Win} Season of the year
InputA-D [0, 13.7] (m) Max. significant wave height, sections 1-4
InputE [0.80, 448.4] (m3/s) Water flow of Bidasoa river
InputF [1.19, 227.5] (m3/s) Water flow of Urumea river
InputG [2.71, 715.9] (m3/s) Water flow of Oria river
InputH [0.94, 286.4] (m3/s) Water flow of Urola river
InputI [0.58, 242.6] (m3/s) Water flow of Deba river
InputJ [0.56, 20.3] (m3/s) Water flow of Artibai
InputK [0.57, 9.5] (m) Max. significant wave at Zarautz
InputL [3.45, 8.7] (m) Max. coastal flooding level at Zarautz
InputM-P [0, 1381.0] (m) Drag, sections 1-4
InputQ-T [0, 1734.9] (m) Max. drag at Zarautz, sections 1-4

plete description). During the whole period 2009-2016, daily observations of
the explanatory variables were automatically collected by means of strategically
located sensors: the Bilbao-Vizcaya buoy2, gauging stations along Gipuzkoan
rivers3 and the Zarautz weather station4. Due to the importance of wind-wave
direction and beach orientation in litter beaching [33, 2, 10], the explanatory
variables wave height and drag have been divided into four sections: (1) from
Northwest to Northeast, (2) from Northeast to Southeast, (3) from Southeast
to Southwest, and (4) from Southwest to Northwest. Regarding the response
variable in this domain, historical data about waste accumulation is available for
the same period 2009-2016. However, the measurement of waste accumulation
involves two issues.

Firstly, the output is usually aggregated for consecutive days. The real
amount of waste accumulated in each locality can only be measured as it is
removed by the beach cleaning service, and cleaning all the beaches everyday is
economically unfeasible. Thus, there is no record of waste accumulation for the
days on which the service did not visit the beach. Note that, due to this factor,
there are two types of examples depending on the frequency of the visits of the
cleaning service to a municipality. On the one hand, if a beach is cleaned on (at
least) two consecutive days, since waste has undoubtedly accumulated during
the previous 24 hours, examples (days) with certain measurements of waste
accumulation (a.k.a., fully supervised examples) are available. On the other
hand, if a beach is not cleaned on consecutive days, the waste accumulates for
several days until the cleaning service collects and measures it (bag of examples
with AO). Thus, as certain waste measurements are occasionally available, one
may question to which extent the examples with aggregated outputs enhance
the performance of a model just learnt with these fully supervised examples.

2http://www.puertos.es/en-us/oceanografia/Pages/portus.aspx
3http://www.gipuzkoahidraulikoak.eus/es/datos-tiempo-real

http://www.chcantabrico.es
4http://www.euskalmet.euskadi.eus/s07-5853x/es/meteorologia/lectur.apl
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The second issue involves the existence of natural processes, such as the
tide, wind or waves [39, 2], that periodically clean beaches. When these natural
dynamics are taken into account, it can be assumed that the aggregated output
measured after a period without cleaning services would be lower than the total
amount that would have been measured if cleaning had been carried out on
a daily basis. Under this hypothesis, disaggregating the AO among all the
examples of the bag (sequence of days from the last waste removal-measurement)
is not accurate. To use the AO information fairly, it would be necessary to
estimate the examples which really contribute to the AO of each bag (the days
in which the removed waste was really deposited).

To sum up, in this case study we aim to show the contribution of an AO
approximation to the problem of waste accumulation estimation, taking into
account two important factors: (i) the possible existence of natural cleaning
processes, and (ii) the possible presence of enough certain measurements that
would make an AO approach redundant. To this end, we have carried out a
complete set of experiments specifically designed to answer these questions.

4.1 Experiments

Aiming to answer both aforementioned objectives, different experimental sce-
narios are generated. For each municipality separately, different experimental
scenarios work on different subsets of data for model training and evaluation.

On the one hand, the data is separated by year with the objective of evaluat-
ing the effect of the amount of training data. Remember that the original dataset
comprises, for each municipality, daily samples for 8 consecutive years (i.e., 2920
examples per locality). Thus, for each municipality, 8 different datasets com-
prising all the examples gathered before or during (i.e., not after) each specific
year have been generated. That is, the first subset (≤2009) includes the exam-
ples of year 2009 and is, in fact, a subset of all the subsequent divisions. The
second subset (≤2010) comprises the examples of 2009-2010. The last subset
(≤2016) includes all the 2920 examples.

On the other hand, in order to test the idea of the existence of natural clean-
ing dynamics, large bags are shortened to a maximum bag size, m̆i. Specifically,
7 different maximum bag sizes, m̆i = {1, . . . , 7}, have been tested. In bags larger
than m̆i, the excess examples are removed (in practice, the last m̆i examples of
each bag remain since examples are chronologically ordered). The idea is that
the waste present on the beach long before collection would have already been
removed by the alleged natural dynamics. An enhanced performance of an AO
solution using a specific m̆i (among other m̆i values with limited performance)
might indicate the average amount of time that those natural dynamics need to
remove litter.

All 7 maximum bag sizes where applied to all the 8 year subsets (examples
up to and including that year, ≤ year) to set 56 different experimental scenarios.
All of them were generated and tested for all the 7 beaches. However, for the
sake of simplicity, in this paper only results for municipalities #3 (Zumaia) and
#7 (Donostia) are analyzed. The results for the rest of localities are collected in
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Table 3: Training examples in Zumaia (Gipuzkoa) for different scenarios. Divi-
sion per column shows subsets of examples gathered before or during each year
(not after). Each row shows the number of examples in the bags for a different
maximum bag size, m̆i. The last row shows the number of fully supervised
examples, which is not affected by m̆i.

≤year
m̆i 2009 2010 2011 2012 2013 2014 2015 2016
1 70 135 205 268 336 390 401 468
2 140 270 410 536 672 780 802 936
3 195 369 563 746 926 1081 1114 1290
4 230 439 670 899 1113 1301 1345 1552
5 259 498 761 1031 1273 1483 1538 1770
6 277 542 832 1134 1399 1627 1693 1944
7 291 572 876 1200 1477 1720 1796 2063

fully sup. 41 108 145 154 183 205 206 229

Table 4: Training examples in Donostia (Gipuzkoa) for different scenarios. Divi-
sion per column shows subsets of examples gathered before or during each year
(not after). Each row shows the number of examples in the bags for a different
maximum bag size, m̆i. The last row shows the number of fully supervised
examples, which is not affected by m̆i.

≤year
m̆i 2009 2010 2011 2012 2013 2014 2015 2016
1 73 133 181 241 310 374 418 480
2 146 266 362 482 620 748 836 960
3 184 340 463 613 791 951 1069 1232
4 204 381 522 694 893 1076 1218 1407
5 213 404 560 747 959 1160 1320 1529
6 217 417 584 781 1001 1215 1390 1609
7 219 424 600 807 1031 1254 1440 1665

fully sup. 144 297 455 580 698 813 952 1082
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Figure 6: Results in terms of root mean square error of linear, KNN and SVR
models learnt from the AO data of the beaches of Zumaia (Gipuzkoa). SVR
models learnt only with the available supervised examples are used as a baseline.
Each subfigure shows the results of experiments on a different subset (examples
collected ≤ year) pruning the large bags by using an increasing maximum value
for bag size, m̆i = {1, 2, . . . , 7}.

the supplementary material document on the website associated with this study,
together with all the numerical results of this set of experiments. Tables 3 and 4
show, for Zumaia and Donostia respectively, the size of the different training
datasets used in each experimental scenario. In each row, the dataset sizes
obtained are the product of applying a specific maximum bag size, m̆i, to the
different year subsets (≤ year). In the last row, the amount of fully supervised
examples (note that m̆i does not affect this number) is shown.

As explained in the previous section, model validation is not feasible by
means of standard techniques when only aggregated outputs are available. How-
ever, in this domain, we do have access to fully supervised examples (last row
in Tables 3 and 4): the examples describing consecutive days when waste was
removed daily. A 10 × 5-fold cross validation was used for model evaluation
in all these experiments. The folds were built only with the fully supervised
examples, and the examples in the bags (with aggregated outputs) were always
considered for model training. For all the experiments, three regressors were
learnt: a linear model with our AO proposal, and Musicant et al.’s KNN and
SVR. Additionally, a SVR is also learnt using only the fully supervised examples
(without the AO approximation) to set a baseline for performance comparison.

The results of the experiments with data from the municipality of Zumaia
are displayed in Figure 6. In this case, the model learnt only with fully su-
pervised examples (without AO) poses a competitive baseline. With only the
inclusion of the 2010 data (second subfigure of Figure 6), the fully supervised

16



2009-2013 2009-2014 2009-2015 2009-2016 (complete)

2009 2009-2010 2009-2011 2009-2012

2 4 6 2 4 6 2 4 6 2 4 6

1.50

1.75

2.00

2.25

2.50

1.50

1.75

2.00

2.25

2.50R
M

S
E

mi

u

methods LM AggOut KNN AggOut SVR AggOut SVR full

Figure 7: Results in terms of root mean square error of linear, KNN and SVR
models learnt from the AO data of the beaches of Donostia (Gipuzkoa). SVR
models learnt only with the available supervised examples are used as a baseline.
Each subfigure shows the results of experiments on a different subset (examples
collected ≤ year) pruning the large bags by using an increasing maximum value
for bag size, m̆i = {1, 2, . . . , 7}.

approach is already the best performance method in almost every experimental
scenario. As more examples are used for training and validation (other years
are incorporated), the difference with respect to the AO methodologies is gen-
erally clearer. The performance of all four approaches is affected when the 2011
data is included. After a manual examination of the 2011 data, this can be
considered an atypical year with extremely unusual high values of collected lit-
ter (as well as high values of other variables). Apart from this, the behavior
is steady: the larger the training dataset, the better the results. In the first
years, when data is still scarce, the real contribution of the AO approximation
is noticeable. For example, the SVR model with the AO approach outperforms
the fully supervised SVR in all the scenarios of the 2009 subset. This shows the
superior performance of AO methods when fully supervised examples are scarce
(see Table 3). LM and, mainly, KNN also overcome the baseline in different
scenarios. Globally, the best performing AO approach is SVR, and KNN the
worst one.

The influence of the maximum bag size, m̆i, is also noteworthy. The perfor-
mance of SVR models learnt with AO improves as m̆i decreases (mainly, from
subsets containing data from 2012 on). A similar trend can also be observed
with LM and KNN models. However, this behavior is less clear as the maximum
bag size drops below 5. It is worth noting that in almost all the subfigures of
Figure 6, the performance of LM and KNN has a local minimum in the exper-
imental setting with a maximum bag size of 2 and/or 4-5. In many cases, the
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performance in these points is not worse than when a maximum bag size m̆i = 1
(i.e., no bags are used) is imposed. These results are also competitive regarding
the fully supervised baseline approach. These valleys could identify scenarios
where the decision of shortening the bags is particularly appropriate.

The experimental results with data from Donostia show similar trends (see
Figure 7). As previously mentioned, the error of the four approaches monotoni-
cally decreases as the training dataset is enlarged (inclusion of data of additional
years in each subfigure). Only the inclusion of the data of year 2013 produces
the opposite effect. Like 2011 data from Zumaia, this was an atypical year on
the beaches of Donostia. In this case, the difference between methods is slight
and when AO approaches outperform the baseline, the gain is limited. This is
probably an effect of the larger number of fully supervised training examples
available for this beach (see Table 4). From the subsets including the 2013 year
data and on, the SVR models learnt only with fully supervised data perform
better than the AO approaches. However, in the first four subsets, AO ap-
proaches (mainly LM and SVR) are competitive or overcome the results of the
fully supervised baseline. KNN is again the worst regressor and the differences
between SVR and LM are negligible. In the case of this beach, the performance
of the AO approaches shows the referred performance valleys too. As in the
previous case, experiments with maximum bag size of 2 or 4 show enhanced
performance.

To summarize, the experimental results of these two beaches (and those in
the supplementary material) show that, when available, fully supervised training
data masks the contribution of the aggregated outputs. When a sufficiently large
amount of supervised examples is available, AO might not be necessary. In the
experiments with the smallest subsets of (supervised) data, the contribution of
the AO approach is noticeable. The existence of points with maximum bag
size larger than 1 (usually, 2 or 4) where the performance of AO approaches
reach or overcome that of the fully supervised approach could imply that the
accumulated waste does not last longer than 4-5 days without being removed
by the alleged natural dynamics such as the tide.

5 Discussion

Throughout this paper, we have shown that learning regression models with
aggregated outputs is feasible. One may benefit from using a specific learning
technique that exploits the information of the AO. Our methodological proposal
and the state-of-the-art techniques of Musicant et al. [27] provide a set of tools
to robustly deal with the whole spectrum of AO scenarios. The experimental
results show the usefulness of these approaches with both synthetic and real
data of a case study in marine litter beaching. However, if a sufficiently large
number of fully supervised examples (bags with mi = 1) is available, the AO
approach might be unnecessary. However, the specific number of supervised
examples required depends on the domain. When the number of fully supervised
examples is not large, a model learnt from AO has shown to be competitive with
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a standard solution. This fact is particularly revealing and motivates the use of
specific AO techniques in scenarios where fully supervised examples are scarce.
It is interesting to know that other beaches in the Gipuzkoan Bay of Biscay,
under the charge of the same cleaning service, were not included in this study as
model validation was not possible due to the lack of fully supervised cases. The
proposed approach is especially suitable for those infrequently visited beaches.

Remember that in these experiments the set up of the techniques was not
modified. Our proposal always initializes the disaggregated response vector y′

by Equation 5. The hyper-parameters of both KNN and SVR were set up as
suggested by Musicant et al. [27]. In all the cases, the initialization and model
parameters could be tuned to optimize the results.

Regarding the case study on marine litter beaching, it is important to note
that, in the different experiments, a single maximum bag size, m̆i, was im-
posed for all the bags. Thus, two specific points (m̆i = {2, 4}) have been
identified where the learnt models show enhanced performance, providing an
idea of the behavior (frequency) of those dynamics that naturally clean the
beaches. However, nature rarely shows such constant behavior. The tempo-
ral point represented by this experimental parameter is likely different for each
beach/municipality and, even, each bag (group of days). Moreover, our approx-
imation to this case study does not analyze the possible temporal correlations
among explanatory and response variables. It is reasonable to think that the
environmental conditions of a specific day may have an effect on the state of
the beaches a few days later. An approximation based on time series seems a
reasonable step forward.

6 Conclusions and future work

In this paper, an iterative approach to learn regression models from aggregated
outputs has been proposed. In this framework, the response value is only pro-
vided in an aggregated way for subgroups of examples. The proposed method-
ology is implemented to learn linear models which, in spite of their popularity,
have never been adapted to the AO framework. However, it is general enough to
be straightforwardly extended to learn other types of (non-)linear models. The
benefits of exploiting the supervision available in the aggregated outputs has
been shown in comparison with two different baselines. In spite of its simplicity,
our proposal is competitive with respect to a baseline and previously presented
methods.

In the second part of the paper, the problem of marine litter beaching predic-
tion, which naturally fits the AO framework, has been approached for the first
time by means of techniques of this weakly supervised paradigm. A case study
on real data from the Basque coast has been analyzed. Although this approx-
imation is not necessary when enough supervised data is available, the models
learnt from AO are competitive and particularly useful when fully supervised
data is scarce. Finally, an interesting insight could apparently be drawn from
the results of this case study: the waste accumulated on a beach was probably
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deposited during the previous two to four days. In the future, it would be of
interest to study the effect of natural cleaning dynamics and to measure the
time that the accumulated waste lasts on a beach if it is not removed. With
the results of such a study, our approximation could be properly tuned and
exploited.

Other future works would include the redesign of our proposal to learn other
types of regression models by adapting Equations 6 and 7. A completely
different approach to marine litter beaching prediction could be to consider a
multivariate time series approach where the objective is to complete an occa-
sionally observed variable, the amount of accumulated waste.
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