
Correlated Utility-based Pattern Mining

Wensheng Gan1,5, Jerry Chun-Wei Lin1,2*, Han-Chieh Chao3, Hamido Fujita4 and Philip S. Yu5

1Harbin Institute of Technology (Shenzhen), Shenzhen, China

2Western Norway University of Applied Sciences, Bergen, Norway

3National Dong Hwa University, Hualien, Taiwan

4Iwate Prefectural University, Iwate, Japan

5University of Illinois at Chicago, Chicago, USA

Email: wsgan001@gmail.com, jerrylin@ieee.org, hcc@ndhu.edu.tw, HFujita-799@acm.org, psyu@uic.edu

Abstract

In the field of data mining and analytics, the utility theory from Economic can bring benefits in many real-life applications.
In recent decade, a new research field called utility-oriented mining has already attracted great attention. Previous studies have,
however, the limitation that they rarely consider the inherent correlation of items among patterns. Consider the purchase behaviors
of consumer, a high-utility group of products (w.r.t. multi-products) may contain several very high-utility products with some
low-utility products. However, it is considered as a valuable pattern even if this behavior/pattern may be not highly correlated, or
even happen by chance. In this paper, in light of these challenges, we propose an efficient utility mining approach namely non-
redundant Correlated high-Utility Pattern Miner (CoUPM) by taking positive correlation and profitable value into account. The
derived patterns with high utility and strong positive correlation can lead to more insightful availability than those patterns only
have high profitable values. The utility-list structure is revised and applied to store necessary information of both correlation and
utility. Several pruning strategies are further developed to improve the efficiency for discovering the desired patterns. Experimental
results show that the non-redundant correlated high-utility patterns have more effectiveness than some other kinds of interesting
patterns. Moreover, efficiency of the proposed CoUPM algorithm significantly outperforms the state-of-the-art algorithm.

Keywords: Economic, utility mining, positive correlation, pruning strategy

1. Introduction

In many real-world applications, data mining [1, 2] turns a
large collection of data into knowledge, and one of the com-
mon tasks of data mining is pattern mining [3, 4, 5]. For in-
stance, to analyze the users’ click-stream or purchase behavior
that contains auxiliary valuable with hidden information, pat-
tern mining algorithms [3, 4] can be applied to identify embed-
ded patterns and useful knowledge. In the past decades, numer-
ous data mining frameworks and approaches, e.g., frequent pat-
tern mining (FPM) [3, 4, 6] and association rule mining (ARM)
[3], have been extensively studied. FPM extracts frequent pat-
terns, and ARM aim at mining association rules. Besides, FPM
is considered as the first step of ARM and more challenging.
In general, these desired patterns represent interesting relation-
ships among objects or patterns in different types of databases.
Mining of insightful patterns has been successfully applied in
many real-world applications. However, most of these pattern
mining algorithms [3, 4, 5] mainly measure the interestingness
of patterns based on the co-occurrence frequencies of patterns.
Other implicit factors in data such as the weight, interest, risk

∗Corresponding author. Email: jerrylin@ieee.org.

or profit of patterns are not effectively utilized. Besides, all
objects are considered to have equal importance, hence the ob-
jects/patterns that are real important to users may not be found
effectively.

Therefore, some researchers are interested in incorporating
both subjective measure (e.g., risk, interest and utility) and ob-
jective measures (e.g., correlation, frequency and confidence)
for mining valuable patterns, such as itemsets and association
rules. Among them, one utility-oriented data mining frame-
work called high-utility pattern mining (HUPM) [7, 8, 9, 10]
was proposed. Inspired by the utility theory [11], HUPM in-
corporates some useful factors, e.g., quantity, unit profit, and
other useful factors, to identify the patterns which can bring
valuable profits for retailers or managers in business. In gen-
eral, the utility can also be other user-specified subjective mea-
sure, e.g., risk, interest, significance, satisfaction, and useful-
ness, etc. The concept of HUPM has been extended to utility
mining [7, 8, 9, 10] and it serves as a critical role in data science.
Up to now, utility mining has become an important branch of
data analytics, which aims at utilizing the auxiliary information
from data. It has been widely utilized to discover valuable in-
formation and hidden knowledge in recent decade since utility
mining can bring more benefits in many real-life applications.

Preprint submitted to Information Science April 30, 2019

ar
X

iv
:1

90
4.

03
33

6v
2

 [
cs

.D
B

]
 2

8
A

pr
 2

01
9

Many studies of utility mining focus on developing the efficient
algorithms, such as Two-Phase [7], IHUP [8], UP-growth [12],
UP-growth+ [9], HUI-Miner [10], FHM [13], HUP-Miner [14],
and EFIM [15]. At the same time, many studies focus on the
effectiveness for mining utility-oriented patterns. For instance,
mining high-utility patterns from uncertain data [16], dynamic
data [17, 18], and big data [19].

Utility mining has been extensively studied and success-
fully applied in many real-world applications [18]. However,
the existing studies of utility mining are mainly focused on the
identification of high-utility patterns themselves, and thus the
hidden correlation among the derived patterns is still limited.
In other words, they ignore the inherent correlation of object-
s/items inside the patterns. This problem may easily lead to the
identification of high-utility patterns with false negatives and
false positives. Therefore, an important limitation of current
utility mining algorithms is that a huge amount of patterns may
be discovered while most of them contain many weakly corre-
lated items. For example, it is common that retail stores cross-
sell some products/items to improve the total revenue. Some
products are usually sold with discount or free gifts to stimulate
the sale of other related products/items. As shown in Figure 11,
many products are bought together for cross-selling in Amazon.
This example explains the reasons why correlation is an im-
portant factor, especially in utility mining. The really strongly
correlated products (or purchase behaviors) are more useful for
cross-selling; otherwise, those meaningless, redundant or non-
discriminative patterns may be misleading for recommendation.
Hence, it is a critical issue to address the effectiveness problem
for discovering positively correlated and high-utility patterns
based on the utility and correlation measures.

Figure 1: Bought together products in Amazon

In the past few decades, some well-known correlation mea-
sures, e.g., the support [20, 21], confidence [21], all-confidence
[22], frequency affinity [23], and coherence [22], have been
studied in data mining. In the field of utility mining, the HUIPM
[23] and FDHUP [24] algorithms were proposed to discover
high-utility interesting patterns (HUIPs) with strong frequency
affinity. The concept of affinity utility is introduced in HUIPM
[23]. However, the tree-based HUIPM algorithm is time-consuming
and may lead to the problem of combinatorial explosion. The
faster FDHUP algorithm [24] utilizes two compact data struc-
tures and three pruning strategies to efficiently discover dis-
criminative HUIPs. However, the co-occurrence frequency in-
stead of inherent correlation is measured as the correlation fac-
tor in HUIPM [23] and FDHUP [24]. Recently, a projection-

1https://www.amazon.com

based approach namely CoHUIM [25] was developed to dis-
cover correlated high-utility patterns with consideration of the
inherent correlation among items inside a pattern. It adopts a
measure called Kulc [26, 27], which has the null (transaction)-
invariant property, as the correlation factor. The discovered
patterns have strong positive inherent correlation, and they can
bring real benefits to utility mining. However, the projection-
based CoHUIM may encounter the efficiency problem, and may
cause a lot of memory consumption since it relies on the candi-
date generation-and-test mechanism.

In light of the above challenges, we propose an efficient util-
ity mining framework, namely non-redundant Correlated high-
Utility Pattern Miner (CoUPM) with the consideration of strong
positive correlation and utility theory. CoUPM can not only ex-
tract non-redundant strongly correlated and profitable patterns,
but also achieve better efficiency. We evaluate the effective-
ness of the proposed CoUPM based on the correlation mea-
sure Kulc. For comparison, we take the well-known traditional
HUPM model and the state-of-the-art CoHUIM algorithm into
account to compare the designed algorithm for the correlated
utility-based pattern mining problem. The major contributions
of this paper are summarized as follows.

• We adopt correlated significance as a key criterion for
evaluating the high-utility patterns in the HUPM prob-
lem. Understanding such correlation can provide useful
insights on the discovered results, and this makes util-
ity mining with a higher effective performance than the
existing HUPM models. The utility factor and relations
among items/objects are taken into account for pattern
evaluation.

• We design an efficient CoUPM algorithm for mining cor-
related and high-utility patterns from quantitative databases
in one-phase. The revised utility-list structure is used to
store the compact information of potential patterns from
the processed database. This approach is able to early
filter a large amount of unpromising patterns, and return
the significant patterns in the mining process.

• We develop several pruning techniques in a depth-first
search manner, which consist of the utilization of corre-
lation property and utility property. Therefore, CoUPM
can quickly discover a set of highly correlated and high-
utility patterns.

• Extensive experiments on both real and synthetic datasets
show that the proposed one-phase CoUPM algorithm has
better effectiveness and efficiency than the existing algo-
rithms.

The rest of this paper is organized as follows. Some re-
lated works of utility mining are briefly reviewed in Section 2.
The key preliminaries and problem statement are given in Sec-
tion 3. Details of the proposed CoUPM algorithm are described
in Section 4. The evaluation of effectiveness and efficiency of
CoUPM are provided in Section 5. Finally, conclusion and fu-
ture work are drawn in Section 6.

2

https://www.amazon.com

2. Related Work

This research work is related to the studies in support-based
pattern mining, utility-based pattern mining, and the develop-
ment of pattern mining with consideration of affinity/correla-
tion.

2.1. Utility-based Data Mining

In the past few decades, many pattern mining frameworks
and algorithms have been developed and applied to various real-
life applications. Most of these studies use support [3, 20] and
confidence [20] to identify interesting patterns, e.g., frequent
patterns [3, 4, 20]. These studies measure the interestingness
of patterns mainly based on the co-occurrence frequency [3, 4].
Therefore, many interesting and high profitable patterns may
not be found. To address these problems, a new data mining
framework named utility-oriented pattern mining [9, 28, 29]
is proposed. It aims at discovering the high-utility patterns
rather than the support/confidence-based patterns. Utility min-
ing considers the quantity and unit profit of objects/items, as
well as other implicit factors. In the past decade, the problem of
high-utility pattern mining (HUPM) has been extensively stud-
ied, such as Two-Phase [7], IHUP [8], UP-growth [12], UP-
growth+ [9], and HUI-Miner [10]. There are mainly four cat-
egories of the existing HUPM algorithms, including Apriori-
like, tree-based, utility-list-based, and hybrid approaches. The
well-known Apriori-like approach for HUPM is the Two-Phase
[7] algorithm which utilizes the transaction-weighted utilization
(TWU) model [7]. Inspired by FP-growth [4], some tree-based
algorithms are proposed to mining high-utility patterns, such
as IHUP [8], UP-growth [12], UP-growth+ [9], and HUP-tree
[30]. All of them outperform the Apriori-like algorithms. Liu et
al. then introduced the HUI-Miner [10] by utilizing the utility-
list structure and a new concept called remaining utility. Re-
cently, many other utility-list based approaches have been de-
veloped, such as FHM [13], HUP-Miner [14], and EFIM [15].

The above mentioned HUPM algorithms focus on improv-
ing the mining efficiency, however, the effectiveness of utility
mining task is also quite important. For example, how to de-
velop different and flexible models to address the utility min-
ing task in different types of data, constraints and applications
are very necessary and challenging. Up to now, some studies
that focus on the effectiveness of utility mining have been ex-
tensively developed, such as HUPM on uncertain data [16] or
dynamic data [17, 18]. Lin et al. proposed a series of mod-
els to extract high-utility patterns from uncertain data [16, 31],
temporal data [32], and dynamic data [17, 18, 33]. Based on
the new concept of average utility [34], Wu et al. introduced
a new upper bound for mining high average utility patterns
[35]. Besides, several evolutionary computation approaches
(e.g., HUIM-BPSO [36] and ACO-based HUIM-ACS [37]) are
proposed to discover high-utility patterns. Tseng et al. in-
troduced the concise representation [38] and top-k issue [39]
for HUPM. Different from the itemset-based models, other ad-
vanced models were extensively studied, including the associ-
ation rule-based [40], sequence-based [41], and episode-based
[42] utility mining models. Recently, Gan et al. proposed a new

utility measure named utility occupancy to address the utility
mining problem [43]. An overview of the current development
of utility mining was presented recently [18].

2.2. Affinity/Correlation Pattern Mining
In the data mining literature, several association measures

for association mining and analytics have been studied, such as
confidence [20], lift [44], and the cosine measure [45]. Associ-
ation analysis may generate many rules, while many of them
are not useful or meaningful for decision-making. Different
from association analysis, some studies have been explored for
mining affinity patterns or correlation patterns. Omiecinski et
al. first proposed three interesting measures for pattern mining
called any-confidence [22], all-confidence [22], and bond [22].
To find strong affinity patterns which may contain low-support
items, Kim et al. first introduced hyperclique pattern and hy-
perclique (h)-confidence [46]. The h-confidence is equivalent to
the all-confidence. Wu et al. found that the degree of expectation-
based correlation is highly influenced by the number of null
transactions [27]. Thus, most of the existing measures, e.g., all-
confidence [22], bond [22], cosine [45], are not suitable to eval-
uate correlation in large database that contains many and un-
stable null transactions. Due to the null (transaction)-invariant
property, the correlation measure in Kulczynsky [26, 27] is in-
dependent of the dataset size. Besides, some other measures
for the study of correlation have been proposed [21]. Differ-
ent from the traditional data mining approaches which ignore
the correlation among extracting results, the derived affinity/-
correlation patterns can return more insightful knowledge for
decision-making.

2.3. Comparative Analysis with Previous Works
As mentioned before, the inherent correlation of items in-

side the patterns has not been considered in most of the HUPM
algorithms yet. In the area of utility-oriented pattern mining,
only few studies concern the utility and correlation together
to derive the desired patterns. For instance, the HUIPM [23]
and FDHUP [24] algorithms consider both frequency-affinity
and utility as the two key measures to derive the desired pat-
terns. However, the co-occurrence frequency of transactions
is regarded as the correlation factor. Recently, Fournier-Viger
et al. [47] introduced a FCHM model to extract correlated
high-utility itemsets (CoHUIs). In the framework of FCHM,
the bond measure [22] is used to evaluate the correlation value
of items among a pattern. Moreover, the projection-based Co-
HUIM [25] algorithm has presented to take the correlation mea-
sure − Kulc, which has null (transaction)-invariant property,
into account for mining the interesting patterns. However, it
may encounter the efficiency problem and may easily cause a
lot of memory consumption. The reason is that CoHUIM firstly
generates the complete correlated high-utility upper-bound item-
sets (CHUUBIs) by recursively processing the projection, which
uses the upper bound TWU [7] and Kulc measure. It then calcu-
lates actual utilities for all candidates in CHUUBIs to discover
the final CoHUIs. In this paper, the proposed CoUPM method
utilizes the revised utility-list structure and several powerful
pruning strategies to significantly improve the mining efficiency.

3

Table 1: An e-commerce database
Tid User Timestamp Purchase record
T1 U1 07/12 10:05:30 (a, 3)(b, 1)(e, 2)
T2 U2 07/12 10:11:10 (a, 2)(b, 3)(c, 1)(d, 1)
T3 U3 07/12 10:15:48 (a, 1)(d, 3)(e, 2)
T4 U4 07/12 10:18:00 (a, 1)(b, 5)(c, 2)(d, 1)(e, 1)
T5 U5 07/12 10:25:20 (a, 2)(b, 3)(e, 3)

3. Preliminaries and Problem Formulation

In this section, we first introduce some basic preliminaries
of utility mining, and then discuss the differences between the
addressed problem in this paper and the existing tasks. Finally,
we provide a normal problem formulation of correlated high-
utility pattern mining.

3.1. Database with Utility Factor

Note that we use the concept of utility to present the revenue
for sellers. In the following contents, let X = {i1, i2, . . . , ik} de-
note a combination/group of patterns/products, and X is called a
k-itemset. In general, a unit profit of X is associated to the cost
price minus sell price. As mentioned before, the utility concept
can be regarded as other user-specified subjective measure, e.g.,
risk, interestingness, satisfaction, usefulness, etc. According to
the utility theory [11], we have the following concepts and for-
mulation.

Example 1. Consider an e-commerce database as shown in
Table 1, it is used as a running example in this paper. Simi-
lar to the e-commerce database provided by RecSys Challenge
20152, this example database contains five purchase records
(e.g., T1,T2, . . . ,T5) with auxiliary information. Behavior T1 is
occurred in timestamp “07/12 10:05:30”, and contains prod-
ucts {a}, {b}, and {e} with a purchase quantity of 3, 1 and 2,
respectively. Table 2 indicates that the unit profit (also called
external profit) of these three products is {a: $3}, {b: $1}, and
{e: $10}, respectively. Note that the unit profit of each product is
pre-defined by user/seller. In the addressed problem, this table
is called profit-table.

3.2. Preliminaries of Utility Mining

Given a quantitative database D such that D = {T1, T2,
. . . ,Tn} contains a set of quantitative transactions. Each trans-
action Tc with a timestamp is a set of items/records. Tc ∈ D
is a subset of I and has a unique identifier called its Tid. Let I
be a set of distinct items, I = {i1, i2, . . . , im}. Each item i ∈ I
is associated with a positive value pr(i) namely its unit profit.
For each item i ∈ Tc, a positive number q(i,Tc) is called occur
quantity of i. The utility contribution of a group of products, X
= {i1, i2, . . . , i j}, is related to the total utilities from each i ∈ X
after marketing.

2https://recsys.acm.org/recsys15/challenge/

Table 2: External profit value (unit profit)
Product a b c d e
Profit ($) 3 1 7 2 10

Definition 1. The utility of a group of products X ⊆ I in a
transaction Tc is u(X,Tc) =

∑
i∈X u(i,Tc), where u(i,Tc) is the

utility/profit of a product i ∈ I in a transaction Tc, and u(i,Tc)
can be calculated as u(i,Tc) = pr(i) × q(i,Tc). Thus, u(X,Tc)
represents the utilities generated by all items i ∈ X in Tc. Con-
sider the entire database, let u(X) denote the total utility of X in
D, then u(X) =

∑
X⊆Tc∧Tc∈D u(X,Tc).

Definition 2. Given a quantitative database D, the transaction
utility of a transaction Tc, denoted as tu(Tc), can be calculated
as tu(Tc) =

∑
i j∈Tc

u(i j,Tc), where i j is the j-th item in Tc. Then
the total utility of the entire D is denoted as TU, and can be
calculated as: TU =

∑
Tc∈D tu(Tc).

Example 2. In Table 1, the utility of e in T3 is u(e,T3) = 2×$10
= $20, and the utility of {d, e} in T3 is u({d, e},T3) = u(d,T3) +

u(e,T3) = 3 × $2 + 2 × $10 = $26. The utility of {d, e} in the
entire database is u({d, e}) = u({d, e},T3) + u({d, e},T4) = $26
+ $12 = $38. Consider the first transaction in Table 1, tu(T1)
= u(a,T1) + u(b,T1) + u(e,T1) = $9 + $1 + $20 = $30. Then
the transaction utilities of T1 to T5 are respectively calculated
as tu(T1) = $30, tu(T2) = $18, tu(T3) = $29, tu(T4) = $34, and
tu(T5) = $39. Thus, the total utility of in Table 1 is TU = $30 +

$18 + $29 + $34 + $39 = $150.

3.3. Correlation for Data Mining

As stated in introduction, the current HUPM algorithms
have an important limitation that a huge amount of derived
patterns may contain many items which are weakly correlated.
HUIPM [23] and FDHUP [24] used a new measure called fre-
quency affinity to evaluate the correlation of high-utility pat-
terns. The minimum quantity among all quantities of items in-
side a pattern in each transaction is used to calculate the affini-
tive frequency. However, it is not enough to reveal the real in-
herent correlation of the desired patterns. In the past, the Kul-
czynsky (abbreviated as Kulc) measure [22, 26, 27] was widely
used to evaluate the inherent correlation of a generalized pat-
tern. Its definition is given as follows.

Definition 3. The pattern correlation evaluates the strength of
the inherent correlation between its items. In general, there are
three types of correlations among items in a pattern, including
1) positive correlation, 2) non-correlation, and 3) negative cor-
relation.

Definition 4. The Kulc value is an interesting measure to eval-
uate the correlation between items inside a pattern. According
to the previous studies [26, 27], the Kulc value of a group of
patterns X is defined as follows:

Kulc(X) =
1
k

∑
i j∈X

sup(X)
sup(i j)

, (1)

4

https://recsys.acm.org/recsys15/challenge/

where i j is the j-item in X = {i1, i2, . . . , ik} which totally con-
tains k distinct items.

Therefore, the range of Kulc value is [0, 1] and it can be
easily used to evaluate whether the items in a specific pattern
have a positive correlation or not. Clearly, the minimum cor-
relation threshold for measuring Kulc value can be specified by
user. Unlike other existing correlation measures, Kulc has the
null (transaction)-invariant property. Previous studies [26, 27]
have shown that Kulc value is more acceptable and suitable than
other correlation measures to evaluate the correlation in data
mining. The reason is that it is independent by the dataset size.
Based on the above definitions, we have the following problem
formulation.

Example 3. Consider the running example in Table 1, when
the settings of minUtil and minCor are respectively 20% and
0.7, the desired CoHUIs are the set of PatternsCoHUI = {{e},
{a, b}, {a, c}, {a, e}, {b, e}, {a, b, e}, {b, c, d}}, while the set of
high-utility patterns derived by the exiting HUPM algorithms
are PatternsHUI = {{e}, {a, b}, {a, c}, {a, e}, {b, e}, {d, e}, {a, b, c},
{a, b, e}, {a, c, d}, {a, d, e}, {b, c, d}, {a, b, c, d}, {a, b, c, e}, {b, c, d, e},
{a, b, c, d, e}}. It is clearly seen that most of the patterns in
PatternsHUI do not have a positive correlated relationship. For
instance, the patterns {d, e} and {a, b, c} have their Kulc values
as Kulc({d, e}) ≈ 0.5833 and Kulc({a, b, c}) ≈ 0.6333. What’s
more, the desired interesting CoHUIs do not have the down-
ward closure property [3]. For example, the pattern {a} is not
a CoHUI, while its supersets {a, b}, {a, c}, {a, b, e} are the Co-
HUIs. Previous studies [7, 8, 9, 10, 29] have shown that the
utility of a pattern may be higher, equal to, or lower than that
of its super-pattern and/or sub-pattern. Consequently, many
pruning techniques of search space that rely on the downward
closure property of Apriori [3] cannot be directly applied to
discover CoHUIs.

As far, we have pointed out the major differences between
HUIs and CoHUIs. The models aims at finding different pat-
terns regarding to varied problems. Based on above introduc-
tion, the addressed problem in this paper is formulated below.

3.4. Problem Formulation
Definition 5. A group of patterns X in a quantitative database
D is defined as a strongly correlated high-utility itemset (de-
noted as CoHUI) if it satisfies the following two criteria: 1)
u(X) ≥ minUtil × TU; 2) Kulc(X) ≥ minCor. Otherwise, X
is not a CoHUI, it may have a low utility or a negative correla-
tion. Here, minUtil is a minimum utility threshold and minCor
is a minimum positive correlation threshold; both of them can
be specified by users’ subjective preferences. In this paper,
minUtil is a percentage value with respect to the total utility
of a quantitative database. Therefore, the problem of correlated
utility-based pattern mining (abbreviated as correlated HUPM)
is to discover the complete set of significant and insightful Co-
HUIs in the entire database.

HUPM has shown its powerful potential in many applica-
tions and achieved outstanding performance compared with the

support/confidence based data mining methods. Based on the
utility theory [11] and correlation measure, the importance of
utility and relations among items/objects are simultaneously taken
into account. The extracted results of CoHUIs are high corre-
sponding to positive correlation and profitable values.

4. Proposed One-Phase Algorithm: CoUPM

In this section, we propose an one-phase CoUPM algorithm
to discover useful patterns, which are not only strongly corre-
lated but also high profitable. CoUPM utilizes a vertical data
structure named revised utility-list. Moreover, several effec-
tive pruning strategies which utilize the correlation and utility
factors are applied to prune the search space and reduce mem-
ory cost. Details of the revised utility-list, the adopted pruning
strategies, and the main procedures of the proposed algorithm
are respectively described below.

4.1. Properties of the CoHUI

Most existing studies have been demonstrated that both the
Kulc measure [26, 27] and utility measure [7] are neither mono-
tonic nor anti-monotonic. In other words, a pattern may have a
lower, equal or higher Kulc value (or utility value) than that of
its subsets. Without holding the anti-monotonicity, the search
space of the addressed problem is hard to be efficiently reduced
in the mining process. To hold the downward closure property
for mining high-utility patterns, a concept called transaction-
weighted utilization [7] is commonly used in previous studies.

Definition 6. Given a database D and a specific pattern X ⊆ D,
the transaction-weighted utilization (TWU) [7] of X is defined
as the sum of the total utilities of transactions containing X, as
shown in the following equation:

TWU(X) =
∑

X⊆Tc∧Tc∈D

tu(Tc). (2)

Example 4. Consider two patterns {e} and {d, e} in the running
example, then TWU(e) = tu(T1) + tu(T3) + tu(T4) + tu(T5) =

$30 + $29 + $34 + $39 = $132, and TWU({d, e}) = tu(T3) +

tu(T4) = $29 + $34 = $63.

Based on the definition of CoHUI and utility property, the
CoHUI does not hold the anti-monotonicity. In other words, a
CoHUI may have lower, equal or higher utility value (or Kulc
value) than any of its subsets. The TWU concept solves the
anti-monotonicity problem by overestimating the overall utility
of patterns in entire database without missing any high-utility
patterns. However, a huge number of low-utility patterns still
may be regarded as candidates since TWU is a loose upper-
bound.

4.2. Revised Utility-List with Correlation

In previous studies, several approaches [10, 13, 14] use the
utility-list [10] structure as a component to store and calculate
the necessary information. Thanks to the vertical data struc-
ture of utility-list [10], these approaches can efficiently discover

5

high-utility patterns without multiple database scans. But the
original utility-list only deals with utility value, and does not
contain the support and correlation information. The addressed
problem needs a more flexible version of calculating scheme
to obtain the auxiliary information. In the proposed CoUPM
algorithm, we revise the utility-list [10] to make it suitable for
computing the correlation and utility. Besides, a concept called
remaining utility [10] is applied to obtain the estimated upper
bound on utility, which will be presented in next subsection.
Inspired by the utility-list [10] structure, the revised utility-list
structure is defined as follows.

Definition 7. Without loss of generality, assume that all items
in every transaction are sorted in the lexicographic order. Let
the total order on items is denoted as ≺.

Definition 8. Let ru(X,Tc) denote the remaining utility [10] of
a group of items/products X in a transaction Tc. Then ru(X,Tc)
is the sum of the utility values of each item appearing after X
in Tc according to the total order ≺. Thus, the remaining utility
of X does not include the utilities of items in X itself. It can be
represented as:

ru(X,Tc) =
∑

i j<X∧X⊆Tc∧X≺i j

u(i j,Tc). (3)

Definition 9. The revised utility-list of a pattern X in a quan-
titative database D consists of pattern name (name), support
count (sup), and a set of tuples corresponding to the transac-
tions where X appears (tuple). Here, sup is the related support
of X that occurred in the entire database, and it is equal to the
number of tuples in this vertical data structure. A tuple is de-
fined as <tid, iu, ru> for each transaction Tc containing X.

• tid: the transaction identifier of Tc;

• iu: the actual utility of X in Tc, w.r.t. u(X,Tc);

• ru: the remaining utility of X in Tc, w.r.t. ru(X,Tc).

Name: d sup: 3

tid iu ru

2 2 9

3 6 23

4 2 18

Figure 2: Constructed revised utility-list of 1-itemset (d).

Example 5. Consider T4 and two patterns {d} and {d, e} in Ta-
ble 1. Assume the total order ≺ adopts the support ascend-
ing order of all 1-itemsets. Since the support values of all 1-
items in Table 1 are {a:5, b:4, c:2, d:3, e:4}, the total order is
c ≺ d ≺ b ≺ e ≺ a. Then we have that ru(d,T4) = u(b,T4) +

u(e,T4) + u(a,T4) = $5 + $10 + $3 = $18, and ru({d, e},T4) =

u(a,T4) = $3. Consider the running example and the defined
total order ≺, the revised utility-list of pattern (d) is {(T2, $2,
$9), (T3, $6, $23), (T4, $2, $18)}, and its total support is 3, as
shown in Figure 2.

Name: db sup: 2

tid iu ru

2 5 6

4 7 13

Figure 3: Constructed revised utility-list of 2-itemset (db).

Unlike the original utility-list [10] only deals with utility
value, our revised structure can deal with more rich informa-
tion, including support, correlation and utility. We can perform
a single database scan to create the all revised utility-lists of all
1-items in the processed database. After constructing the initial
revised utility-list of each 1-item X ∈ D (denoted as X.list), for
any k-itemset (k ≥ 2), its revised utility-list can be directly con-
structed using the already built revised utility-lists of its subsets.
Note that this operation does not need to scan the database any-
more, and the built revised utility-lists fit in main memory. De-
tails of the construction procedure of the revised utility-list are
similar to the construction of utility-list, which can be referred
to [10]. The difference between them is that after the join oper-
ation of two common tids, the procedure in the CoUPM algo-
rithm simultaneously updates the support information in the re-
vised utility-list for pattern Xab. This is denoted as Xab.list.sup
++. For example, the 2-itemset db appears in T2 and T4, and
its revised utility-list is constructed based on d.list and b.list, as
shown in Figure 3. Note that the construction keeps consistent
with respect to the total order c ≺ d ≺ b ≺ e ≺ a.

Note that for optimization, when finding the common tids
of two itemsets from the two sets of tids in the revised utility-
lists, we use the binary search to speed up the computational
efficiency. For example, we can perform a binary search to find
the element with a given tid in a target revised utility-list.

Definition 10. Based on the designed revised utility-list, let X.IU
and X.RU respectively denote the sum of utility values and the
sum of remaining utility values for a pattern X in the constructed
revised utility-list of X. According to [16, 48], they can be cal-
culated as follows:

X.IU =
∑

X⊆Tc∧Tc∈D

u(X,Tc); (4)

X.RU =
∑

X⊆Tc∧Tc∈D

ru(X,Tc). (5)

Thus, X.IU of a pattern X equals to u(X). Both X.IU and
u(X) are the total utility of X in the entire database.

4.3. Pruning Strategies for Searching CoHUIs
Similar to previous studies [7, 24], the complete search space

of the addressed problem can be presented as a Set-enumeration
tree [49]. This prefix-based tree structure represents all possible
itemsets of I where each tree node represents a subset of I. It is
important to notice that this tree structure is only a conceptual
representation and not stored in entirety while performing the
mining process. In worst case, this approach may have up to

6

2n final itemsets (i.e., all itemsets of the search space with I).
Without downward closure property, the search space would
be huge. To address this limitation, we present a prefix-based
depth-first enumeration tree. It means that the node in this tree
structure is searched in the depth-first manner.

To speed up performance, the existing CoHUIM algorithm
utilizes the Kulc measure in non-decreasing order of support
count that holds the sorted downward closure property [25].
By utilizing the revised utility-list, this sorted downward clo-
sure property of Kulc measure [25] can be applied in the pro-
posed CoUPM algorithm. More importantly, the enumeration
of potential patterns may be terminated earlier by Kulc value
and upper bound on utility. Details of the pruning strategies are
described below.

Lemma 1 (Sorted downward closure property of Kulc). If the
items in the set {a1, a2, ..., ak, ak+1} are sorted in support-ascending
order, i.e., sup(a1) ≤ sup(a2) ≤ ... ≤ sup(ak) ≤ sup(ak+1), the
Kulc measure has the sorted downward closure property. That
is: Kulc(a1...akak+1) ≤ Kulc(a1...ak) [25].

Proof 1. A complete proof can be referred to [25].

Based on Lemma 1, the following sorted downward closure
property of Kulc measure can be held.

Theorem 1. (Anti-monotonicity of Kulc with SDC property).
For any rooted node/itemset in the search space of CoUPM, if a
tree node is a correlated pattern, its parent node is also a cor-
related pattern in D. Let X be a k-itemset (node), and X′ be any
of its child nodes (extension, (k+1)-itemset). The Kulc measure
with the SDC property is anti-monotonic: Kulc(X′) ≤ Kulc(X)
always holds.

Example 6. Since the support counts of all 1-items are {a:5,
b:4, c:2, d:3, e:4}, this set of 1-items is sorted in support-
ascending order as {c ≺ d ≺ b ≺ e ≺ a}. Based on the defini-
tion of Kulc value (c.f. Formula 1), we can calculate the Kulc
values of the following patterns, {c, d}, {c, d, b}, {c, d, b, e} and
{c, d, b, e, a}, as: Kulc({c, d}) ≈ 0.833, Kulc({c, d, b}) ≈ 0.722,
Kulc({c, d, b, e}) ≈ 0.333 and Kulc({c, d, b, e, a}) ≈ 0.307.

Thus, the Kulc measure holds anti-monotonicity if the pro-
cessed items are sorted in support-ascending order. Note that
the total order � of items in the Set-enumeration tree [49] for
the proposed CoUPM algorithm adopts the support-ascending
order. Thus, we can utilize the following properties to prune the
search space, and the details are described below.

Lemma 2 (Upper bound on utility). For any rooted node/item-
set X in the search space of CoUPM, the sum of X.IU and
X.RU in the revised utility-list of X is always no less than the
overall utility of any of its descendant nodes (extensions, de-
noted as X′). It is an upper bound on utility, such that X′.IU ≤
X.IU + X.RU.

Proof 2. A complete proof of this lemma can be referred to
[16, 48].

Thus, the sum of the utilities of X′ in D would not greater
than (X.IU + X.RU) of X in D. In other words, (X.IU + X.RU)
of X is an upper bound on utility while evaluating the overall
utility of a specific pattern.

Example 7. Consider the running example, assume we per-
form the depth-first manner in the search space with the support-
ascending order as {c ≺ d ≺ b ≺ e ≺ a}. When determining
the nodes/patterns in the subtree rooted at node {c, d, b}, we
have: {c, d, b}.IU = $33, {c, d, b}.RU = $19, thus {c, d, b}.IU
+ {c, d, b}.RU = $33 + $19 = $52. All the nodes in the subtree
of {c, d, b} would not have a utility value higher than the upper
bound on utility of node {c, d, b}. For instance, {c, d, b, e}.IU =

$31, {c, d, b, a}.IU = $34, {c, d, b, e, a}.IU = $42, all are less
than $52.

Theorem 2. (Anti-monotonicity of upper-bound on utility). For
any node/itemset X in the search space of CoUPM, let X′ denote
any of X’s children (extension node). Then the sum of X.IU
and X.RU in the revised utility-list of X (equally in the entire
database) is always larger than or equal to the sum of X′.IU
and X′.RU of X′ in the entire database. That is X′.IU + X′.RU
≤ X.IU + X.RU [16, 48].

Thus, the sum of total utilities and remaining utilities of X
in D is always larger than or equal to the sum of utilities of its
extension in the search space. This upper bound ensures that
the downward closure property of transitive extensions. Based
on the above observations, we can use the following filtering
strategies.

Strategy 1. Pruning strategy using the SDC property of Kulc
value, abbreviated as SPK strategy. Assume the total order
� of the processed items adopts the support-ascending order.
While performing a depth-first search strategy in the search
space, if the relative Kulc value of any node/itemset X is less
than minCor, any of its child node is not a CoHUI, and these
unpromising patterns can be regarded as irrelevant and pruned
directly.

Strategy 2. Pruning strategy using the upper bound on util-
ity, abbreviated as UBU strategy. After building the initial re-
vised utility-lists for each 1-itemset, the CoUPM algorithm tra-
verses the search space based on a depth-first search strategy. If
the sum of X.IU and X.RU of any node/pattern X is less than
minUtil×TU, any of its child node would not be a CoHUI, they
can be regarded as irrelevant and pruned directly.

To further improve the mining efficiency, the LA-Prune strat-
egy [14] with the upper bound on utility is extended to the pro-
posed algorithm.

Lemma 3. Given two different pattern X and Y (X , Y), nei-
ther {X,Y} nor any supersets of X would be a high-utility item-
set if X.IU + X.RU -

∑
X⊆Tq∧Tq⊆D∧Y*Tq

((X.iu + X.ru) ≤ minUtil)
[14].

Strategy 3. LA-Prune strategy. In the search space, let X be
a processed pattern (node), and Y be the right sibling node of

7

X. If the sum of (X.IU + X.RU) subtracts the utilities (X.iu +

X.ru) of a set of transactions is less than minUtil, the combined
pattern {X,Y} is not a HUI (also not a CoHUI), and any of child
nodes of X would not be a HUI (also not be a CoHUI). During
the depth-first search progress, the construction of the revised
utility-lists for the children nodes of X is not necessary to be
performed.

The improved construction procedure is similar to that of
revised utility-list. It utilizes the LA-Prune strategy to avoid
constructing a huge number of revised utility-lists of the un-
promising patterns, as described in Algorithm 1.

Algorithm 1 Construction with LA-Prune
Input: X: an itemset, Xa: the extension of X with an item a,

Xb: the extension of X with an item b (a , b)
Output: Xab.

1: initialize Xab.list ← ∅;
2: set Utility = X.IU + X.RU;
3: for each element/tuple Ea ∈ Xa.list do
4: if ∃Ea ∈ Xb.list ∧ Ea.tid == Eb.tid then
5: if X.list , ∅ then
6: search for each element E ∈ X.list such as E.tid =

Ea.tid;
7: Eab ← <Ea.tid, Ea.iu + Eb.iu − E.iu, Eb.ru>;
8: else
9: Eab ← <Ea.tid, Ea.iu + Eb.iu, Eb.ru>;

10: end if
11: Xab.list ← Xab.list ∪ Eab;
12: update support information in the revised utility-list

for Xab, such as Xab.list.sup ++.
13: else
14: Utility = Utility - Ea.iu - Ea.ru;
15: if Utility < minUtil then
16: return null.
17: end if
18: end if
19: end for
20: return Xab

4.4. Main Procedure

To clarify our methodology, we have illustrated the designed
data structure, the key properties of utility and correlation with
Kulc value, and the upper bound on utility so far. Utilizing
the above technologies, the main procedure of the designed
CoUPM algorithm is shown in Algorithm 2. It takes four pa-
rameters as input: 1) an e-commerce quantitative database, D;
2) a user-specified profit-table, ptable; 3) a minimum positive
correlation threshold, minCor (0 ≤ minCor ≤ 1); and 4) a user-
specified minimum utility threshold, minUtil (0 ≤ minUtil ≤
1). When minCor is set to 0, it means that CoUPM does not
consider the correlation factor.

The CoUPM algorithm first scans the database once to cal-
culate TWU(i) and construct the Tidset of each item i ∈ I in D.
The total utility of D is also calculated. Here, the built Tidset of

Algorithm 2 The CoUPM algorithm
Input: D; ptable; minCor; minUtil.
Output: CoHUIs: the set of correlated high-utility itemsets.

1: scan D once to calculate TWU(i), construct the Tidset of
each item i ∈ I in D, and obtain the TU;

2: find all 1-item i ∈ I such that TWU(i) ≥ minUtil×TU, then
put into the set of I∗;

3: use the Tidset to sort I∗ in the support-ascending order as
the total order �;

4: scan D once again to build the revised utility-list of each
itemset i ∈ I∗ using the total order �;

5: call Search(∅, I∗,minCor,minUtil).
6: return CoHUIs

all 1-items can be used to sort the items and calculate the Kulc
value in the later processes. Then all the 1-items which have
TWU(i) ≥ minUtil × TU are put into the set of I∗. Thereafter,
all patterns do not in the candidate set I∗ will be ignored since
they cannot be the part of CoHUIs. CoUPM then scans D once
again to build the initial revised utility-list of each item i ∈ I∗

using the total order �.
It is important to notice that the adopted order � should be

kept consistently after the construction of revised utility-list. In
the designed CoUPM algorithm, the support-ascending order
is used to hold the sorted downward closure property of Kulc
value. In other words, without using this sorting order, we only
can utilize the upper bound on utility w.r.t. Strategy 2 to prune
the search space. In the next section of experimental results, we
will conduct the proposed CoUPM algorithm with or without
using the sorted downward closure property of Kulc value w.r.t.
Strategy 1.

The S earch procedure (as shown in Algorithm 3) takes as
input: 1) a pattern X, 2) extensions of X having the form Xa

means that Xa is obtained by appending a pattern a to X, 3)
minCor, and 4) minUtil. The search procedure operates as fol-
lows. It first obtains the Xa.IU and Xa.RU values from the built
revised utility-list of Xa (denoted as Xa.list) (Line 2). It also
calculates the Kulc(Xa) value using the built Xa.list and Tidsets
of all 1-items (Line 3 and Eq. (4)). As mentioned previously in
Formula 1, the calculation of Kulc(Xa) value of an itemset Xa

is based on all support count of the 1-items containing in this
itemset. Notice that here the Tidsets of all 1-items just needs
to be built once in the first database scan. Since the support
count of a special itemset can be easily obtained from its revised
utility-list w.r.t. support element, we can quickly calculate this
Kulc(Xa) value.

For each extension Xa of X, if the related correlation of Xa

is no less than minCor, and the sum of the actual utility of Xa

(w.r.t. Xa.IU in revised utility-list) is no less than minUtil ×TU,
then this pattern is output as a CoHUI (Lines 4 to 5). After that,
the designed pruning strategies are used to determine whether
the extensions of Xa should be explored or not (Line 6, using
Strategy 1 and Strategy 2). This is performed by merging Xa

with each extension Xb of X such that a � b, to form extensions
of the form Xab (Lines 9 to 10). The revised utility-list of Xab

is then constructed by calling the Construct procedure to per-

8

Algorithm 3 The S earch procedure
Input: X, extensionsOfX, minCor, minUtil.
Output: the set of CoHUIs.

1: for each itemset Xa ∈ extensionsOfX do
2: obtain the Xa.IU and Xa.RU from the built Xa.list;
3: calculate the Kulc(Xa) value using the built Xa.list and

Tidset of all 1-items;
4: if Kulc(Xa) ≥ minCor and Xa.IU ≥ minUtil × TU then
5: CoHUIs← CoHUIs ∪ Xa;
6: end if
7: if Kulc(Xa) ≥ minCor and (Xa.IU + Xa.RU) ≥ minUtil×

TU then
8: extensionsOfXa ← ∅;
9: for each itemset Xb ∈ extensionsOfX such that Xb after

Xa do
10: Xab ← Xa ∪ Xb;
11: Xab.list ← Construct(X, Xa, Xb);
12: if Xab.list , ∅ then
13: extensionsOfXa ← extensionsOfXa ∪ Xab.list;
14: end if
15: end for
16: call Search(Xa, extensionsOfXa,minCor,minUtil).
17: end if
18: end for
19: return CoHUIs

form the join operation of the revised utility-lists of X, Xa and
Xb (Line 11, details of the construction have been described in
Algorithm 1). To further filter the unpromising patterns, only
the promising patterns with their revised utility-lists would be
explored in next extension (Line 11). After all the extensions of
the rooted Xa are performed (Line 12), it recursively calls the
Search procedure with extensionsOfXa to continually explore
its extension(s) (Line 13).

5. Experimental Study

In this section, we conduct several experiments to demon-
strate the effectiveness and efficiency of our proposed model.

Baseline algorithms. Note that we use one of the tradi-
tional HUPM algorithms (e.g., FHM [13]) and FDHUP to gen-
erate the different kinds of discovered results for pattern evalu-
ation, while only the CoHUIM algorithm is compared for effi-
ciency evaluation. The reason is that different kinds of patterns
are related to different mining tasks, and they can be used to
analyze the effectiveness and usefulness of the CoUPM frame-
work. While the efficiency should be compared with those algo-
rithms which focus on same mining task. Thus, it is unreason-
able to evaluate the efficiency by comparing algorithms from
different domains.

The CoUPM algorithm is compared with some baseline ap-
proaches, including traditional HUPM algorithm which does
not consider correlation factor (e.g., HUI-Miner [10], FHM [13],
and EFIM [15]), the frequency-affinity-based FDHUP algorithm
[23], and the projection-based CoHUIM algorithm [24].

Variants of CoUPM algorithm. Additional to the base-
line CoUPM algorithm which only utilizes the Strategy 2, three
improved variants, e.g., CoUPMsorted (adopts Strategies 1 and
2), CoUPMLA (adopts Strategies 2 and 3), and CoUPMsorted+LA

(adopts Strategies 1, 2 and 3), are used to evaluate the efficiency
of the proposed algorithm.

5.1. Data Description and Experimental Setup

Datasets. Typically e-commerce datasets are proprietary
and consequently hard to find among publicly available data.
To conduct experiments, we use five publicly available real-
world datasets (foodmart, chess3, mushroom3) and one syn-
thetic dataset (T10I4D100K) in our experiments. The charac-
teristics of used datasets are described below in details.

• foodmart: this dataset is provided with Microsoft SQL
Server. It contains 21,556 customer transactions and 1,559
distinct items from an anonymous chain store.

• chess: it is a dense dataset since it contains 3,196 transac-
tions with 75 distinct items, and the average transaction
length is 36 items.

• mushroom: it has 8,124 transactions with 120 distinct
items, and the average transaction length is 23 items. Thus,
it is also a dense dataset.

• retail: it contains 88,162 transactions with 16,470 dis-
tinct items. The average transaction length in retail is
10.3 items.

• BMSPOS2: it has 515,597 transactions with 1,657 dis-
tinct items, and the average transaction length is 6.53
items. It collects several years worth of point-of-sale data
from a large electronics retailer.

• T10I4D100K: this is a synthetic dataset, which has 100,000
transactions with 870 distinct items, and the average trans-
action length is 10.1 items.

Note that the foodmart dataset already contains the quan-
tity and a unit profit of each item, while chess and mushroom
do not contain the quantitative and profit information. There-
fore, we use a simulation method, which is widely adopted in
previous studies [9, 10, 24], to generate the quantitative and
profit information for each item in the chess and mushroom
datasets. For the addressed utility-based mining problem, these
used datasets having varied characteristics make the experimen-
tal results more convincing and acceptable.

Language and experimental environment. All the algo-
rithms in the experiments were implemented in Java language
and performed on a personal ThinkPad T470p computer with
an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz 2.81 GHz,
32 GB of RAM, and with the 64-bit Microsoft Windows 10 op-
erating system.

3http://fimi.ua.ac.be/data/

9

http://fimi.ua.ac.be/data/

Table 3: Derived patterns under various parameters

Dataset # Patterns # patterns under different thresholds
α1 α2 α3 α4 α5 α6

#HUIs 93,418 49,821 26,176 14,156 8,364 5,365
#DHUIs 33,621 16,285 8,712 5,277 3,644 2,778

#P1 (minCor: 0.01) 93,418 49,821 26,176 14,156 8,364 5,365
foodmart #P2 (minCor: 0.02) 24,857 17,127 12,026 8,557 6,290 4,683

#P3 (minCor: 0.03) 20,224 15,082 11,195 8,247 6,191 4,651
#P4 (minCor: 0.04) 6,869 5,675 4,682 3,831 3,222 2,764
#P5 (minCor: 0.05) 4,654 4,092 3,558 3,084 2,712 2,405
#P6 (minCor: 0.06) 2,644 2,501 2,344 2,204 2,065 1,944

#HUIs - - 45,711,058 2,486,972 22,641 15,713
#DHUIs 14,539 12,620 11,122 9,873 8,847 7,953

#P1 (minCor: 0.10) 11,510 10,244 9,252 8,474 7,836 7,301
retail #P2 (minCor: 0.12) 10,221 9,224 8,402 7,735 7,170 6,686

#P3 (minCor: 0.14) 8,734 7,922 7,239 6,676 6,187 5,783
#P4 (minCor: 0.16) 7,600 6,929 6,317 5,825 5,402 5,050
#P5 (minCor: 0.18) 7,081 6,469 5,909 5,455 5,063 4,732
#P6 (minCor: 0.20) 6,823 6,238 5,699 5,260 4,878 4,562

#HUIs 198,920 89,933 39,281 16,848 7,141 2,969
#DHUIs 0 0 0 0 0 0

#P1 (minCor: 0.74) 8,717 6,083 4,021 2,493 1,438 760
chess #P2 (minCor: 0.75) 7,330 5,113 3,378 2,101 1,199 629

#P3 (minCor: 0.76) 6,062 4,210 2,773 1,704 799 500
#P4 (minCor: 0.77) 4,987 3,464 2,282 1,401 799 415
#P5 (minCor: 0.78) 4,118 2,856 1,872 1,145 650 333
#P6 (minCor: 0.79) 3,316 2,287 1,483 891 503 252

#HUIs 22,121 13,953 7,601 3,420 1,265 356
#DHUIs 8 2 0 0 0 0

#P1 (minCor: 0.40) 8,732 5,320 2,723 1,145 435 138
mushroom #P2 (minCor: 0.42) 7,126 4,422 2,374 1,046 413 129

#P3 (minCor: 0.44) 5,962 3,778 2,060 928 362 106
#P4 (minCor: 0.46) 4,783 3,043 1,656 748 280 82
#P5 (minCor: 0.48) 3,595 2,236 1,176 508 195 61
#P6 (minCor: 0.50) 2,452 1,478 729 301 107 40

#HUIs 370,624 167,972 91,529 56,326 37,381 26,385
#DHUIs 49,762 25,080 14,922 9,762 6,836 5,042

#P1 (minCor: 0.015) 90,087 63,049 46,155 35,124 27,003 21,197
BMSPOS2 #P2 (minCor: 0.020) 58,665 42,653 32,439 25,609 20,486 16,700

#P3 (minCor: 0.025) 41,469 30,896 24,034 19,392 15,879 13,254
#P4 (minCor: 0.030) 30,857 23,459 18,537 15,182 12,584 10,652
#P5 (minCor: 0.035) 23,915 18,519 14,840 12,317 10,327 8,854
#P6 (minCor: 0.040) 19,116 14,970 12,146 10,144 8,563 7,413

#HUIs 80,933 39,848 27,839 21,103 16,850 13,722
#DHUIs 45,994 24,115 15,961 10,503 6,626 4,434

#P1 (minCor: 0.12) 18,129 15,811 13,790 12,082 10,396 8,841
T10I4D100K #P2 (minCor: 0.14) 15,260 13,283 11,664 10,287 8,884 7,594

#P3 (minCor: 0.16) 12,824 11,107 9,772 8,629 7,457 6,424
#P4 (minCor: 0.18) 10,667 9,228 8,132 7,181 6,209 5,380
#P5 (minCor: 0.20) 8,917 7,685 6,767 5,986 5,186 4,498
#P6 (minCor: 0.22) 7,425 6,391 5,607 4,952 4,284 3,731

Parameter settings. It is important to notice that both FHM
[13] and FDHUP [23] are varied by one parameter minUtil,
while the CoHUIM and CoUPM algorithms discover the Co-
HUIs by using two constraints: correlation and utility. There-
fore, experiments are conducted on each dataset by varying
minUtil. In addition, the minCor is adjusted with six times
on each dataset to evaluate the effectiveness of mining patterns.
Specifically, as shown in Table 3, the six different minCor thresh-
olds are respectively set on each data. For instance, in foodmart,
minCor is varying from 0.01 to 0.06, such as 0.01, 0.02, 0.03,
0.04, 0.05, 0.06.

5.2. Effectiveness Analytics

The addressed problem aims at computing the satisfiable
correlated and high profitable patterns. Thereby, the derived

CoHUIs explicitly includes availability of the correlation and
utility contribution. To further investigate the effectiveness of
the addressed problem for correlated utility-based pattern min-
ing, we plot in Table 3 with the results of different kinds of gen-
erated patterns under various parameter settings. Note that the
#HUIs is the number of HUIs discovered by one of traditional
HUIM algorithms (e.g., FHM), #DHUIs is the number of dis-
criminative HUIs discovered by FDHUP, and the #CoHUIs (it
is respectively denoted as #P1 to #P6 under six minCor thresh-
olds) is the number of correlated HUIs discovered by the Co-
HUIM and CoUPM algorithms. In Table 3, α represents minU-
til.

As shown in Table 3, it can be clearly observed that the
number of CoHUIs is always different from that of #HUIs and
#DHUIs under various minCor and minUtil thresholds on all

10

test datasets under all parameter settings. More specifically,
both the minCor and minUtil affect the results of CoHUIs, as
shown from #P1 to #P6 on each dataset. In general, the num-
bers of DHUIs and CoHUIs are always smaller than that of
HUIs. These results are reasonable since the DHUIs and Co-
HUIs are determined with not only the utility constraint, but
also the correlation measure. Therefore, to derive desired pat-
terns, more criteria can usually be applied to produce fewer
patterns. The difference between #DHUIs and #CoHUIs indi-
cates that the addressed problem with Kulc measure is more ac-
ceptable than the frequency-affinity-based utility mining frame-
work. It is interesting to observe that the number of DHUIs in
chess and mushroom datasets under various minUtil thresholds
is close to zero.

In addition, the number of patterns discovered by the de-
signed CoPUM algorithm under six minCor always has: #P1 ≥
#P2 ≥ #P3 ≥ #P4 ≥ #P5 ≥ #P6. When minUtil is fixed on
a processed dataset, the larger minCor is, the smaller the num-
ber of derived CoHUIs is. For instance, when minUtil is set as
19% on chess, #HUIs is 39,281, #DHUIs is 0, while the number
of CoHUIs is changed from 4,021 to 1,483 (details are #P1 =

4,021, #P2 = 3,378, #P3 = 2,773, #P4 = 2,282, #P5 = 1,872,
and #P6 = 1,483) when minCor is varying from 0.74 to 0.79.
It indicates that the adopted correlated Kulc measure is accept-
able and useful to extract non-redundant correlated high-utility
patterns from quantitative datasets.

5.3. Efficiency Analytics
From Table 3, we can observe that the mining results with

the influence of minCor threshold and minUtil threshold. In
this subsection, we continue to perform the evaluation of ef-
ficiency in terms of running time. To make fair comparison,
we use the same parameter settings which are tested in Table
3. Both the minimum correlation threshold and the minimum
utility threshold are used to evaluate the efficiency. We inves-
tigate the processing time of CoHUIM, CoUPM, and its three
improved variants in six real datasets by varying minUtil and
minCore. When varying one threshold, another one is fixed on
each dataset. The results of total execution time of the four
variants are presented in Figure 4 and Figure 5, respectively. In
particular, CoUPMsorted means the designed CoUPM algorithm
with Strategy 1 which utilizes the sorted downward closure
property of Kulc measure), while CoUPM is executed without
using Strategy 1.

Firstly, CoUPM with or without Strategy 1 consistently out-
performs the state-of-the-art CoHUIM approach, even up to 3
orders of magnitude. In particular, CoUPMsorted outperforms
CoUPM in most cases under all parameter settings. For exam-
ple, in the case in Figure 4(e), we can obviously observe the
difference of the runtime between CoUPMsorted and CoUPM.
When minUtil is set to 20% on chess dataset, the runtime of
CoUPMsorted always closes to 4 seconds, while CoUPM ap-
proximately has its processing time as 40 seconds. This differ-
ence also can be observed from the other datasets. This obser-
vation indicates that the sorted downward closure property of
Kulc measure plays an active role in pruning the search space
of the correlation-based CoUPM algorithm.

Based on the observation of runtime between CoUPM and
CoUPMLA, it indicates that the LA-Prune strategy also plays an
active role in filtering the unpromising patterns in some cases.
To summarize, the improved algorithms which utilize the pow-
erful pruning strategies always have the best performance com-
pared to the baseline CoUPM algorithm, as well as the Co-
HUIM algorithm.

It is important to notice that the projection-based CoHUIM
algorithm may be very time-consuming on low thresholds or
dense datasets. And this computational efficiency problem might
be more easily happened in dense datasets, which can been
seen in the view of Figure 4(b), Figure 4(c), Figure 5(b), and
Figure 5(c), respectively. Overall, the proposed CoUPM algo-
rithm significantly has better performance than the state-of-the-
art CoHUIM algorithm in terms of running time and memory
consumption. On dense datasets, i.e., chess and mushroom, the
consumed memory of CoHUIM is very huge and can up to 50
times than that of CoUPM.

5.4. Memory Evaluation

In this subsection, we continue to evaluate the memory con-
sumption of the compared algorithms. Results of the peak mem-
ory usage of CoHUIM and different variants of CoUPM on the
all test datasets with the same parameter settings in Figure 4 and
Figure 5 are shown in Figure 6 and Figure 7, respectively. Note
that we use the Java API to calculate the peak memory con-
sumption of each compared algorithm during the whole mining
process.

As we can see, all the revised utility-list-based models per-
form significantly better than the projection-based CoHUIM al-
gorithm, demonstrating the suitability of these models for dense
datasets or large-scale datasets. For example, as shown in Fig-
ure 6, the peak memory consumption for CoUPM is signifi-
cantly less than that of CoHUIM. In addition, the improved
variants, e.g., CoUPMsorted, CoUPMLA and CoUPMsorted+LA,
consume less memory than the baseline CoUPM algorithm that
only adopts the pruning Strategy 2.

The peak memory consumptions under various values of pa-
rameters (minUtil and minCor) are shown in Figure 6 and Fig-
ure 7, respectively. Note that the y-axis shows the peak mem-
ory consumption of the whole mining process corresponding
to the choice of minimum utility threshold (minUtil) and mini-
mum correlation threshold (minCore). As what can be seen, the
proposed CoUPM model with several pruning strategies outper-
forms CoHUIM for all parameter settings. As mentioned pre-
viously, the advantage of CoUPM is that it is able to early filter
a large amount of unpromising patterns by building the initial
revised utility-lists. As the size of explored pattern increases,
the revised utility-list size decreases, thus CoUPM exceeds the
available main memory and its overall execution time decreases
significantly. For instance, at mushroom (minCore = 0.42 and
minUtil =10% at Figure 6), CoUPM has a peak memory con-
sumption of 650 MB and requires 6s to discover the required
information. For the same minimum thresholds, CoHUIM has
a peak memory consumption of 2,900 MB and requires 43s
for the mining task. This corresponds to a speed-up of 4.5x in

11

0.006 0.007 0.008 0.009 0.010 0.011

10
0.4

10
0.9 (a) foodmart (minCore: 0.03)

Minimum utility threshold (%)

R
un

tim
e

(s
ec

.)

17 18 19 20 21 22
0

50

100

150

200
(b) chess (minCore: 0.76)

Minimum utility threshold (%)
R

un
tim

e
(s

ec
.)

8 9 10 11 12 13
0

10

20

30

40

50
(c) mushroom (minCore: 0.42)

Minimum utility threshold (%)

R
un

tim
e

(s
ec

.)

0.010 0.011 0.012 0.013 0.014 0.015
0

500

1000

1500

2000
(d) retail (minCore: 0.1)

Minimum utility threshold (%)

R
un

tim
e

(s
ec

.)

0.01 0.02 0.03 0.04 0.05 0.06
15

20

25

30

35
(f) T10I4D100K (minCore: 0.15)

Minimum utility threshold (%)

R
un

tim
e

(s
ec

.)

0.06 0.08 0.10 0.12 0.14 0.16
40

60

80

100

120

140

160
(e) BMSPOS2 (minCore: 0.03)

Minimum utility threshold (%)

R
un

tim
e

(s
ec

.)

CoHUIM CoUPM CoUPM
LA

CoUPM
sorted

CoUPM
sorted+LA

Figure 4: Runtime under various parameters (varying minUtil, fix minCor).

0.10 0.12 0.14 0.16 0.18 0.20
60

70

80

90

100

110
(d) retail (minUtil: 0.012%)

Minimum correlation threshold

R
un

tim
e

(s
ec

.)

0.12 0.14 0.16 0.18 0.20 0.22
0

20

40

60
(f) T10I4D100K (minUtil: 0.03%)

Minimum correlation threshold

R
un

tim
e

(s
ec

.)

0.015 0.020 0.025 0.030 0.035 0.040
0

100

200

300
(e) BMSPOS2 (minUtil: 0.1%)

Minimum correlation threshold

R
un

tim
e

(s
ec

.)

0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20
(a) foodmart (minUtil: 0.007%)

Minimum correlation threshold

R
un

tim
e

(s
ec

.)

0.74 0.75 0.76 0.77 0.78 0.79
0

20

40

60

80

100
(b) chess (minUtil: 20%)

Minimum correlation threshold

R
un

tim
e

(s
ec

.)

0.40 0.42 0.44 0.46 0.48 0.50
0

20

40

60
(c) mushroom (minUtil: 8%)

Minimum correlation threshold

R
un

tim
e

(s
ec

.)

CoHUIM CoUPM CoUPM
LA

CoUPM
sorted

CoUPM
sorted+LA

Figure 5: Runtime under various parameters (fix minUtil, varying minCor).

12

0.06 0.08 0.10 0.12 0.14 0.16
0

1000

2000

3000

4000

5000
(e) BMSPOS2 (minCore: 0.03)

Minimum utility threshold (%)

M
em

or
y

us
ag

e
(M

B
)

0.0060.0070.0080.0090.0100.011
0

50

100

150

200

250
(a) foodmart (minCore: 0.03)

Minimum utility threshold (%)

M
em

or
y

us
ag

e
(M

B
)

0.01 0.02 0.03 0.04 0.05 0.06
0

200

400

600

800
(f) T10I4D100K (minCore: 0.15)

Minimum utility threshold (%)

M
em

or
y

us
ag

e
(M

B
)

0.0100.0110.0120.0130.0140.015
0

500

1000

1500

2000

(d) retail (minCore: 0.1)

Minimum utility threshold (%)

M
em

or
y

us
ag

e
(M

B
)

17 18 19 20 21 22
0

1000

2000

3000

4000

5000
(b) chess (minCore: 0.76)

Minimum utility threshold (%)

M
em

or
y

us
ag

e
(M

B
)

8 9 10 11 12 13
0

1000

2000

3000
(c) mushroom (minCore: 0.42)

Minimum utility threshold (%)

M
em

or
y

us
ag

e
(M

B
)

CoHUIM CoUPM CoUPM
LA

CoUPM
sorted

CoUPM
sorted+LA

Figure 6: Memory usage under various parameters (varying minUtil, fix minCor).

memory, and speed-up of 7x in execution time. For dense data
sizes (e.g., chess, mushroom), the speed-up increases further.

5.5. Summary and Discussion

For the proposed CoUPM, we have the following observa-
tions: (1) Best performance is achieved when all data structures
(revised utility-lists) fit in main memory. (2) The performance
degrades but still remains acceptable while dealing with dense
dataset. (3) The low performance of projection-based CoHUIM
model may be related to the huge memory consumption which
is quite important in utility mining. In summary, we have the
following observations of the results.

• First, the filtered estimation of upper bound on utility
takes a positive role in early pruning the unpromising pat-
terns based on the revised utility-list to store the compact
but complete information.

• Second, the designed CoUPM algorithm makes use of the
compact data structure named revised utility-list. Thus, it
can efficiently hold the “mining during the constructing”
property, and the real search space and memory cost can
be significantly reduced. On the contrast, the projection
CoHUIM approach which recursively projects the sub-
databases for next iteration may easily encounter a huge
of memory cost, especially on dense datasets.

• Third, by utilizing the proposed pruning strategies with
the properties of correlation and upper bound on util-
ity, the search space and memory cost of the CoUPM
algorithm is further reduced. The worse performance
of the CoHUIM algorithm is caused by the candidate
generation-and-test mechanism.

• In general, the upper bond on utility used in CoHUIM is
not tight enough, and a huge number of candidates are
required to be generated although the sorted downward
closure property of Kulc is adopted in CoHUIM to prune
the candidates in the search space.

6. Conclusion and Future Work

In this paper, we have presented an efficient utility mining
framework named CoUPM for discovering non-redundant cor-
related high-utility patterns from quantitative databases. It stud-
ies the problem of utility-based pattern mining by measuring
both correlation and availability of utility. Based on the revised
utility-list, CoUPM does not need to scan the database with
multiple times. It relies on several pruning strategies, which
utilize the sorted downward closure of Kulc and upper bound
on utility based on the concept of remaining utility. More-
over, CoUPM can directly discover the desired patterns from
the quantitative databases by avoiding performing costly inter-
section operations of revised utility-lists. The extensive perfor-
mance on several real-world datasets demonstrates the effec-
tiveness and efficiency of the CoUPM algorithm.

For the future work, we plan to improve the mining effi-
ciency by developing a new data structure instead of using the
utility-list for the addressed problem. Secondly, we would fo-
cus on other practical effectiveness issues of utility mining. For
example, we would like to conduct further research of the pro-
posed model to deal with the dynamic utility mining [17, 18],
utility mining on uncertain data [16], and privacy issue [50].
Lastly, it is also interesting to take the other interesting exten-
sions and applications into account for our future studies.

13

0.015 0.020 0.025 0.030 0.035 0.040
0

1000

2000

3000

4000

5000
(e) BMSPOS2 (minUtil: 0.1%)

Minimum correlation threshold

M
em

or
y

us
ag

e
(M

B
)

0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250
(a) foodmart (minUtil: 0.007%)

Minimum correlation threshold

M
em

or
y

us
ag

e
(M

B
)

0.12 0.14 0.16 0.18 0.20 0.22
0

200

400

600
(f) T10I4D100K (minUtil: 0.03%)

Minimum correlation threshold

M
em

or
y

us
ag

e
(M

B
)

0.10 0.12 0.14 0.16 0.18 0.20
0

500

1000

1500

2000
(d) retail (minUtil: 0.012%)

Minimum correlation threshold

M
em

or
y

us
ag

e
(M

B
)

0.74 0.75 0.76 0.77 0.78 0.79
0

100

200

300

400
(b) chess (minUtil: 20%)

Minimum correlation threshold

M
em

or
y

us
ag

e
(M

B
)

0.40 0.42 0.44 0.46 0.48 0.50
0

1000

2000

3000

4000
(c) mushroom (minUtil: 8%)

Minimum correlation threshold

M
em

or
y

us
ag

e
(M

B
)

CoHUIM CoUPM CoUPM
LA

CoUPM
sorted

CoUPM
sorted+LA

Figure 7: Memory usage under various parameters (fix minUtil, varying minCor).

Acknowledgment

This work was partially supported by the Shenzhen Tech-
nical Project under JCYJ 20170307151733005 and KQJSCX
20170726103424709. Specifically, Wensheng Gan was sup-
ported by the CSC (China Scholarship Council) Program during
the study at University of Illinois at Chicago, IL, USA.

References

References

[1] M. S. Chen, J. Han, P. S. Yu, Data mining: an overview from a database
perspective, IEEE Transactions on Knowledge and data Engineering 8 (6)
(1996) 866–883.

[2] W. Gan, J. C. W. Lin, H. C. Chao, J. Zhan, Data mining in distributed
environment: a survey, Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 7 (6) (2017) e1216.

[3] R. Agrawal, R. Srikant, et al., Fast algorithms for mining association
rules, in: Proceedings of the 20th International Conference on Very Large
Data Bases, Vol. 1215, 1994, pp. 487–499.

[4] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate
generation: A frequent-pattern tree approach, Data Mining and Knowl-
edge Discovery 8 (1) (2004) 53–87.

[5] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, J. Zhan, Mining of
frequent patterns with multiple minimum supports, Engineering Applica-
tions of Artificial Intelligence 60 (2017) 83–96.

[6] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, P. S. Yu, A survey of
parallel sequential pattern mining, arXiv preprint arXiv:1805.10515.

[7] Y. Liu, W. K. Liao, A. Choudhary, A two-phase algorithm for fast dis-
covery of high utility itemsets, in: Proceedings of the Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, Springer, 2005, pp.
689–695.

[8] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, Y. K. Lee, Efficient tree struc-
tures for high utility pattern mining in incremental databases, IEEE Trans-
actions on Knowledge and Data Engineering 21 (12) (2009) 1708–1721.

[9] V. S. Tseng, B. E. Shie, C. W. Wu, P. S. Yu, Efficient algorithms for min-
ing high utility itemsets from transactional databases, IEEE Transactions
on Knowledge and Data Engineering 25 (8) (2013) 1772–1786.

[10] M. Liu, J. Qu, Mining high utility itemsets without candidate generation,
in: Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, ACM, 2012, pp. 55–64.

[11] A. Marshall, From principles of economics, in: Readings in the Eco-
nomics of the Division of Labor: the Classical Tradition, World Scientific,
2005, pp. 195–215.

[12] V. S. Tseng, C. W. Wu, B. E. Shie, P. S. Yu, UP-Growth: an efficient
algorithm for high utility itemset mining, in: Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, 2010, pp. 253–262.

[13] P. Fournier-Viger, C. W. Wu, S. Zida, V. S. Tseng, FHM: Faster high-
utility itemset mining using estimated utility co-occurrence pruning, in:
Proceedings of the International Symposium on Methodologies for Intel-
ligent Systems, Springer, 2014, pp. 83–92.

[14] S. Krishnamoorthy, Pruning strategies for mining high utility itemsets,
Expert Systems with Applications 42 (5) (2015) 2371–2381.

[15] S. Zida, P. Fournier-Viger, J. C. W. Lin, C. W. Wu, V. S. Tseng, EFIM:
a fast and memory efficient algorithm for high-utility itemset mining,
Knowledge and Information Systems 51 (2) (2017) 595–625.

[16] J. C. W. Lin, W. Gan, P. Fournier-Viger, T. P. Hong, V. S. Tseng, Effi-
cient algorithms for mining high-utility itemsets in uncertain databases,
Knowledge-Based Systems 96 (2016) 171–187.

[17] J. C. W. Lin, W. Gan, T. P. Hong, A fast updated algorithm to maintain the
discovered high-utility itemsets for transaction modification, Advanced
Engineering Informatics 29 (3) (2015) 562–574.

[18] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, T. P. Hong, H. Fu-
jita, A survey of incremental high-utility itemset mining, Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery 8 (2) (2018)
e1242.

[19] Y. C. Lin, C. W. Wu, V. S. Tseng, Mining high utility itemsets in big data,
in: Proceedings of the Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Springer, 2015, pp. 649–661.

[20] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between
sets of items in large databases, in: ACM SIGMOD Record, Vol. 22,
ACM, 1993, pp. 207–216.

[21] L. Geng, H. J. Hamilton, Interestingness measures for data mining: a
survey, ACM Computing Surveys 38 (3) (2006) 9.

[22] E. R. Omiecinski, Alternative interest measures for mining associations
in databases, IEEE Transactions on Knowledge and Data Engineering (1)
(2003) 57–69.

[23] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, H. J. Choi, A framework for
mining interesting high utility patterns with a strong frequency affinity,

14

Information Sciences 181 (21) (2011) 4878–4894.
[24] J. C. W. Lin, W. Gan, P. Fournier-Viger, T. P. Hong, H. C. Chao, FDHUP:

fast algorithm for mining discriminative high utility patterns, Knowledge
and Information Systems 51 (3) (2017) 873–909.

[25] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, H. Fujita, Ex-
tracting non-redundant correlated purchase behaviors by utility measure,
Knowledge-Based Systems 143 (2018) 30–41.

[26] S. Kulczyński, Die pflanzenassoziationen der pieninen, Imprimerie de
l’Université, 1928.

[27] T. Wu, Y. Chen, J. Han, Re-examination of interestingness measures in
pattern mining: a unified framework, Data Mining and Knowledge Dis-
covery 21 (3) (2010) 371–397.

[28] H. Yao, H. J. Hamilton, Mining itemset utilities from transaction
databases, Data & Knowledge Engineering 59 (3) (2006) 603–626.

[29] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, V. S. Tseng,
P. S. Yu, A survey of utility-oriented pattern mining, arXiv preprint
arXiv:1805.10511.

[30] C. W. Lin, T. P. Hong, W. H. Lu, An effective tree structure for min-
ing high utility itemsets, Expert Systems with Applications 38 (6) (2011)
7419–7424.

[31] J. C. W. Lin, W. Gan, P. Fournier-Viger, T. P. Hong, V. S. Tseng, Ef-
ficiently mining uncertain high-utility itemsets, Soft Computing 21 (11)
(2017) 2801–2820.

[32] J. C. W. Lin, W. Gan, T. P. Hong, V. S. Tseng, Efficient algorithms for
mining up-to-date high-utility patterns, Advanced Engineering Informat-
ics 29 (3) (2015) 648–661.

[33] J. C. W. Lin, W. Gan, T. P. Hong, A fast maintenance algorithm of the
discovered high-utility itemsets with transaction deletion, Intelligent Data
Analysis 20 (4) (2016) 891–913.

[34] T. P. Hong, C. H. Lee, S. L. Wang, Effective utility mining with the mea-
sure of average utility, Expert Systems with Applications 38 (7) (2011)
8259–8265.

[35] J. M. T. Wu, J. C. W. Lin, M. Pirouz, P. Fournier-Viger, TUB-HAUPM:
Tighter upper bound for mining high average-utility patterns, IEEE Ac-
cess 6 (2018) 18655–18669.

[36] J. C. W. Lin, L. Yang, P. Fournier-Viger, T. P. Hong, M. Voznak, A bi-
nary PSO approach to mine high-utility itemsets, Soft Computing 21 (17)
(2017) 5103–5121.

[37] J. M. T. Wu, J. Zhan, J. C. W. Lin, An ACO-based approach to mine
high-utility itemsets, Knowledge-Based Systems 116 (2017) 102–113.

[38] V. S. Tseng, C. W. Wu, P. Fournier-Viger, P. S. Yu, Efficient algorithms
for mining the concise and lossless representation of high utility itemsets,
IEEE Transactions on Knowledge and Data Engineering 27 (3) (2015)
726–739.

[39] V. S. Tseng, C. W. Wu, P. Fournier-Viger, P. S. Yu, Efficient algorithms
for mining top-k high utility itemsets, IEEE Transactions on Knowledge
and Data Engineering 28 (1) (2016) 54–67.

[40] T. Mai, B. Vo, L. T. Nguyen, A lattice-based approach for mining high
utility association rules, Information Sciences 399 (2017) 81–97.

[41] G. C. Lan, T. P. Hong, V. S. Tseng, S. L. Wang, Applying the maximum
utility measure in high utility sequential pattern mining, Expert Systems
with Applications 41 (11) (2014) 5071–5081.

[42] Y. F. Lin, C. W. Wu, C. F. Huang, V. S. Tseng, Discovering utility-based
episode rules in complex event sequences, Expert Systems with Applica-
tions 42 (12) (2015) 5303–5314.

[43] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, P. S. Yu, HUOPM:
High-utility occupancy pattern mining, IEEE transactions on cybernetics.

[44] S. Brin, R. Motwani, C. Silverstein, Beyond market baskets: generalizing
association rules to correlations, in: ACM SIGMOD Record, Vol. 26,
ACM, 1997, pp. 265–276.

[45] J. Wu, S. Zhu, H. Liu, G. Xia, Cosine interesting pattern discovery, Infor-
mation Sciences 184 (1) (2012) 176–195.

[46] W. Y. Kim, Y. K. Lee, J. Han, CCMine: efficient mining of confidence-
closed correlated patterns, in: Proceedings of the Pacific-Asia Conference
on Knowledge Discovery and Data Mining, Springer, 2004, pp. 569–579.

[47] P. Fournier-Viger, J. C. W. Lin, T. Dinh, H. B. Le, Mining correlated
high-utility itemsets using the bond measure, in: Proceedings of the Inter-
national Conference on Hybrid Artificial Intelligence Systems, Springer,
2016, pp. 53–65.

[48] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, P. S. Yu, Beyond fre-
quency: Utility mining with varied item-specific minimum utility, arXiv

preprint arXiv:1902.09584.
[49] R. Rymon, Search through systematic set enumeration, Proceeding of the

3rd International Conference on Principles of Knowledge Representatio-
nand Reasoning (1992) 539–550.

[50] W. Gan, J. C. W. Lin, H. C. Chao, S. L. Wang, P. S. Yu, Privacy preserv-
ing utility mining: a survey, in: Proceedings of the IEEE International
Conference on Big Data, IEEE, 2018, pp. 2617–2626.

15

	1 Introduction
	2 Related Work
	2.1 Utility-based Data Mining
	2.2 Affinity/Correlation Pattern Mining
	2.3 Comparative Analysis with Previous Works

	3 Preliminaries and Problem Formulation
	3.1 Database with Utility Factor
	3.2 Preliminaries of Utility Mining
	3.3 Correlation for Data Mining
	3.4 Problem Formulation

	4 Proposed One-Phase Algorithm: CoUPM
	4.1 Properties of the CoHUI
	4.2 Revised Utility-List with Correlation
	4.3 Pruning Strategies for Searching CoHUIs
	4.4 Main Procedure

	5 Experimental Study
	5.1 Data Description and Experimental Setup
	5.2 Effectiveness Analytics
	5.3 Efficiency Analytics
	5.4 Memory Evaluation
	5.5 Summary and Discussion

	6 Conclusion and Future Work

