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DEFINING ROUGH SETS USING TOLERANCES COMPATIBLE WITH AN

EQUIVALENCE

JOUNI JÄRVINEN, LÁSZLÓ KOVÁCS, AND SÁNDOR RADELECZKI

Abstract. We consider tolerances T compatible with an equivalence E on U , meaning that the
relational product E◦T is included in T . We present the essential properties of E-compatible tolerances
and study rough approximations defined by such E and T . We consider rough set pairs (XE , X

T ),
where the lower approximation XE is defined as is customary in rough set theory, but XT allows more
elements to be possibly in X than XE . Motivating examples of E-compatible tolerances are given,
and the essential lattice-theoretical properties of the ordered set of rough sets {(XE , XT ) | X ⊆ U}
are established.

1. Introduction

Rough sets were introduced by Z. Pawlak in [17]. He was assuming that our knowledge about the
objects of a universe U is given in the terms of an equivalence E on U . In rough set theory, equivalences
are treated as indistinguishability relations. Indistinguishability of objects x and y means that we do
not have a way to distinguish x and y based on our information. Indistinguishability relations are
hence assumed to be reflexive, symmetric, and transitive.

A tolerance relation (or simply tolerance) is a reflexive and symmetric binary relation. In this
work we treat tolerances as similarity relations. This means that we do not assume similarity to be
transitive. For instance in [11] is given this example justifying non-transitivity: “Find a subject who
prefers a cup of coffee with one cube of sugar to one with five cubes (this should not be difficult). Now
prepare 401 cups of coffee with (1 + i/100)x grams of sugar, i = 0, 1, . . . , 400, where x is the weight
of one cube of sugar. It is evident that he will be indifferent between cup i and cup i + 1, for any i,
but by choice he is not indifferent between i = 0 and i = 400.” In fact, there are also opinions that
similarity relation should be only reflexive, not symmetric, because similarity can be sometimes seen
directional. As noted in [24]: ‘We say “the portrait resembles the person” rather than “the person
resembles the portrait”.’. However, in this work we assume that similarity relations are tolerances.

In the last decades, several extensions of the basic rough set model were proposed in the research
literature. The main motivation of these extensions was to provide efficient modelling of imprecise or
missing data values. There are early articles from 1980s and 1990s, in which rough approximations are
defined in terms of tolerances. For instance, E. Or lowska and Pawlak considered in [14] so-called “non-
deterministic information systems” in which attribute values of objects may be sets instead of single
values. By using such information it is possible to define tolerance relations representing similarity
of objects. In addition, J.A. Pomyka la [19] and B. Konikowska [10] have considered approximation
operations defined by strong similarity relations of nondeterministic information systems. Also in [22]
equivalences were replaced by tolerances to represent our knowledge about the objects.

First systematic studies on different types of binary relation (including tolerances) was given in [27].
Or lowska has studied so-called information relations reflecting distinguishability or indistinguishability
of the elements of the universe of discourse in [12, 13]. They were also considered in [30]. It should
also be noted that tolerances are closely related to set-coverings, and rough approximation defined by
coverings are studied for the first time by W. Żakowski in [29]. In [28], a review of covering based rough
set approximations is presented. Furthermore, authors of this paper have considered lattice-theoretical
properties of rough sets defined by tolerances, for example, in [3, 5, 6].

The limitations of the single-equivalence approach were analysed among others in [20], where so-
called multi-granulation rough set model was introduced. In that paper, for two equivalences P and

Key words and phrases. Rough set, equivalence relation, tolerance relation, set covering, knowledge representation,
completely distributive complete lattice.
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Q on U , the lower and upper approximations of X ⊆ U were defined, respectively, as

XP+Q = {x ∈ U | P (x) ⊆ X or Q(x) ⊆ X}

and

XP+Q = {x ∈ U | P (x) ∩X 6= ∅ and Q(x) ∩X 6= ∅}.

Here R(x) = {y ∈ U | xR y} for any binary relation R on U and x ∈ U . An extension of this approach
was given in [26], where a finite family of disjoint subsets of the attribute set of an information
system is used to define the approximations. This paper also investigates some measures, such as the
quality and the precision of approximation. Multi-granulation of fuzzy rough sets was presented in
[25]. Relationships between relation-based rough sets and covering-based rough sets are investigated
in [21].

Our approach differs from the ones appearing in the literature, because our main idea is that the
lower approximation of sets are defined in terms of the equivalence E and the upper approximations
are defined in terms of a tolerance T compatible with E, that is, E ◦ T ⊆ T . This condition means
that if x and y are E-indistinguishable and y is T -similar with some z, then this z is T -similar to x
also.

We start with the following definitions. For X ⊆ U , the lower approximation of X is defined as

XR = {x ∈ U | R(x) ⊆ X},

and the upper approximation of X is given by

XR = {x ∈ U | R(x) ∩X 6= ∅}.

Let us now recall from literature [4] some essential properties of these approximations. We denote by
℘(U) the power set of U , that is, ℘(U) = {X | X ⊆ U}. Let H ⊆ ℘(U) be a family of subsets of U .
Then,

(

⋃

X∈H

X
)R

=
⋃

X∈H

XR and
(

⋂

X∈H

X
)

R
=

⋂

X∈H

XR.

If R is reflexive, then XR ⊆ X ⊆ XR and we can partition the elements of U into three disjoint classes
with respect to the set X:

(1) The elements which are certainly in X. These are interpreted as the elements in XR, because if
x ∈ XR, then all the elements to which x is R-related are in X.

(2) The elements which certainly are not in X. These are elements x of U such that all the elements
to which x is R-related are not in X, that is, R(x) ∩X = ∅, or equivalently, R(x) ⊆ Xc, where
Xc is the complement of X, that is, Xc = U \X.

(3) The elements whose belonging in X cannot be decided in terms of the knowledge R. These are
the elements x ∈ U which are R-related at least with one element of X and also with at least
one element from X’s complement Xc. In other words, R(x) ∩ X 6= ∅ and R(x) * X, that is,

x ∈ XR \XR.

Let T be a tolerance on U . It is known [2] that the pair (T ,
T ) is an order-preserving Galois

connection on ℘(U). From this fact it follows that for any X ⊆ U ,

(XT )T ⊆ X ⊆ (XT )T , ((XT )T )T = XT , ((XT )T )T = XT .

Moreover, if we denote

℘(U)T = {XT | X ⊆ U} and ℘(U)T = {XT | X ⊆ U},

then the ordered set (℘(U)T ,⊆) is a complete lattice such that for any H ⊆ ℘(U),

(1)
∨

X∈H

XT =
⋃

X∈H

XT and
∧

X∈H

XT =
((

⋂

X∈H

XT
)

T

)T

.

Analogously, (℘(U)T ,⊆) is a complete lattice such that for any H ⊆ ℘(U),

(2)
∨

X∈H

XT =
((

⋃

X∈H

XT

)T)

T
and

∧

X∈H

XT =
⋂

X∈H

XT .
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Let us also note that if E is an equivalence, then ℘(U)E = ℘(U)E . We present more properties of this
complete lattice in Section 2 while considering E-definable sets.

In this work, we define the rough set of set X ⊆ U as a pair (XE ,X
T ). The idea behind studying

pairs (XE ,X
T ), where T is an E-compatible tolerance, is that the equivalence E represents “strict”

information and the information represented by T is “soft”. Hence XE is defined as it is usual in
rough set theory, but XT is now more permissible, because E ⊆ T and thus XE ⊆ XT . Additionally,
we have (XT )E = XT , meaning that XT is a union of E-classes.

The set of (E,T )-rough sets is RS (E,T ) = {(XE ,X
T ) | X ⊆ U} and RS (E,T ) can be ordered by

the coordinatewise inclusion. We show that RS (E,T ) forms a complete lattice which is not generally
distributive. Finally, we give some conditions under which RS (E,T ) is distributive and defines a
regular double p-algebra.

This work is structured as follows. In Section 2 we give the basic properties of E-compatible
tolerances and rough approximations defined by them. The section ends by three subsections giving
examples from where E-compatible tolerances can be found. Section 3 is devoted to the study of
the lattice-theoretical properties of RS (E,T ). In Section 4 we consider some further properties of
RS (E,T ), such as it being a completely distributive regular double pseudocomplemented lattice. We
also study the case in which the E-compatible tolerance is an equivalence. Some concluding remarks
end the work.

2. Tolerances compatible with equivalences

If E is an equivalence on U , we denote for any x the “E-neighbourhood” E(x) of x by [x]E , because
this notation is conventional in the literature. The set [x]E is the equivalence class of x with respect
to the equivalence relation E. This is also said to be the E-equivalence class of x, and often even the
E-class of x. The quotient set U/E is the set of all equivalence classes, that is, U/E = {[x]E | x ∈ U}.

Let R and S be two binary relations on U . The product R ◦ S of the relations R and S is defined
by

R ◦ S = {(x, y) ∈ U2 | (∃z ∈ U)xR z and z S y}.

The following lemma connects products of relations to rough approximation operations.

Lemma 2.1. If S and T are binary relations on U , then for all X ⊆ U ,

(a) XS◦T = (XT )S;
(b) XS◦T = (XT )S.

Proof. (a) For all x ∈ U ,

x ∈ XS◦T ⇐⇒ (∃y ∈ U)x (S ◦ T ) y & y ∈ X

⇐⇒ (∃y, z ∈ U)xS z & z T y & y ∈ X

⇐⇒ (∃z ∈ XT )xS z

⇐⇒ x ∈ (XT )S .

(b) For all x ∈ U ,

x ∈ XS◦T ⇐⇒ (∀y ∈ U)x (S ◦ T ) y ⇒ y ∈ X

⇐⇒ (∀y, z ∈ U)xS z & z T y ⇒ y ∈ X

⇐⇒ (∀z ∈ U)xS z ⇒ z ∈ XT

⇐⇒ x ∈ (XT )S . �

Definition 2.2. Let E be an equivalence on U . A tolerance T on U is called E-compatible if

(3) E ◦ T ⊆ T.

The idea behind this definition is that xE z, z T y leads to xT y. It is clear that if T is an E-
compatible tolerance, then E ⊆ T . The order of E and T in the relation product has no importance
either. Indeed, if E is an equivalence and T is a tolerance on U , then E−1 = E, T−1 = T and
(E ◦ T )−1 = T−1 ◦ E−1, and we have that

(4) E ◦ T ⊆ T ⇐⇒ (E ◦ T )−1 ⊆ T−1 ⇐⇒ T−1 ◦E−1 ⊆ T−1 ⇐⇒ T ◦E ⊆ T.
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Hence, E ◦ T ⊆ T and T ◦ E ⊆ T are equivalent conditions. Because T ⊆ E ◦ T and T ⊆ T ◦ E, we
can immediately write the following characterization.

Lemma 2.3. If E is an equivalence and T a tolerance on U , then

T is E compatible ⇐⇒ E ◦ T = T ⇐⇒ T ◦E = T .

Interestingly, in the literature can be find analogous notions1. In particular, in [23] the authors
consider “similarity relations extending equivalences”. They say that a binary relation R on U is a
similarity relation extending an equivalence E on U if:

(Ex1) For all x ∈ U , [x]E ⊆ R(x).
(Ex2) For all x, y ∈ U , y ∈ R(x) implies [y]E ⊆ R(x).

Note that by (Ex1), the similarity relation is reflexive, but symmetry does not follow from this defi-
nition. We can now prove that if a similarity relation is a tolerance, the two notions coincide.

Proposition 2.4. Let E be an equivalence and T a tolerance on U . The following are equivalent:

(i) T is E-compatible.

(ii) T is a similarity relation extending E.

Proof. (i)⇒(ii): Condition (Ex1) is clear since E ⊆ T . Suppose y ∈ T (x) and z ∈ [y]E . Then xT y
and y E z, in other words (x, z) ∈ T ◦ E. Because T is E-compatible, we have (x, z) ∈ T , that is,
z ∈ T (x). Thus, [y]E ⊆ T (x) and (Ex2) holds.

(ii)⇒(i): Suppose (x, z) ∈ E ◦T . Then, there exists y such that xE y and y T z. By (Ex2), y ∈ T (z)
implies [y]E ⊆ T (z). Because x ∈ [y]E , we have x ∈ T (z). Thus, (x, z) ∈ T and T is E-compatible. �

Note also that there are studies on compatibility of fuzzy relations; see [9] and the references therein.

Let T be a tolerance on U . The kernel of T is defined by

ker T = {(x, y) | T (x) = T (y)}.

The relation kerT is clearly an equivalence on U , and kerT ⊆ T , because for (x, y) ∈ ker T , x ∈
T (x) = T (y), that is, (x, y) ∈ T . Our next proposition characterizes E-compatible tolerances.

Proposition 2.5. Let E be an equivalence on U . A tolerance T on U is E-compatible if and only if

E ⊆ ker T .

Proof. Suppose that T is E-compatible. We show that E ⊆ kerT . Assume (x, y) ∈ E. Let z ∈ T (x).
Then z T x and xE y, that is, z (T ◦E) y. By Lemma 2.3, T ◦E = T . Hence, z T y and z ∈ T (y). We
have proved that T (x) ⊆ T (y). Similarly, we can show that T (y) ⊆ T (x). Therefore, T (x) = T (y)
and (x, y) ∈ ker T .

On the other hand, suppose E ⊆ ker T . Let (x, y) ∈ E ◦ T . Then, there is z such that xE z and
z T y. Because (x, z) ∈ ker T , y ∈ T (z) = T (x). Thus, xT y and T is E-compatible. �

Proposition 2.5 means that if x and y are E-indistinguishable, also their T -neighbourhoods are
the same, that is, T (x) = T (y). Another consequence of Proposition 2.5 is that kerT is the greatest
equivalence with whom the tolerance T is compatible. If F is an equivalence on U , then kerF = F .
This means that F is E-compatible if and only if E ⊆ F .

We will next consider rough approximations. It is known (see e.g. [2]) that if T is a tolerance on U ,
then for all X ⊆ U ,

XT =
⋃

{T (x) | T (x) ∩X 6= ∅}

In addition, if E is an equivalence on U , then for any X ⊆ U ,

XE =
⋃

{[x]E | [x]E ⊆ X}.

By Lemmas 2.1 and 2.3, we can write the following equations.

Lemma 2.6. Let E be an equivalence on U and let T be an E-compatible tolerance. For all X ⊆ U ,

the following equalities hold:

(a) (XT )E = XE◦T = XT = XT◦E = (XE)T ;
(b) (XT )E = XE◦T = XT = XT◦E = (XE)T .

1We would like to thank an anonymous referee for pointing this out.
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Figure 1. Equivalence classes of E are represented by circles. A line connecting two
E-classes mean that all elements between these two classes are mutually T -related. For
instance, x3 is T -related with x1 and x5, but x1 and x5 are not T -related.

Let E be an equivalence on U . A set X ⊆ U is called E-definable if XE = XE . This means that
the set of elements which certainly are in X coincides with the set of elements which possibly are in
X. We denote by Def(E) the family of E-sets. It is a well-known fact (see e.g. [2]) that the following
conditions are equivalent for any X ⊆ U :

(i) X ∈ Def(E);
(ii) X = XE ;
(iii) X = XE ;
(iv) X =

⋃

H for some H ⊆ U/E;
(v) x ∈ X and xE y implies y ∈ X.

Notice that these conditions mean that Def(E) = ℘(U)E = ℘(U)E . It is also known (see e.g. [2]) that
(Def(E),⊆) is a complete lattice in which

∧

H =
⋂

H and
∨

H =
⋃

H

for all H ⊆ Def(E). The family of sets Def(E) is also closed under complementation, that is, Xc ∈
Def(E) for all X ∈ Def(E).

Let E be an equivalence on U and let T be an E-compatible tolerance. By Lemma 2.6, we have
(XT )E = XT and (XT )E = XT for any X ⊆ U . This means that each XT and XT is E-definable. This
implies also that (XT )E = XT and (XT )E = XT . Because E-definable sets are unions of E-classes,
our next lemma gives a description of XT and XT in terms of equivalence classes of E.

Lemma 2.7. Let E be an equivalence on U and let T be an E-compatible tolerance. For all X ⊆ U ,

(a) XT =
⋃

{[x]E | T (x) ∩X 6= ∅};
(b) XT =

⋃

{[x]E | T (x) ⊆ X}.

Proof. (a) If y ∈ XT , then T (y) ∩ X 6= ∅ and y ∈
⋃

{[x]E | T (x) ∩ X 6= ∅}. On the other hand, if
y ∈

⋃

{[x]E | T (x) ∩X 6= ∅}, then there is z ∈ XT such that y ∈ [z]E . This means that z ∈ [y]E ∩XT

and thus y ∈ (XT )E = XT .
(b) Suppose that y ∈ XT . Then T (y) ⊆ X gives y ∈

⋃

{[x]E | T (x) ⊆ X}. Conversely, if
y ∈

⋃

{[x]E | T (x) ⊆ X}, then there is z ∈ U such that y E z and T (z) ⊆ X. Then, y E z and z ∈ XT

give y ∈ (XT )E = XT . �

Example 2.8. Let E be an equivalence on U and let T be an E-compatible tolerance. By Lemma 2.7,

T (x) = {x}T =
⋃

{[y]E | T (y) ∩ {x} 6= ∅} =
⋃

{[y]E | x ∈ T (y)} =
⋃

{[y]E | y ∈ T (x)}.

This means that T (x) is a union of E-classes for any x ∈ U .
In fact, an E-class behaves like one “point” with respect to the tolerance T . The situation can be

depicted as in Figure 1, where E-classes are represented by circles. A line connecting two E-classes
mean that all elements between these two classes are mutually T -related. For instance, x3 is T -related
with x1 and x5, but x1 and x5 are not T -related. The T -neighbourhood of x3 is a union of E-classes,
that is,

T (x3) = {x1, x2} ∪ {x3} ∪ {x4, x5, x6}.

We end this section by three short subsections containing some motivating examples of E-compatible
tolerances.
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2.1. Strong and weak indistinguishability relations. An information system in the sense of
Pawlak [16] is a triple (U,A, {Va}a∈A), where U is a set of objects, A is a set of attributes, and Va is
the value set of a ∈ A. Each attribute is a mapping a : U → Va and a(x) is the value of the attribute
a of for x.

For any B ⊆ A, the strong indistinguishability relation of B is defined by

ind(B) = {(x, y) | (∀a ∈ B) a(x) = a(y)}.

In the literature, strong indistinguishability relations are commonly called “indiscernibility relations”.
The weak indistinguishability relation of B is given by

wind(B) = {(x, y) | (∃a ∈ B) a(x) = a(y)}.

Let us denote for any a ∈ A, the relation ind({a}) simply by ind(a). It is obvious that for all B ⊆ A,

ind(B) =
⋂

a∈B

ind(a) and wind(B) =
⋃

a∈B

ind(a).

It is also clear the for any ∅ 6= B ⊆ A, ind(B) is an equivalence and wind(B) is a tolerance on U .
Additionally, we can write the following lemma.

Lemma 2.9. Let (U,A, {Va}a∈A) be an information system and ∅ 6= B ⊆ A. Then wind(B) is

ind(B)-compatible.

Proof. Suppose (x, y) ∈ ind(B) ◦ wind(B). Then there is z ∈ U such that a(x) = a(z) for all a ∈ B
and there is b ∈ B such that b(z) = b(y). Since b ∈ B, b(x) = b(z). This implies b(x) = b(z) = b(y)
and (x, y) ∈ wind(B). �

Example 2.10. Suppose that U is a set of people and the set A of attributes consists of results of the
medical test that can be performed in a hospital for patients. For instance, a ∈ A can be the attribute
“blood pressure” and a(x) = “normal” means that the patient x has blood pressure readings in the
range from 120 over 80 (120/80) to 140 over 90 (140/90).

Let X ⊆ U be a set of people which are known to have some illness. Let B ⊆ A be a set of medical
tests whose results are relevant in the diagnostics of the disease X. The lower approximation Xind(B)

consists of patients that certainly have the illness X. If x ∈ Xind(B) and (x, y) ∈ ind(B), then also y
has the illness X, because all people having the same symptoms as y are known to be sick. On the
other hand, Xwind(B) contains persons which potentially have the illness X, because if x ∈ Xwind(B),
then x has at least one common meaningful symptom with a person having the illness X. Therefore,
if x ∈ Xwind(B), then we cannot exclude the possibility that x is having the illness X.

2.2. Tolerances induced by coverings. A collection C of nonempty subsets of U is a covering of
U if

⋃

C = U . Each covering C of U defines a tolerance

TC = {(x, y) | (∃B ∈ C)x, y ∈ B}

on U , called the tolerance induced by C. The following lemma is well-known, but we give its proof for
the sake of completeness.

Lemma 2.11. Let C be a covering of U and denote T = TC. For any X ⊆ U ,

XT =
⋃

{B ∈ C | B ∩X 6= ∅}.

Proof. Assume x ∈ XT , that is, T (x) ∩ X 6= ∅. This means that there is y ∈ X such that xT y.
Hence there is B ∈ C which contains both x and y. We have that B ∩ X 6= ∅ and x ∈ B. So,
x ∈

⋃

{B ∈ C | B ∩X 6= ∅}.
On the other hand, suppose x ∈

⋃

{B ∈ C | B ∩X 6= ∅}. This means that x ∈ B for some B ∈ C
such that B ∩X 6= ∅. Therefore, there is an element y in B ∩X. Now y ∈ T (x) and y ∈ X. We have
x ∈ XT . �

Let T be a tolerance on U . A nonempty subset X of U is a T -preblock if X ×X ⊆ T . Note that
if B is a T -preblock, then B ⊆ T (x) for all x ∈ B. A T -block is a T -preblock that is maximal with
respect to the inclusion relation. Each tolerance T is completely determined by its blocks, that is,
aT b if and only if there exists a block B such that a, b ∈ B. In addition, if B is a block, then

(5) B =
⋂

x∈B

T (x).
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Figure 2. A tolerance T induced by an irredundant covering C = {B1, B2, B3}. The
equivalence classes of ker T are the “distinct” areas c1, . . . , c7 of the diagram.

We may characterize tolerances compatible with an equivalence in terms of tolerance blocks.

Proposition 2.12. Let E be an equivalence on U . A tolerance T on U is E-compatible if and only if

each T -block is E-definable.

Proof. Suppose T is E-compatible and let B be a T -block. If x ∈ B and xE y, then (x, y) ∈ E ⊆ kerT
implies T (x) = T (y). Since x ∈ B, we have B ⊆ T (x) = T (y). Now B ⊆ T (y) means that B ∪ {y}
is a T -preblock containing B. Because B is a block, we obtain B ∪ {y} = B and y ∈ B. Thus, B is
E-definable.

On the other hand, assume that each T -block is E-definable. Suppose xT y and y E z. Because
xT y, there is a T -block B such that x, y ∈ B. Because B is E-definable by assumption, y E z gives
z ∈ B. Since B is a T -block, xT z holds. Hence, we have shown that T is E-compatible. �

A covering C is irredundant if C \ {B} is not a covering of U for any B ∈ C. Note that if C is
an irredundant covering, then for any B ∈ C there exists an element x which does not belong to
any other set in C, that is, x /∈

⋃

(C \ {B}). Obviously, each equivalence E on U is such that its
equivalence classes U/E form an irredundant covering of U and that the “tolerance” induced by U/E
is E. Tolerances induced by an irredundant covering of U play an important role in Section 4. It is
known (see [6, 7]) that if T is a tolerance induced by an irredundant covering, then this covering is
{T (x) | T (x) is a block}.

Lemma 2.13. Let T be a tolerance induced by an irredundant covering C of U . Then,

kerT = {(x, y) | (∀B ∈ C)x ∈ B ⇐⇒ y ∈ B}.

Proof. Let us denote EC = {(x, y) | (∀B ∈ C)x ∈ B ⇐⇒ y ∈ B}. If (x, y) ∈ EC , then {B ∈ C | x ∈ B}
is equal to {B ∈ C | y ∈ B}. This implies

T (x) = TC(x) =
⋃

{B ∈ C | x ∈ B} =
⋃

{B ∈ C | y ∈ B} = TC(y) = T (y).

Thus (x, y) ∈ ker T . On the other hand, suppose that (x, y) ∈ ker T , which means that T (x) = T (y).
Suppose that there is B ∈ C such that x ∈ B, but y /∈ B. Because C is an irredundant covering,
there is z ∈ B such that z /∈

⋃

(C \ {B}). This gives that z ∈ T (x) =
⋃

{B ∈ C | x ∈ B}, but
z /∈ T (y) =

⋃

{B ∈ C | y ∈ B}, a contradiction. Therefore, for all B ∈ C, x ∈ B implies y ∈ B.
Similarly, we can show that y ∈ B implies x ∈ B for all B ∈ C. Thus,

{B ∈ C | x ∈ B} = {B ∈ C | y ∈ B},

and (x, y) ∈ EC . We have now proved ker T = EC . �

Example 2.14. If T is a tolerance induced by an irredundant covering C of U , then ker T can be
illustrated by a “Venn diagram” of C. The equivalence classes of ker T are the “distinct” areas in the
diagram. For instance, if C = {B1, B2, B3} is the irredundant covering depicted in Figure 2 and T is
induced by C, then kerT has seven equivalence classes c1, c2, . . . , c7.

Let us denote E = ker T . For any X ⊆ U , XE is the union of the classes ci which are included in
X and XT is the union the Bi-sets which with intersect X.
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2.3. Tolerances as similarity relations. Let (U,A, {Va}a∈A) be an information system such that
Va ⊆ R for each a ∈ A, where R denotes the set of real numbers. Suppose that for any a ∈ A, there
exists a threshold εa ≥ 0 which is interpreted so that the objects x and y are a-similar if and only if
a(x) and a(y) differ from each other by at most εa.

Suppose B ⊆ A. We define

sim(B) = {(x, y) | (∀a ∈ B) |a(x) − a(y)| ≤ εa},

where |x| denotes the absolute value of x ∈ R. Note that if εa = 0 for all a ∈ B, then sim(B) = ind(B).

Lemma 2.15. Let (U,A, {Va}a∈A) be an information system such that Va ⊆ R for each a ∈ A. For

any B ⊆ A, sim(B) is ind(B)-compatible.

Proof. Suppose (x, y) ∈ ind(B) ◦ sim(B). Thus there exists z ∈ U such that (x, z) ∈ ind(B) and
(z, y) ∈ sim(B). This means that for all a ∈ B,

a(x) = a(z) and |a(z) − a(y)| ≤ εa.

This implies that |a(x) − a(y)| ≤ εa for every a ∈ B. Thus, (x, y) ∈ sim(B). �

Example 2.16. Let (U,A, {Va}a∈A) be an information system and let ∅ 6= B ⊆ A. Because (x, y) ∈
ind(B) if and only if a(x) = a(y) for all attributes a ∈ B, then actually every tolerance tol(B) on U
defined in terms of some attributes in B is ind(B)-compatible.

Namely, suppose (x, y) ∈ tol(B). Then a(x) and a(y) are “somehow related” with respect to some
attribute(s) a of B. If (y, z) ∈ ind(B), then a(y) = a(z) means that also a(x) and a(z) are analogously
related.

As an example, we consider “graded similarity”. Let B ⊆ A and k be an integer such that 0 < k ≤
|B|. Note that here |B| denotes the cardinality of set B, and this notation should not be confused
with the notation of absolute value of a real number. We may set:

(x, y) ∈ tol(B) ⇐⇒ there is C ⊆ B such that |C| = k and a(x) = a(y) for all a ∈ C.

This means that x and y have same value for k attributes of B.

Example 2.17. This example demonstrates that if tolerances T1, T2, T3 are E-compatible tolerances
such that T1 ⊆ T2 ⊆ T3, then XE ⊆ X ⊆ XT1 ⊆ XT2 ⊆ XT3 for every X ⊆ U . Here U = R2, and for
a ∈ U , a.x denotes the x-coordinate and a.y denotes the y-coordinate of a. Let us define the following
tolerances:

T1 = {(a, b) | max(|⌊a.x⌋ − ⌊b.x⌋|, |⌊a.y⌋ − ⌊b.y⌋|) ≤ 1};

T2 = {(a, b) | max(|⌊a.x⌋ − ⌊b.x⌋|, |⌊a.y⌋ − ⌊b.y⌋|) ≤ 3};

T3 = {(a, b) | max(|⌊a.x⌋ − ⌊b.x⌋|, |⌊a.y⌋ − ⌊b.y⌋|) ≤ 6}.

Here ⌊x⌋ denotes the “floor” of x, that is, the greatest integer less than or equal to x. Note that
⌊−1.1⌋ = −2, for example. Clearly, T1 ⊆ T2 ⊆ T3.

We define an equivalence E on U by

E = {(a, b) | max(|⌊a.x⌋ − ⌊b.x⌋|, |⌊a.y⌋ − ⌊b.y⌋|) = 0}.

The tolerances T1, T2, T3 are obviously E-compatible. A set X is defined as a sphere:

X = {(a, b) | d((a, b), (a0, b0)) = r0}.

Here d : U × U → [0,∞) is a distance function, (a0, b0) is some fixed point in U , and r0 is some
real-constant. In Figure 3, the set X is denoted by a white line, the central dark area is the lower
approximation XE , and the three grey layers of different intensity show the upper approximations of
X in terms of T1, T2, and T3.

3. Lattices of rough sets based on two relations

Let E be an equivalence on U . We define a relation ≡E on ℘(U) by setting

X ≡E Y ⇐⇒ XE = YE and XE = Y E .

The relation ≡E is called rough E-equality and according to Pawlak’s original definition [17], the
equivalence classes of ≡ are called E-rough sets.
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Figure 3. The central dark area is the lower approximation XE , and the three grey
layers of different intensity show the upper approximations of X in terms of T1, T2,
and T3.

Each rough set R ∈ ℘(U)/≡E is completely defined by the pair (XE ,X
E), where X ∈ R. Therefore,

each E-rough set can be equivalently viewed as this kind of pair, and we call the set

RS (E) = {(XE ,X
E) | X ⊆ U}

as the set of E-rough sets.
A complete sublattice of a complete lattice L is a nonempty set H ⊆ L such that

∨

L S and
∧

L S
belong to H for every S ⊆ H. If L and K are complete lattices, then the Cartesian product

L×K = {(a, b) | a ∈ L and b ∈ K}

forms a complete lattice such that
∨

i∈I

(ai, bi) =
(

∨

i∈I

ai,
∨

i∈I

bi

)

and
∧

i∈I

(ai, bi) =
(

∧

i∈I

ai,
∧

i∈I

bi

)

for all {(ai, bi) | i ∈ I} ⊆ L×K. Note that the order of L×K is given by

(a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤L a2 and b1 ≤K b2.

This order is called coordinatewise order.
It is known (see e.g. [18]) that RS (E) is a complete sublattice of Def(E) × Def(E), that is, for any

H ⊆ ℘(U),
∧

X∈H

(XE ,X
E) =

(

⋂

X∈H

XE,
⋂

X∈H

XE
)

and
∨

X∈H

(XE ,X
E) =

(

⋃

X∈H

XE ,
⋃

X∈H

XE
)

.

Even XE ⊆ XE for any X ⊆ U , not every pair (A,B) such that A,B ∈ Def(E) and A ⊆ B does not
form a rough set. The following characterization is by P. Pagliani [15]:

RS (E) = {(A,B) ∈ Def(E)2 | A ⊆ B and ΣE ⊆ A ∪Bc},

where
ΣE = {[x]E | [x]E = {x} }.

This means that ΣE contains the singleton E-classes. Note that A∪Bc = (B\A)c, so (A,B) ∈ Def(E)2

belongs to RS (E) if and only if A ⊆ B and ΣE ∩ (B \A) = ∅.
On the other hand, it is known that if T is a tolerance on U , then the set of pairs

RS (T ) = {(XT ,X
T ) | X ⊆ U}

ordered by coordinatewise inclusion is not in general a lattice [4]. However, if T is a tolerance induced
by an irredundant covering of U , then RS (T ) is a complete sublattice of ℘(U)T ×℘(U)T , which means
that for any H ⊆ ℘(U),

∧

X∈H

(XT ,X
T ) =

(

⋂

X∈H

XT ,
((

⋂

X∈H

XT
)

T

)T)
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and
∨

X∈H

(XT ,X
T ) =

(((

⋃

X∈H

XT

)T)

T
,
⋃

X∈H

XT
)

.

In this section, we study the structure of the pairs

RS (E,T ) = {(XE ,X
T ) | X ⊆ U},

where E is an equivalence and T is an E-compatible tolerance. We start with the following theorem.

Theorem 3.1. Let E be an equivalence on U . If T is an E-compatible tolerance, then RS (E,T ) is a

complete lattice such that for any H ⊆ ℘(U),

(6)
∨

X∈H

(XE ,X
T ) =

(

⋃

X∈H

XE ,
⋃

X∈H

XT
)

.

and

(7)
∧

X∈H

(XE ,X
T ) =

(

⋂

X∈H

XE ,
((

⋂

X∈H

(XT )T

)

\ ΣE(H)
)T)

,

where

ΣE(H) =
((

⋂

X∈H

(XT )T

)

\
⋂

X∈H

XE

)

∩ ΣE.

Proof. First, we show that the right hand side of (6) belongs to RS (E,T ). As we noted,
(

⋃

X∈H

XE ,
⋃

X∈H

XE
)

belongs to RS (E). This means that there exists a set Y ⊆ U with

YE =
⋃

X∈H

XE and Y E =
⋃

X∈H

XE .

Then, in view of Lemma 2.6, we have

Y T = (Y E)T =
(

⋃

X∈H

XE
)T

=
⋃

X∈H

(XE)T =
⋃

X∈H

XT .

We have proved that
(

⋃

X∈H

XE ,
⋃

X∈H

XT
)

= (YE , Y
T ) ∈ RS(E,T ).

It is clear that the right hand side of (6) is an upper bound of {(XE ,X
T ) | X ∈ H}. Let (ZE , Z

T )
be an upper bound of {(XE ,X

T ) | X ∈ H}. Then
⋃

{XE | X ∈ H} ⊆ ZE and
⋃

{XT | X ∈ H} ⊆ ZT

imply
(

⋃

X∈H

XE ,
⋃

X∈H

XT
)

≤ (ZE , Z
T ).

Therefore, (6) holds.
In order to show that the right side of (7) belongs to RS(E,T ), first we prove that

(

⋂

X∈H

(XT )T

)

\ ΣE(H)

is E-definable.
Suppose that x ∈

⋂

{(XT )T | X ∈ H}\ΣE(H) and xE y. Then T (x) ⊆ XT for all X ∈ H. It is also
clear that y /∈ ΣE(H), because y ∈ ΣE(H) would mean y ∈ ΣE , that is, [y]E = {y}. Because xE y,
we obtain x = y and x ∈ ΣE(H), which is not possible by the original assumption. We have now two
possibilities: (i) If x ∈

⋂

{XE | X ∈ H}, then y ∈ [x]E ⊆ X ⊆ (XT )T for all X ∈ H. Therefore,

y ∈
(

⋂

X∈H

(XT )T

)

\ ΣE(H).

(ii) If

x ∈
(

⋂

X∈H

(XT )T

)

\
⋂

X∈H

XE ,
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then for any z ∈ T (y), z T y and y E x imply z T x. We have z ∈ T (x) ⊆ XT for all X ∈ H. This
means T (y) ⊆ XT and y ∈ (XT )T for every X ∈ H. Thus,

y ∈
(

⋂

X∈H

(XT )T

)

\ ΣE(H).

Therefore,
⋂

{(XT )T | X ∈ H} \ ΣE(H) is E-definable.
It is clear that

⋂

{XE | X ∈ H} is E-definable. Observe also that
⋂

X∈H

XE ⊆
(

⋂

X∈H

(XT )T

)

\ ΣE(H).

Indeed, let x ∈
⋂

{XE | X ∈ H}. Then, x ∈ XE ⊆ X ⊆ (XT )T for any X ∈ H. Thus, x ∈
⋂

{(XT )T |
X ∈ H}. If x /∈ ΣE, then x /∈ ΣE(H). If x ∈ ΣE, then

x /∈
((

⋂

X∈H

(XT )T

)

\
⋂

X∈H

XE

)

∩ ΣE = ΣE(H),

because x ∈
⋂

{XE | X ∈ H}. Therefore,

x ∈
(

⋂

X∈H

(XT )T

)

\ ΣE(H).

Next we observe that ΣE does not intersect with
((

⋂

X∈H

(XT )T

)

\ ΣE(H)
)

\
⋂

X∈H

XE =
((

⋂

X∈H

(XT )T

)

\
⋂

X∈H

XE

)

\ ΣE(H),

because

ΣE(H) =
((

⋂

X∈H

(XT )T

)

\
⋂

X∈H

XE

)

∩ ΣE.

As we have noted, a pair (A,B) ∈ Def(E)2 belongs to RS (E) if and only if A ⊆ B and ΣE∩(B\A) = ∅.
Hence, we have now proved that

(

⋂

X∈H

XE ,
(

⋂

X∈H

(XT )T

)

\ ΣE(H)
)

belongs to RS (E). This means that there is a set Y ⊆ U with

YE =
⋂

X∈H

XE and Y E =
(

⋂

X∈H

(XT )T

)

\ ΣE(H).

By Lemma 2.6,

Y T = (Y E)T =
((

⋂

X∈H

(XT )T

)

\ ΣE(H)
)T

,

and (YE , Y
T ) belongs to RS (E,T ).

Finally, we prove (7). It is clear that

YE ⊆
⋂

X∈H

XE ⊆ XE

and

Y T ⊆
(

⋂

X∈H

(XT )T

)T

=
((

⋂

X∈H

XT
)

T

)T

⊆ ((XT )T )T = XT

for all X ∈ H. Thus, (YE , Y
T ) is a lower bound of {(XE ,X

T ) | X ∈ H}.
Suppose that (ZE , Z

T ) is a lower bound of {(XE ,X
T ) | X ∈ H}. Then, ZE ⊆

⋂

{XE | X ∈ H} = YE

and ZT ⊆
⋂

{XT | X ∈ H}. We have

Z ⊆ (ZT )T =
(

⋂

X∈H

XT
)

T
=

⋂

X∈H

(XT )T .

We prove that Z and ΣE(H) are disjoint. Assume by contradiction that there is x ∈ Z∩ΣE(H). Then
[x]E = {x}. Thus x ∈ Z implies x ∈ ZE ⊆

⋂

{XE | X ∈ H}. We get

x /∈
(

⋂

X∈H

(XT )T

)

\
⋂

X∈H

XE ,
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which means x /∈ ΣE(H), a contradiction. Thus, Z ∩ ΣE(H) = ∅. These facts imply that

Z ⊆
(

⋂

X∈H

(XT )T

)

\ ΣE(H)

and

ZT ⊆
((

⋂

X∈H

(XT )T

)

\ ΣE(H)
)T

= Y T .

Thus, (YE , Y
T ) is the greatest lower bound of {(XE ,X

T ) | X ∈ H}. �

By Theorem 3.1, RS (E,T ) is always a complete join-sublattice of ℘(U)E×℘(U)T . It is also obvious
that if ΣE(H) = ∅ for all H ⊆ ℘(U), then RS (E,T ) is a complete meet-sublattice of ℘(U)E × ℘(U)T .
Therefore, RS (E,T ) is a complete sublattice of the Cartesian product ℘(U)E × ℘(U)T whenever
ΣE(H) = ∅ for all H ⊆ ℘(U). On the other hand, RS (E,T ) may be a complete sublattice of the
Cartesian product ℘(U)E × ℘(U)T even there is H ⊆ ℘(U) such that ΣE(H) 6= ∅ (see Section 4).

Let us denote
ΣT = {T (x) | T (x) = {x}}.

Because T is E-compatible, we have E ⊆ T and ΣT ⊆ ΣE. We can write the following condition.

Lemma 3.2. Let E be an equivalence on U and let T be an E-compatible tolerance. If ΣE ⊆ ΣT ,

then RS (E,T ) is a complete sublattice of the Cartesian product ℘(U)E × ℘(U)T .

Proof. It is enough to prove that for any H ⊆ ℘(U),

ΣE(H) =
((

⋂

X∈H

(XT )T

)

\
⋂

X∈H

XE

)

∩ ΣE

is empty. Suppose that a ∈ ΣE(H) for some H ⊆ ℘(U). This means that a ∈ ΣE ⊆ ΣT . Thus,
T (a) = {a} and [a]E = {a}. Therefore, a ∈

⋂

{(XT )T | X ∈ H} yields that a ∈ X for all X ∈ H and
a /∈

⋂

{XE | X ∈ H} gives that a /∈ X for some X ∈ H. Because these are contradicting, we have
ΣE(H) = ∅. �

Remark 3.3. An element x of a complete lattice L is said to be compact if, for every S ⊆ L,

x ≤
∨

S =⇒ x ≤
∨

F for some finite subset F of S.

A complete lattice L is said to be algebraic if its each element can be represented as a join of compact
elements below it. It is well known that if L is an algebraic lattice, then each complete sublattice of
L is algebraic. Similarly, if L and K are algebraic lattices, then their Cartesian product L × K is
algebraic.

A complete lattice L is completely distributive if for any doubly indexed subset {xi, j}i∈I, j∈J of L,
∧

i∈I

(

∨

j∈J

xi, j

)

=
∨

f : I→J

(

∧

i∈I

xi, f(i)

)

,

that is, any meet of joins may be converted into the join of all possible elements obtained by taking
the meet over i ∈ I of elements xi, k, where k depends on i. As in the case of algebraic lattices, any
complete sublattice of a completely distributive lattice is completely distributive. In addition, the
Cartesian product of completely distributive lattices is completely distributive.

We have proved in [5] that ℘(U)T and ℘(U)T are completely distributive and algebraic if and only
if T is a tolerance induced by an irredundant covering. This means if T is a tolerance induced by
an irredundant covering, then ℘(U)E × ℘(U)T is algebraic and completely distributive. Let T be
a tolerance induced by an irredundant covering of U and let E be an equivalence on U such that
E ⊆ ker T , that is, T is E-compatible. We conclude that if RS (E,T ) is a complete sublattice of the
Cartesian product ℘(U)E × ℘(U)T , then RS (E,T ) is algebraic and completely distributive.

This has particular interest, because it is known that a complete lattice L is isomorphic to an
Alexandrov topology if and only if L is algebraic and completely distributive (see [6, Remark 2.1.], for
instance). An Alexandrov topology is a topology in which the intersection of any family of open sets
is open. In any topology the intersection of any finite family of open sets is open, but in Alexandrov
topologies the restriction of finiteness is omitted.

Example 3.4. Let T a tolerance on U = {1, 2, 3, 4} such that
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X (XE , X
T ) X (XE , X

T )
∅ (∅, ∅) {2, 3} (3, U)
{1} (∅, 123) {2, 4} (4, U)
{2} (∅, 124) {3, 4} (34, U)
{3} (∅, 134) {1, 2, 3} (123, U)
{4} (∅, 234) {1, 2, 4} (124, U)
{1, 2} (12, U) {1, 3, 4} (34, U)
{1, 3} (3, 134) {2, 3, 4} (34, U)
{1, 4} (4, U) U (U,U)

Table 1. Approximations based on E and T of Example 3.4

T (1) = {1, 2, 3}, T (2) = {1, 2, 4}, T (3) = {1, 3, 4}, T (4) = {2, 3, 4}.

The kernel of T is U/ ker T = {{1}, {2}, {3}, {4}}. Let E be an equivalence on U such that U/E =
{{1, 2}, {3}, {4}}. Now E is included in T , but T is not E-compatible, because E * ker T .

The approximations are given in Table 1. Note that in Table 1, sets in approximation pairs are
denoted simply just as sequences of letters. For example, {1, 2, 4} is denoted by 124.

The ordered set RS (E,T ) is given in Figure 4. It is not a join-semilattice, because the elements
(∅, 123) and (∅, 124) have minimal upper bounds (3, U), (12, U), and (4, U), but not a smallest upper
bound. Similarly, this ordered set is not a meet-semilattice, because, for example, (3, U) and (4, U)
have the maximal lower bounds (∅, 123) and (∅, 124), but not a biggest one. This example then shows
that if T is not an E-compatible tolerance, RS(E,T ) is not necessarily a semilattice.

(;; 124)

(4; 234)

(;; 123)

(3; 134)

(;; ;)

(3; U)

(4; U)

(12; U)

(123; U)

(124; U)

(34; U)

(U;U)

Figure 4. The ordered set RS (E,T ) of Example 3.4 is not a semilattice. The elements
(∅, 123) and (∅, 124) do not have a smallest upper bound, and (3, U) and (4, U) have
no greatest lower bound.

Example 3.5. We denote by H the irredundant covering {{1, 2, 3}, {1, 2, 4}} of U . Let T be the
tolerance induced by H. We have that T (1) = T (2) = U , T (3) = {1, 2, 3} and T (4) = {1, 2, 4}. The
kernel of T is the equivalence E of Example 3.4. Thus, the tolerance T is E-compatible.

The approximations are given in Table 2 and the lattice RS(E,T ) can be found in Figure 5. This
lattice is not distributive, because

(3, 123) ∨ ((3, U) ∧ (4, 124)) = (3, 123) ∨ (∅, ∅) = (3, 123),

but

((3, 123) ∨ (3, U)) ∧ ((3, 123) ∨ (4, 124)) = (3, U) ∧ (34, U) = (3, U).
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X (XE , X
T ) X (XE , X

T )
∅ (∅, ∅) {2, 3} (3, U)
{1} (∅, U) {2, 4} (4, U)
{2} (∅, U) {3, 4} (34, U)
{3} (3, 123) {1, 2, 3} (123, U)
{4} (4, 124) {1, 2, 4} (124, U)
{1, 2} (12, U) {1, 3, 4} (34, U)
{1, 3} (3, U) {2, 3, 4} (34, U)
{1, 4} (4, U) U (U,U)

Table 2. Approximations based on E and T of Example 3.5

(3; U)

(4; U)

(12; U)

(123; U)

(124; U)

(34; U)

(U;U)

(;; U)

(4; 124)

(3; 123)

(;; ;)

Figure 5. The lattice RS (E,T ) of Example 3.5 is not distributive, because it contains
the pentagon N5, marked by filled circles, as a sublattice.

4. Further properties of RS (E,T )

In case T is a tolerance induced by an irredundant covering of U and E is an equivalence on U
such that T is E-compatible, we may present stronger lattice-theoretical results as in the previous
section. As we already noted, it is proved in [5] that if T is a tolerance induced by an irredundant
covering of U , then ℘(U)T and ℘(U)T are algebraic and completely distributive lattices. Since the
Cartesian product of completely distributive and algebraic lattices is completely distributive and
algebraic, ℘(U)E × ℘(U)T is completely distributive and algebraic whenever T is a tolerance induced
by an irredundant covering of U and E is an equivalence on U . Therefore, finding a condition under
which RS (E,T ) is a complete sublattice of ℘(U)E ×℘(U)T would be important, because then we can
show that RS (E,T ) has several further properties.

Recall from Lemma 3.2 that if ΣE ⊆ ΣT , RS (E,T ) is a complete sublattice of ℘(U)E ×℘(U)T . Our
following theorem characterizes when RS (E,T ) is a complete sublattice of ℘(U)E × ℘(U)T in terms
of ΣE and ΣT .

Theorem 4.1. Let T be a tolerance induced by an irredundant covering of U and let E be an equiva-

lence on U such that T is E-compatible. Then the following are equivalent:

(a) RS (E,T ) is a complete sublattice of ℘(U)E × ℘(U)T .
(b) For each x ∈ ΣE \ ΣT , there exists an element y /∈ ΣE with T (y) ⊆ T (x).

Proof. (a)⇒(b): Let x ∈ ΣE \ ΣT . Then [x]E = {x} and T (x) has at least two elements. This means
that there is z 6= x such that xT z. Because T is induced by an irredundant covering C, there is B ∈ C
such that {x, z} ⊆ B. For any b ∈ B, there is an (E,T )-rough set ({b}E , {b}

T ). Let us assume that
RS (E,T ) is a complete sublattice of ℘(U)E × ℘(U)T . Then

∧

b∈B

({b}E , {b}
T ) =

(

⋂

b∈B

{b}E ,
((

⋂

b∈B

{b}T
)

T

)T)

.

We have that
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{x}E = ∅ or {x}E = {x},

and

{z}E = ∅ or {z}E = {z}.

Because x 6= z, we get
⋂

{{b}E | b ∈ B} = ∅.
By Section 2.2, the know that C = {T (x) | T (x) is a block}. Therefore, there exists and element

c ∈ B such that T (c) = {c}T = B. By (5), B =
⋂

{T (b) | b ∈ B} =
⋂

{{b}T | b ∈ B}, which yields
((

⋂

b∈B

{b}T
)

T

)T

= (T (c)T )T = (({c}T )T )T = {c}T = T (c) = B.

We have that
∧

b∈B

({b}E , {b}
T ) = (∅, B)

belongs to RS (E,T ). This means that there is a set Y ⊆ U such that YE = ∅ and Y T = B. Obviously,
Y = ∅ would imply Y T = ∅, so necessarily Y 6= ∅. Thus, there is y ∈ Y such that {y}E ⊆ YE = ∅ and
y ∈ T (y) = {y}T ⊆ Y T = B. Because y ∈ B, we have also B ⊆ T (y). This means that T (y) = B is a
block. Now {y}E = ∅ means that [y]E 6= {y}, that is, y /∈ ΣE. Because x ∈ B = T (y) and T (y) is a
block, we have T (y) ⊆ T (x).
(b)⇒(a): By Theorem 3.1 RS (E,T ) is a complete join-sublattice of ℘(U)E × ℘(U)T . By the same
theorem, to prove that RS (E,T ) is a complete sublattice of ℘(U)E ×℘(U)T , we have to show that for
any H ⊆ ℘(U),

(8)
((

⋂

X∈H

(XT )T

)

\ ΣE(H)
)T

=
(

⋂

X∈H

(XT )T

)T

.

Let H ⊆ ℘(U). Because the left side of (8) is always included in its right side of, it is enough to prove
that

(

⋂

X∈H

(XT )T

)T

⊆
((

⋂

X∈H

(XT )T

)

\ ΣE(H)
)T

.

Let x ∈
(
⋂

{(XT )T | X ∈ H}
)T

. This means that there is a ∈
⋂

{(XT )T | X ∈ H} =
(
⋂

{XT | X ∈

H}
)

T
with x ∈ T (a). As xT a, there is b ∈ U such that T (b) is a block and x, a ∈ T (b). We have

x ∈ T (b) ⊆ T (a) ⊆
⋂

{XT | X ∈ H}.
If b /∈ ΣE(H), then trivially b /∈

(
⋂

{(XT )T | X ∈ H} \ ΣE(H)
)

and x ∈
(
⋂

{(XT )T | X ∈

H} \ ΣE(H)
)T

. Assume that b ∈ ΣE(H). Let us recall that

ΣE(H) =
((

⋂

X∈H

(XT )T

)

\
⋂

X∈H

XE

)

∩ ΣE.

Then [b]E = {b} and b ∈
⋂

{(XT )T | X ∈ H} = (
⋂

{XT | X ∈ H})T . This yields T (b) ⊆
⋂

{XT |
X ∈ H}. In addition, we have b /∈

⋂

{XE | X ∈ H}. Observe also that for all X ∈ H, b ∈ XT ,
that is, T (b) ∩ X 6= ∅. This implies that T (b) = {b} is not possible, because it would imply that
b ∈ X for all X ∈ H. Since [b]E = {b}, we would have that b ∈ XE for all X ∈ H, and further
x ∈

⋂

{XE | X ∈ H}, which is not allowed. Hence, T (b) 6= {b} and b ∈ ΣE \ ΣT . By our assumption,
there exists an element y such that T (y) ⊆ T (b) and [y]E 6= {y}. Now T (y) ⊆ T (b) ⊆

⋂

{XT | X ∈ H}
implies y ∈ (

⋂

{XT | X ∈ H})T =
⋂

{(XT )T | X ∈ H}. Because y /∈ ΣE, y /∈ ΣE(H) holds also. We
have showed that y ∈

⋂

{(XT )T | X ∈ H} \ ΣE(H). Because y ∈ T (b) and T (b) is a block, we have
x ∈ T (b) ⊆ T (y) and thus

x ∈
((

⋂

X∈H

(XT )T

)

\ ΣE(H)
)T

,

which completes the proof. �

Remark 4.2. In condition (b) of Theorem 4.1, any y /∈ ΣE with T (y) ⊆ T (x) is such that T (y) is a
block. In “(a)⇒(b) part” of the proof, it is directly showed that T (y) is a block. In “(b)⇒(a) part”,
we showed that T (y) ⊆ T (b), and T (b) ⊆ T (y) holds by assumption. Thus, T (y) = T (b), and we also
have that T (b) is a block.
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What also is interesting is that there need to be two such elements. Namely, y /∈ ΣE means that
[y]E 6= {y}. So, there is an element z 6= y such that y E z. Because E is T -compatible, we have that
(y, z) ∈ kerT , that is, T (y) = T (z). Hence, z has all the same properties as y has.

Example 4.3. Suppose that U = {1, 2, 3, 4, 5, 6}. Then

C = {{1, 2, 3, 4}, {3, 4, 5, 6}}

is an irredundant covering of U ,

• T (1) = T (2) = {1, 2, 3, 4},
• T (3) = T (4) = U , and
• T (5) = T (6) = {3, 4, 5, 6}.

We have that

U/ ker T = {{1, 2}, {3, 4}, {5, 6}}.

Let E be an equivalence on U such that

U/E = {{1, 2}, {3}, {4}, {5, 6}}.

Because E ⊆ kerT , the tolerance T is E-compatible.
Now ΣT = ∅ and ΣE = {3, 4}. Thus, ΣE \ ΣT = {3, 4}. Because T (3) = T (4) = U , condition

(b) of Theorem 4.1 is trivially true for any y ∈ U \ ΣE = {1, 2, 5, 6}. Note also that for any element
y ∈ {1, 2, 5, 6}, T (y) is a block.

However, we may present even such a condition concerning only the elements whose T -
neighbourhood is a block. Let us define the following condition:

(CSub) For each x ∈ ΣE \ ΣT such that T (x) is a block, there exists an element y /∈ ΣE with T (y) = T (x).

Note that if ΣE ⊆ ΣT , then ΣE \ ΣT is empty and (CSub) holds trivially.

Lemma 4.4. Let T be a tolerance induced by an irredundant covering of U and let E be an equivalence

on U such that T is E-compatible. Then RS (E,T ) is a complete sublattice of ℘(U)E × ℘(U)T if and

only if condition (CSub) holds.

Proof. We prove that (CSub) is equivalent to condition (b) of Theorem 4.1, from which the claim
follows.

Assume that x ∈ ΣE \ΣT . Then, there exists an element y /∈ ΣE with T (y) ⊆ T (x). If this T (x) is
a block, then y ∈ T (y) ⊆ T (x) implies T (x) ⊆ T (y). Thus, T (y) = T (x).

Conversely, assume that (Csub) holds and x ∈ ΣE \ ΣT . Then T (x) 6= {x}, that is, xT z for some
z 6= x. Hence, there exists y such that T (y) is a block and x, z ∈ T (y). Because x ∈ T (y), we have
T (y) ⊆ T (x). If y /∈ ΣE, then there is nothing left to prove. If y ∈ ΣE, then x, z ∈ T (y) and x 6= z
imply that T (y) has at least two elements. Thus, y ∈ ΣE \ΣT , and by (CSub), there exists an element
y′ /∈ ΣE such that T (y′) = T (y) ⊆ T (x). This completes the proof. �

It is proved in [6] that when T is a tolerance induced by an irredundant covering of U , RS (T ) is a
regular double p-algebra. Recall from [8], for example, that an algebra (L,∨,∧, ∗,+, 0, 1) is called a
double p-algebra if (L,∨,∧, 0, 1) is a bounded lattice such that ∗ is the pseudocomplement operation
and + is the dual pseudocomplement operation on L. Note that this means that for all a ∈ L, a∧ b = 0
if and only if b ≤ a∗ and a ∨ b = 1 if and only if b ≥ a+. A double p-algebra is regular if

a∗ = b∗ and a+ = b+ imply a = b.

A Boolean lattice is a bounded distributive lattice L such that each element a ∈ L has a complement

a′ which satisfies

a ∧ a′ = 0 and a ∨ a′ = 1.

Note that a Boolean lattice B forms trivially a regular double p-algebra (B,∨,∧, ′, ′, 0, 1).
In the proof of the following proposition we need the fact that Def(E) is a Boolean lattice in which

X ′ = Xc for all X ∈ Def(E). In addition, it is proved in [5] that if T is a tolerance induced by an
irredundant covering of U , then ℘(U)T is a Boolean lattice such that X ′ = (Xc)T for X ∈ ℘(U)T .
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Proposition 4.5. Let T be a tolerance induced by an irredundant covering of U and let E be an

equivalence on U such that T is E-compatible. If (CSub) holds, then

(RS (E,T ),∨,∧,∗ ,+ , (∅, ∅), (U,U))

is a double p-algebra such that for any (A,B), (C,D) ∈ RS (E,T ),

(A,B) ∧ (C,D) = (A ∩ C, ((B ∩D)T )T ),

(A,B) ∨ (C,D) = (A ∪ C,B ∪D)),

(A,B)∗ = (((Bc)T )T , (B
c)T ),

(A,B)+ = (Ac, (Ac)T ).

Proof. The operations ∨ and ∧ are clear, because they are inherited from ℘(U)E × ℘(U)T .
Let (A,B) ∈ RS (E,T ). Then A ∈ Def(E) gives and Ac ∈ Def(E) and (Ac)E = Ac. We have that

(Ac, (Ac)T ) = ((Ac)E , (A
c)T ) ∈ RS (E,T ).

By Lemma 2.6(b), (((Bc)T )T )E = ((Bc)T )T . Since T is a tolerance, (((Bc)T )T )T = (Bc)T . Thus also

((Bc)T )T , (B
c)T ) = (((Bc)T )T )E , ((B

c)T )T )T ) ∈ RS (E,T ).

Now

(9) (A,B) ∧ (((Bc)T )T , (B
c)T ) = (A ∩ ((Bc)T )T , (BT ∪ ((Bc)T )T )T ).

Because A = XE and B = XT for some X ⊆ U , AT = (XE)T ⊆ XT = B and Bc ⊆ (AT )c = (Ac)T .
Then,

((Bc)T )T ⊆ (((Ac)T )T )T = (Ac)T ⊆ Ac,

and we obtain A ∩ ((Bc)T )T = ∅. In addition,

BT ∩ ((Bc)T )T = BT ∩ ((BT )c)T ⊆ BT ∩ (BT )c = ∅,

from which we get (BT ∩ ((Bc)T )T )T = ∅. Thus, by (9),

(A,B) ∧ (((Bc)T )T , (B
c)T ) = (A ∩ ((Bc)T )T , (BT ∪ ((Bc)T )T )T ) = (∅, ∅).

Suppose that (A,B) ∧ (YE , Y
T ) = (∅, ∅). Because RS (E,T ) is a complete sublattice of ℘(U)E ×

℘(U)T ,

A ∧ YE = ∅ in Def(E) and B ∧ Y T = ∅ in ℘(U)T .

This gives that YE ⊆ Ac and Y T ⊆ (Bc)T . Recall from the above that ℘(U)T is a Boolean lattice in
which B′ = (Xc)T . Then, YE ⊆ Y ⊆ (Y T )T ⊆ ((Bc)T )T and hence,

(YE , Y
T ) ≤ (((Bc)T )T , (B

c)T ).

We have proved (A,B)∗ = (((Bc)T )T , (B
c)T ).

For the other equality, we have that

(A,B) ∨ (Ac, (Ac)T ) = (A ∪Ac, B ∪ (Ac)T ).

Now A ∪ Ac = U and A ⊆ B gives Bc ⊆ Ac. Thus, B ∪ (Ac)T ⊇ B ∪ Ac ⊇ B ∪ Bc = U . Therefore,
(A,B) ∨ (Ac, (Ac)T ) = (U,U). On the other hand, assume that (A,B) ∨ (YE, Y

Y ) = (U,U). Because
RS (E,T ) is a complete sublattice of ℘(U)E ×℘(U)T , we have that A∨YE = U in Def(E). Therefore,
Ac ⊆ YE and Ac ⊆ YE ⊆ Y gives (Ac)T ⊆ Y T . This means that (Ac, (A

c)T ) ≤ (YE, Y
T ). We get

(A,B)+ = (Ac, (Ac)T ). �

Corollary 4.6. Let T be a tolerance induced by an irredundant covering of U and let E be an equiv-

alence on U such that T is E-compatible. If (CSub) holds, then for (A,B) ∈ RS (E,T ),

(A,B)∗∗ = (BT , B) and (A,B)++ = (A,AT ).

Proof. By Proposition 4.5,

(A,B)∗∗ = (((Bc)T )T , (B
c)T )∗ = (((((Bc)T )c)T )T , (((B

c)T )c)T ) = (((BT )T )T , (BT )T ) = (BT , (BT )T ).

Because (A,B) = (XE ,X
T ) for some X ⊆ U , we have (BT )T = ((XT )T )T = XT = B and (A,B)∗∗ =

(BT , B). Similarly,

(A,B)++ = (Ac, (Ac)T )∗ = ((Ac)c, ((Ac)c)T ) = (A,AT ). �
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Theorem 4.7. Let T be a tolerance induced by an irredundant covering of U and let E be an equiva-

lence on U such that T is E-compatible. If (CSub) holds, then

(RS (E,T ),∨,∧,∗ ,+ , (∅, ∅), (U,U))

is a regular double p-algebra.

Proof. Suppose (A,B)∗ = (C,D)∗ and (A,B)+ = (C,D)+ for some (A,B) and (C,D) in RS (E,T ).
Then,

(A,B)∗∗ = (BT , B) = (DT ,D) = (C,D)∗∗

and

(A,B)++ = (A,AT ) = (C,CT ) = (C,D)++.

We have B = D and A = C, that is, (A,B) = (C,D). �

A Heyting algebra is a bounded lattice L such that for all a, b ∈ L, there is a greatest element x of
L satisfying a ∧ x ≤ b. This element x is called the relative pseudocomplement of a with respect to b,
and it is denoted by a ⇒ b. By [8, Theorem 1], we can write the following corollary of Theorem 4.7.

Corollary 4.8. Let T be a tolerance induced by an irredundant covering of U and let E be an equiv-

alence on U such that T is E-compatible. If (CSub) holds, then RS (E,T ) is a Heyting algebra

Note that if an E-compatible tolerance T is induced by an irredundant covering and (CSub) holds,
then RS (E,T ) is a Heyting algebra also because it is completely distributive.

It is also proved in [6] that if T is a tolerance induced by an irredundant covering of U , then RS (T )
forms so-called De Morgan algebra. A De Morgan algebra (L,∨,∧,∼, 0, 1) is a bounded distributive
lattice (L,∨,∧, 0, 1) equipped with an operation ∼ which satisfies:

∼∼x = x and x ≤ y ⇐⇒ ∼y ≤ ∼x.

Such a map ∼ is an order-isomorphism from (L,≤) to (L,≥). This means that the Hasse diagram of
L looks the same when it is turned upside-down.

Example 4.9. Let U = {1, 2, 3, 4, 5, 6} and let T be the tolerance induced by the irredundant covering

H = {{1, 2, 3, 4}, {3, 4, 5, 6}}

of U . We have

T (1) = T (2) = {1, 2, 3, 4}, T (3) = T (4) = U, T (5) = T (6) = {3, 4, 5, 6}.

Let E = kerT . Then, U/E = {{1, 2}, {3, 4}, {5, 6}}. This means that ΣE = ∅ and RS (E,T ) is a
complete sublattice of ℘(U)E × ℘(U)T . By Theorem 4.7,

(RS (E,T ),∨,∧,∗ ,+ , (∅, ∅), (U,U))

is a regular and distributive double p-algebra.
The Hasse diagram of RS (E,T ) is given in Figure 6. Because RS (E,T ) is not isomorphic to its dual,

whose Hasse diagram is obtained by turning the Hasse diagram of RS (E,T ) upside down, RS (E,T )
cannot form a De Morgan algebra.

We end this work by considering the case in which E is an equivalence on U and the E-compatible
tolerance is an equivalence. Suppose that F is an equivalence on U such that E ⊆ kerF . Because F
is an equivalence, kerF = F and we have E ⊆ F . On the other hand, if E ⊆ F , then E ⊆ kerF .
Thus, whenever F is an equivalence, F is E-compatible if and only if E ⊆ F . Notice that this means
that F -classes are unions of E-classes.
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(1256; U)

(U;U)

(3456; U)

(12; U)

(56; U)

(56; 3456)

(;; 1234)

(;; ;)

(;; 3456)

(;; U)

(12; 1234)

(1234; U)

(34; U)

Figure 6. A regular and distributive double p-algebra RS (E,T ) of Example 4.9 does
not form a De Morgan algebra, because it is not isomorphic to its dual.

Let E and F be two equivalences on U such that E ⊆ F . The “tolerance” F obviously is induced by
an irredundant covering U/F and it is compatible with E. Let us introduce the following condition:

(CSub◦) If [x]F is non-singleton, then there is y F x such that [y]E is non-singleton.

Lemma 4.10. Let E and F be two equivalences on U such that E ⊆ F . Then RS (E,F ) is a complete

sublattice of ℘(U)E × ℘(U)F if and only condition (CSub◦) holds.

Proof. We show that (CSub◦) is equivalent to (CSub), when we replace T by F in (CSub).

(CSub)⇒(CSub◦): Suppose that [x]F is non-singleton. If [x]E is non-singleton, we may choose y = x.
If [x]E is singleton, then x ∈ ΣE \ ΣF . The equivalence class [x]F is a block. By (CSub), there exists
y /∈ ΣE such that [y]F = [x]F . This means that y F x and [y]E is non-singleton.

(CSub◦)⇒(CSub): Let x ∈ ΣE \ ΣF . Then [x]F 6= {x} is an equivalence class and a block. There
exists y F x such that [y]E is non-singleton, that is, y /∈ ΣE. We have [x]F = [y]F , because F is an
equivalence. �

If (CSub◦) holds, then RS (E,F ) is a complete sublattice of the lattice ℘(U)E × ℘(U)F forming a
distributive double p-algebra such that for (A,B) ∈ RS (E,F ),

(A,B)∗ = ((Bc)F , (Bc)F ), (A,B)+ = (Ac, (Ac)F ),

(A,B)∗∗ = (BF , B), (A,B)++ = (A,AF ).

A Stone algebra is a pseudo-complemented distributive lattice (L,∨,∧,∗ , 0, 1) such that a∗∨a∗∗ = 1
for all a ∈ L. A double Stone algebra is a double p-algebra (L,∨,∧, ∗,+, 0, 1) such that a∗ ∨ a∗∗ = 1
and a+ ∧ a++ = 0 for all a ∈ L.

Proposition 4.11. Let E and F be equivalences on U such that E ⊆ F and (CSub◦) holds.

(a) (RS (E,F ),∨,∧,∗ , (∅, ∅), (U,U)) is a Stone algebra.

(b) (RS (E,F ),∨,∧,∗ ,+ , (∅, ∅), (U,U)) is a double Stone algebra if and only if E = F .

Proof. (a) For (A,B) ∈ RS (E,F ),

(A,B)∗ ∨ (A,B)∗∗ = ((Bc)F , (Bc)F ) ∨ (BF , B) = ((BF )c ∪BF , (BF )c ∪B) = (U,U).

This is because BF ⊆ B gives Bc ⊆ (BF )c and so (BF )c ∪B ⊇ Bc ∪B = U .
(b) If E = F , then RS (E,F ) coincides to the rough set algebra RS (E). It is well known that

RS (E) forms a double Stone algebra; see [1, 18]. Conversely, assume that RS (E,F ) forms a double
Stone algebra. Then

(A,B)+ ∧ (A,B)++ = (Ac, (Ac)F ) ∧ (A,AF ) = (Ac ∩A, (Ac)F ∩AF ) = (∅, ∅)

holds for all (A,B) ∈ RS (E,F ). Because Ac ∩A = ∅ holds trivially, we have that this is equivalent to

(10) (Ac)F ∩AF = ∅ for all A ∈ Def(E).



DEFINING ROUGH SETS USING TOLERANCES COMPATIBLE WITH AN EQUIVALENCE 20

We prove that (10) is equivalent to Def(E) = Def(F ). Suppose that A ∈ Def(E) = Def(F ). Then
Ac ∈ Def(E) = Def(F ) and we get

(Ac)F ∩AF = Ac ∩A = ∅,

that is, (10) holds.
Conversely, suppose that (10) holds. Since E ⊆ F , F -classes are unions of E-classes. Thus,

Def(F ) ⊆ Def(E). Let A ∈ Def(E). Then (10) implies AF ⊆ ((Ac)F )c = AF . Because AF ⊆ AF , we
get AF = AF , that is, A ∈ Def(F ). Thus, Def(E) = Def(F ).

Finally, in order to prove E = F , we show [x]E = [x]F for any x ∈ U . Suppose that x ∈ U . Because
E ⊆ F , we have [x]E ⊆ [x]F . Let a ∈ [x]F . We have x ∈ [x]E and x ∈ [a]F . Thus [x]E ∩ [a]F 6= ∅ and
so a ∈ ([x]E)F . Because [x]E ∈ Def(E) = Def(F ), we have ([x]E)F = [x]E and a ∈ [x]E . Hence also
[x]F ⊆ [x]E and we have proved E = F . �

Some concluding remarks

In this paper we have presented observations on a tolerance T compatible with an equivalence E.
Surprisingly, this notion was defined in the literature under a different name already in 1995. Our
opinion is that since this concept appears in several contexts, it “proves” that the notion is important.
Our motivation for defining this concept was that we wanted to make the upper approximation XE

of a set X “softer”. A tolerance T compatible with E turned out to be a suitable for this, because it
connects the tolerance T to the equivalence E firmly, so that the connections between approximations
defined in terms of T and E are not arbitrary. In [23], the authors “extend” the equivalence E
by accepting that objects which are not indistinguishable but sufficiently close or similar can be
“grouped” together. More precisely, their aim was to construct a similarity relation (tolerance) from
an indistinguishability relation (equivalence).

In our study it turned out that tolerances compatible with an equivalence E are closely related to E-
definability. We proved that if T is a tolerance compatible with an equivalence E on U , then lower and
upper T -approximations are E-definable. This also implies that for each x ∈ U , the neighbourhood
T (x) is a union of some E-classes. A block of a tolerance can be seen as a counterpart of an equivalence
class of an equivalence relation. Blocks are maximal sets in which all elements are similar to each
other. We have proved that all T -blocks are E-definable if and only if T is E-compatible.

The ordered set of all rough sets RS (E) defined by an equivalence E is known to form a regular
double Stone algebra. On the other hand, rough sets RS (T ) defined by a tolerance T do not necessarily
form even a semilattice. In this work, we have shown that RS (E,T ) forms a complete lattice, whenever
T is E-compatible. In addition, if an E-compatible tolerance T is induced by an irredundant covering,
we have given a condition under which RS (E,T ) forms a regular double p-algebra and a Heyting
algebra.
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