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In blind quantum computation (BQC), a client delegates her quantum computation to a server with universal

quantum computers who learns nothing about the client’s private information. In measurement-based BQC

model, entangled states are generally used to realize quantum computing. However, to generate a large-scale

entangled state in experiment becomes a challenge issue. In circuit-based BQC model, single-qubit gates can

be realized precisely, but entangled gates are probabilistically successful. This remains a challenge to realize

entangled gates with a deterministic method in some systems. To solve above two problems, we propose the

first hybrid universal BQC protocol based on measurements and circuits, where the client prepares single-qubit

states and the server performs universal quantum computing. We analyze and prove the correctness, blindness

and verifiability of the proposed protocol.

I. INTRODUCTION

Recently, blind quantum computation (BQC) becomes a

hot topic in quantum information processing since it can

be applied to realize clients’ private quantum computing.

In BQC, measurement-based model and circuit-based model

have been studied for years [1–15]. A. Broadbent et al.

[1] in 2009 firstly implemented a universal BQC protocol

by measuring an m × n dimensional blind brickwork state,

which is called Broadbent-Fitzsimons-Kashefi (BFK) proto-

col. In BFK protocol, the client can prepare single-qubit

states {|±θ〉 = 1√
2
(|0〉 + eiθ|1〉)| θ = 0, π

4
, 2π

4
, . . . , 7π

4
}. Based

on BFK protocol, multi-server BQC protocols were proposed

in [3, 5, 6]. A BQC protocol for single-qubit gates X, Y, T,

Z has been realized by measuring blind topological states,

where the error threshold is explicitly calculated [7]. A uni-

versal BQC protocol based on Affleck-Kennedy-Lieb-Tasaki

(AKLT) states has been implemented, where the universal

gates set consists of blind Z-rotation, blind X-rotation and

controlled-Z followed by blind Z-rotations [8]. In experi-

ments, S. Barz et al. [2] realized a demonstration for the

privacy of quantum inputs, computations, and outputs. Fur-

thermore, the verifiable BQC protocols and other interesting

BQC protocols have been proposed [16–28]. In [24], a blind

quantum computing about symmetrically private retrieval was

proposed, where a client Alice has limited quantum technolo-

gies and queries a item of the database owned by a server Bob

who has a fledged quantum computer. In the protocol, the pri-

vacy of both participants can be preserved: Bob knows noth-

ing about what Alice has retrieved, and Alice can only get the

information that she wants to query of the database, where the

related private retrieval schemes can refer to [29–31].

For quantum computers, it is important to prepare entan-

gled states that can be applied to quantum computing [32],
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quantum simulation [33] and so on. In measurement-based

BQC model, the key problem is how to generate large-scale

entangled states [1, 34] in space-separated and individual-

controllable quantum systems such as the brickwork state [1],

AKLT state [8]. In experiments, great progress has been made

in preparing multi-qubit entangled states. The number of

qubits in an entangled state [35] reaches to 20 in trapped-ion

system, while the number is 10 both in superconducting [36]

and photonic systems [37]. It is difficult to describe a large-

scale entangled state since the dimension of Hilbert space is

exponentially increasing. In circuit-based BQC model [10–

14], the entangled gates are realized probabilistically such as

the successful probability in optical system is 1/16 in [38],

1/9 in [39], 1/4 in [40], 1/3 in [41] and 21/25 in [42].

In this paper, we first propose a hybrid universal BQC pro-

tocol (HUBQC), which is based on measurements and cir-

cuits. Intuitively, we make full use of advantages of two

models. Specially, entangled gates can be realized with a de-

terministic method in measurement-based model, solving the

probabilistic realization of entangled gates problem in circuit-

based model. Meanwhile, the single-qubit gates can also be

realized without too many qubits in circuit-based model, solv-

ing experimentally generation of a large-scale entangled state

problem in measurement-based model. A client Alice gener-

ates initial states and a server Bob performs operations and

measurements. The entangled gates can be realized by mea-

suring graph states and single-qubit gates can be operated on

the suitable qubits with an predefined order. We not only

prove the correctness and blindness of the protocol but also

have verifiability which implies to verify Bob’s honesty and

the correctness of measurement outcomes. Finally, we apply

HUBQC protocol to realize blind quantum Fourier transform.

For blindness, measurement process has adopted the encryp-

tion algorithm from BFK protocol.

The rest of this paper is organized as follows. We present

the preliminaries in Section II. The definition and structure

of the graph state |Cluster〉 are presented in Section III. The

universal blind quantum computation protocol is in Section

IV. We show the analyses and proofs of correctness, blindness

http://arxiv.org/abs/1809.06000v2
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and verifiability as well as a application of our protocol in

Section V. At last, our discussions and conclusions are given

in Section VI.

II. PRELIMINARIES

A. Basic principles of circuit-based quantum computation

In [43], it points out that an arbitrary unitary operator U can
be decomposed into the combinations of rotation operators.
We first give the rotation operators as follows:

Rx(α) =

(

cos α
2
−isin α

2

−isin α
2

cos α
2

)

,

Ry(β) =

(

cos
β

2
−sin

β

2

sin
β

2
cos

β

2

)

,

Rz(γ) =















e
−iγ
2 0

0 e
iγ
2















,

(1)

where α, β, γ ∈ [0, 2π]. Particularly, if the rotation angle is π

about x-axis, y-axis and z-axis respectively, we get

Rx(π) = iX, Ry(π) = XZ, Rz(π) = −iZ. (2)

If there exist θ, α, β and γ, s.t. an arbitrary unitary operator
U has the decompositions as follows:

U = eiθRz(α)Ry(β)Rz(γ)

=

(

ei(θ− α
2
− γ

2
)cos

β

2
−ei(θ− α

2
+
γ
2

) sin
β

2

ei(θ+ α
2
− γ

2
)sin

β

2
ei(θ+ α

2
+
γ
2

)cos
β

2

)

,

U = eiθRz(α)Rx(β)Rz(γ)

=

(

ei(θ− α
2
− γ

2
)cos

β

2
−iei(θ− α

2
+
γ
2

) sin
β

2

−iei(θ+ α
2
− γ

2
)sin

β

2
ei(θ+ α

2
+
γ
2

)cos
β

2

)

,

U = eiθRy(α)Rx(β)Ry(γ) = eiθ·
(

cos
β

2
cos

α+γ

2
+ isin

β

2
sin
α−γ

2
−cos

β

2
sin
α+γ

2
− isin

β

2
cos

α−γ
2

cos
β

2
sin
α+γ

2
− isin

β

2
cos

α−γ
2

cos
β

2
cos

α+γ

2
− isin

β

2
sin
α−γ

2

)

.

(3)

Here, we only show three decomposition forms, the other

three decompositions y-z-y, x-z-x, x-y-x are similar. Next, we

give the z-y-z decomposition for gates H, S, Z, T, X, Y as

follows:

H = e
iπ
2 Ry(
π

2
)Rz(π), S = e

iπ
4 Rz(
π

2
), Z = e

iπ
2 Rz(π),

X = e
iπ
2 Ry(π)Rz(π), T = e

iπ
8 Rz(
π

4
), Y = e

iπ
2 Ry(π),

(4)

For the z-x-z decomposition of rotation operators of above

gates, we obtain

S = e
iπ
4 Rz(
π

2
), Z = e

iπ
2 Rz(π), T = e

iπ
8 Rz(
π

4
),

X = e
iπ
2 Rx(π), Y = e

iπ
2 Rx(π)Rz(π),

H = e
iπ
2 Rz(
π

2
)Rx(
π

2
)Rz(
π

2
).

(5)

For the y-x-y decomposition of rotation operators of above

gates, we get

S = e
iπ
4 Ry(
−π
2

)Rx(
π

2
)Ry(
π

2
), H = e

iπ
2 Rx(π)Ry(

π

2
),

Z = e
iπ
2 Ry(
−π
2

)Rx(π)Ry(
π

2
), X = e

iπ
2 Rx(π),

T = e
iπ
8 Ry(
−π
2

)Rx(
π

4
)Ry(
π

2
), Y = e

iπ
2 Ry(π).

(6)

Unexpected Pauli operators will appear in the process of

circuit-based computation, therefore some main propagation

relationships between rotation operators and Pauli operators

can be expressed as follows:

Rx(β)X = XRx(β), Rx(β)Z = ZRx(−β),
Ry(β)X = XRy(−β), Ry(β)Z = ZRy(−β),
Rz(β)X = XRz(−β), Rz(β)Z = ZRz(β).

(7)

Besides, the relationship of the rotation angles is Rφ(α + β) =

Rφ(α) · Rφ(β), where φ ∈ {x, y, z}.

B. Basic principles of measurement-based quantum

computation

In this section, we introduce the principles of measurement-

based quantum computation.

In the paper [1], we first get the detailed definitions and

technologies of single-qubit initial states, orthogonal projec-

tions measurements, gates corrections and two-qubit entan-

glement operators in measurement based quantum computa-

tion model. Second, if the measured qubits are not in the fi-

nal column (vertical direction), the correction operations X, Z

and Rz(·) can be naturally absorbed by performing the adaptive

projective measurements. Third, we also obtain the commuta-

tion relationships of Controlled-Z (CZ) with X, Z, Rz(·) in [1].

The three points also can be found in [44, 45]. In addition, the

commutation relationships of Pauli operators with Rx(·), Rz(·)
are found in Eq.(7). After measuring the former qubit in a

large graph state, the following gate will act on the latter qubit:

W(θ) = 1√
2

(

1 eiθ

1 −eiθ

)

= H · P(θ), where P(θ) =

(

1 0

0 eiθ

)

.

III. THE DEFINITION AND STRUCTURE OF THE

GRAPH STATE |Cluster〉

Definition—In FIG. 1, we show the structure of an m × n

dimensional entangled state |Cluster〉, where these single-

qubit states in the state |Cluster〉 are |±ω j
〉 = 1√

2
(|0〉 ± eiω j |1〉)

(ω j = 0, π
4
, . . . , 7π

4
). Suppose m denote the horizontal rows

and n denote the vertical columns. The physical qubits are la-

belled as index (a, b), where a represents the a-th row and b

represents the b-th column.

1. For odd rows a and columns b ≡ 1 (mod 6), applying

operations CZ on qubits (a, b) and (a + 1, b), (a, b + 2) and

(a + 1, b + 2).

2. For even rows a and columns b ≡ 4 (mod 6), applying

operations CZ on qubits (a, b) and (a + 1, b), (a, b + 2) and

(a + 1, b + 2).

3. For each row a, applying operations CZ on qubits (a, b)

and (a, b + 1) where 1 6 a 6 m, 1 6 b 6 n.

It can be seen from FIG. 1 that every unit state is an eight-

qubit cluster state (See FIG. 2(1)) which can be used to realize

entangled gates Controlled-NOT (CNOT) (See FIG. 2(2)).



3

L

L L

L

LL

FIG. 1. Schematic structure of a graph state |Cluster〉, where the

black dots can be viewed as the outputs in former computing mean-

while the inputs in the latter computing. All white dots are auxiliary

qubits to help complete the computing.

W(0)

W(0)Z Z

W(0)

º
H

( )πz 2
R

c1b1a1

c2b2a2

(1)

(2)

( )π2W

( )π2W

( )π2W -

FIG. 2. Schematic structure of an eight-qubit cluster state which

refers to our previous work [46], where qubits labelled by a f , b f , c f

( f = 1, 2) need to be measured. Except for a global phase factor,

W(θ) is the same as HRz(θ).

IV. A HYBRID UNIVERSAL BQC PROTOCOL

Our HUBQC Protocol—The concrete steps of our protocol

are as follows (See FIG. 3), where the client Alice has the abil-

ity to prepare the initial states and the server Bob can perform

universal quantum computing without extracting Alice’s any

private information.

Step 1. Alice prepares all single-qubit states |±ω j
〉, |0〉, |1〉,

|±µ j
〉 and sends them to Bob, where ω j, µ j ∈ {0, π4 , · · · ,

7π
4
}.

These states |±ω j
〉 are used for computing and |0〉, |1〉, |±µ j

〉 are

trap qubits. The reason choosing |0〉, |1〉, |±µ j
〉 as trap qubits is

that |0〉, |1〉 are not entangled with |±µ j
〉 after performing CZ

gates. While states |±µ j
〉 can be entangled with each other at

most three qubits as long as they are in the suitable places.

Note that, the connections with the states |±ω j
〉 are |0〉 and |1〉.

Step 2. Alice asks Bob to perform CZ gates to get eight-

qubit cluster states and implement the corresponding mea-

surements until Bob gets a graph state |C〉 (See Fig. 4). In Fig.

4, some qubits connected by dotted lines are trap qubits |0〉,
|1〉, |±µ j

〉 and the others are computational qubits |±
j
〉. These

trap qubits can be randomly attached to the |Cluster〉 state as

long as they keep the structural consistency and do not affect

the original computing.

Step 3. In Alice’s target algorithms, if single-qubit gates

are required to implement first, Alice asks Bob to perform the

above process in FIG. 3, where H and T are the combination

of rotation operators. Bob first performs encrypted rotation

operations on two black dots in the cluster state, where the

encrypted rotation angles are ξ j = ν j + r jπ (ν j is true rotation

angles and r j is randomly chosen from {0, 1}) and Rφ(ξ j) =

Rφ(r jπ + ν j) = Rφ(r jπ)Rφ(ν j) (φ ∈ {x, y, z}). Note that, the

encrypted angle ξ j and true rotation angles ν j belong to the

set {0, π
4
, 2π

4
, π, 5π

4
, 6π

4
}.

Rotations

(1): H, T
(2): CNOT

Rotations
or

or

(1): CNOT
(2): H, T

Algorithms

Alice

Bob

FIG. 3. (Color online) Schematic diagram of our BQC proto-

col, where rotations denote the decompositions of gates H, T. The

eight-qubit cluster state for realizing a CNOT gate belongs to state

|Cluster〉.

Next, Bob measures every white dot qubit in the cluster

state to get the CNOT gate, where the corresponding mea-

surement angles are δt = ω
′
t + κt + rtπ which belongs to the

set {0, π
4
, · · · , 7π

4
}. rt is randomly chosen from the set ∈ {0, 1},

and ω′t = (−1)sX
t ωt + sZ

t π depends on previous measurement

outcomes. The measurement results are zero in the first row

and the first column [1].

Otherwise, Alice asks Bob to perform the below process

in FIG. 3. Bob first measures the white dots qubits to get

a CNOT gate and then performs rotation operators in black

dots qubits to realize a single-qubit gate. Note that for gates

CNOT, if the cluster states do not contain final quantum out-

puts in FIG. 4, the correction operations Rz(-
π
2
) can be nat-

urally absorbed by performing the projective measurements

|±δt− π2 〉 since |±δt− π2 〉 is the same as Rz(-
π
2
)|±δt〉 = 1√

2
(e

iπ
4 |0〉 ±

ei(δt− π4 )|1〉) = e
iπ
4√
2
[|0〉±ei(δt− π2 )|1〉] except for a global phase fac-

tor.

The above two processes can also be performed in trap

qubits, therefore, Bob can not distinguish which are useful

CNOT gates and trap gates CNOT in FIG. 4 to strengthened

the security of our protocol.

Step 4. In the final quantum outputs, Alice asks Bob to

perform the correct operations H and Rz(-
π
2
). That is, Bob

performs correct rotation operators Rx(·),Ry(·) or Rz(·). After

Bob returning all quantum outputs, Alice first measures the

trap qubits to verify Bob’s honesty, where the number of trap

qubits is optimal without having an impact on the computa-

tional efficiency. In fact, eight-qubits cluster states can also

be used to realize single-qubit gates [46]. Combined with trap

gates and encoded measurement angles, it is impossible for

Bob to know the position of CNOT gates.

In the protocol, Bob maybe implement Pauli attacks to

change the original graph states. If Bob performs Pauli attacks
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FIG. 4. Schematic structure of an entangled state |C〉, where qubits

connected by dotted lines are trap qubits |0〉, |1〉, |±µ j
〉 and solid lines

are computational qubits |±ω j
〉. The positions of trap qubits are ran-

dom without having an impact on the computing and keeping the

structural consistency with computational qubits.

X on |0〉, |1〉 or Z on |±µ j
〉 or XZ on |0〉, |1〉, |±µ j

〉, Alice will

get violative results and she aborts the protocol. Note that, Al-

ice knows all measurement results on traps with related basis.

If Bob passes the verification, Alice will discard all traps and

accept the results.

V. PROOFS AND APPLICATIONS

We first prove the correctness, blindness and verifiability of

our HUBQC protocol.

Correctness. All quantum outputs are correct when Bob

performs the protocol honestly.

Proof: 1) In measurement-based process, the correctness of

gate CNOT is showed in FIG. 5.

Since H = e
iπ
2 Rz(

π
2
)Rx( π

2
)Rz(

π
2
) holds, we get Rz(-

π
2
)H =

e
iπ
2 Rx( π

2
)Rz(

π
2
) in the below lines. After that, we obtain the

circuit (1). And we get the circuit (2) via the relationship

HRz(α)H = Rx(α). By correcting H and Rz(-
π
2
), we receive

the gate CNOT with the relationship (Rz(
π
2
) ⊗ Rx( π

2
))CZ(I ⊗

Rx(- π
2
))CZ = CNOT .

In the circuit process, the correctness can also be ensured

since we have

Rx(ν j + rπ) =















Rx(ν j), r = 0

iXRx(ν j), r = 1
,

Ry(ν j + rπ) =















Ry(ν j), r = 0

XZRy(ν j), r = 1
,

Rz(ν j + rπ) =















Rz(ν j), r = 0

−iZRz(ν j), r = 1
,

where X, Z are commuted with rotation operations so they can

be easily removed. �

Blindness (quantum inputs). Suppose the quantum inputs

are single-qubit states |±θ j
〉, |0〉, |1〉. Bob can not get anything

(3)
H

( )πz 2
R

( )πz 2
R H

( ) ( )π π
x z2 2
R RHZ Z( )-π

z 2
R H

º

( )πz 2
R

( )πx 2
RZ Z( )-π

x 2
R

º
H

( )πz 2
R

(2)

º

(1)

Correction

FIG. 5. The simplification process of CNOT gate.

from these qubits since the density matrices are maximally

mixed from his point of view.

Proof: For single-qubit states |±θ j
〉 and |0〉, |1〉, where θ j ∈

{0, π
4
, · · · , 7π

4
}, we have

1

18
[
∑

θ j

[|+θ j
〉〈+θ j
| + |−θ j

〉〈−θ j
| + |0〉〈0| + |1〉〈1|]

=
1

18
[|+〉〈+| + |+ π

4
〉〈+ π

4
| + · · · + |+ 7π

4
〉〈+ 7π

4
|

+|−〉〈−| + |− π
4
〉〈− π

4
| + · · · + |− 7π

4
〉〈− 7π

4
|

+|0〉〈0| + |1〉〈1|] = 1

2
I.

(8)

From the equation, we can get the conclusion: the density ma-

trix is independent of quantum inputs, that is, Bob get nothing

from the initial states.�

Blindness (graph states). The graph state |C〉 is completely

blind including the dimension since it contains trap qubits.

Proof: Suppose the dimension of the graph state |C〉 is m×n

known by Bob. However, the true dimension of state |Cluster〉
is smaller than m × n. All units are eight-qubit cluster states,

so nothing about the structure of state |C〉 is leaked. And the

number and the positions of CNOT gates are secret for Bob.

Moreover, all measurement angles are encrypted by one-time-

pad. Therefore, Bob knows nothing about Alice’s quantum

computing.�

Blindness (algorithms and outputs). Here, two cases are

considered: measurement-based process and circuit-based

process. Bayes’ theorem can be used to prove the blindness

of quantum algorithms and outputs: a) the conditional prob-

ability distribution of computational angles known by Bob is

equal to its priori probability distribution, when Bob knows

some classical information and measurement outcomes of any

positive-operator valued measurements (POVMs) at any time;

b) all quantum outputs are one-time padded to Bob.

Proof: In measurement-based process, the encrypted form

is the same as the BFK protocol [1], the blindness proofs of

algorithms and outputs are also the same as those in [7, 8]. In

circuit-based process, the encrypted form is ξ j = ν j + rπ, we

give the blindness proofs of algorithms and outputs as follows.

We firstly analyse the effect of Bob’s rotation angles infor-

mation Ξ j = {ξ j}mj=1
on Alice’s privacy [7, 8]. Suppose V j =

{ν j}mj=1
, R j = {r j}mj=1

, where R j ∈ {0, 1} is a random variable
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chosen by Alice and {Ξ j,V j} ∈ S = { kπ
4
| k = 0, 1, 2, 4, 5, 6}.

Let Λ ∈ {1, · · · ,m} be a random variable related with an oper-

ation. The conditional probability distribution of Ξ j given by

Λ = j and V j shows Bob’s knowledge which is about Alice’s

rotation angles information. Based on Bayes’ theorem, we get

p(Ξ j = {ξ j}mj=1 | Λ = j,V j = {ν j}mj=1)

=
p(Λ = j | Ξ j = {ξ j}mj=1

,V j = {ν j}mj=1
)p(Ξ j = {ξ j}mj=1

,V j = {θ j}mj=1
)

p(Λ = j,V j = {ν j}mj=1
)

=
p(Λ = j | Ξ j = {ξ j}mj=1

,V j = {ν j}mj=1
)p(Ξ j = {ξ j}mj=1

)p(V j = {ν j}mj=1
)

p(Λ = j | V j = {ν j}mj=1
)p(V j = {ν j}mj=1

)

= p(Ξ j = {ξ j}mj=1) ·
p(Λ = j | Ξ j = {ξ j}mj=1

,V j = {ν j}mj=1
)

p(Λ = j | V j = {ν j}mj=1
)

= p(Ξ j = {ξ j}mj=1).

This implies that the conditional probability distribution of ro-

tation angles known by Bob is equal to its priori probability

distribution. So our HUBQC protocol satisfies the condition

a).

Similarly, we can get the conditional probability as follows:

p(R j = {r j}mj=1 | Λ = j,Ξ j = {ξ j}mj=1)

=
p(Λ = j | R j = {r j}mj=1

,V j = {ν j}mj=1
)p(R j = {r j}mj=1

,Ξ j = {ξ j}mj=1
)

p(Λ = j,Ξ j = {ξ j}mj=1
)

=
p(Λ = j | R j = {r j}mj=1

,Ξ j = {ξ j}mj=1
)p(R j = {r j}mj=1

)p(Ξ j = {ξ j}mj=1
)

p(Λ = j | V j = {ν j}mj=1
)p(Ξ j = {ξ j}mj=1

)

= p(R j = {r j}mj=1)
p(Λ = j | R j = {r j}mj=1

,Ξ j = {ξ j}mj=1
)

p(Λ = j | Ξ j = {ξ j}mj=1
)

= p(R j = {r j}mj=1).

The result shows that the value {r j}mj=1
is independent of

Ξ j = {ξ j}mj=1
, so our HUBQC protocol satisfies the condition

b).�

Verifiability. The verifiability is to ensure that the client Al-

ice can obtain the correct results and the server Bob is honest.

That is, if all measurements on traps show the correct results,

the probability that a logical state of Alice’s computation is

changed is exponentially small.

Proof: In our protocol, Alice adds some trap qubits around

the state |Cluster〉. Bob knows neither the number of trap

qubits nor their positions. When Bob returns these results,

Alice makes a comparison between true results and Bob’s re-

sults on the trap qubits. If the error rate is acceptable, Alice

accepts these results on computational qubits. Moreover, Al-

ice can measure the quantum outputs traps, and then success-

fully verifies Bob’s honesty and the correctness of quantum

computing.

Bob replaces the true |C〉 state with any states ρ. This equals

to that Bob performs Pauli attacks I, X, Z, XZ. The proof is as

follows, which refers to [16].

Now we show that the probability that Alice is fooled by

Bob is exponentially small. Since Bob might be dishonest,

he will deviate from the correct steps. His general attack is a

creation of a different state ρ instead of |C〉. If he is honest,

ρ = |C〉〈C|. If he is not honest, ρ can be any state. The case

can be deduced to Pauli attacks by a completely positive-trace-

preserving (CPTP) map, and the details can refer to [16].

Suppose the qubits number of state |C〉 is 2N, where the

number of traps and computational qubits is N respectively.

Here, we denote that the number N is optimal for traps. Then,

the probability that all X operators of σα do not change any

trap is
(2N−a)!Πa−1

k=0
( N

2
−k)

(2N)!
= ( 1

2
)a Π

a−1
k=0

(N−2k)

Πa−1
k=0

(2N−k)
6 ( 1

2
)a
6 ( 1

2
)α/3.

We can obtain the same result for max(a, b, c) = b. For

max(a, b, c) = c, we have
(2N−a)!Πa−1

k=0
(N−k)

(2N)!
=
Πa−1

k=0
(N−k)

Πa−1
k=0

(2N−k)
6 ( 1

2
)a
6

( 1
2
)α/3. It implies that the probability that Alice is fooled by

Bob is exponentially small. Hence our protocol is verifiable.�

Application (Blind quantum Fourier transform)—With the

help of our HUBQC protocol, we study the quantum Fourier

transform (QFT) [47–49] and show the corresponding blind

QFT protocol since multi-qubit QFT are the combinations of

some single-qubit gates and entangled gates orderly.

We first explain how to realize blind two-qubit QFT. In FIG.

6, all gates can be decomposed into rotation operations and

CNOT gates. In [43], the decomposition principle of every

controlled unitary operator U has been given. For the uni-

tary operator U, there are unitary operators A, B, C such that

ABC = I and U = eiαAXBXC, where α is a global phase
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(2)

(4) H º Rotations

( )πz 2
R

º
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z 4
R
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FIG. 6. (Color online) (1) The quantum circuit is two-qubit QFT,

where (2) shows the decomposition of SWAP gate, and (3) exhibits

the decomposition of controlled-S, and (4) gives the combination of

gate H, and (5) shows the structure of the graph state for realizing

five CNOT gates, where trap qubits are not considered.

factor. Suppose A = Rz(β)Ry(
γ

2
), B = Ry(-

γ

2
)Rz(

-(δ+β)

2
),C =

Rz(
(δ−β)

2
), U = S , we have S = eiαRz(β)Ry(γ)Rz(δ) =

(

1 0

0 i

)

.

Set α = π
4
, β = π

2
and γ = δ = 0, so we get the Fig. 6(3) about

the decomposition of controlled-S entangled gate.

We also give the multi-qubit QFT referred to [43] and the

corresponding blind QFT protocol also can be realized via

a similar way, where gate controlled-Gn can also be decom-

posed into a combination of rotation operations and CNOT

gates. Let U = Gn, we have U =

(

1 0

0 e
2πi

2k

)

. We set α = π
2k ,

γ = 0 and β + δ = 2π
2k .

VI. DISCUSSIONS AND CONCLUSIONS

In this section, we will discuss the measurement-based uni-

versal BQC , circuit-based universal BQC and our proposed

HUBQC protocols.

• In measurement-based universal BQC model [1], every

gate needs ten-qubit cluster states. So it brings a challenge

to generate multi-qubits entangled states in experiments. In

our protocol, we can divide the universal BQC protocol into

two processes: measurement-based process and circuit-based

process. We do not need a large-scale entangled state since

only entangled gate need to be realized by using cluster states.

• In circuit-based universal BQC model [38–42], entangled

gates in some systems are probabilistically successful, while

the cluster states can be to determinately realize entangled

gates.

• In our HUBQC protocol, compared with other works

[16, 21], Alice has less workload since she only needs to mea-

sure trap qubits appearing in the final column of the graph

state (See Fig. 4). In measurement-based process, ω′t + κt
represents an actual measurement angle and rt is randomly

chosen from {0, 1} in δt = ω
′
t + κt + rtπ. However, in circuit-

based process, r j is also randomly chosen from {0, 1} such that

ξ j can be mapped to a uniform distribution set. In both pro-

cesses, quantum outputs are all encrypted.

In summary, we propose a universal blind quantum com-

putation protocol based on measurements and circuits which

only needs two participants: a client Alice and a server Bob.

Alice prepares the initial states and sends to Bob who creates

the entangled state. According to the computations, Alice asks

Bob to perform single-qubit rotation operators or entangled

gates. Since the graph state |Cluster〉 is surrounded by many

traps, and the structure of traps is the same as that of compu-

tational qubits, the state |C〉 is blind from Bob’s perspective.

In both measurement-based process and the circuit-based pro-

cess, we encrypt the measurement angles and the rotation an-

gles by one-time-pad. The correctness, blindness and verifia-

bility have already been proved and the universality is obvious

since the gates set is H, T, CNOT in our protocol.
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