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Large Scale Anomaly Detection in Mixed
Numerical and Categorical Input Spaces

Carlos Eiras-Franco, David Martı́nez-Rego, Bertha Guijarro-Berdiñas, Amparo Alonso-Betanzos, and Antonio
Bahamonde

Abstract—This work presents the ADMNC method, designed
to tackle anomaly detection for large-scale problems with a
mixture of categorical and numerical input variables. A flexi-
ble parametric probability measure is adjusted to input data,
allowing to track low likelihood values as anomalies. The main
contribution of this method is that, to cope with the different
nature of variables, we factorize the joint probability measure
into two parts: the marginal density of the continuous variables
and the conditional probability of the categorical variables
given the continuous part of the feature vector, resulting in a
model trained through a maximum likelihood objective function
optimized with Stochastic Gradient Descent. This results in an
effective and scalable algorithm. The comparison with other well-
known anomaly detection algorithms over several datasets shows
that ADMNC offers top level accuracy even in datasets that are
out of reach for the most effective existing methods, and scales
well to process very large datasets, which transforms it in a
powerful tool for a problem growing in popularity that currently
lacks suitable algorithms.

Index Terms—Anomaly detection, Outlier detection, Logistic
Regression, Gaussian Mixture Model, Machine Learning, Syn-
thetic dataset generator.

I. INTRODUCTION

An anomaly or outlier can be defined as “an observa-
tion which deviates so much from other observations as
to arouse suspicions that it was generated by a different
mechanism”[24]. Detecting anomalies is an old discipline for
statisticians [18], under the name outlier detection. From those
days on, these type of methods are becoming increasingly
important. Anomaly detection is especially useful in practical
situations where on the one hand the dataset is numerous and,
on the other hand, it contains unexpected events that carry the
most important information. Several challenges stand in the
way of obtaining a general technique for anomaly detection:
the increasing amount of domains in which this discipline
has encountered application (detection of intrusions [30],
surveillance [44], frauds [3], machine faults [21, 16, 20, 35])
adds high variability to the proposed solutions, while the
scarcity of labeled data from real-world processes [11, 13]
makes it difficult to test the generalization of new solutions.
As a consequence, the data available in practice for building
the model is usually unlabeled [13, 19, 43]. In addition, the
regions of the input space that are likely to contain only non
anomalous elements can be very complex in nature. Therefore,
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deciding for a prior shape for this region through the fix of a
specific distribution or geometric shape is usually a difficult
task that can introduce a bias that prevents us from generating
a meaningful model.

Another major difficulty, in which we focus on in this work,
is the type of input data. The introduction of mixed numer-
ical/categorical data can make the modeling of correlations
between input variables a complicated issue. This has caused
that many of the popular anomaly detection techniques: (a) can
only deal with categorical or numerical data [45, 15, 2], (b)
leave to the practitioner the responsibility of dealing with this
issue through (non formal) bespoke processes, or (c) introduce
heuristic criteria to deal with mixed nature data [23, 37].

Furthermore, the production of data has dramatically in-
creased in recent years, at a much faster pace than computa-
tional power. This unbalance renders some of the most popular
algorithms unable to deal with the amounts of data that users
need to analyze. Algorithms with a quadratic spatial or time
complexity are no longer suitable for this kind of analysis.
This limitation has brought the focus towards the scalability
of algorithms, spawning an active field known as big data
learning [9, 31]. A successful approach so far has come from
the use of new cluster computing frameworks and techniques
that, paired with new algorithms with reduced complexity,
help bridge the gap between computing power and processing
needs.

With this research, we aimed at exploring a strategy to
model anomaly detection problems in which the data is nu-
merous and contains categorical and numerical input variables.
We adopted a probabilistic view of the problem and dealt with
each kind of variable individually in order to approximate the
joint probability measure function with a parametric model.
This differs from the state of the art in this field in that, instead
of departing directly from an heuristic concept of outlierness
in mixed categorical/numerical spaces, it starts from a formal
formulation of the problem in terms of a joint probability
measure function approximation and adopts a parametric
structure that makes it feasible to compute. This makes the
proposed algorithm both theoretically and technically sound.
Additionally, by splitting the model into two smaller parts, the
computational requirements are reduced, which works towards
the scalability of the algorithm. The whole model is trained
through a maximum likelihood objective function optimized
with stochastic gradient descent. Therefore, the algorithm
lends itself well to parallel computation, which will allow the
model to scale to large datasets, both in feature and sample
sizes, making it an appealing option for Big Data applications.
To demonstrate this, an implementation of the algorithm (from
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now on called Anomaly Detector for Mixed Numerical and 
Categorical inputs, ADMNC) in the popular cluster computing 
framework Apache Spark [1] is provided.1

Section II reviews the related work in this area. Section 
III presents the formal framework and Section IV introduces 
the parametric formulation of the problem. Section V reports 
a collection of experiments that show the properties of the 
proposed method on real datasets, as well as the definition of 
a synthetic dataset generator and further experiments with the 
resulting datasets. Section VI summarizes the main conclu-
sions and future work.

II. RELATED WORK

Numerous anomaly detection techniques have been devel-
oped, either from an application-specific o r a  m ore general-
purpose point of view. Anomaly detection application domains 
can impose restrictions which dramatically determine the 
design of the algorithms. Consequently, the research in this 
area has yielded only a few general algorithms in recent years 
[29].

Anomaly detection approaches can be classified according 
to the nature of input data. We have assumed that each instance 
can be described using a set of attributes. These can be 
of different types, such as binary, categorical or numerical. 
The nature of the attributes determines the applicability of 
anomaly detection techniques. Different statistical models and 
algorithms have been designed for numerical and categorical 
data [14]. Some anomaly detection models can only deal with 
categorical data [45, 15, 2]. The case of numeric variables 
has been treated mainly through statistical parametric and 
non-parametric models [40, 5], geometrical approximations
[35] and using binary trees [34]. In addition, there have
been numerous efforts to deal with the problem of mixed
numerical/categorical anomaly detection. Current approaches
in this last group can be classified in one of the following
abstract strategies:
• Categorical space techniques: These algorithms build an

anomaly detection model specially devised for categorical
variables and transform any numerical variable into a
categorical space through a previous discretization phase.
In this group we can find HOT [47], in which the set
of outliers in a dataset is detected using a specially
devised data structure called hypergraph and a local test
for outliers based on a frequent itemset counting strategy.
Another approach is presented in [25], where the problem
is tackled using information theory concepts but, again,
only categorical attributes are considered and numerical
attributes need to be circumvented through discretization.

• Metric-centered techniques: This kind of methods define
an anomaly as a point which lies in a low density region
when compared to its neighborhood. They rely on a
function that calculates the similarity between elements
in the input space and so it can be extended to the mixed
numerical/categorical case and other types of structured
data [41] through a tailored similarity function. Local

1Spark implementation of ADMNC available for download at
http://github.com/eirasf/ADMNC/

Outlier Factor (LOF) [10] can be considered the seminal
work in this area. The basic criteria of these methods
has also inspired subsequent improvements for high di-
mensional spaces [32] and improved density criteria such
as [28]. LOCI (LOcal Correlation Integral) is a similar
technique, improving LOF as it is able to detect outliers
and also groups of outliers without user-required cut-offs
[38]. These techniques present the following challenges:
(a) devising effective similarity measures for mixed nu-
merical/categorical input spaces and (b) scalability, since
the similarity matrix needs to be computed before getting
into the detection phase.

• Mixed-criteria techniques: This group of algorithms tack-
les the nature of numerical and categorical data sepa-
rately, trying to design a criterion which encompasses the
analysis of an element in both spaces. In this group we
can classify LOADED [23, 37]. This algorithm blends
in a single criterion categorical-categorical, categorical-
numerical and numerical-numerical correlations using
frequent itemsets concepts and local correlation matrices.
Despite being the first attempt to handle categorical
attributes that previous approaches ignore, the algorithm
suffers for high execution times in high dimensional
datasets, because although execution times scale linearly
with the number of data points, it scales quadratically
with the number of numerical attributes, and grows even
more computationally expensive with the number of cate-
gorical attributes. Additionally, adaptations of supervised
learning techniques like AdaBoost to this problem have
also been presented [27] although its requirement of
labeled samples prevents its use in the most common use
cases.

In this research we focused on devising a probabilistic
strategy able to solve anomaly detection problems where input
elements pertain to an input space which mixes numerical and
categorical variables. The proposed algorithm closely relates
to Mixed-criteria techniques in the sense that correlations
between categorical and numerical variables are explicitly
modeled. In addition, the method overcomes the scalability
problems of previous approaches, and should be able to tackle
both large scale and high dimensionality problems.

III. BASIC FORMULATION

We aim at adjusting a probability measure function that
best fit the data under normal conditions. Subsequently, when
monitoring new data elements they are assigned a score and
those whose score exceeds a pre-specified threshold would be
considered as anomalies. Formally, the following expression
has to be estimated:

P (x1, x2, x3, . . . , xn) (1)

If we face an homogeneous set of variables, this problem
can be reduced to a probability distribution function (pdf)
parameter learning. For instance, if all the variables under
normal conditions could be well represented by a Gaussian, we
can directly elicit the moments of a complete Gaussian from a
dataset maximizing the likelihood of the data, or alternatively
follow a Bayesian approach with an adequate prior.
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However, in many situations datasets present a mixture 
of categorical and numerical variables. In such a case, the 
model should take into account individually the nature of both 
types of variables. In this work, we heuristically propose the 
following factorization of the pdf under normal conditions:

P (y|x)P (x) (2)

where y represents the categorical variables, while x stands for
the set of numerical variables. With such a partition of the pdf,
we can adopt a convenient technique for the estimation of the
parameters of each part independently, while accounting for
eventual interactions between the two parts. Below, on Section
V we assess the adequacy of this approach with experiments
on several datasets.

It was previously mentioned that an incorrect assumption
about the shape of the underlying distribution could induce a
bias that could harm the accuracy of the model. Nevertheless,
we had to make such a decision, so we tried to adopt the most
flexible model still computable in a closed form. We adopted
a flexible parametric approach for both the conditioned proba-
bility of the categorical variables and the marginal probability
of the set of numerical variables. Namely, in this work we
used the following models for each part:

A. Numerical part

Mixture models are the most flexible parametric option for
estimating this marginal. Gaussian Mixture Model (GMM) is
the first appealing option due to its closed form parameter
update formulas. In particular, we used the existing imple-
mentation of Gaussian Mixture Models available in Apache
Spark, which uses the expectation-maximization algorithm to
induce the maximum-likelihood model for the given set of
samples. Since GMM is very sensitive to the initial values
of the means of the gaussians, we first perform a KMeans
clustering on a small sample of the dataset. We then use the
resulting centroids as the initial values for these means and we
compute the empirical standard deviations of the clusters to
obtain the initial diagonal covariance matrix. For the KMeans
algorithm we use the default implementation included in Spark
[4].

B. Categorical part

A binary translation was carried out for each of the N
categorical variables. Then, P (y|x) was approximated by a
Logistic Regression (LR) model [46]. From now on, y will
represent the categorical binarized part of the input vector.

Namely, the LR model computes the conditional probability
by means of

P (y|x,w) =
1

1 + e−〈w,Φ(x,y)〉 (3)

where Φ(x,y) is the so-called feature vector, which has the
following form

Φ(x,y) = (x⊗ y,y ⊗ y) (4)

where x represents again the numerical part of the elements
(with an additional bias component, equal to 1), y is the

transformation of the categorical variables to m indicator
variables with a bias too, and ⊗ is the Kronecker product.

This feature function is inspired by works on probabilistic
multilabel classification [22]. It should be noted that, by using
this encoding, we account for: (a) a priori probability of
each value of the categorical variables, (b) correlation of each
categorical variable with the numerical part and (c) pairwise
correlation between categorical variables.

It should be noted that the number of parameters w required
is the same as the number of elements in Φ, which grows
quadratically with the length of input vectors, which in turn
can amount to a tendency to overfit the training examples and
can slow down training.

To reduce the number of parameters we used a factorization
approach. In symbols,

Ψ(x,y, θ) = −〈w,Φ(x,y)〉 (5)
= − (〈Wxyx, Vxyy〉+ 〈Wyyy, Vyyy〉)

where θ is the set of parameter matrices Wxy, Vxy,Wyy and
Vyy that map x and y to a k-dimensional subspace where their
inner product yields the appropriate factor. The dimensions of
the resulting matrices (namely k×|x|, |y|×k, k×|y| and |y|×k)
amount to a total of k× (|x|+ 3|y|) parameters to be learned
which is significantly less than the original |x|× |y|+ |y|× |y|
unless for large values of k.

Thus, in the following, we use, instead of Eq.3:

P (y|x,θ) =
1

1 + eΨ(x,y,θ)
(6)

Thus, the learning process reduces to obtaining the optimal
parameters for both the LR model (which approximates the
conditional probability of the categorical part of the elements),
and the mixture model (for the marginal pdf of the numerical
part of the elements). In the next section we show how a
maximum likelihood strategy can effectively carry out the
search for the optimal parameters.

IV. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Let D be a dataset of points (x,y). Then, taking into
account the expression (Eq. 2) for the factorization of the joint
pdf, the data log-likelihood has the following form:

logL(D) =

|D|∑
i=1

logP (yi|xi,θ) +

|D|∑
i=1

logP (xi) (7)

It is important to note that the first part of the data log-
likelihood is completely independent of the parameters of
the second summand, so both optimization processes can be
run in parallel, and exploit the structure of each problem
separately. In the next sections we show how this can be
achieved separately for each part and then combined in a
unified algorithm.

Using the first term of (Eq. 7), we aim to obtain the
parameters θ∗ that maximize

θ∗ = argmax
θ

{ |D|∑
i=1

logP (yi|xi,θ)− ν θ
2

2

}
(8)
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where ν is a hyper-parameter that controls an optional regular-
ization term, proportional to the norm of the parameter matrix, 
that has been added to cope with possible overfitting issues.

This is a well-known convex optimization problem that 
can be solved using an Stochastic Gradient Descent (SGD) 
algorithm [7].

For the implementation of SGD in our experiments, at every 
iteration t, we updated the learning rate according to this 
formula, as it is usually done:

λt =
λ0

1 + λs(t− 1)
. (9)

Therefore, controlling the constants λ0 and λs it is possible
to tune the convergence of the algorithm, which is crucial in
order to obtain a good model.

Additionally, to keep the values of the component of the
parameters θ bounded, after each updating, we ensure that
every column of each matrix is in a ball with center the origin
and radius B.

The implementation in Apache Spark parallelizes the mini-
batch step in the SGD process, potentially accelerating the
whole process if there are several computational units avail-
able.

V. EXPERIMENTAL SETTINGS AND RESULTS

In this Section we describe a set of the experiments
comparing our algorithm with other state-of-the-art methods,
both in terms of accuracy and time. The first subsection
presents methodological issues related to how we measured
the scores of anomaly detection algorithms and the datasets
and algorithms used in the experiments. In this section we
also present a synthetic dataset generator and introduce the
synthetic datasets used in our experiments. The next subsection
shows results of the performance obtained with real-world
datasets. After that, a comparison of the scalability of all
algorithms is presented. Finally, we report the results of
experiments that show the effect of the dataset complexity
on the results obtained by each algorithm.

A. Methodology

To measure the performance we tried to simulate a real
world environment. Thus, the learning algorithms were trained
using only non-anomalous samples. The models so obtained
were then tested with a mixture of anomalous and non-
anomalous samples. The scores of performance were finally
measured computing the Area Under the ROC (Receiving
Operator characteristic) Curve (AUC).

Using this procedure we account for the fact that in real situ-
ations we typically do not have anomalous samples to train the
learning algorithms. Additionally, for experimental purposes
we may use datasets with an arbitrary fraction of anomalies,
which is useful given the scarcity of datasets. Therefore, we
were able to use binary classification tasks selecting one of the
classes as anomalous. With this transformation, the obtained
anomalies meet the definition presented in the Introduction.

To test the strengths of our algorithm, we compared the
scores with those achieved by the following state-for-the-art

algorithms. First, we considered two algorithms that make a
differenced treatment of numerical and categorical variables:
the well-known LOF and LOCI algorithms using Euclidean,
Jaccard and Hamming distances, for which we used a Matlab
implementation2. Additionally, we compared the results with
other anomaly detection algorithms that do not differentiate
between numerical and categorical variables. For this purpose
we selected One Class SVM (OC-SVM) (with Radial Basis
Function—RBF— and linear kernels), for which we used the
Matlab interface of LibSVM3. It is worth noting that the
complexity of this family of algorithms approaches quadratic
time regarding the number of samples in favorable cases
[8], which makes them poor candidates for handling large
amounts of data. Therefore, we also tested DOC-SVM [12],
which is a distributed version of the same algorithm that can
handle large datasets by splitting them, also implemented in
Matlab4. Finally, we added to the test the recent iForest [34],
implemented in R5; and PA-I [36]6, also written in Matlab.
For those algorithms that do not make a distinction between
categorical and numerical variables, the categorical variables
in the datasets were transformed using one-hot encoding.

The algorithms used for comparisons have typically sev-
eral hyper-parameters. To find the best combination for each
dataset, we performed a cross validation (CV) with 5 folds for
each possible set of hyper-parameters values. For each fold,
the algorithm is trained with the non-anomalous examples of
the training set and evaluated on all the samples of the test
set. The hyper-parameters explored are listed in Table I. The
scores discussed in subsection V-B are the best average AUC
obtained in the CV procedure.

TABLE I
HYPER-PARAMETERS EXPLORED FOR EACH ALGORITHM IN THE

EXPERIMENTS REPORTED IN THIS SECTION

Algorithm Hyper-parameters range

LOF P ∈ {0.01, 0.03, 0.05}, K ∈ {2, 3, 5, 10},
(only Jaccard and Hamming) λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

LOCI α ∈ {0.1, 0.3, 0.5},
(only Jaccard and Hamming) λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

OC-SVM ν ∈ {0.01, 0.05, 0.1, 0.3},
(only RBF) γ ∈ {0.01, 0.05, 0.1, 1, 3, 10}

iForest rFactor ∈ {0.01, 0.1, 0.5, 0.8, 1},
Row Samples ∈ {0.01, 0.025, 0.05, 0.1}

PA-I σ ∈ {1, 2, 3, 4, 5}, C ∈ {0.01, 0.025, 0.05, 0.1},
R ∈ {0.97, 0.99}

ADMNC ν ∈ {0.1, 1, 10, 100, 1000},
λs ∈ {0.0001, 0.001, 0.01, 0.1, 1}
Number of gaussians ∈ {2, 4}

2https://github.com/jeroenjanssens/lof-loci-occ
3https://www.csie.ntu.edu.tw/ cjlin/libsvm/#matlab
4To the best of the authors knowledge, there are no other implementations of

One-Class SVM that can use non-linear kernels with time complexity inferior
to O(n2).

5https://sourceforge.net/projects/iforest/
6We tried to add LOADED to the comparison but despite our best efforts we

could not find an implementation and the code obtained by strictly following
the description provided by the authors resulted in an algorithm that performed
very poorly.
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In the following, we describe the datasets employed in the 
experiments:

1) Real datasets: As stated above, it is very difficult to 
come by real-world datasets with labeled anomalies. Thus, the 
datasets used are commonly employed for classification tasks, 
but they have been repurposed for anomaly detection. They 
were downloaded from the UCI Machine Learning Repository 
[33].

The description of datasets is reported in Table II. We 
distinguish two groups. In the first o ne t here a re small-
medium size datasets: Arrhythmia (Arrhyth), German Credit 
(GC), and 3 versions of Abalone. These versions were built 
choosing different classes as anomalous and non-anomalous. 
So, Abalone 1-8 (Ab. 1), Abalone 9-11 (Ab. 9) and Abalone 
11-29 (Ab. 11) were obtained by using, respectively, classes 
1, 9 and 11 as non-anomalous and classes 8, 11 and 29 as 
anomalous.

TABLE II
REAL DATASETS USED FOR THE COMPARATIVE STUDY. THE Anomaly ratio 

IS THE QUOTIENT OF ANOMALOUS EXAMPLES OVER THE NUMBER OF 
EXAMPLES. IN PARENTHESIS, THE NUMBER OF NUMERICAL /

CATEGORICAL FEATURES.

Dataset # Samples # Features(N/C) Anomaly ratio

Arrhythmia 420 278 (271/7) 0.4357
German Credit (GC) 1000 20 (7/13) 0.3000
Abalone 1-8 (Ab. 1) 4177 10 (7/3) 0.3368
Abalone 9-11 (Ab. 9) 4177 10 (7/3) 0.3167
Abalone 11-29 (Ab. 11) 4177 10 (7/3) 0.3464

CoverType (CT) 286048 12 (10/2) 0.0096
KDD99 (full) (KDD) 4898431 41 (32/8) 0.8000
KDD99 (10%) (KDD10) 494021 41 (32/8) 0.8000
KDD99 (http) (KDDh) 623091 40 (32/7) 0.0065
KDD99 (smtp) (KDDs) 96554 40 (32/7) 0.0123
IDS 2071657 27 (8/19) 0.0333

The second group of datasets has a larger number of
samples. They are versions of CoverType [6] and KDD99
[26] datasets. To transform CoverType (CT), instances of class
2 were assumed as normal while instances of class 4 were
selected as anomalies. With respect to KDDCup99 it should
be noted that, although there has been some criticism about it
not accurately representing an intrusion detection task, those
discrepancies have no effect in the validity of the dataset for
our purposes. Although the anomaly condition of the elements
that are labeled as such may be disputed with the argument
that the dataset constitutes a biased sample, what we pursue
is identifying a minority set of instances that were generated
by a different process than the rest. Besides, let us recall that
this dataset has been used extensively for anomaly detection
[11, 23, 37, 34, 27, 39]. For this work we transformed KDD99
into an anomaly detection dataset by assuming that attacks of
any class are anomalies. To cope with the lack of labeled
large datasets, as done in similar studies [34], three additional
datasets were obtained by transforming the full KDDCup99:
(1) KDDCup99 (10%) is the reduced dataset available at the
UCI Repository, which contains only 10% of the instances;
(2) KDDCup99 (http) is the result of filtering the full dataset

to keep only http connections; analogously (3) KDDCup99
(smtp) only contains smtp connections.

Finally, we used the IDS 2012 dataset [42], which covers the
same domain as KDD99 but solving its weak points. Again,
we consider any sort of attack as an anomaly, as opposed to
normal traffic.

2) Synthetic dataset generator: In order to be able to
exhaustively test the anomaly detection methods on data with
diverse sizes and difficulty levels, we decided to create a
synthetic dataset generator that could be parametrized. The
data generated by this method was inspired on the data that
would be created by a set of users interacting with a set
of documents, although it was simplified to achieve a more
general dataset. Therefore, each element of the dataset consists
of a random binary vector, which symbolizes a bag-of-words
representation of a document, and then another binary vector
and a numerical vector which are generated from the existing
random vector using a set of rules, which account for statistics
regarding the viewers of said document. Note that in a dataset
designed this way, the numerical variables depend on the
binary ones, which is the opposite to our model in which the
categorical variables are assumed to depend on the numerical
ones. This is a design choice intended to test the reliability of
our model in detecting dependencies between the variables.

To obtain the dataset first we must choose the size of the
vectors. Then, the generator creates two sets of random rules,
one that will be used to produce a binary vector and the other
to produce a numerical vector. Lastly, as many elements as
requested by the user are generated for the dataset, each of
which consists of a random binary vector together with the
vectors resulting from the application of the mentioned sets
of rules.

In equations, the generated dataset D is described as a set
of vectors over a set of indices

D = {(ui, bi,ni) | i ∈ I} (10)

where ui is a binary vector generated at random with uniform
probability for each component and the jth component in bi
is generated from ui by a function fj

bij = fj(ui) (11)

which assigns 1 with a probability proportional to the fraction
of conditions of the rule rj satisfied by ui

fj(x) : {0, 1}n → 0, 1 = a | a ∼ Be
(
〈rj ,x〉
|rj |

)
(12)

where Be(x) is a Bernouilli distribution with probability
x. The jth component in ni is sampled from a normal
distribution whose mean and standard deviation are dictated
by a function gj

nij ∼ N
(
gj((ui, bi)),

1

1 + gj((ui, bi))

)
(13)

which simply indicates the fraction of conditions in rule sj
that the concatenation of ui and bi meets:

gj(x) : {0, 1}n → R =
〈sj ,x〉
|sj |

(14)
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The rule sets R and S are randomly generated at the 
beginning of the generation process and kept constant for 
all elements. R must hold a vector rj for each component 
in b and, analogously, S must contain as many rules as 
components are desired in n. Each rule simply consists in a 
binary vector as long as u and (ui, bi), respectively, indicating 
which components are affected by the rule.

After D is generated, a fraction of the elements are turned 
into anomalies by altering a number of its components ran-
domly selected. Binary components are altered by flipping 
their value, while numerical components are incremented with 
a value randomly sampled from a standard normal distribution. 
When the dataset is constructed this way, the number of 
variables affected by an anomaly acts as a proxy for the dataset 
difficulty: i ntuitively, t he f ewer c omponents a re a ltered b y an 
anomaly, the more difficult i t i s t o spot it.

With this methodology, we created two sets of datasets for 
our experiments, as described on Table III: on the first dataset 
we left the number of variables affected by an anomaly as 
a parameter, to study the effect of dataset difficulty o n the 
algorithms; while on the second dataset we vary the number 
of elements to analyze the scalability of the different methods.

TABLE III
FAMILIES OF SYNTHETIC DATASETS USED FOR THE COMPARATIVE STUDY. 

NV REPRESENTS THE NUMBER OF VARIABLES AFFECTED BY EACH 
ANOMALY. IN SYNTH1 AND SYNTH2, THE NUMBER OF SAMPLES AND NV 

VARY, RESPECTIVELY, WITH THE VALUES i ∈ |0, 5|

Dataset # Samples |u| |b| |n| NV Anomaly ratio

Synth1 100 ∗ 5i 20 10 100 4 0.5
Synth2 500 20 10 100 2i 0.5

B. Results and discussion

The results obtained for the small-medium size datasets are
shown in Table IV. It is hard to draw a conclusion from
this table about which is the best algorithm. In fact, using
the Nemenyi post-hoc test [17] with α = 0.05 the scores
achieved by ADMNC can not be significantly differentiated
from any of the other algorithms; see Figure 1. Consequently,
we set to expand on the study of these algorithms with further
experiments.

Fig. 1. Nemenyi test with the scores of Table IV. ADMNC is in the group
of the best algorithms, although none is significantly better than the others

TABLE IV
AREA UNDER THE ROC CURVE OF THE PROPOSED APPROACH (ADMNC)

AGAINST LOF AND LOCI ALGORITHMS (USING EUCLIDEAN (E),
HAMMING (H) AND JACCARD (J) DISTANCES), OC-SVM USING LINEAR

(SVM-L) AND RBF (SVM-R) KERNELS, DOC-SVM, IFOREST AND
PA-I. THE BEST RESULTS FOR EACH DATASET ARE HIGHLIGHTED IN

BOLDFACE.

Arrhyth GC Ab. 1 Ab. 9 Ab. 11

LOF (E) 0.6670 0.5847 0.6936 0.6029 0.5927
LOF (H) 0.6983 0.5646 0.6936 0.6029 0.5927
LOF (J) 0.7010 0.5681 0.6936 0.6029 0.5927
LOCI (E) 0.6735 0.5917 0.8524 0.6756 0.7155
LOCI (H) 0.7141 0.5709 0.8526 0.6856 0.7155
LOCI (J) 0.7144 0.5663 0.8512 0.6874 0.7159
SVM-L 0.6794 0.5697 0.7944 0.6140 0.7670
SVM-R 0.7479 0.6452 0.8121 0.6756 0.7448
DOC-SVM (RBF) 0.6530 0.5419 0.5561 0.5748 0.5502
iForest 0.7133 0.5792 0.6519 0.5966 0.5984
PA-I 0.6932 0.6216 0.8498 0.6511 0.7113
ADMNC 0.6140 0.6276 0.8453 0.6120 0.7930

A few larger datasets were also used. Here we have to real-
ize that LOCI and LOF are quadratic algorithms regarding the
number of examples. This makes them computationally very
expensive, considerably more than the rest, and thus unable to
manage large datasets. For this reason, LOF and LOCI were
excluded from this comparison. Therefore, ADMNC only had
to compete with algorithms that make no distinction between
categorical and numerical variables.

The results obtained with these larger datasets are shown
in Table V. To overcome computational difficulties, we per-
formed these experiments using only 2 folds instead of 5. In
addition, for all algorithms the best parameters for KDD and
IDS were determined on their respective variants with only
10% of elements and those same values were used for all its
variants. In any case, four of the algorithms struggled with
the two largest datasets: (1) the implementation of iForest
in R could not handle the memory requirements of KDD or
IDS, (2) PA-I took more than 10 hours to explore a single
hyper-parameter combination with KDD, (3) OC-SVM (RBF)
requires quadratic (in terms of number of samples) memory
space, which made handling the full KDD or IDS datasets
impossible, and (4) even though the distributed nature of DOC-
SVM allows it to process arbitrarily large datasets, the reliance
on Java of its Matlab implementation makes it fail when trying
to split a large dataset and, consequently, it could not process
any of these datasets. With these methods unable to handle
large datasets, OC-SVM with a linear kernel and ADMNC
rendered results very favorable to our method. Additionally,
the parallel implementation of ADMNC made handling large
datasets much easier. It is worth noting that, for the largest
datasets OC-SVM Linear took several hours to compute, while
ADMNC took just a few minutes. Even though they are
implemented in different platforms, we set to illustrate this
difference in scalability with our next experiment.

Since there is great disparity in the computational costs of
the tested algorithms, we performed additional experiments to
more thoroughly assess their scalability in terms of dataset
size. To be able to adequately test this and due to the
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TABLE V
AREA UNDER THE ROC CURVE OF THE PROPOSED APPROACH (ADMNC) 

AGAINST OC-SVM USING LINEAR (SVM-L) AND RBF (SVM-R) 
KERNELS, IFOREST, AND PA-I FOR LARGE DATASETS. IN ALL CASES “-”
INDICATES THAT RESULTS COULD NOT BE OBTAINED DUE TO EXCESSIVE 

TIME AND/OR MEMORY REQUIREMENTS.

CT KDD10 KDD KDDh KDDs IDS

SVM-L 0.9975 0.8712 0.8806 0.9139 0.9959 0.7300
SVM-R 0.9988 0.9965 - 0.9961 0.9859 -
iForest 0.9652 - - - - -
PA-I 0.9989 - - - 0.9903 -
ADMNC 0.9763 0.9968 0.9975 0.9993 0.9972 0.9254

aforementioned lack of real datasets with the characteristics
that we need, we used the synthetic datasets described in
section V-A2 to allow us to control the size and difficulty
of the dataset. The process used to generate these datasets is
described in Section V-A2.

The results of testing the algorithms on the Synth1 family
of datasets are shown on Figure 2 and show that our method
is clearly superior in terms of scalability of the dataset size.
Since the compared algorithms are implemented in diverse
platforms and, therefore, their absolute times can not be
compared, times are presented as the ratio between the time
taken for processing 100 elements with that algorithm and
the time taken for a given dataset size, which allows us to
get an idea of the time complexity of each method. The
time reported is the average execution time per fold for the
algorithm using all the hyperparameter combinations described
in Table I, except in cases when the execution time was too
high, where just one hyperparameter combination was used
and therefore the time corresponds to a single execution. Even
with this simplification, for some methods the absolute times
were unmanageable for the largest versions of the dataset, so
they could only be measured for the smaller versions. While
the times of LOF and LOCI approach cubic complexity, PA-I
displays quadratic complexity, OC-SVM exhibits superlinear
complexity that approaches quadratic when the dataset is large
and DOC-SVM presents linear complexity, although its current
implementation does not allow the use of large datasets. The
time complexity of iForest approches linear when the dataset is
large. Our method exhibits clearly sublinear complexity, which
makes it the only candidate when dealing with very large
datasets. Moreover, the complexity increment of ADMNC
stops when the dataset reaches 12500 elements, since most
of the complexity is due to the KMeans initialization step
described in Section III-A which, once the dataset is large
enough, works only with a fixed-size sample, therefore lim-
iting the impact of the dataset size in the execution time.
It is worth noting that, although the parallel implementation
of our method potentially allows for additional speed-ups
by using more computing cores, the scalability shown in
these experiments does not stem from the addition of more
computing cores. All experiments reported in this paper were
executed using 12 computing cores on a single machine.

We finally compared the performance of each algorithm on
Synth2, a family of datasets in ascending order of difficulty.
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Fig. 2. Execution time for each algorithm on datasets of incrementing size
(Synth1). Times are presented as a ratio of the time taken for a given execution
and the time for the same algorithm on a 100 element dataset. Both axis are
represented using a logarithmic scale.

Since the three variants of LOF and LOCI offered very
similar results, only the best performer for each method is
reported. Results shown in Figure 3 indicate that our method
outperforms the rest of algorithms when the dataset is very
complicated and as the difficulty decreases the results even out.
It is worth noting that the fact that the dataset is constructed
with numerical variables depending on the binary ones is
no obstacle to the performance of ADMNC, even though it
models the probability the other way around: the categorical
variables depend on the numerical ones. It is also interesting to
highlight that the methods that offer comparable AUROC to
ADMNC (LOF, LOCI, SVM-L and SVM-R) all have time
complexity O(n2) or superior, which in turn makes their
results unavailable for large datasets, leaving our method as
the clearly superior option for those datasets.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a new method for anomaly detec-
tion able to confront large datasets and high dimensionality
scenarios and with the capability of dealing with data having
both categorical and continuous variables. It constitutes an
useful tool for an emerging problem that is currently lacking
algorithms that can tackle it.

The approach presented uses a probabilistic perspective. The
continuous part is modeled using a Gaussian Mixture while the
categorical part is estimated using a Logistic Model that uses
Maximum Likelihood approach optimized with an Stochas-
tic Gradient Descent algorithm. Thus the whole method is
scalable to large datasets, which is furthered by the parallel
implementation provided.

Several experiments showed that this method obtains bet-
ter or similar results than those of state-of-the-art anomaly
detection methods for small-medium datasets and is able to
obtain very good performance in datasets that are out of reach
for other methods due to their computational demands. These
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Fig. 3. Area under the ROC curve obtained on the Synth2 dataset. The number
of variables affected by anomalies acts as a proxy for difficulty, a higher
number indicates an easier dataset. X axis is represented using a logarithmic
scale.

favorable results encourage further research on the capabilities
of this method as new datasets become available in the future.
To this avail we provide a working implementation of the
algorithm in the popular framework Apache Spark.

In real world applications, and specially in the case of recent
large datasets, the existence of missing data points can be
relatively common. Thus, and as future work, we plan to
extend our probabilistic model to be capable of confronting
these situations. Also, we would like to explore in future
works the interpretability of this model and the possibility of
giving a justification to the user for each example labeled as
an anomaly.

ACKNOWLEDGEMENTS

This research has been financially supported in part by the
Spanish Ministerio de Economı́a y Competitividad (research
projects TIN 2015-65069-C2, both 1-R and 2-R), by the Xunta
de Galicia (Grants GRC2014/035 and ED431G/01) and the
European Union Regional Development Funds.

REFERENCES

[1] Apache Spark: Lightning-fast cluster computing. https:
//spark.apache.org/. Accessed: 2016-12-16.

[2] Akoglu, L., Tong, H., Vreeken, J., and Faloutsos, C.
(2012). Fast and reliable anomaly detection in categorical
data. In Proceedings 21st ACM International Conference
on Information and Knowledge Management, CKIM 2012,
New York, NY, USA. ACM.

[3] Aleskerov, E., Freisleben, B., and Rao, B. (1997). CARD-
WATCH: A neural network based database mining system
for credit card fraud detection. In Proceedings of the IEEE
Conference on Computational Intelligence for financial
engineering, pages 220–226.

[4] Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and
Vassilvitskii, S. (2012). Scalable k-means++. Proceedings
of the VLDB Endowment, 5(7):622–633.

[5] Bishop, C. (2006). Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

[6] Blackard, J. A. and Dean, D. J. (1999). Comparative accu-
racies of artificial neural networks and discriminant analysis
in predicting forest cover types from cartographic variables.
Computers and electronics in agriculture, 24(3):131–151.

[7] Bottou, L. and Bousquet, O. (2008). The tradeoffs of
large scale learning. In Platt, J., Koller, D., Singer, Y.,
and Roweis, S., editors, Advances in Neural Information
Processing Systems, volume 20, pages 161–168. NIPS
Foundation (http://books.nips.cc).

[8] Bottou, L. and Lin, C.-J. (2007). Support vector machine
solvers. Large scale kernel machines, 3(1):301–320.

[9] Bousquet, O. and Bottou, L. (2008). The tradeoffs of
large scale learning. In Advances in neural information
processing systems, pages 161–168.

[10] Breunig, M., Kriegel, H., Ng, R., and Sander, J. (2000).
Lof: Identifying density-based local outliers. SIGMOD
Rec., 29(2):93–104.

[11] Campos, G. O., Zimek, A., Sander, J., Campello, R. J.,
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APPENDIX - BEST HYPERPARAMETERS

This is the list of the best hyperparameter combination for
each method for each dataset in the experiments reported in
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the paper. Hyperparameters for Synth1 are not listed since 
they are not relevant for the execution time, which is the only 
measure reported for that dataset family.

TABLE VI
BEST HYPER-PARAMETERS FOR LOF

E (K, P) H (K, P, λ) J (K, P, λ)

Arrhyth 10, 0.01 10, 0.01, 0.9 10, 0.01, 0.7
GC 10, 0.01 10, 0.01, 0.3 10, 0.01, 0.1
Ab. 1 10, 0.01 10, 0.01, 0.3 10, 0.01, 0.3
Ab. 9 10, 0.01 10, 0.01, 0.3 10, 0.01, 0.3
Ab. 11 10, 0.01 10, 0.01, 0.3 10, 0.01, 0.3
Synth1-100 5, 0.01 3, 0.01, 0.9 5, 0.01, 0.5
Synth1-500 10, 0.01 10, 0.01, 0.9 10, 0.01, 0.7
Synth1-2500 Single test repeating values above

TABLE VII
BEST HYPER-PARAMETERS FOR LOCI

LOCI
E (α) H (α, λ) J (α, λ)

Arrhyth 0.3 0.5, 0.9 0.3, 0.5
GC 0.3 0.1, 0.5 0.1, 0.1
Ab. 1 0.1 0.1, 0.7 0.1, 0.3
Ab. 9 0.3 0.1, 0.9 0.1, 0.7
Ab. 11 0.5 0.5, 0.7 0.5, 0.3
Synth1-100 0.3 0.1, 0.9 0.1, 0.9
Synth1-500 0.1 0.5, 0.9 0.3, 0.1
Synth1-2500 Single test repeating values above

TABLE VIII
BEST HYPER-PARAMETERS FOR SVM

Linear (ν) RBF (γ, ν) DOC-SVM(γ, ν)

Arrhyth 0.3 1, 0.1 1
GC 0.01 1, 0.01 3
Ab. 1 0.01 1, 0.3 5
Ab. 9 0.05 10, 0.1 1
Ab. 11 0.3 3, 0.05 1
CT 0.3 1, 0.3 4
KDD 0.1 10, 0.01 2
Synth1-100 0.3 0.01, 0.1 0.01, 0.3
Synth1-500 0.01 0.01, 0.01 0.01, 0.3
Synth1-2500 0.01 0.05, 0.01 Same values
Synth1-12500 Single test repeating values above
Synth1-62500 Same values *

TABLE IX
BEST HYPER-PARAMETERS FOR PA-I AND IFOREST.

PA-I iForest
σ C R rF rS

Arrhyth 1 0.01 0.97 1 0.2
GC 3 0.01 0.97 1 1
Ab. 1 5 0.01 0.97 0.1 0.01
Ab. 9 1 0.05 0.97 1 0.5
Ab. 11 1 0.01 0.97 0.8 0.01
CT 4 0.025 0.97 1 0.01
KDD 2 0.05 0.97 0.1 0.5
Synth1-100 4 0.05 0.97 0.5 0.025
Synth1-500 4 0.01 0.97 0.8 0.01
Synth1-2500 4 0.01 0.97 1 0.01
Synth1-12500 4 0.01 0.97 1 0.025

TABLE X
BEST HYPER-PARAMETERS FOR ADMNC.

ν λs # gaussians

Arrhyth 1 1 4
GC 0.1 0.001 4
Ab. 1 100 0.01 4
Ab. 9 10 0.001 4
Ab. 11 0.1 0.001 4
CT 0.1 0.0001 4
KDD 1 0.1 2
IDS 1 0.1 4
Synth1-100 0.1 1 4
Synth1-500 1 1 4
Synth1-2500 10 1 4
Synth1-12500 10 0.001 4
Synth1-62500 100 0.1 4
Synth1-312500 1 0.1 4
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