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Y Abstract

k-Anonymous microaggregation is a widespread technique to address the problem
of protecting the privacy of the respondents involved beyond the mere suppression
of their identifiers, in applications where preserving the utility of the information
disclosed is critical. Unfortunately, microaggregation methods with high data utility
may impose stringent computational demands when dealing with datasets containing
a large number of records and attributes.
This work proposes and analyzes various anonymization methods which draw upon

the algebraic-statistical technique of principal component analysis (PCA), in order
to effective reduce the number of attributes processed, that is, the dimension of the
multivariate microaggregation problem at hand. By preserving to a high degree the
energy of the numerical dataset and carefully choosing the number of dominant com-
ponents to process, we manage to achieve remarkable reductions in running time and
memory usage with negligible impact in information utility. Our methods are readily
applicable to high-utility SDC of large-scale datasets with numerical demographic
attributes.
© 2019 The Authors. Preprint submitted to Elsevier, Inc.
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I. Introduction

O ver recent years, big-data technologies have acquired extreme relevance, becoming commonplace for all
kinds of companies and research organizations to focus their efforts on the development of methodologies to
process vast volumes of data efficiently. Feeding this data to powerful data-analysis systems and machine-

learning algorithms has set in motion a virtuous circle of digitalization in a wide variety of arenas, running the whole
gamut from targeted advertising to precision medicine, an effect that can only continue to accelerate in coming years.
But all too often, a substantial portion of this data consists in personal information posing significant privacy risks,
particularly when releasing sensitive data to untrusted parties or openly publishing it for any number of statistical
studies.
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The field of statistical disclosure control (SDC) emerged to address this conundrum in the release of personal data.
Specifically, k-anonymous microaggregation permits protecting the privacy of the respondents involved, beyond the mere
suppression of their identifiers, by carefully aggregating demographic attributes. This reduces the risk of reidentification
in applications where preserving the utility of the information disclosed is also critical. Unfortunately, microaggregation
methods with high data utility may impose stringent computational demands when dealing with datasets containing a
large number of records and attributes.

In this work, we propose and analyze various anonymization methods which draw upon the algebraic-statistical
technique of principal component analysis (PCA), in order to effective reduce the number of attributes processed, that
is, the dimension of the multivariate microaggregation problem at hand. By preserving to a high degree the energy of
the numerical dataset and carefully choosing the number of dominant components to process, we manage to achieve
remarkable reductions in running time and memory usage with negligible impact in information utility. Our methods
are readily applicable to high-utility SDC of large-scale datasets with numerical demographic attributes.

A. Fundamentals of Statistical Disclosure Control and Microaggregation
As famously shown in [41, 42], 87% of the population in the United States has reported characteristics that likely made
them unique based only on the tuple consisting of 5-digit ZIP, gender, and date of birth. The findings in [41, 42] mean
that the mere elimination of identifiers such as first and last name, or social security number, is grossly insufficient to
effectively protect the anonymity of the participants of published statistical studies containing confidential data linked
to demographic information.

In the field of SDC, introduced earlier, a microdata set is a database table whose records carry information concerning
identifiable individuals or organizations. Each of these records contains attributes that may be divided into identifiers,
quasi-identifiers, and confidential attributes.

• Identifiers unequivocally identify respondents in the microdata set. Examples of identifiers are full name or SSNs.
Certainly, they must be removed before publishing the microdata set, in order to guarantee anonymity.

• Quasi-identifiers, typically demographic attributes, may still pose a risk of reidentification when considered jointly,
by cross-referencing them with external, usually publicly available information. Examples of quasi-identifiers are
age, height, weight, gender, and job.

• Confidential attributes contain sensitive information on the respondents, such as salary, political affiliation, and
health condition.

A conceptual example of microdata set is shown in Fig. 1, where respondents are identified by their full names, educa-
tional stage or years of schooling, age, and ZIP code play the role of quasi-identifiers, and where confidential attributes
consist of family income and a consumer profile representing purchasing preferences along predefined categories.
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fication in applications where preserving the utility of the information disclosed is also critical. Unfortunately, micro-
aggregation methods with high data utility may impose stringent computational demands when dealing with datasets 
containing a large number of records and attributes. 

In this work, we propose and analyze various anonymization methods which draw upon the algebraic-statistical 
technique of principal component analysis (PCA), in order to effective reduce the number of attributes processed, that 
is, the dimension of the multivariate microaggregation problem at hand. By preserving to a high degree the energy of 
the numerical dataset and carefully choosing the number of dominant components to process, we manage to achieve 
remarkable reductions in running time and memory usage with negligible impact in information utility. Our methods 
are readily applicable to high-utility SDC of large-scale datasets with numerical demographic attributes. 

A. Fundamentals of Statistical Disclosure Control and Microaggregation
As famously shown in [], % of the population in the United States has reported characteristics that likely made 
them unique based only on the tuple consisting of -digit ZIP, gender, and date of birth. The findings in [] mean 
that the mere elimination of identifiers such as first and last name, or social security number, is grossly insufficient to 
effectively protect the anonymity of the participants of published statistical studies containing confidential data linked 
to demographic information. 

In the field of SDC, introduced earlier, a microdata set is a database table whose records carry information concern-
ing identifiable individuals or organizations. Each of these records contains attributes that may be divided into identi-
fiers, quasi-identifiers, and confidential attributes. 

• Identifiers unequivocally identify respondents in the microdata set. Examples of identifiers are full name or SSNs.
Certainly, they must be removed before publishing the microdata set, in order to guarantee anonymity.

• Quasi-identifiers, typically demographic attributes, may still pose a risk of reidentification when considered
jointly, by cross-referencing them with external, usually publicly available information. Examples of quasi-iden-
tifiers are age, height, weight, gender, and job.

• Confidential attributes contain sensitive information on the respondents, such as salary, political affiliation, and
health condition.

A conceptual example of microdata set is shown in Fig. , where respondents are identified by their full names, educa-
tional stage or years of schooling, age, and ZIP code play the role of quasi-identifiers, and where confidential attributes 
consist of family income and a consumer profile representing purchasing preferences along predefined categories. 

Fig. . Synthetic example of microdata set containing demographic attributes (educational stage or years of schooling, age, and ZIP 
code) along with confidential information (family income, consumer profile representing interests along predefined categories). 

As already mentioned, the mere suppression of identifiers is not sufficient to guarantee anonymity, although it is 
certainly necessary. In order to address the risk of reidentification, the quasi-identifiers in the microdata set must be 
subjected to some form of perturbation, according to the process outlined next and conceptually depicted in Fig. . 
Precisely, in 𝑘𝑘-anonymous microaggregation, groups of 𝑘𝑘 demographically similar respondents are formed, and their 
corresponding tuples of quasi-identifiers, replaced by a common representative tuple. This prevents reidentification via 
cross-referencing of quasi-identifiers. Because respondents within each group of 𝑘𝑘 records are indistinguishable from 
each other on the basis of their quasi-identifiers, this form of protection is naturally known as 𝑘𝑘-anonymity. The proce-
dure described is shown in Fig.  for our synthetic example. Recall that full name is an identifier, years of education, 
age and ZIP code constitute quasi-identifiers, and family income and consumer profile play the role of confidential 
attributes. As illustrated, identifiers are removed before publishing the table. Further, the published table contains 
groups of 𝑘𝑘 records with a common value for their quasi-identifiers. The published table is a 𝑘𝑘-anonymous version of 
the original, where demographic attributes have been adequately aggregated. 

As we have seen, in 𝑘𝑘-anonymous microaggregation, quasi-identifiers are perturbed in order to preserve privacy, at 
the cost of losing some of the data utility, the latter characterized as the accuracy or absence of discrepancy with respect 
to the original dataset. The design and operation of this type of algorithms must take into consideration the trade-off 
between these two contrasting aspects. The careful assignment of individual records to microcells of size at least 𝑘𝑘 in 
order to guarantee this form of anonymity, while preserving the utility of the data released, is no trivial matter. 

Name Edu 
Yrs Age ZIP

Code
Family 
Income

Consumer
Profile

Alice Adams 14 32 94024 $39 250

Bob Brown 10 34 94305 $21 700

Chloe Carter 12 33 94024 $32 150

Dave Diaz 17 43 90210 $57 400

Eve Ellis 16 47 90210 $56 300

Frank Fisher 15 45 90213 $54 100

Identifiers

Quasi-Identifiers 
(Demographic 
Attributes)

Confidential 
Attributes

Fig. 1. Synthetic example of microdata set containing demographic attributes (educational stage or years of schooling, age, and
ZIP code) along with confidential information (family income, consumer profile representing interests along predefined categories).

As already mentioned, the mere suppression of identifiers is not sufficient to guarantee anonymity, although it is
certainly necessary. In order to address the risk of reidentification, the quasi-identifiers in the microdata set must be
subjected to some form of perturbation, according to the process outlined next and conceptually depicted in Fig. 2.
Precisely, in k-anonymous microaggregation, groups of k demographically similar respondents are formed, and their
corresponding tuples of quasi-identifiers, replaced by a common representative tuple. This prevents reidentification via
cross-referencing of quasi-identifiers. Because respondents within each group of k records are indistinguishable from each
other on the basis of their quasi-identifiers, this form of protection is naturally known as k-anonymity. The procedure
described is shown in Fig. 3 for our synthetic example. Recall that full name is an identifier, years of education, age and
ZIP code constitute quasi-identifiers, and family income and consumer profile play the role of confidential attributes.
As illustrated, identifiers are removed before publishing the table. Further, the published table contains groups of k
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records with a common value for their quasi-identifiers. The published table is a k-anonymous version of the original,
where demographic attributes have been adequately aggregated.

As we have seen, in k-anonymous microaggregation, quasi-identifiers are perturbed in order to preserve privacy, at
the cost of losing some of the data utility, the latter characterized as the accuracy or absence of discrepancy with respect
to the original dataset. The design and operation of this type of algorithms must take into consideration the trade-off
between these two contrasting aspects. The careful assignment of individual records to microcells of size at least k in
order to guarantee this form of anonymity, while preserving the utility of the data released, is no trivial matter.

ID Removal

Dataset

Quasi-identifiers

Confidential 
attributes

Aggregation

Released 
dataset

Perturbed
quasi-identifiers

Original 
confidential 
attributes

Fig. 2. Block diagram of the k-anonymous microaggregation process. The removal of identifiers is necessary yet insufficient. Quasi-
identifiers, typically demographic attributes that may be cross-referenced to infer the identity of the respondent, are aggregated
by similarity. Aggregated tuples of quasi-identifiers are replaced by a common representative tuple for each group. The published
dataset contains the original confidential attributes, but they are linked to perturbed quasi-identifiers.
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Fig. . Block diagram of the 𝑘𝑘-anonymous microaggregation process. The removal of identifiers is necessary yet insufficient. Quasi-
identifiers, typically demographic attributes that may be cross-referenced to infer the identity of the respondent, are aggregated by 
similarity. Aggregated tuples of quasi-identifiers are replaced by a common representative tuple for each group. The published dataset 
contains the original confidential attributes, but they are linked to perturbed quasi-identifiers. 

Fig. . 𝑘𝑘-Anonymous microaggregation applied to our synthetic example. Prior to its release or publication, identifiers are removed, 
and 𝑘𝑘-anonymous microaggregation applied with 𝑘𝑘 = 3. By grouping quasi-identifiers, individuals remain demographically indistin-
guishable among a group of 𝑘𝑘 uncertain possibilities. 

B. Contribution and Organization
This work deals with the specific problem of computational complexity of 𝑘𝑘-anonymous microaggregation for large 
datasets with a substantial amount of numerical quasi-identifiers and records. Although our work is illustrated with the 
special case of the widely used algorithm known as maximum distance to average vector (MDAV), the methods outlined 
would be readily applicable to other microaggregation techniques. Certainly, the focus is not on the particular algorithm 
employed, as we operate merely under the mild assumption that the running time significantly increases with the 
number of numerical quasi-identifiers in the microdata set. 

In order to accelerate the anonymization process, we capitalize on PCA as an algebraic-statistical technique for 
dimensionality reduction, in the form of two novel methods. Here, dimension refers to the number of numerical quasi-
identifiers in the dataset. Both of our methods are able to microaggregate large databases significantly faster than 
MDAV, and they do maintain the statistical quality of the released information, which makes them suitable for a great 
number of applications across different fields. We also report extensive experimentation on standardized datasets. As 
an added practical advantage, the use of dimensionality-reduction techniques is also the source of substantial memory 
savings, and thus, the new algorithms not only greatly improve the time required to execute them, but they should also 
increase memory efficiency, particularly through memory paging and cache-memory storage. The highlights of our 
contribution are summarized in Fig. . 

More concretely, our contributions are the following. 
• We introduce two dimensionality-reduction methods in the microaggregation field, by means of PCA, which

greatly reduce the running time of 𝑘𝑘-anonymous microaggregation of multivariate data, maintaining the quality
of the released information. The first method is more conservative in terms of distortion and corresponds to a
direct application of PCA to the entire dataset.

• The second method attains more aggressive speed-ups by splitting the dataset into a proximal portion of data
points closer to each other, for which PCA is directly applied as in the first method, and a distal portion with
higher distortion that is not subject to PCA at all. The speed-up achieved through this second method is the
resulting synergy of dimensionality reduction and the superadditivity of the running time of microaggregation
algorithms with the number of records. Recall that superadditive complexity in the number of records means that
the running time on 𝑎𝑎+ 𝑏𝑏 records satisfies 𝑡𝑡(𝑎𝑎+ 𝑏𝑏) ⩾ 𝑡𝑡(𝑎𝑎) + 𝑡𝑡(𝑏𝑏), making it conducive to the celebrated algorith-
mic approach of “divide and conquer”. This is a typical characteristic of high-utility 𝑘𝑘-anonymous microaggre-
gation algorithms, as they analyze distances between pairs of data points. In fact, we shall see that our proximal-
distal prepartition technique, combined or not with PCA, represents a valuable contribution by itself.

Name Edu 
Yrs Age ZIP 

Code
Family 
Income

Consumer
Profile

Alice Adams 14 32 94024 $39 250

Bob Brown 10 34 94305 $21 700

Chloe Carter 12 33 94024 $32 150

Dave Diaz 17 43 90210 $57 400

Eve Ellis 16 47 90210 $56 300

Frank Fisher 15 45 90213 $54 100

Edu 
Yrs Age ZIP 

Code
Family 
Income

Consumer 
Profile

12 33 94*** $39 250

12 33 94*** $21 700

12 33 94*** $32 150

16 45 9021* $57 400

16 45 9021* $56 300

16 45 9021* $54 100

Identifiers Quasi-Identifiers
Confidential 
Attributes

Microaggregated 
Quasi-Identifiers

Confidential 
Attributes
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ID removal

Dataset

Quasi-identifiers

Confidential 
attributes
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Released 
dataset
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Original 
confidential 
attributes

Fig. 3. k-Anonymous microaggregation applied to our synthetic example. Prior to its release or publication, identifiers are
removed, and k-anonymous microaggregation applied with k = 3. By grouping quasi-identifiers, individuals remain demographically
indistinguishable among a group of k uncertain possibilities.

B. Contribution and Organization
This work deals with the specific problem of computational complexity of k-anonymous microaggregation for large
datasets with a substantial amount of numerical quasi-identifiers and records. Although our work is illustrated with
the special case of the widely used algorithm known as maximum distance to average vector (MDAV), the methods
outlined would be readily applicable to other microaggregation techniques. Certainly, the focus is not on the particular
algorithm employed, as we operate merely under the mild assumption that the running time significantly increases with
the number of numerical quasi-identifiers in the microdata set.

In order to accelerate the anonymization process, we capitalize on PCA as an algebraic-statistical technique for
dimensionality reduction, in the form of two novel methods. Here, dimension refers to the number of numerical quasi-
identifiers in the dataset. Both of our methods are able to microaggregate large databases significantly faster than
MDAV, and they do maintain the statistical quality of the released information, which makes them suitable for a great
number of applications across different fields. We also report extensive experimentation on standardized datasets. As
an added practical advantage, the use of dimensionality-reduction techniques is also the source of substantial memory
savings, and thus, the new algorithms not only greatly improve the time required to execute them, but they should
also increase memory efficiency, particularly through memory paging and cache-memory storage. The highlights of our
contribution are summarized in Fig. 4.

More concretely, our contributions are the following.
• We introduce two dimensionality-reduction methods in the microaggregation field, by means of PCA, which greatly

reduce the running time of k-anonymous microaggregation of multivariate data, maintaining the quality of the

3/28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

D. Rebollo-Monedero et al. / Submitted to Elsevier J. (Jan. 2019)

released information. The first method is more conservative in terms of distortion and corresponds to a direct
application of PCA to the entire dataset.

• The second method attains more aggressive speed-ups by splitting the dataset into a proximal portion of data
points closer to each other, for which PCA is directly applied as in the first method, and a distal portion with
higher distortion that is not subject to PCA at all. The speed-up achieved through this second method is the
resulting synergy of dimensionality reduction and the superadditivity of the running time of microaggregation
algorithms with the number of records. Recall that superadditive complexity in the number of records means that
the running time on a+ b records satisfies t(a+ b) > t(a) + t(b), making it conducive to the celebrated algorithmic
approach of “divide and conquer”. This is a typical characteristic of high-utility k-anonymous microaggregation
algorithms, as they analyze distances between pairs of data points. In fact, we shall see that our proximal-distal
prepartition technique, combined or not with PCA, represents a valuable contribution by itself. D. Rebollo-Monedero, A. Mohamad Mezher, et al. / Submitted to Elsevier J. (-) 

 
Fig. . Highlights of our contribution. 

• Although our work is illustrated with the special case of the widely used algorithm known as maximum distance 
to average vector (MDAV), we must hasten to point out that the computational improvements proposed in our 
work are compatible with any other multivariate microaggregation algorithm. The focus of this work is not on 
the particular 𝑘𝑘-anonymous microalgorithm algorithm employed, as we operate merely under two mild assump-
tions. First, that the running time significantly increases with the number of numerical quasi-identifiers in the 
microdata set, and secondly, although this is only assumed in our second method, that running times are super-
additive with the number of records. We would like to remark that in the case of MDAV, running time is 
approximately an affine function of the amount of numerical quasi-identifiers, that is, the dimension of our 
dataset, but any form of increasing monotonicity would be sufficient for our methods to prove valuable. In terms 
of the number of records, MDAV is known to have approximately quadratic complexity, and therefore, superad-
ditive. 

• Further, these improvements do not require any modification of the internal code of said microaggregation 
algorithm, as they simply resort to modifying the representation of the data fed to it. In this manner, most 
conceivable computational improvements to the microaggregation process should be compatible with the dimen-
sionality-reduction techniques put forth in this manuscript, finally resulting in a synergically multiplicative speed-
up. 

• The reduction of the dimension of the data attained will equally reduce memory requirements. In addition to 
the memory savings, a secondary, indirect improvement in running time should come from a more efficient use 
of hierarchical memory structures, specifically, through pagination (RAM instead of hard disk) and cache memory 
(low-level cache instead of RAM). In any event, the scope of our analysis is limited to time gains, and the sizes 
of the datasets employed fit perfectly in today’s large solid-state memories. 

• As we shall see in the review of the state of the art in §II, we were able to identify two related independent 
contributions in the literature, albeit with essential differences of theoretical and practical significance. In one of 
them [, ], a single principal component was used for scalar microaggregation, resulting in extreme utility 
loss. This is a drawback long acknowledged in the field of SDC, which has unfortunately led to discarding the 
vast potential of PCA until now. We demonstrate that a multivariate use of PCA adapted to the dataset, 
carefully adjusting the number of dominant components in order to preserve the energy of the compressed dataset 
leads to negligible distortion, while attaining substantial running time and memory usage reductions. Another 
loosely related contribution devises a rather heuristic procedure based on one or a few components of PCA [] , 
applied to rank swapping instead of microaggregation, with the intent of controlling disclosure risk rather than 
time complexity. 

• We verify the expected performance of the two methods devised, by carrying out extensive experimentation on 
standardized datasets, illustrated with the popular algorithm MDAV. One of the datasets, “Forest” was inten-
tionally chosen as a challenge to PCA, owing to the strong linear independence of its attributes. For the other 
main dataset, “Large Census”, a widely popular choice in the SDC literature, we discovered high quasi-identifier 
redundancy, leading to substantial dimensionality reduction with negligible impact on distortion. 

The potential applicability of this work encompasses information systems designed for the collection, analysis or 
dissemination of large amounts of anonymized data with a significant number of numerical quasi-identifiers, typically 
demographic attributes. The ulterior purpose is permitting the swift release of large amounts of data between organi-
zations, departments, or to the public, for statistical study, in contexts including, but not limited to, socioeconomics, 
healthcare, targeted advertising, personalized content recommendation, social networks, and politics. A conceptually 
summarized list of assumptions and applicability of this work is provided in Fig. . 

 HIGHLIGHTS 
• The primary goal of this work is to reduce the running time of k-anonymous microaggregation algo-

rithms operating on datasets with a large quantity of numerical demographic attributes, acting as quasi-
identifiers. Principal component analysis (PCA), an algebraic-statistical procedure that constructs an or-
thogonal projection onto a lower-dimensional subspace, permits the effective reduction of the number 
of attributes of the original dataset. The optimality principles of multivariate PCA strive to preserve 
Euclidean distances between the projected data points. 

• The compressed data is fed to the microaggregation algorithm, but the k-anonymous microcells or groups obtained 
are directly applied to the original data. The distance-preservation properties of multivariate PCA help construct a 
micropartition of the set of respondents similar to that obtained when the original data is microaggregated in the 
conventional fashion, but in fewer dimensions. 

• This means that we are able to achieve significant time gains (≈ 14–31%) with very little impact on information utility 
(<2%, with respect to the total variance) with respect to the traditional procedure on the original data. 

• Additional variants of the above method are devised and analyzed with extensive experimentation on standardized 
datasets, in terms of running time and information loss, pushing the already substantial speed-up even further (≈ 48–
64%), with mild distortion impact (<3%, with respect to the total variance). 

Fig. 4. Highlights of our contribution.

• Although our work is illustrated with the special case of the widely used algorithm known as maximum distance
to average vector (MDAV), we must hasten to point out that the computational improvements proposed in our
work are compatible with any other multivariate microaggregation algorithm. The focus of this work is not on the
particular k-anonymous microalgorithm algorithm employed, as we operate merely under two mild assumptions.
First, that the running time significantly increases with the number of numerical quasi-identifiers in the microdata
set, and secondly, although this is only assumed in our second method, that running times are superadditive with
the number of records. We would like to remark that in the case of MDAV, running time is approximately an
affine function of the amount of numerical quasi-identifiers, that is, the dimension of our dataset, but any form of
increasing monotonicity would be sufficient for our methods to prove valuable. In terms of the number of records,
MDAV is known to have approximately quadratic complexity, and therefore, superadditive.

• Further, these improvements do not require any modification of the internal code of said microaggregation algo-
rithm, as they simply resort to modifying the representation of the data fed to it. In this manner, most conceivable
computational improvements to the microaggregation process should be compatible with the dimensionality-
reduction techniques put forth in this manuscript, finally resulting in a synergically multiplicative speed-up.

• We verify the expected performance of the two methods devised, by carrying out extensive experimentation on
standardized datasets, illustrated with the popular algorithm MDAV. One of the datasets, “Forest” was inten-
tionally chosen as a challenge to PCA, owing to the strong linear independence of its attributes. For the other
main dataset, “Large Census”, a widely popular choice in the SDC literature, we discovered high quasi-identifier
redundancy, leading to substantial dimensionality reduction with negligible impact on distortion.

The potential applicability of this work encompasses information systems designed for the collection, analysis or
dissemination of large amounts of anonymized data with a significant number of numerical quasi-identifiers, typically
demographic attributes. The ulterior purpose is permitting the swift release of large amounts of data between organi-
zations, departments, or to the public, for statistical study, in contexts including, but not limited to, socioeconomics,
healthcare, targeted advertising, personalized content recommendation, social networks, and politics. A conceptually
summarized list of assumptions and applicability of this work is provided in Fig. 5.

It is important to stress that our method widely applies to any anonymization method with time or memory
complexity increasing with the number of numerical attributes. The choice of k-anonymous microaggregation is chiefly
motivated for its simplicity, as we keep our focus on efficiency rather than on the specific privacy criteria. Certainly,
k-anonymity as a privacy criterion is not without flaws, as we explain in our review of the state of the art, in §II. On
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Fig. . Conceptually summarized list of assumptions and applicability of this work. 

It is important to stress that our method widely applies to any anonymization method with time or memory com-
plexity increasing with the number of numerical attributes. The choice of 𝑘𝑘-anonymous microaggregation is chiefly 
motivated for its simplicity, as we keep our focus on efficiency rather than on the specific privacy criteria. Certainly, 𝑘𝑘-
anonymity as a privacy criterion is not without flaws, as we explain in our review of the state of the art, in §II. On the 
flip side, stronger privacy guarantees have a price in information loss. For practical implementations beyond the scope 
of the research conducted here, depending on the privacy and the utility requirements of the application at hand, and 
whether data is to be released or accessible via online querying, one anonymization approach may be preferred over 
another. Specifically, high-utility approaches such as 𝑘𝑘-anonymous microaggregation may be preferred when data accu-
racy is critical, for offline data release. But they may be discarded in favor of alternatives with stricter privacy guaran-
tees, such as 𝑙𝑙 -diversity, 𝑡𝑡 -closeness for data release, or differential privacy for online querying, at the expense of 
significant utility loss. This point, marginal to the intended focus of our contribution, is nevertheless discussed further 
in §II. 

The paper is structured as follows. §II gives an overview of the state of the art on 𝑘𝑘-anonymous microaggregation. 
§III outlines the theoretical foundation of the application of principal component analysis to 𝑘𝑘-anonymous microaggre-
gation. The algorithms developed are presented in §IV, while §V reports our experimental results. Finally, conclusions 
are drawn in §VI. 

II. State of the Art on 𝑘𝑘-Anonymous Microaggregation 
Next, we proceed to give a brief review of the state of the art on 𝑘𝑘-anonymous microaggregation more pertinent to this 
work, focusing on the methods and algorithms used to perform 𝑘𝑘-anonymous microaggregation while mitigating data 
utility loss. In addition, a critical view of 𝑘𝑘-anonymity and of its variants is provided. Later, in §III, we shall present a 
review of the theoretical foundations of multivariate numerical 𝑘𝑘-anonymous microaggregation, followed by the specifics 
of the microaggregation algorithm employed. 

A. Methods and Algorithms for 𝑘𝑘-Anonymous Microaggregation 
A number of algorithms for microaggregation have been developed, with the goal of minimizing the perturbation of the 
key attributes with accordance to a variety of distortion measures, while meeting a given 𝑘𝑘-anonymity constraint. 

As multivariate microaggregation is known to be NP-hard [], several heuristic methods have been proposed, which 
can be categorized into fixed-size and variable-size methods, according to whether all aggregated groups but one have 
exactly 𝑘𝑘 elements. The maximum distance (MD) algorithm [] and its less computationally demanding variation, the 
maximum distance to average vector (MDAV) algorithm [, , , ], are fixed-size algorithms that perform particu-
larly well in terms of the distortion they introduce, for many data distributions. Popular variable-size algorithms include 
the 𝜇𝜇-Approx [], the minimum spanning tree (MST) [], the variable MDAV (VMDAV) [] and the two fixed 
reference points (TFRP) [] algorithms. Efforts to circumvent the complexity of multivariate microaggregation exploit 
projections onto one dimension, but are reported to yield a much higher disclosure risk []. 

Research on microaggregation algorithms has continued recently. In particular, an approach recommends creating 
clusters of 𝑘𝑘 records according to their densities []. Still in the case of perturbative algorithms, [] contemplates the 
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• Despite the use of MDAV, we must hasten to 
point out that the computational improve-
ments proposed in our work are compatible 
with any number of multivariate k-anony-
mous microaggregation algorithms, operat-
ing on datasets with a significant quantity of 
numerical quasi-identifiers (demographic at-
tributes).  

• More specifically, these improvements do not 
require any modification of the internal code 
of said algorithm, as they simply resort to 
modifying the representation of the data fed 
to it. 

• In this manner, most conceivable computa-
tional improvements to the microaggregation 
process should be compatible with the di-
mensionality-reduction techniques put forth 
in this manuscript, finally resulting in a syner-
gically multiplicative speed-up. 

• The potential applicability of this work en-
compasses information systems de-signed for 
the collection, analysis or dissemination of 
large amounts of anonymized data with a sig-
nificant number of numerical quasi-identifi-
ers, typically demographic attributes. 

• The ulterior purpose is permitting the swift 
release of large amounts of data between or-
ganizations, departments, or to the public, for 
statistical study, in contexts including, but not 
limited to, socioeconomics, healthcare, tar-
geted advertising, personalized content rec-
ommendation, social networks, and political 
science. 

Fig. 5. Conceptually summarized list of assumptions and applicability of this work.

the flip side, stronger privacy guarantees have a price in information loss. For practical implementations beyond the
scope of the research conducted here, depending on the privacy and the utility requirements of the application at hand,
and whether data is to be released or accessible via online querying, one anonymization approach may be preferred
over another. Specifically, high-utility approaches such as k-anonymous microaggregation may be preferred when data
accuracy is critical, for offline data release. But they may be discarded in favor of alternatives with stricter privacy
guarantees, such as l-diversity, t-closeness for data release, or differential privacy for online querying, at the expense of
significant utility loss. This point, marginal to the intended focus of our contribution, is nevertheless discussed further
in §II.

The paper is structured as follows. §II gives an overview of the state of the art on k-anonymous microaggregation. §III
outlines the theoretical foundation of the application of principal component analysis to k-anonymous microaggregation.
The algorithms developed are presented in §IV, while §V reports our experimental results. Finally, conclusions are drawn
in §VI.

II. State of the Art on k-Anonymous Microaggregation
Next, we proceed to give a brief review of the state of the art on k-anonymous microaggregation more pertinent to this
work, focusing on the methods and algorithms used to perform k-anonymous microaggregation while mitigating data
utility loss. In addition, a critical view of k-anonymity and of its variants is provided. Later, in §III, we shall present a
review of the theoretical foundations of multivariate numerical k-anonymous microaggregation, followed by the specifics
of the microaggregation algorithm employed.

A. Methods and Algorithms for k-Anonymous Microaggregation
A number of algorithms for microaggregation have been developed, with the goal of minimizing the perturbation of the
key attributes with accordance to a variety of distortion measures, while meeting a given k-anonymity constraint.

As multivariate microaggregation is known to be NP-hard [27], several heuristic methods have been proposed, which
can be categorized into fixed-size and variable-size methods, according to whether all aggregated groups but one have
exactly k elements. The maximum distance (MD) algorithm [9] and its less computationally demanding variation, the
maximum distance to average vector (MDAV) algorithm [8, 11, 13, 43], are fixed-size algorithms that perform particularly
well in terms of the distortion they introduce, for many data distributions. Popular variable-size algorithms include the
µ-Approx [10], the minimum spanning tree (MST) [16], the variable MDAV (VMDAV) [35] and the two fixed reference
points (TFRP) [4] algorithms. Efforts to circumvent the complexity of multivariate microaggregation exploit projections
onto one dimension, but are reported to yield a much higher disclosure risk [26].

Research on microaggregation algorithms has continued recently. In particular, an approach recommends creating
clusters of k records according to their densities [18]. Still in the case of perturbative algorithms, [21] contemplates the
partition of the original dataset into several projections such that each projection satisfies the k-anonymity requirement,
with the help of genetic algorithms. A well-known alternative to perturbative algorithms is the generation of synthetic
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data that preserves some pre-established statistics of the original dataset. The combination of perturbed and synthetic
data is exactly the approach followed by [7], which proposes a method for the generation of hybrid data through
microaggregation.

More recently, an analysis of theoretical optimality in k-anonymous microaggregation [29] extends the necessary (not
sufficient) optimality conditions that gave rise to the Lloyd-Max algorithm [19, 23], a celebrated quantization method
for lossy data compression, also known as the k-means method in the areas of statistics and computer science. The
properties of theoretical optimality and the excellent behavior of the Lloyd-Max algorithm in practice motivated the
conception of the probability-constrained Lloyd (PCL) algorithm [29–31], which additionally incorporates a variation of
the Levenberg-Marquardt algorithm [25], in order to adjust cell sizes. PCL is capable of outperforming even the popular
MDAV in terms of distortion, typically by a reduction in MSE of roughly 10–30%, under the same exact k-anonymity
constraint, for a wide variety of synthetic and standardized datasets [31]. Unfortunately, the distortion improvement
offered by PCL comes at the expense of increased mathematical sophistication, which translates into a significantly
costlier implementation and a substantially longer running time.

Due to its excellent performance in numerical microaggregation within reasonable computational demands, the most
widely used fixed-size microaggregation algorithm for numerical data is the aforementioned MDAV, employed in this
work to illustrate our novel methods. For reproducibility, we give the precise specification of MDAV used here in §III-B,
formalized as Algorithm A, which is a functionally equivalent simplification of Algorithm 5.1 in [11], referred to as
“MDAV-generic”. We also comment later in that section on the computational complexity of the algorithm chosen, in
terms of both the number of attributes and the number of records.

Certainly, other flavors of microaggregation problem exist, with their corresponding algorithms. In that regard, we
would like to mention two intriguing extensions on the traditional k-anonymous microaggregation setup. First, the
k-anonymity criterion as a measure of privacy can be given a probabilistic twist in order to encompass the more general
case of uncertain respondent participation [33]. Secondly, the usual mean squared error as a measure of utility can be
extended to include a Lagrangian term accounting for the degradation of statistical dependence between quasi-identifiers
and confidential attributes [32].

B. Computational improvements for k-Anonymous Microaggregation
Two studies concerning computational improvements for k-Anonymous microaggregation have been identified. Firstly,
in [24], authors improved the efficiency of MDAV by developing algebraic modifications that enables the use of the basic
linear algebraic subprograms (BLAS), for its efficient parallel computation on CPU, where no additional distortion is
incurred at all. Secondly, in [34], authors tackle the need of running k-Anonymous microaggregation efficiently with soft
distortion loss, dealing with the fact that the data may arrive over an extended period of time. Additionally, in [34],
authors have presented a detailed mathematical formulation which gives them the ability to compute the optimal time
for the fastest optimization as well as for minimum distortion under a given deadline. As we can observe, [34] attacks
different kind of problem as the one treated in this paper, concerning computational improvements for k-Anonymous
microaggregation. However, regarding [24], we can stress on the fact that is totally compatible with the work done
in this manuscript (i.e., introducing the dimensionality-reduction methods in the microaggregation field by means of
PCA), and even more, they could be joined together to achieve even higher remarkable reductions in running time and
memory usage than the one obtained separately, with negligible impact in information utility.

C. Previous Uses of Principal Component Analysis in the Context of Statistical Disclosure Control
We have identified two studies bearing some relation to our approach, with essential differences which we proceed to
describe next. In the first study [22, 28], a single principal component was used for scalar microaggregation, resulting
in faster execution, but at the cost of severe loss in data utility. In the cited work, the data is simply projected onto a
single axis, the principal component with dominant eigenvalue, thereby representing the best univariate approximation
to the data. We shall see in our own investigation that the multivariate approach involving several components rather
than one is far superior in performance, turning an impractical application of PCA into an excellent method for SDC.
Readers familiar with principal component analysis may quickly refer to Fig. 9 in §III, which represents the normalized
energy (information) for the Large Census dataset, stored across dimensions. We shall see that we need to take into
account 6 to 8 dimensions out of the original 13 dimensions in order to keep 92 to 98% of the total normalized energy.
In contrast, the rather simplistic approach in the cited work is limited to the first component, barely containing 56%
of the total energy.

In the second loosely related work [3], the author proposes a method for limiting disclosure in continuous microdata
based on principal components analysis. Strictly speaking, the goal and investigation of the cited work differ dramatically
from the approach presented here, but we opted to mention it in order to prevent confusion:

• The author’s focus is not on computational efficiency but on limiting the risk of statistical disclosure.
• Rank swapping is used in lieu of microaggregation, a completely different strategy.
• The author’s strategy uses one or a few principal components at a time.

6/28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

D. Rebollo-Monedero et al. / Submitted to Elsevier J. (Jan. 2019)

• Finally, authors do not take into account the normalized energy per dimension, an approach that we did and was
useful to choose a subset of principal components while preserving a high percentage of the total energy.

D. A Critical View of k-Anonymity and of its Variants

Despite the popularity of k-anonymity as a privacy measurement criterion in the SDC community, this criterion is based
entirely on processing the quasi-identifiers and it is important to stress that it does not always prevent the disclosure
of confidential attributes.

In some cases, confidential attributes may be repeated or too similar. Revisiting the example presented in Fig. 3,
an attacker who may know the educational stage, age, and ZIP code of one of the three individuals belonging to the
second cluster knows that his or her family income is in the range from $54,100 to $57,400, fairly similar values. This
inference is known as homogeneity or similarity attack. The attack is often formulated in qualitative terms as a privacy
deficiency of k-anonymity.

Observe however that in practice, the severity of a homogeneity attack depends on the prevalence of the sensitive
values of the confidential attributes, and the microcell size k. For example, the prevalence of type-2 diabetes in the
general population in the U.S. is close to 9%, but for senior citizens 65 years and older that figure may rise to more
than 25%. For k = 10, the risk of homogeneity attack in a microcell corresponding to aged individuals, with p = 1/4,
can be coarsely estimated as pk = 1/1, 048, 576, less than once in a million. For microcells representative of the average
population, with p=9%, the risk is even lower. And even for high prevalence nearing p = 1/2 in symmetric studies,
pk = 1/1024.

In order to mitigate this kind of attack, certain countermeasures, such as p-sensitive k-anonymity [39, 44], have been
proposed This stronger requirement advocates for at least p different values for each confidential attribute within each
microcell. Although privacy is improved, it comes at the price of data utility. A slight generalization of this concept was
introduced in [14, 20], and termed l-diversity. It requires at least l “well-represented” confidential attributes. Depending
on the definition of well represented, l-diversity can be reduced to p-sensitive or be more restrictive, again at the expense
of higher information loss.

Other attacks against k-anonymity, of a more probabilistic nature, known as skewness attacks, exploit the discrepancy
between the distribution of confidential attributes of the entire table, or the population, and the distribution within
a given k-anonymous cell. In the hypothetical example in Fig. 3, suppose that it is widely known in the country of
reference that 33% of the entire population has a family outcome above $33,000. A privacy attacker looks for a female
individual aged 32 and resident in the area with ZIP code 94024. The attacker notes that there is a 66% probability
that this individual has a family income above $33,000, which is well above the population’s average.

One of the best-known palliative measures against this probabilistic risk is the t-closeness criterion [17], which requires
that the distribution of a confidential attribute inside a given cluster be similar to the distribution of the overall dataset.
More recently, differential privacy [5, 12] emerged as a proposal with strong privacy guarantees, but at considerable cost
in data utility and conceived for online querying rather than microdata release. Although this work deals exclusively
with microdata release, for offline use, the differential privacy may be implemented as a form of t-closeness, as described
in [37].

Strongly restrictive privacy criteria such as t-closeness, or differential privacy under the representation in [37], require
that the within-cell probability be similar to that of the table or the general population. However, unveiling the absence
or low prevalence of a sensitive condition below the population’s average may pose no privacy risk. In the above diabetes
example, a cell comprising only healthy individuals may be acceptable from a privacy perspective. In general, privacy
criteria are the object of ongoing investigation, and while k-anonymity may produce excellent utility with limited privcy
guarantees, t-closeness and differential privacy may be stricter than required in some applications, deteriorating utility
unnecessarily. Another critique on the overprotection of differential privacy can be found in [38].

It is essential to bear in mind the general principle that stronger privacy criteria come at the expense of a higher price
on data utility. Hence, these restrictive flavors of k-anonymity must be employed with caution in applications where
data utility is critical, as in certain medical studies directed toward the diagnosis and treatment of serious ailments, or
might simply be rendered inapplicable.

To complete our basic description of privacy attacks, we would like to remark that an attacker can gain further
insight if he is equipped with certain side information. In the synthetic example of Fig. 3, imagine that the attacker
knows that the individual is an African-American male aged 34 who lives in the area with ZIP code 94305. Suppose
that external demographic studies pointed out that African-Americans of this age were having a family income less
than $30,000. The attacker could discard 2 out of 3 records and guess the individual’s consumer profile. This form
of statistical inference is known as background knowledge attack. These kind of attacks are studied in [40], where the
authors propose strategies based on graph theory and inference paths.

Although the methodology proposed in this work is illustrated with k-anonymous microaggregation, it is readily
extensible to most of the variants aforementioned.
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III. Theoretical Foundation of the Application
of Principal Component Analysis to k-Anonymous Microaggregation

This section introduces the basic notation employed and the fundamentals of multivariate numerical k-anonymous mi-
croaggregation. Subsequently, it describes our main assumptions and the specifics on the k-anonymous microaggregation
algorithm MDAV, chosen to illustrate this work. Next, it reviews the basic principles of PCA, explaining its application
to the problem at hand. The following section, §IV, proceeds to present the two methods for efficient anonymization of
large-scale datasets put forth in this work.

A. Basic Notation and Fundamentals of Multivariate Numerical k-Anonymous Microaggregation
The scope of our study encompasses the important case when the n records of the dataset contain tuples of m numerical
quasi-identifiers, representable as n points (xj)n

j=1 in the m-dimensional Euclidean space Rm. We shall employ two
convenient representations of the dataset: first, as a matrix, and secondly, as a random vector (r.v.). Under the former
representation, we take the data matrix X ∈ Rm×n as the collection of n column vectors (x1, . . . , xn), each with m

real-valued entries. Under the latter statistical representation, X is an r.v. taking on values on the set {x1, . . . , xn} of
m-dimensional points uniformly at random. The slight albeit intended abuse of notation by reusing the same symbol
X to denote both a matrix and an r.v. should pose no ambiguity when considered in its context.

Either representation shall be used interchangeably according to its convenience in the context at hand. For example,
we may write the arithmetic average 1

n

∑n
j=1 xj as a matrix product X 1

n 1, where 1
n 1 represents the uniform prob-

ability (column) vector, or more compactly as a probabilistic expectation EX. Under the assumption of zero-mean
normalization, the covariance matrix ΣX ∈ Rm×m can be written indistinctly as

ΣX = 1
n

n∑
j=1

xj x
T
j = 1

n
XXT = E XXT,

where the matrix form 1
nXX

T follows immediately from the outer product interpretation of matrix multiplication.
We mentioned in the introductory review of k-anonymous microaggregation that practical algorithms are designed

to perturb quasi-identifiers in a way such that the statistical quality of the published data is guaranteed. Technically
speaking, microaggregation is similar to a quantization problem: the algorithms find a partition of the set of quasi-
identifying tuples in cells of k elements, and try at the same time to reduce the distortion incurred when replacing
each element in a cell by its representative within this cell. Fig. 6 conceptualizes k-anonymous microaggregation as
minimum-distortion vector quantization, with the added restriction that cells be at least of size k. The function c(j)
assigns the quasi-identifier tuple xj to microcell c, which will contain at least k − 1 other points, and whose value will
be replaced by the common reconstruction tuple or centroid x̂(c).
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Either representation shall be used interchangeably according to its convenience in the context at hand. For example, 
we may write the arithmetic average 1𝑛𝑛∑ 𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1  as a matrix product 𝑋𝑋 1

𝑛𝑛 1, where 1𝑛𝑛 1 represents the uniform probability 
(column) vector, or more compactly as a probabilistic expectation E 𝑋𝑋. Under the assumption of zero-mean normaliza-
tion, the covariance matrix ΣX ∈ ℝ𝑚𝑚×𝑚𝑚 can be written indistinctly as 

Σ𝑋𝑋 =
1
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=

1
𝑛𝑛
𝑋𝑋𝑋𝑋𝑇𝑇 = E 𝑋𝑋𝑋𝑋𝑇𝑇 , 

where the matrix form 1𝑛𝑛𝑋𝑋𝑋𝑋
𝑇𝑇  follows immediately from the outer product interpretation of matrix multiplication. 

We mentioned in the introductory review of 𝑘𝑘-anonymous microaggregation that practical algorithms are designed 
to perturb quasi-identifiers in a way such that the statistical quality of the published data is guaranteed. Technically 
speaking, microaggregation is similar to a quantization problem: the algorithms find a partition of the set of quasi-
identifying tuples in cells of 𝑘𝑘 elements, and try at the same time to reduce the distortion incurred when replacing each 
element in a cell by its representative within this cell. Fig.  conceptualizes 𝑘𝑘-anonymous microaggregation as minimum-
distortion vector quantization, with the added restriction that cells be at least of size 𝑘𝑘. The function 𝑐𝑐(𝑗𝑗) assigns the 
quasi-identifier tuple 𝑥𝑥𝑗𝑗 to microcell 𝑐𝑐, which will contain at least 𝑘𝑘 − 1 other points, and whose value will be replaced 
by the common reconstruction tuple or centroid 𝑥𝑥(̂𝑐𝑐). 

Fig. . Traditional microaggregation interpreted as a quantization problem on the record indices 𝑗𝑗, represented by a microcell assign-
ment function 𝑐𝑐(𝑗𝑗), together with a centroid assignment function 𝑥𝑥(̂𝑐𝑐) that reconstructs the perturbed version 𝑥𝑥𝑗̂𝑗 of the original quasi-
identifier 𝑥𝑥𝑗𝑗. The figure also shows an example of microaggregation of -dimensional quasi-identifiers with anonymity parameter 𝑘𝑘 =
5. Each microcell of five points is assigned a representative centroid. In this example, the two-dimensional quasi-identifiers could
correspond to a pair of demographic attributes such as age and number of school years. The centroids are the value of the published,
perturbed quasi-identifiers within each cell.

Recall the common practice in SDC of normalizing each quasi-identifier for zero mean and unit variance. Zero-mean 
normalization is merely a convenience that facilitates the computation of variances. Unit-variance columnwise normal-
ization is essential for perturbation errors inherent in the microaggregation process to remain invariant with respect to 
arbitrary choices of units, say pounds or kilograms for weights, and inches or meters for heights. Normalization also 
confers equal importance to all quasi-identifiers. Of course, reweighting is possible in applications where certain quasi-
identifiers are deemed of greater importance than others in the quantification of data utility. This normalization also 
means that the usual measure of distortion, precisely, the ratio between the sum of squared errors 

SSE =def � ‖𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗‖2
𝑚𝑚

𝑗𝑗=1
 

and the sum of squares total 

SST =def � ‖𝑥𝑥𝑗𝑗‖2
𝑛𝑛

𝑗𝑗=1
= 𝑚𝑚𝑚𝑚, 

matches the usual definition of distortion in the field of vector quantization, as mean squared error (MSE) normalized 
by dimension: 

𝒟𝒟 =def SSE
SST

=
1
𝑚𝑚𝑚𝑚

� ‖𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗‖2
𝑛𝑛

𝑗𝑗=1
=

1
𝑚𝑚

E ‖𝑋𝑋 − 𝑋̂𝑋‖2. 

A discussion of the optimality conditions of 𝑘𝑘-anonymous microaggregation can be found in []. Let 𝑛𝑛(𝑐𝑐) ⩾ 𝑘𝑘 
denote the size of microcell 𝑐𝑐. While it is well known that the centroid or conditional expectation 

𝑥𝑥(̂𝑐𝑐) =
1
𝑛𝑛(𝑐𝑐)

� 𝑥𝑥𝑗𝑗
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

=  E [𝑋𝑋|𝑐𝑐] 

minimizes the MSE within each microcell, and thus it constitutes the optimal reconstruction for a given microcell 
assignment function 𝑐𝑐(𝑗𝑗), the problem of constructing such microcell assignment, under the restriction that it contain 
at least 𝑘𝑘 points, may prove difficult. In practice, the 𝑘𝑘-anonymous microaggregation algorithm MDAV, introduced in 
our review of the state of the art in §II, is an excellent heuristic in terms of MSE, with manageable computational 
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Fig. 6. Traditional microaggregation interpreted as a quantization problem on the record indices j, represented by a microcell
assignment function c(j), together with a centroid assignment function x̂(c) that reconstructs the perturbed version x̂j of the
original quasi-identifier xj . The figure also shows an example of microaggregation of 2-dimensional quasi-identifiers with anonymity
parameter k = 5. Each microcell of five points is assigned a representative centroid. In this example, the two-dimensional quasi-
identifiers could correspond to a pair of demographic attributes such as age and number of school years. The centroids are the
value of the published, perturbed quasi-identifiers within each cell.

Recall the common practice in SDC of normalizing each quasi-identifier for zero mean and unit variance. Zero-
mean normalization is merely a convenience that facilitates the computation of variances. Unit-variance columnwise
normalization is essential for perturbation errors inherent in the microaggregation process to remain invariant with
respect to arbitrary choices of units, say pounds or kilograms for weights, and inches or meters for heights. Normalization
also confers equal importance to all quasi-identifiers. Of course, reweighting is possible in applications where certain
quasi-identifiers are deemed of greater importance than others in the quantification of data utility. This normalization
also means that the usual measure of distortion, precisely, the ratio between the sum of squared errors

SSE def=
m∑

j=1
‖xj − x̂j‖2
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and the sum of squares total

SST def=
n∑

j=1
‖xj‖2 = mn,

matches the usual definition of distortion in the field of vector quantization, as mean squared error (MSE) normalized
by dimension:

D def= SSE
SST = 1

mn

n∑
j=1
‖xj − x̂j‖2 = 1

m
E ‖X − X̂‖2.

A discussion of the optimality conditions of k-anonymous microaggregation can be found in [29]. Let n(c) > k denote
the size of microcell c. While it is well known that the centroid or conditional expectation

x̂(c) = 1
n(c)

∑
j | c(j)=c

xj = E [X|c]

minimizes the MSE within each microcell, and thus it constitutes the optimal reconstruction for a given microcell
assignment function c(j), the problem of constructing such microcell assignment, under the restriction that it contain
at least k points, may prove difficult. In practice, the k-anonymous microaggregation algorithm MDAV, introduced in our
review of the state of the art in §II, is an excellent heuristic in terms of MSE, with manageable computational complexity
in small datasets. In fact, our choice of MDAV is motivated by its performance with respect to the sophisticatedly
optimized method known as probability-constrained Lloyd (PCL) algorithm [29, 31], being MDAV slightly above in
terms of distortion, albeit with far less computation.

B. Main Assumptions and Specifics on the k-Anonymous Microaggregation Algorithm Employed
As we mentioned in §I-B, although this work is illustrated with the specific k-anonymous microaggregation algorithm
MDAV, the methods devised are readily applicable to other anonymization algorithms under two mild assumptions on
their time complexity. First, that their running time monotonically increases with the number m of quasi-identifiers,
and secondly, albeit only for the second method, that their running time is superadditive in the number of records n.

We also recalled that superadditive complexity in the number of records means that the running time on a+ b records
satisfies

t(a+ b) > t(a) + t(b),
making it conducive to the celebrated algorithmic approach of “divide and conquer”. We mentioned that superadditivity
is a typical characteristic of high-utility k-anonymous microaggregation algorithms, as they carefully analyze Euclidean
distances between pairs of data points. We would like to illustrate the elegant potential of this property, somewhat
counterintuitive at first, with a very simple example. Suppose that an anonymization algorithm requires an amount of
time t(n) = n2 in order to process n records (in time units relative to t(1)). Suppose further that we split the dataset
into two portions of n/2 records each, process each part separately, and reassemble the result. Provided that the cost of
splitting and recombination were negligible, the total time required by this strategy would be 2(n/2)2 = n2/2, in words,
half the time required to process the entire recordset in a single pass. As well shall see, the second method described
in this paper exploits superadditivity in a single division of the dataset, without further recursion, in addition to PCA,
in a synergic manner. Future work may certainly consider further, progressive recursion(a).

For reproducibility, we give our specification of MDAV, formalized as Algorithm A, which is a functionally equivalent
simplification of Algorithm 5.1 in [11], referred to as “MDAV-generic”. Simple inspection of its pseudocode leads to the
conclusion that its running-time complexity in terms of the number m of quasi-identifiers is approximately affine, that
is, the running time t of the algorithm is of the form t(m) = m0 +m (in appropriate time units), for some constant m0.
In terms now of the number n of records, it is also straightforward to show that the running time t of the algorithm
grows asymptotically as t(n) = n2/k (in time units relative to the case n2/k = 1) for n � k, that is, it has quadratic
complexity and therefore, superadditive running time.

C. Basic Principles of PCA and Application to k-Anonymous Microaggregation
We offer a brief review the basic principles behind PCA [15] and describe the main ideas in its application to k-
anonymous microaggregation. Consider a set of n points xj in the m-dimensional Euclidean space, representing the
tuples of numerical quasi-identifiers of the microdata set with n records. The goal of PCA is to find a linear subspace
of dimension m̃ < m and a set of points x̂j within said subspace that approximate the original data xj .

Consider any orthonormal basis of the subspace, rearranged as a sequence of column vectors in the form of a matrix
Ũ ∈ Rm×m̃. Since Ũ is columnwise orthonormal, ŨTŨ = I. Each approximation x̂j can be written as a unique linear

(a)Even though further recursion does not immediately apply to our method, it is still interesting to observe its effect on the
idealized algorithm used in this example. Progressively recursive application of the “divide and conquer” strategy for such an
idealized algorithm, satisfying t(n) = 2 t(n/2) + O(1), according to the master theorem [6], would yield linear complexity t(n) =
Θ(n). If the cost of splitting and recombination were not asymptotically negligible, but linear instead, that is, t(n) = 2 t(n/2)+Θ(n),
then a recursive implementation would have complexity t(n) = Θ(n logn) = o (n1+ε) for any ε > 0.
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Algorithm A: MDAV “generic”, functionally equivalent to Algorithm 5.1 in [11].

function MDAV
input k, (xj)n

j=1 .Anonymity parameter k, quasi-ID portion x1, . . . , xn ∈ Rm of a dataset
of n records

output q .Assignment function from records to microcells j 7→ q(j)
1: while 2k points or more in the dataset remain to be assigned to microcells do
2: find the centroid (average) C of those remaining points
3: find the furthest point P from the centroid C, and the furthest point Q from P

4: select and group the k− 1 nearest points to P , along with P itself, into a microcell, and do the same with
the k − 1 nearest points to Q

5: remove the two microcells just formed from the dataset
6: if there are k to 2k − 1 points left then
7: form a microcell with those and finish
8: else .At most k − 1 points left, not enough for a new microcell
9: adjoin any remaining points to the last microcell .Typically nearest microcell

combination of this base x̂j = Ũ x̃j , thus determining what we shall call the compressed vector x̃j ∈ Rm̃, on account of
its reduced number of components. Each compressed point is not a selection of dimensions, but a linear combination
of dimensions. This means that a principal component may represent a combination of several quasi-identifiers, for
example, height and weight, with multiplicative weights given by the corresponding basis, real valued and possibly
negative.

The precise optimization objective of PCA is the MSE

1
n

n∑
j=1
‖xj − x̂j‖2 = E ‖X − X̂‖2.

The minimization of this objective implies that the approximations x̂j must be the orthogonal projections of xj onto the
subspace determined by the basis Ũ . In this manner, the problem of minimizing the MSE is now reduced to finding the
appropriate columnwise orthonormal matrix Ũ , for a desired reduced dimension m̃. It has been long established that the
optimal choice for Ũ is the set of m̃ dominant eigenvectors of the covariance matrix ΣX , associated with the dominant
eigenvalues λ1 > · · · > λm̃ in its spectral decomposition ΣX = UΛUT, with U orthonormal and Λ = diag (λi)m

i=1.
Furthermore, the principal components thus obtained are uncorrelated.

The cost of computing the covariance matrix scales linearly with the number of records n. The cost of the solution to
the PCA problem given this matrix only depends on the number of dimensionsm, typically much smaller than n for most
microdata sets, solution which is swiftly computed by extremely efficient algebraic algorithms. Since microaggregation
is usually superlinear in the number of records n, the overall cost of PCA, including the computation of ΣX , is utterly
negligible. For a perfectly fair comparison with traditional microaggregation, the experiments in this manuscript most
certainly take into consideration this additional time, however insignificant.

Recall that an orthogonal projection for a given basis orthonormal can be computed in two steps. First, we obtain the
compressed components x̃j = ŨTxj , and then we reconstruct the projections via x̂j = Ũ x̃j = Ũ ŨTxj , where P = Ũ ŨT

is the associated projection matrix. Often, and this will also be our case, it suffices to work with the compressed versions,
and the reconstruction is unnecessary. A compact way to write the compression formula in terms of the associated data
matrix X ∈ Rm×n and its compressed analogue X̃ ∈ Rm̃×n is X̃ = ŨTX.

Since PCA is an orthogonal projection, the projection error xj − x̂j is orthogonal to the projection x̂j , and the
Pythagorean identity

‖xj‖2 = ‖x̂j‖2 + ‖xj − x̂j‖2

holds. If the error is small, as it is customarily the case, the norm of the original vector is preserved, that is, ‖xj‖2 ≈
‖x̂j‖2. Since Ũ has orthonormal columns by construction and x̂j = Ũ x̃j , it follows immediately that

‖x̂‖2 = x̃T
j Ũ

TŨ x̃j = ‖x̃‖2.

More generally, orthonormal reconstructions preserve inner products and norms, a fact intuitively consistent with their
interpretation as combinations of rotations and reflections. This means that the distances between compressed samples
match distances between projected points, which in turn approximate the corresponding distances between original
vectors. As a consequence, any geometric computation can be carried out approximately in the compressed space, in
less dimensions. This is, in fact, the key to our proposal, as the k-anonymous microaggregation algorithm will work
with distances between compressed points, instead of distances between the original points. The computation of those
distances will require a reduced number of operations, based on m̃ < m.
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The representation of the microdata set as the data matrix X and the compression matrix Ũ ∈ Rm×m̃ are shown in
Fig. 7. The compressed version X̃ of the dataset as a matrix is represented in Fig. 8, with emphasis on the orthogonality
of the projections x̂j and their errors xj − x̂j .
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dimensions. This means that a principal component may represent a combination of several quasi-identifiers, for exam-
ple, height and weight, with multiplicative weights given by the corresponding basis, real valued and possibly negative. 

The precise optimization objective of PCA is the MSE 
1
𝑛𝑛
� ‖𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗‖2
𝑛𝑛

𝑗𝑗=1
= E ‖𝑋𝑋 − 𝑋̂𝑋‖2. 

The minimization of this objective implies that the approximations 𝑥𝑥𝑗̂𝑗 must be the orthogonal projections of 𝑥𝑥𝑗𝑗 onto 
the subspace determined by the basis 𝑈𝑈̃ . In this manner, the problem of minimizing the MSE is now reduced to finding 
the appropriate columnwise orthonormal matrix 𝑈𝑈̃ , for a desired reduced dimension 𝑚𝑚�. It has been long established 
that the optimal choice for 𝑈𝑈̃  is the set of 𝑚𝑚� dominant eigenvectors of the covariance matrix Σ𝑋𝑋, associated with the 
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diag (𝜆𝜆𝑖𝑖)𝑖𝑖=1𝑚𝑚 . Furthermore, the principal components thus obtained are uncorrelated. 

The cost of computing the covariance matrix scales linearly with the number of records 𝑛𝑛. The cost of the solution 
to the PCA problem given this matrix only depends on the number of dimensions 𝑚𝑚, typically much smaller than 𝑛𝑛 for 
most microdata sets, solution which is swiftly computed by extremely efficient algebraic algorithms. Since microaggre-
gation is usually superlinear in the number of records 𝑛𝑛, the overall cost of PCA, including the computation of Σ𝑋𝑋, is 
utterly negligible. For a perfectly fair comparison with traditional microaggregation, the experiments in this manuscript 
most certainly take into consideration this additional time, however insignificant. 

Recall that an orthogonal projection for a given basis orthonormal can be computed in two steps. First, we obtain 
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𝑈𝑈̃𝑈𝑈̃𝑇𝑇  is the associated projection matrix. Often, and this will also be our case, it suffices to work with the compressed 
versions, and the reconstruction is unnecessary. A compact way to write the compression formula in terms of the 
associated data matrix 𝑋𝑋 ∈ ℝ𝑚𝑚×𝑛𝑛 and its compressed analogue 𝑋̃𝑋 ∈ ℝ𝑚𝑚�×𝑛𝑛 is 𝑋̃𝑋 = 𝑈𝑈̃𝑇𝑇𝑋𝑋. 

Since PCA is an orthogonal projection, the projection error 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗 is orthogonal to the projection 𝑥𝑥𝑗̂𝑗, and the 
Pythagorean identity 

‖𝑥𝑥𝑗𝑗‖2 = ‖𝑥𝑥𝑗̂𝑗‖2 + ‖𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗‖2 

holds. If the error is small, as it is customarily the case, the norm of the original vector is preserved, that is, ‖𝑥𝑥𝑗𝑗‖2 ≈
‖𝑥𝑥𝑗̂𝑗‖2. Since 𝑈𝑈̃  has orthonormal columns by construction and 𝑥𝑥𝑗̂𝑗 = 𝑈𝑈̃𝑥𝑥𝑗̃𝑗, it follows immediately that 

‖𝑥𝑥‖̂2 = 𝑥𝑥𝑗̃𝑗
𝑇𝑇𝑈𝑈̃𝑇𝑇 𝑈𝑈̃𝑥𝑥𝑗̃𝑗 = ‖𝑥𝑥‖̃2. 

More generally, orthonormal reconstructions preserve inner products and norms, a fact intuitively consistent with their 
interpretation as combinations of rotations and reflections. This means that the distances between compressed samples 
match distances between projected points, which in turn approximate the corresponding distances between original 
vectors. As a consequence, any geometric computation can be carried out approximately in the compressed space, in 
less dimensions. This is, in fact, the key to our proposal, as the 𝑘𝑘-anonymous microaggregation algorithm will work 
with distances between compressed points, instead of distances between the original points. The computation of those 
distances will require a reduced number of operations, based on 𝑚𝑚� < 𝑚𝑚. 

The representation of the microdata set as the data matrix 𝑋𝑋 and the compression matrix 𝑈𝑈̃ ∈ ℝ𝑚𝑚×𝑚𝑚�  are shown in 
Fig. . The compressed version 𝑋̃𝑋 of the dataset as a matrix is represented in Fig. , with emphasis on the orthogonality 
of the projections 𝑥𝑥𝑗̂𝑗 and their errors 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗. 

Fig. . Dataset interpreted as a series of 𝑛𝑛 vectors 𝑥𝑥1,… ,𝑥𝑥𝑛𝑛 in the 𝑚𝑚-dimensional Euclidean space ℝ𝑚𝑚, then expressed as a matrix 
𝑋𝑋 ∈ ℝ𝑚𝑚×𝑛𝑛, where 𝑚𝑚 is the number of numerical quasi-identifiers, and 𝑛𝑛 the number of records. The compression matrix 𝑈𝑈̃ ∈ ℝ𝑚𝑚×𝑚𝑚�  
retrieves the compressed version 𝑋̃𝑋 of the dataset, also arranged as a matrix, but consisting of vectors of a lower dimension 𝑚𝑚� < 𝑚𝑚. 
Each of these compressed dimensions are linear combinations of the 𝑚𝑚 original quasi-identifiers, typically linear combinations of 
demographic attributes. 
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dimension m̃ < m. Each of these compressed dimensions are linear combinations of the m original quasi-identifiers, typically
linear combinations of demographic attributes.
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Fig. . Compressed version 𝑋̃𝑋 of the original dataset 𝑋𝑋, with data vectors in the lower-dimensional Euclidean space ℝ𝑚𝑚� , with 𝑚𝑚� <
𝑚𝑚. Since PCA is an orthogonal projection with projection matrix 𝑃𝑃 = 𝑈𝑈̃𝑈𝑈̃ 𝑇𝑇 , the projection error 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗 is orthogonal to the projec-
tion 𝑥𝑥𝑗̂𝑗, and the Pythagorean identity ‖𝑥𝑥𝑗𝑗‖2 = ‖𝑥𝑥𝑗̂𝑗‖2 + ‖𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗‖2 holds. If the error is small, as it is customarily the case, the norm of 
the original vector is preserved, that is, ‖𝑥𝑥𝑗𝑗‖2 ≈ ‖𝑥𝑥𝑗̂𝑗‖2. Since 𝑈𝑈̃  has orthonormal columns by construction and 𝑥𝑥̂ = 𝑈𝑈̃𝑥𝑥,̃ it follows 
immediately that ‖𝑥𝑥𝑗̂𝑗‖2 = ‖𝑥𝑥𝑗̃𝑗‖2. This means that the distances between compressed samples approximate the corresponding distances 
between the original vectors, and any geometric computation can be carried out approximately in the compressed space, in less 
dimensions. 

Regarding the choice of the number 𝑚𝑚� of principal components, one may equivalently impose a condition on the 
quality of the approximation instead, in the sense that additional components will yield a lower MSE in the PCA 
problem. More precisely, the MSE in the approximation by 𝑚𝑚� principal components is simply the sum of residual 
eigenvalues 

E ‖𝑋𝑋 − 𝑋̂𝑋‖2 = � 𝜆𝜆𝑖𝑖
𝑚𝑚

𝑖𝑖=𝑚𝑚�+1
, 

and the individual unit-variance normalization of each original dimension implies that the total energy of the dataset, 
which in general is the sum of all eigenvalues, becomes the number 𝑚𝑚 of original dimensions: 

E ‖𝑋𝑋‖2 = 𝑚𝑚 = tr Σ𝑋𝑋 = tr Λ = �𝜆𝜆𝑖𝑖
𝑚𝑚

𝑖𝑖=1
. 

Therefore, the relative error 𝜖𝜖2 in the PCA approximation is 

𝜖𝜖2 =def E ‖𝑋𝑋 − 𝑋̂𝑋‖2

E ‖𝑋𝑋‖2
= 1−
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E ‖𝑋𝑋‖2
=
∑ 𝜆𝜆𝑖𝑖
𝑚𝑚
𝑖𝑖=𝑚𝑚�+1
∑ 𝜆𝜆𝑖𝑖
𝑚𝑚
𝑖𝑖=1

= 1−
∑ 𝜆𝜆𝑖𝑖
𝑚𝑚�
𝑖𝑖=1

∑ 𝜆𝜆𝑖𝑖
𝑚𝑚
𝑖𝑖=1

= 1−
1
𝑚𝑚
�𝜆𝜆𝑖𝑖
𝑚𝑚�

𝑖𝑖=1
 ∈ [0,1]. 

Notwithstanding the theoretical appeal of PCA, it remains to demonstrate that practical microdata sets may offer 
a substantial reduction 𝑚𝑚� < 𝑚𝑚 in the number of quasi-identifiers, and at the same time, that the distances between 
compressed samples approximate the corresponding distances between the original vectors, which we may quantify 
through a small relative energy loss 𝜖𝜖2. In this manner, we will ensure that MDAV can be carried out on the compressed 
space and yield similar micropartitions as the conventional anonymization procedure on the original data. Intuitively, 
the use of this technique will have greater impact in datasets where most of the information is stored in just a few 
quasi-identifiers; in other words, whenever there exists significant redundancy (linear dependence) between demographic 
attributes. Although the goal of the experimental section §V is precisely the demonstration that such redundancy indeed 
exists and that our methods are able to exploit it efficiently, we would like to illustrate the point made here with an 
example of a standardized dataset. 

Specifically, Fig.  shows a histogram of normalized eigenvalues (𝜆𝜆𝑖𝑖)𝑖𝑖=1𝑚𝑚 /𝑚𝑚 in order of decreasing dominance, along 
with the normalized cumulative energy function 1𝑚𝑚∑ 𝜆𝜆𝑖𝑖

𝑗𝑗
𝑖𝑖=1  for the Large Census dataset. The horizontal axis shows the 

number 𝑚𝑚� of cumulative principal components, ranging from the use of a single principal component 𝑚𝑚� = 1 with sig-
nificant energy loss 𝜖𝜖2 = 1− 𝜆𝜆1, all the way to 𝑚𝑚� = 𝑚𝑚, for which all energy is preserved and thus 𝜖𝜖2 = 0, but no effective 
dimensionality reduction occurs. Observe that the extreme case 𝑚𝑚� = 1 corresponds to the preliminary study in [], 
where univariate PCA was hastily discarded as a practical approach due to its distortion overhead. However, quite 
remarkably, just  principal components out of the total of  dimensions suffice to capture 1− 𝜖𝜖2 ≈ % of the energy 
of the dataset. This means that multivariate PCA should achieve significant time reduction with a fraction of the 
dimensions and mild distortion overhead. 

0

𝑥𝑥𝑗𝑗 ∈ ℝ𝑚𝑚 

𝑥𝑥𝑗̂𝑗 = 𝑈𝑈̃𝑈𝑈̃𝑇𝑇 𝑥𝑥𝑗𝑗 

records 𝑗𝑗 = 1,… ,𝑛𝑛 

𝑥𝑥1̃ 𝑥𝑥𝑗̃𝑗 𝑥𝑥𝑛̃𝑛……

𝑖𝑖=
1,

…
,𝑚𝑚�

𝑋̃𝑋 = 𝑈𝑈̃𝑇𝑇𝑋𝑋 = 
compressed 

dataset

𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗 

𝑥𝑥𝑗̃𝑗 ∈ ℝ𝑚𝑚�  
𝑈𝑈̃ ∈ ℝ𝑚𝑚×𝑚𝑚�

orthonormal basis 
of the principal subspace 

of dimension 𝑚𝑚� 

orthogonal 
projection

dimensional 
compression

projection 
error

∈ ℝ𝑚𝑚�×𝑛𝑛  (𝑚𝑚� < 𝑚𝑚)

Fig. 8. Compressed version X̃ of the original dataset X, with data vectors in the lower-dimensional Euclidean space Rm̃, with
m̃ < m. Since PCA is an orthogonal projection with projection matrix P = ŨŨT, the projection error xj − x̂j is orthogonal to
the projection x̂j , and the Pythagorean identity ‖xj‖2 = ‖x̂j‖2 + ‖xj − x̂j‖2 holds. If the error is small, as it is customarily the
case, the norm of the original vector is preserved, that is, ‖xj‖2 ≈ ‖x̂j‖2. Since Ũ has orthonormal columns by construction and
x̂ = Ũ x̃, it follows immediately that ‖x̂j‖2 = ‖x̃j‖2. This means that the distances between compressed samples approximate the
corresponding distances between the original vectors, and any geometric computation can be carried out approximately in the
compressed space, in less dimensions.

Regarding the choice of the number m̃ of principal components, one may equivalently impose a condition on the
quality of the approximation instead, in the sense that additional components will yield a lower MSE in the PCA
problem. More precisely, the MSE in the approximation by m̃ principal components is simply the sum of residual
eigenvalues

E ‖X − X̂‖2 =
m∑

i=m̃+1
λi,

and the individual unit-variance normalization of each original dimension implies that the total energy of the dataset,
which in general is the sum of all eigenvalues, becomes the number m of original dimensions:

E ‖X‖2 = m = trΣX = trΛ =
m∑

i=1
λi.

Therefore, the relative error ε2 in the PCA approximation is

ε2
def= E ‖X − X̂‖2

E ‖X‖2 = 1− E ‖X̂‖2

E ‖X‖2 =
∑m

i=m̃+1 λi∑m
i=1 λi

= 1−
∑m̃

i=1 λi∑m
i=1 λi

= 1− 1
m

m̃∑
i=1

λi ∈ [0, 1].

Notwithstanding the theoretical appeal of PCA, it remains to demonstrate that practical microdata sets may offer
a substantial reduction m̃ < m in the number of quasi-identifiers, and at the same time, that the distances between
compressed samples approximate the corresponding distances between the original vectors, which we may quantify
through a small relative energy loss ε2. In this manner, we will ensure that MDAV can be carried out on the compressed
space and yield similar micropartitions as the conventional anonymization procedure on the original data. Intuitively,
the use of this technique will have greater impact in datasets where most of the information is stored in just a few
quasi-identifiers; in other words, whenever there exists significant redundancy (linear dependence) between demographic
attributes. Although the goal of the experimental section §V is precisely the demonstration that such redundancy indeed
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exists and that our methods are able to exploit it efficiently, we would like to illustrate the point made here with an
example of a standardized dataset.

Specifically, Fig. 9 shows a histogram of normalized eigenvalues (λi)m
i=1/m in order of decreasing dominance, along

with the normalized cumulative energy function 1
m

∑j
i=1 λi for the Large Census dataset. The horizontal axis shows

the number m̃ of cumulative principal components, ranging from the use of a single principal component m̃ = 1 with
significant energy loss ε2 = 1 − λ1, all the way to m̃ = m, for which all energy is preserved and thus ε2 = 0, but no
effective dimensionality reduction occurs. Observe that the extreme case m̃ = 1 corresponds to the preliminary study
in [2], where univariate PCA was hastily discarded as a practical approach due to its distortion overhead. However,
quite remarkably, just 5 principal components out of the total of 13 dimensions suffice to capture 1− ε2 ≈ 89% of the
energy of the dataset. This means that multivariate PCA should achieve significant time reduction with a fraction of
the dimensions and mild distortion overhead.

Fig. 9. The graphic shows the normalized energy per dimension and the cumulated energy per dimension for the Large Census
dataset. The horizontal axis shows the number m̃ of cumulative principal components, ranging from the use of a single principal
component m̃ = 1 with significant energy loss ε2 = 1 − λ1, all the way to m̃ = m, for which all energy is preserved and thus
ε2 = 0, but no effective dimensionality reduction occurs. Observe that 92.9% of the energy is retained by keeping only 6 principal
components out of the total of 13 dimensions, and 99.4% with 9 out of 13.

IV. Two Novel Methods for Efficient k-Anonymous Microaggregation
via Principal Component Analysis

Dimensionality reduction via PCA is a widely used technique in machine learning, precisely, as an unsupervised means
to reduce the number of features involved in subsequent supervised logic, thereby reducing the complexity of the learning
problem. From that perspective, reducing the total number of dimensions of the dataset comes naturally when trying
to find efficient methods for data anonymization. Our goal is to use PCA for the reduction of dimensions of quasi-
identifiers in large datasets, in order to attain a significant reduction in the running time required by k-anonymous
microaggregation, at the expense of a slight degradation in data utility. This section builds on the theoretical foundation
of the application of PCA to k-anonymous microaggregation exposed in the previous one, employing the notation,
assumptions, and principles described there. Having reviewed said foundation, we may now turn to the description of
the two novel methods devised in this work.

A. MDAV with PCA
Our first method consists in the direct application of PCA to MDAV, method which we naturally term MDAV with
PCA, and which proceeds as follows.

1. We perform PCA on the m numerical quasi-identifiers of our microdata set, where the number m̃ < m of principal
components may be given directly, or indirectly through a constraint on the maximum energy loss ε2 allowed.

2. We carry out the k-anonymous microaggregation procedure with the algorithm of choice, on the compressed m̃-
dimensional data rather than on the original m-dimensional vectors. Absolutely no change is required inside the
code of the microaggregation algorithm. In our experiments, we run MDAV on the compressed vector space. The
algorithm will simply act as if the data consisted of m̃ quasi-identifiers in lieu of of m, and simply run faster.

3. We argued in the previous subsection that the distances between the original data vectors will approximate the
distances between the compressed versions. This due to the small magnitude of the relative error ε2 assumed, and
the orthonormality of the compression/reconstruction matrix Ũ .
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4. Typically, the running time of a microaggregation algorithm scales according to an affine function t ≈ a+bm of the
number of quasi-identifiers, which is, incidentally, subadditive. For large values of the number of quasi-identifiers,
this dependence may be approximately linear. The time gain will correspond then to the reduction in dimensions,
that is, to the proportion between m̃ and m. In practice, whenever subadditivity applies, the time reduction should
be somewhat smaller.

5. The k-anonymous microcells created for the compressed data are immediately applied to the original data. The
computation of centroids and distortion could also be estimated in the compressed domain, but being a relatively
swift process, it is preferred to compute both centroids and distortion more accurately in the original domain. The
data released should of course be represented in the original domain.

Because the compressed data to be anonymized will not be a perfectly accurate version of the original data, the groups
created by MDAV operating on the compressed space may differ slightly from those when MDAV is conventionally
applied to the original data, without PCA. In practice, we shall expect a slight increment in distortion, fact that
will be confirmed in the experimental section. On the other hand, for datasets where the energy is concentrated on a
few components, we should attain a significant reduction in running time with negligible distortion degradation. This
would be the case for the dataset with the spectral profile depicted in Fig. 9. The essential steps of our first method are
succinctly outlined as Algorithm B. A summary in greater detail is offered in Fig. 10, which should serve as a convenient
recapitulation of our proposal.

Algorithm B: MDAV with PCA.

1: Perform principal component analysis on the dataset X, obtaining X̃ = ŨTX.
2: Execute MDAV on the dataset of reduced dimension X̃ in lieu of X, according to the specification Algorithm

A, with absolutely no internal modification of the microaggregation algorithm.
3: Apply the microcell assignment function j 7→ q(j) found on the compressed dataset X̃ directly to the original

dataset X, maintaining the same exact record indexing j = 1, . . . , n, in order to obtain the reconstruction
centroids for publication.

B. Proximal-Distal Prepartitioning and MDAV with PCA on Proximal Data
The key to our second method consists in splitting the original dataset into two parts. One part, which we shall call
proximal, contains points closer to each other, contributing less to the overall distortion after the microaggregation
process. The other part, called distal, contains the rest of points, further from each other. This partitioning offers a
twofold advantage. First, PCA will only be applied to the proximal portion, less sensitive in terms of distortion, and
the distal portion will remain dimensionally unchanged. As a second advantage, by force of the “divide and conquer
principle”, the superadditive running time of microaggregation will be significantly reduced. The object of this proximal-
distal method is a synergy between PCA and prepartitioning, in hopes of attaining significant computation gains with
negligible distortion cost.

The excellent performance of MDAV for k-anonymous microaggregation makes it a suitable contender for the
proximal-distal prepartitioning process introduced, which is as follows.

1. For a given macroaggregation parameter K > k, we first apply MDAV on the dataset of n records, to divide it
into bn/Kc large macrocells of size K. For example, for a dataset of n = 150, 000 records and for an anonymity
parameter k = 10, choosing a macrocell size K = 1000 gives 150 macrocells. For large K in comparison with the
anonymity parameter k, the computational cost n2/K of this prepartition should be a negligible fraction of the
cost n2/k of applying MDAV to the entire dataset. In our example, macroaggregation will be K/k = 100 times
faster.

2. Next, we compute the centroid and the mean squared error for each of the resulting macrocells, the latter
constituting a reasonable indicator of the proximity of the data points contained.

3. Finally, we subdivide the points into two portions according to said macrocell distortion, a proximal part including
points in macrocells with lower distortion, and a distal part with the remainder, either according to a distortion
threshold, or equivalently, according to a predefined fraction ν of the number bn/Kc of macrocells to be categorized
as distal.

We stress that the initial macroaggregation into macrocells of size K is only an (efficient) means to obtain this
final prepartition into two portions. Certainly, alternatives such as the Lloyd algorithm or k-means method could be
explored. Additionally, it remains to consider the impact on the choice of the parameters involved in this prepartition,
namely the macroaggregation parameter K, and the fraction ν of distal points.

Equipped with a candidate implementation for the proximal-distal prepartitioning, we may turn to the specification
of our second method, which is essentially the application of PCA only to the proximal portion, as detailed next.
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Algorithm B. MDAV with PCA. 

. Perform principal component analysis on the dataset 𝑋𝑋, obtaining 𝑋̃𝑋 = 𝑈𝑈̃𝑇𝑇𝑋𝑋. 
. Execute MDAV on the dataset of reduced dimension 𝑋̃𝑋 in lieu of 𝑋𝑋, according to 

the specification Algorithm A, with absolutely no internal modification of the 
microaggregation algorithm. 

. Apply the microcell assignment function 𝑗𝑗 ↦ 𝑞𝑞(𝑗𝑗) found on the compressed dataset 
𝑋̃𝑋 directly to the original dataset 𝑋𝑋, maintaining the same exact record indexing 
𝑗𝑗 = 1,… ,𝑛𝑛, in order to obtain the reconstruction centroids for publication. 

Fig. . Brief recapitulation of our proposal to use principal component analysis (PCA) for the reduction of the dimensionality of the 
quasi-identifiers in 𝑘𝑘-anonymous microaggregation, which usually translates in a similar reduction in the running time of the micro-
aggregation algorithm. 

B. Proximal-Distal Prepartitioning and MDAV with PCA on Proximal Data
The key to our second method consists in splitting the original dataset into two parts. One part, which we shall call 
proximal, contains points closer to each other, contributing less to the overall distortion after the microaggregation 
process. The other part, called distal, contains the rest of points, further from each other. This partitioning offers a 
twofold advantage. First, PCA will only be applied to the proximal portion, less sensitive in terms of distortion, and 
the distal portion will remain dimensionally unchanged. As a second advantage, by force of the “divide and conquer 
principle”, the superadditive running time of microaggregation will be significantly reduced. The object of this proximal-

Brief Recapitulation of 𝒌𝒌-Anonymous Microaggregation Accelerated through Principal Component Analysis 

𝑥𝑥𝑗̃𝑗 ∈ ℝ𝑚𝑚�

• In the following procedure we view the numerical quasi-identifiers as a series of 𝑚𝑚-dimensional data vectors 𝑥𝑥𝑗𝑗, for each record 𝑗𝑗 =
1,… ,𝑛𝑛. The 𝑚𝑚× 𝑛𝑛 data matrix 𝑋𝑋 contains the data vectors arranged as columns.

• Zero-mean normalization of each of the 𝑚𝑚 scalar quasi-identifiers. Additionally, as it is customary in the field of SDC, for scale-inde-
pendent measurement of distances, normalize for unit-variance.

• Compute the 𝑚𝑚×𝑚𝑚 covariance matrix Σ, and its spectral decomposition 𝑈𝑈Λ𝑈𝑈𝑇𝑇 . (In practice, only a partial decomposition for the
largest eigenvalues may be required.)

• Sort the eigenvalues in decreasing order, maintaining their correspondence with the eigenvectors. (A partial selection with Quick-
select could prove faster for very large 𝑚𝑚.)

• Due to the unit-variance normalization carried out previously, tr Λ =∑ 𝜆𝜆𝑖𝑖
𝑚𝑚
𝑖𝑖=1 = tr Σ = 𝑚𝑚. Select the desired amount 𝑚𝑚� ⩽ 𝑚𝑚 of dom-

inant eigenvalues 𝜆𝜆1,𝜆𝜆2,… ,𝜆𝜆𝑚𝑚�  to satisfy a predefined constraint on the preserved normalized energy 1− 𝜖𝜖2 = 1
𝑚𝑚∑ 𝜆𝜆𝑖𝑖

𝑚𝑚�
𝑖𝑖=1 , or on the 

approximation error 𝜖𝜖2 = 1
𝑚𝑚∑ 𝜆𝜆𝑖𝑖

𝑚𝑚
𝑖𝑖=𝑚𝑚�+1  incurred. In practice, some datasets will allow a value of 𝑚𝑚� significantly smaller than 𝑚𝑚, with 

very small error 𝜖𝜖2. 
• Zero eigenvalues indicate that some of the original quasi-identifiers are exact linear combinations of others, and therefore effectively

redundant.

• Compose the 𝑚𝑚×𝑚𝑚� compression matrix 𝑈𝑈̃  consisting of the 𝑚𝑚� dominant eigenvectors, arranged as columns, and compress the data
vectors according to 𝑋̃𝑋 = 𝑈𝑈̃𝑇𝑇𝑋𝑋, where 𝑋𝑋 is the data matrix, with data points also arranged as columns. The compressed vectors will
contain 𝑚𝑚� components instead of 𝑚𝑚, each an independent linear combination of the original data component. The new 𝑚𝑚� quasi-
identifiers are each a different mixture of the original 𝑚𝑚.

• Carry out the 𝑘𝑘-anonymous microaggregation procedure with the algorithm of choice, on the compressed 𝑚𝑚�-dimensional data rather
than on the original 𝑚𝑚-dimensional vectors. Absolutely no change is required inside the code of the microaggregation algorithm.
The algorithm will simply act as if the data consisted of 𝑚𝑚� quasi-identifiers in lieu of of 𝑚𝑚, and run faster.

• It can be shown that the distances between the original data vectors will approximate the distances between the compressed ver-
sions. This due to the small magnitude of 𝜖𝜖2 assumed, and the orthonormality of the compression/reconstruction matrix 𝑈𝑈̃ .

• Typically, the running time of a microaggregation algorithm scales according to an affine function 𝑡𝑡 ≈ 𝑎𝑎+ 𝑏𝑏 𝑚𝑚 of the number of quasi-
identifiers, which is in fact subadditive. For large values of the number of quasi-identifiers, this dependence may be approximately 
linear. The time gain will correspond then to the reduction in dimensions, that is, to the proportion between 𝑚𝑚� and 𝑚𝑚. In practice,
whenever subadditivity applies, the time reduction should be somewhat smaller.

• The 𝑘𝑘-anonymous microcells created for the compressed data are immediately applied to the original data. The computation of
centroids and distortion could also be estimated in the compressed domain, but being a relatively swift process, it is preferred to
compute them accurately in the original domain. The data released should of course be represented in the original domain.

Large database with a 
significant amount 𝑚𝑚 

of numerical QIDs 

𝑥𝑥𝑗𝑗 ∈ ℝ𝑚𝑚 

Dimensionality 
reduction 𝑚𝑚� < 𝑚𝑚 via 
principal component 

analysis (PCA)

Fast 𝑘𝑘-Anonymous 
microaggregation on 
the compressed QIDs

Computation of 
centroids in the 

original domain, and 
release of the 

anonymized database 

Fig. 10. Brief recapitulation of our proposal to use principal component analysis (PCA) for the reduction of the dimensionality
of the quasi-identifiers in k-anonymous microaggregation, which usually translates in a similar reduction in the running time of
the microaggregation algorithm.

1. We split the original dataset into two portions, a proximal portion of data points closer to each other and a distal
portion of data points far from each other, according to the proximal-distal prepartitioning method just outlined.

2. We perform PCA on them numerical quasi-identifiers of our proximal portion microdata set, where the number m̃ <

m of principal components may be given directly, or indirectly through a constraint on the maximum energy loss ε2
allowed. PCA is not applied to the distal portion, which remains completely unchanged prior to microaggregation.

3. We carry out the k-anonymous microaggregation procedure with the algorithm of choice, on the compressed m̃-
dimensional proximal dataset rather than on the original m-dimensional vectors as well as on the original distal
portion of data points without having previously applied PCA on it, as mentioned in Step 2. Again, absolutely no
change is required inside the code of the microaggregation algorithm. In our experiments, we run MDAV separately
on both, the compressed vector space for the proximal dataset and the original distal dataset without compression.

4. It is worth remembering that the distances between the original proximal dataset vectors will approximate the
distances between the compressed versions of it. This due to the small magnitude of the relative error ε2 assumed,
and the orthonormality of the compression/reconstruction matrix Ũ . However, for the distal dataset, and as
mentioned before, no PCA will be applied at all. The reason is that the data points of the distal dataset are
far from each other and the result of applying PCA would not lead to a good approximation between the original
distal dataset vectors and the distances between the compressed versions of it even if ε2 is assumed to be small.
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5. The k-anonymous microcells created for both, the compressed data of the proximal dataset and the uncompressed
data of the distal dataset, are immediately applied to the original data. The computation of centroids and distortion
is done in the original domain. The data released should of course be represented in the original domain.

We elaborate further on the prepartition into a proximal fraction 1− ν of macrocells, and a distal fraction ν. Recall
that PCA is only applied to the proximal portion, contributing less to the overall distortion, whereas the distal portion
is microaggregated without dimensionality reduction. A further goal in our methodology is to find an adequate value
for ν, or equivalently an adequate number of distal macrocells CD, taking into consideration both the speed up and the
distortion incurred. In our experiments, we shall simply report the results of scanning CD from zero to the maximum
number of possible cells bn/Kc. For CD = 0 or ν = 0, we reproduce our first method, MDAV with PCA, since the
proximal dataset, where PCA will be applied, will be identical to the original dataset and the distal dataset will be
empty. By contrast, for CD = bn/Kc or ν = 1, we revert to the traditional use MDAV, since the distal dataset, where
no PCA will be applied is defined to be the entire dataset, and the proximal dataset is empty. We may scan through
all possible values of CD, to explore the best value that fits with our abovementioned objective.

In conclusion, as the compressed data of the proximal dataset, to be anonymized, will be almost a perfect accurate
version of the original proximal dataset thanks to that fact that the chosen points are close to each other, the cells that
are created by a MDAV operating on the compressed space of the proximal dataset may probably not differ from those
that could be obtained when a MDAV is operating on the original proximal dataset. Nevertheless, for the distal dataset,
as the points can be far from each other, no PCA will be applied at all so no additional distortion due to compression
will be incurred, then, only MDAV will be applied. In practice, by applying this method, we are expecting even a better
performance result in terms of speed up and probably a slight decrement in terms of distortion, in comparison to the
MDAV with PCA method, while the enhancements of the second method over the first one strictly depend on the used
dataset, fact that will be confirmed in the experimental section. Remember that the speed-up achieved through MDAV
with PCA on proximal data is the resulting synergy of dimensionality reduction and the superadditivity of the running
time of microaggregation algorithms with the number of records.

The main steps of the algorithm are outlined as Algorithm C.

Algorithm C: MDAV with PCA on proximal data.

1: Split the original dataset into two parts: a proximal dataset containing a fraction 1− ν of the records, and
a distal dataset containing the remaining fraction ν.

2: Perform principal component analysis (PCA) only on the proximal dataset XP, obtaining X̃P = ŨT
PXP.

3: Apply traditional MDAV, that is, Algorithm A, to the proximal portion X̃P of the data.
4: Separately apply traditional MDAV to the distal portion of the data XD.
5: Combine both micropartitions, obtained separately, into a single cell-assignment function. Publish the overall

microaggregation with the corresponding centroids.

V. Experimental Results
In this experimental section, we aim to confirm the algorithmic efficiency of our two dimensionality-reduction methods
for k-anonymous microaggregation, specifically by means of PCA, in terms of time gain, along with their performance,
in terms of additional distortion incurred. We employ one of the best-known and most widely used fixed-size microaggre-
gation algorithms for numerical data, namely MDAV [8, 11, 13, 43]. Bear in mind that although our work is illustrated
with the special case of MDAV, the two methods outlined as Algorithm B and Algorithm C would apply to other
microaggregation algorithms and variations of the privacy criteria. However, this versatility is not really the focus of
our work, and we shall content ourselves with a standard application of MDAV for k-anonymity.

We should stress, once more, that the speed-up achieved through MDAV with PCA on proximal data is the resulting
synergy of dimensionality reduction and the superadditivity of the running time of microaggregation algorithms with
the number of records. Now, for a perfectly fair comparison with traditional microaggregation MDAV, the experiments
in this manuscript most certainly take into consideration this additional time of applying PCA technique, however
insignificant. Furthermore, all experiments in their entirety were implemented and executed in Matlab R2017b, Intel®
Core™ i7-6820HQ @2.70 GHz, Windows 10 64-bit, explicitly disabling any form of parallelization for fair and clear
comparison.

Additionally, two standardized datasets are considered to evaluate the performance of our novel methods versus
MDAV. The standardized datasets are “Large Census” and “Forest”, previously used in [36]. The “Large Census”
dataset contains 149,642 records with 13 numerical attributes that, in this contribution, will be considered as quasi-
identifiers; the “Forest” dataset contains 581,012 records with 10 numerical attributes, all considered as quasi-identifiers
as well. We adhere to the common practice of normalizing each attribute of the dataset for unit variance.

The choice of Large Census was motivated by its widespread use in the SDC literature. We shall see that its
considerable dimensional redundancy offers excellent results, constituting a perfect illustration of the enormous potential
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behind our methods. The Forest dataset was selected as a representation of the opposite case, in which low dimensional
redundancy may hinder the effective applicability of PCA.

The reason for introducing PCA in k-anonymous in microaggregation on multivariate data is to substantially reduce
the running time of the algorithm employed, while maintaining the quality of the information released. In order to
demonstrate how both methods described in §IV achieve our goal, we shall first direct our attention to the histogram of
normalized eigenvalues. Precisely, we shall look at (λi)m

i=1/m in order of decreasing dominance, and at the normalized
cumulative energy function 1

m

∑m
i=1 λi for each of our two datasets, Large Census and Forest. This will offer a general

idea of the extent to which dimensional redundancy can be exploited. Then, we shall report relative time with respect
to the conventional use of MDAV, as well as distortion increments.

We shall measure the relative performance gain τ
def= t′/t, defined as the execution time t′ of the novel method

considered (either MDAV with PCA or MDAV with PCA on proximal data) with respect to the time t of the traditional
microaggregation procedure MDAV. In this manner, relative running times τ will potentially range from 0% to 100%,
where 100% indicates a running time identical to that of MDAV. Similarly, but not quite identically, we shall report the
incurred distortion increment ∆D def= D′−D, where D′ is the distortion corresponding to the novel method, and D is the
distortion corresponding to conventional MDAV. Therefore, a distortion increment ∆D of 0% representing a distortion
equal to conventional MDAV, but we should expect small positive values, denoting a cost in distortion that we wish to
keep to a minimum. For convenience, τ is relative, but ∆D constitutes an increment. Distortion are normalized as it is
customary in the literature, with respect to the total variance of the dataset. Times are also normalized, with respect
to the running time of conventional use of MDAV, without dimensionality reduction.

A. Large Census dataset

The histogram of normalized eigenvalues in order of decreasing dominance, along with the normalized cumulative energy
function for the Large Census dataset was previously shown in Fig. 9 where we clearly observed that 89% of the energy
was retained by keeping only 5 principal components out of the total of 13 dimensions.

Fig. 11 and Fig. 12 report the relative time and the distortion increment, respectively. Both results are given as a
function of the number m̃ = 1, . . . ,m of compressed dimensions, after applying MDAV with PCA to a subset of 75,000
samples randomly selected from the abovementioned dataset, with a representative anonymity parameter, k = 10.
Obviously, when the projected dataset contains all m = 13 dimensions, that is, when the original information stays
intact, τ = 100%. As we increase the number m̃ of compressed dimensions of the projected data, running time also
increases roughly linearly. Regarding the extreme case when the dimension of the projected dataset is m̃ = 1, the
relative time is approximately τ ≈ 32%. However, Fig. 12 clearly shows that the distortion increment due to this
extreme reduction (m̃ = 1) is ∆D ≈ 28% with respect to conventional MDAV, an unacceptable increment in high-
utility applications, the focus of our work. Because our main goal is to preserve data quality, the trade-off between
relative time τ and distortion increment ∆D must be considered. In practice, one may set a tolerance threshold for the
distortion increment, for the energy lost in the projection, or for the number of compressed dimensions.
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Fig. 11. Relative time after applying MDAV with PCA on a subset of 75,000 samples randomly selected from the Large Census
dataset. Observe that by reducing the dimension of the dataset only from 13 to 6, a gain of 34% in time is obtained with respect
to classical MDAV.

Furthermore, we can clearly see from Fig. 11 and Fig. 12 that by reducing the dimension of the dataset to m̃ = 6,
we obtain a relative time of 66% with an increase of only 1.13% in the incurred distortion increment. The possibility of
reducing the execution time while almost maintaining the quality of the released information comes from the statistical
structure of the Large Census dataset, which keeps a great part of its relevant information in a few dimensions.
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Fig. 12. Distortion increment incurred after applying MDAV with PCA on a subset of 75,000 samples randomly selected from
the Large Census dataset. Observe that by reducing the dimension of the dataset only from 13 to 6, a distortion increment of
approximately 1.13% is incurred with respect to the classical MDAV. Note that, the smaller the dimension of the projected dataset,
the higher the distortion increment, since the loss in information is greater.

Now, as explained in §IV-B, we proceed to analyze the adequacy of the choice of the fraction ν of distal points
and the remaining fraction 1 − ν of the records for the proximal part, both relative to n, of the split original Large
Census dataset. To such end, we must first create the macrocells so we can later compute a suitable number of distal
macrocells CD taking into consideration both relative time and distortion increment. Macroaggregation will be carried
out with MDAV on the entire Large Census dataset with a macrocell size K = 1000, much greater than the anonymity
parameters k employed later. Since the Large Census dataset has 149,642 records, 149 macro cells will be created with
1000 records each, except for the last macrocell, which will contain 1642 records.

Fig. 13 shows the distortion value D for each one of the macrocell created, in linear and algorithmic scale. We
can clearly observe that the first macrocell incurs by itself 11.37%, with respect to the total variance of the dataset,
which corresponds to more than 48% of the whole distortion incurred by the remaining macrocells. In general, Fig.
13 illustrates that there is a dramatic difference in terms of intracell distortion between macrocells, where we can find
macrocells with a very small incurred distortion, especially those macrocells created at the end by MDAV (from 100
to 149), and macrocells with high incurred distortion especially the first macrocells created by MDAV. This behavior
often happens in real datasets and this special behavior is basically the reason why we decided to split the original
dataset into proximal and distal datasets and only apply PCA to the proximal one.
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Fig. 13. Distortion D for each one of the macrocells created by applying MDAV on the whole Large Census dataset with a
macrocell size K = 1000. Observe that the first macrocell incurs by itself more than 48% of the whole distortion incurred by the
remaining macrocells.

As a result, Fig. 14 illustrates relative time τ vs. distortion increment ∆D, by varying the number of distal macrocells
CD from zero (same case as if we are only applying MDAV with PCA to the whole dataset) till the maximum number
of possible cells bn/kc = 149 (same case as if we are only applying MDAV to the whole dataset), and in each one of
the cases MDAV with PCA on proximal Data algorithm is applied, with a k-anonymity parameter considered, k = 10.
From Fig. 14, we define an adequate number of distal macrocells CD = 59, that is, ν ≈ 40%. In this specific case, a
reduction of time to almost 65% is 0btained with a distortion increment of less than 1%.
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Fig. 14. Relative time vs. distortion increment for each one of the 150 cases (from zero till 149) after applying MDAV with PCA

on proximal Data algorithm. We have defined an adequate number of distal macrocells CD = 59, that is, ν ≈ 40%. With ν ≈ 40%,
a reduction of time to almost 65% is 0btained with a distortion increment of less than 1%. The values of compressed dimensions
m̃ and the relative energy loss ε2 employed in the PCA experiments for which the relative time and the distortion increment are
reported, are equal to 6 and 0.1, respectively.

As the ν fraction has been chosen (ν ≈ 40%), the proximal dataset as well as the distal dataset are well created. Fig.
15 shows the relative time for the two novel methods, MDAV with PCA and MDAV with PCA on proximal Data, with
respect to MDAV only, for various values of k-anonymity parameter. Additionally, two energy loss values ε2 have been
used, 0.1 and 0.2, that is, 90% and 80% of the total energy will be preserved, respectively.

However, Fig. 16 illustrates the distortion increment of the two novel methods MDAV with PCA and MDAV with
PCA on proximal data for various values of k-anonymity parameter, with respect to MDAV. Observe that by applying
MDAV with PCA on the whole Large Census dataset, with energy loss of 10% and 20%, an average time gain of
33% and 41% approximately has been obtained, respectively, with an average distortion increment of 1% and 4%.
Also, we see that by applying MDAV with PCA on the proximal dataset with an energy loss of 10% and 20%, where
the distal dataset is not subject to PCA at all, only MDAV is applied on it, an average time gain of 64 % and 67%
has been obtained, respectively, with an average distortion increment of approximately 1% and 3%. Besides, we have
also evaluated the case of applying MDAV without PCA on the proximal dataset instead of the MDAV with PCA on
proximal data algorithm, that is, prepartitioning the whole dataset into distal and proximal dataset and later apply
MDAV on both of them, and effectively, an average time gain of 45% has been obtained, far from the 64% and 67%
obtained by MDAV with PCA on the proximal dataset, without any additional cost in distortion.
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Fig. 15. Relative time of the two novel methods MDAV with PCA and MDAV with PCA on proximal data for many common
values of k-anonymity parameter, with respect to MDAV. Observe that by applying MDAV with PCA on the whole Large Census
dataset, with energy loss of 10% and 20%, an average time gain of 33% and 41 % approximately has been obtained, respectively.
Also, we see that by only applying MDAV with PCA on the proximal dataset with an energy loss of 10% and 20%, an average
time gain of 64% and 67% has been obtained, respectively.
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As we have observed, the prepartitioning method into distal and proximal dataset works very well and this is because it
looks for the very distorted zone as well as for the less distorted one, and this is basically what MDAV does. Nonetheless,
one of the great advantages, less evident more significant of prepartitioning into distal and proximal dataset, is that
the prepartitioning method allows posteriori methods to be applied, and the price in distortion that those posteriori
methods will pay to obtain even more average time gain will be smaller since they will be applied only on the proximal
part.
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Fig. 16. Distortion increment of the two novel methods MDAV with PCA and MDAV with PCA on proximal data for various
values of k-anonymity parameter, with respect to MDAV. Observe that by applying MDAV with PCA on the whole Large Census
dataset, with energy loss of 10% and 20%, an average distortion increment of 1% and 4 % approximately has been obtained,
respectively. Also, we see that by only applying MDAV with PCA on the proximal dataset with an energy loss of 10% and 20%,
an average distortion increment of 1 % and 3% has been obtained, respectively.

The absolute running time of the traditional algorithm and the two novel methods, used in this work will certainly
vary depending on both n and k, as well as on the computer and the number of cores employed. However, most of our
experiments are in terms of running times relative to the traditional one MDAV. Still, Table I and Table II illustrate the
reference times and the normalized distortion values, respectively, for MDAV, MDAV with PCA and MDAV with PCA
on proximal data, applied on two standardized datasets, Large Census and Forest. The values of compressed dimensions
m̃ and the relative energy loss ε2 employed in the PCA experiments for which the time and distortion are reported in
Table I and Table II, are equal to 6 and 0.1, respectively.

Table I
Reference Running Times

Dataset Samples n Dimension m Anonymity k MDAV MDAV with PCA

MDAV with
PCA on
Proximal
Data

Large Census

2 16 min 27 sec 10 min 55 sec 5 min 56 sec

5 6 min 34 sec 4 min 21 sec 2 min 22 sec

149,642 13 10 3 min 17 sec 2 min 10 sec 1 min 11 sec

50 40 secs 26 sec 14 sec

100 20 sec 13 sec 7 sec

Reference running times values for MDAV, MDAV with PCA and MDAV with PCA on proximal data, applied to the
standardized dataset, Large Census, with different k-anonymity values. The values of compressed dimensions m̃ and the
relative energy loss ε2 employed in the PCA experiments for which the time and distortion are reported, are equal to 6 and
0.1, respectively.
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Table II
Reference Distortions

Dataset Samples n Dimension m Anonymity k MDAV MDAV with PCA MDAV with
PCA on
Proximal
Data

Large Census

2 0.0056 0.0126 0.0127

5 0.0168 0.029 0.028

149,642 13 10 0.0278 0.042 0.0397

50 0.0685 0.0754 0.0747

100 0.0973 0.1018 0.0995

Reference distortion values for MDAV, MDAV with PCA and MDAV with PCA on proximal data, applied to the
standardized dataset, Large Census, with different k-anonymity values. The values of compressed dimensions m̃ and the
relative energy loss ε2 employed in the PCA experiments for which the time and distortion are reported, are equal to 6 and
0.1, respectively.

B. Forest dataset

Fig. 17 shows a histogram of normalized eigenvalues (λi)m
i=1/m in order of decreasing dominance, along with the

normalized cumulative energy function 1
m

∑m
i=1 λi, but this time for the Forest dataset. Again, the horizontal axis

shows the number m̃ of cumulative principal components, ranging from the use of a single principal component m̃ = 1
with significant energy loss ε2 = 1− λ1, all the way to m̃ = m, for which all energy is preserved and thus ε2 = 0, but
no effective dimensionality reduction occurs. We can clearly observe that 89% of the energy is retained by keeping 6
principal components out of the total of 10 dimensions, 60% of the total amount of dimensions. Remember that in case
of the Large Census dataset, we needed only 38% (5 principal components out of 13 dimensions) of the total amount
of dimensions to preserve the same amount of information. This is due to the strong linear independence of attributes
of Forest dataset.

Fig. 18 and Fig. 19 illustrate the relative time and the distortion increment respectively, both results are per dimension,
after applyingMDAV with PCA on a subset of 75,000 samples randomly selected from the abovementioned dataset, with
a k-anonymity parameter considered, k = 10. As it can be observed, when the projected dataset has 10 dimensions, that
is, when the original information stays intact, τ = 100%, which makes sense as it is exactly the same case of applying
only MDAV. Again, as in the Large Census dataset case, as we increase the number m̃ of compressed dimensions of the
projected data, running time also increases roughly linearly. However, regarding the extreme case when the dimension
of the projected dataset is 1, the relative time is approximately τ ≈ 39%. Nevertheless, Fig. 19 clearly shows that the
distortion increment ∆D incurred due to the reduction of dimensions into one dimension has increased by more than
69% with respect to the case of using only MDAV, which is an unacceptable increment in high-utility applications, the
focus of our work. As we have said before, as our main goal is to preserve the information quality, a tradeoff between
relative time τ and distortion increment ∆D will be considered, as we did in Large Census dataset case. Again, we
can set a tolerance threshold for the distortion increment, for the energy lost in the projection, or for the number of
compressed dimensions.

Furthermore, we can clearly see from Fig. 18 and Fig. 19 that by reducing the dimension of the dataset to 6 for
example, we obtain a relative time of 77% with an increase of 6.4% in the incurred distortion increment. As there
is a strong linear independence of attributes in the Forest dataset, the possibility of obtaining high time gain while
maintaining the quality of the released information intact is not possible even though it was possible in the case of
Large census dataset which keeps the great part of its relevant information in a few dimensions, contrary to the nature
structure of the Forest dataset.

Again and as explained in §IV-B, we proceed to analyze the adequacy of the choice of the fraction ν of distal points
and the remaining fraction 1 − ν of the records for the proximal part, both relative to n, of the split original Large
Census dataset. To such end, and as we did in the Large census dataset case, we must first create the macrocells
so we can later compute a suitable number of distal macrocells CD taking into consideration both relative time and
distortion increment. Again, the macroaggregation process will be realized with MDAV on the whole Forest dataset
with a macrocell size K = 10, 000, much greater than the anonymity parameter k used later. As the Forest dataset has
581,012 records, 58 macro cells will be created of 10,000 records each, except the last macrocell, which will contain
11012 records.
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Fig. 17. The graphic shows the normalized energy per dimension and the cumulated energy per dimension for the Forest dataset.
The horizontal axis shows the number m̃ of cumulative principal components, ranging from the use of a single principal component
m̃ = 1 with significant energy loss ε2 = 1 − λ1, all the way to m̃ = m, for which all energy is preserved and thus ε2 = 0, but no
effective dimensionality reduction occurs. Observe that 93.3% of the energy is retained by keeping only 7 principal components
out of the total of 10 dimensions.
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Fig. 18. Relative time after applying MDAV with PCA on a subset of 75,000 samples randomly selected from the Forest dataset.
Notice that by reducing the dimension of the dataset only from 10 to 6, a gain of 22.2% in time is obtained with respect to the
classical MDAV.
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Fig. 19. Distortion increment incurred after applying MDAV with PCA on a subset of 75,000 samples randomly selected from
the Forest dataset. Obviously, the smaller the dimension of the projected dataset, the higher the distortion increment, since the
loss in information is greater.
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Fig. 20 shows the distortion value D for each one of the macrocell created. In general, Fig. 20 illustrates that more
or less there is no difference in intracell distortion D between the created macrocells, which is totally different result
from the one obtained when analyzing Large Census dataset, where we detected a huge difference in intracell distortion
D between the created macrocells. This previous result shows that the Forest dataset points are well distributed in
Rm which hinders the process of splitting the Forest dataset into distal dataset and proximal dataset as the D of the
macrocells are quite similar.

As a result, Fig. 21 illustrates relative time τ vs. distortion increment ∆D, by scanning CD from zero (same case as
if we are only applying MDAV with PCA to the entire dataset) to the maximum number of possible cells bn/Kc = 58
(same case as if we are only applying MDAV to the entire dataset), and in each one of the cases MDAV with PCA on
proximal data algorithm is applied, with a k-anonymity parameter considered, k = 100. From Fig. 21, we have defined
an adequate number of distal macrocells CD = 39, that is, ν ≈ 66%. In this specific case, a reduction of time to almost
55% is 0btained with a distortion increment ∆D of approximately 2%.
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Fig. 20. Distortion D for each one of the macrocells created by applying MDAV on the whole Forest dataset with a macrocell
size K = 10, 000. Notice that the distortion incurred by macrocells are more or less equal.
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Fig. 21. Relative time vs. distortion increment for each one of the 59 cases (from zero till 58) after applying MDAV with PCA

on proximal data algorithm. We have defined an adequate number of distal macrocells CD = 39, that is, ν ≈ 66%. With ν ≈ 66%,
a reduction of time to almost 55 % is 0btained with a distortion increment ∆D of approximately 2%. The values of compressed
dimensions m̃ and the relative energy loss ε2 employed in the PCA experiments for which the relative time and the distortion
increment are reported, are equal to 7 and 0.1, respectively.

As the ν fraction (ν ≈ 66%) has been chosen, the proximal dataset as well as the distal dataset are well created. Fig.
22 shows the relative time for the two novel methods, MDAV with PCA and MDAV with PCA on proximal data, with
respect to MDAV only, for many values of k-anonymity parameter, k. Additionally, two energy loss values ε2 have been
used, 0.1 and 0.2, that is, 90% and 80% of the total energy will be preserved, respectively.

Fig. 23 illustrates the distortion increment ∆D of the two novel methods MDAV with PCA and MDAV with PCA
on proximal data for various values of k-anonymity parameter, with respect to MDAV. Notice that by applying MDAV
with PCA on the entire Forest dataset, with energy loss of 10% and 20%, an average time gain of 15% and 25%

22/28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

D. Rebollo-Monedero et al. / Submitted to Elsevier J. (Jan. 2019)

approximately has been obtained, respectively, with an average distortion increment of 1.5% and 5.5%. Also, we see
that by only applying MDAV with PCA on the proximal dataset with an energy loss of 10% and 20%, where the distal
dataset is not subject to PCA at all, only MDAV will be applied on it, an average time gain of 48 % and 50% has
been obtained, respectively, with an average distortion increment of approximately 1.5% and 2%. Besides, we have also
evaluated the case of applying MDAV without PCA on the proximal dataset as in case of Large Census dataset, and
again effectively, an average time gain of 42% has been obtained, far from 50% obtained by MDAV with PCA on the
proximal dataset, without any additional cost in distortion.

Additionally, even if most of our experiments are in terms of running times relative to the traditional one MDAV.
Still, Table III and Table IV illustrate the reference times and the normalized distortion values, respectively, for MDAV,
MDAV with PCA and MDAV with PCA on proximal data, applied to the Forest dataset, with different k-anonymity
values. The values of compressed dimensions m̃ and the relative energy loss ε2 employed in the PCA experiments for
which the time and distortion are reported in Table III and Table IV, are equal to 7 and 0.1, respectively.
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Fig. 22. Relative time of the two novel methods MDAV with PCA and MDAV with PCA on proximal data for various values of
k-anonymity parameter, with respect to MDAV. Observe that by applying MDAV with PCA on the entire Forest dataset, with
energy loss of 10% and 20%, an average time gain of 15% and 25% approximately has been obtained, respectively. Also, we see
that by only applying MDAV with PCA on the proximal dataset, with an energy loss of 10% and 20%, where the distal dataset is
not subject to PCA at all, only MDAV will be applied on it, an average time gain of 48% and 50% has been obtained, respectively.
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Fig. 23. Distortion increment of the two novel methods MDAV with PCA and MDAV with PCA on proximal data for many
values of k-anonymity parameter, with respect to MDAV. Notice that by applying MDAV with PCA on the entire Forest dataset,
with energy loss of 10% and 20%, an average distortion increment of 1.5% and 5.5% approximately has been obtained, respectively.
Also, we see that by only applying MDAV with PCA on the proximal dataset, with an energy loss of 10% and 20%, where the
distal dataset is not subject to PCA at all, only MDAV will be applied on it, an average distortion increment of 1.5% and 2% has
been obtained, respectively.
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Table III
Reference Running Times

Dataset Samples n Dimension m Anonymity k MDAV MDAV with PCA MDAV with
PCA on
Proximal
Data

Forest

2 4 hrs 3 hrs 23 min 2 hrs

5 1 hr 34 min 1 hr 21 min 49 min

581,012 10 10 47 min 33 sec 40 min 16 sec 24 min 38 sec

50 9 min 30 sec 8 min 4 min 56 sec

100 4 min 45 sec 4 min 2 min 28 sec

Reference running times values for MDAV, MDAV with PCA and MDAV with PCA on proximal data, applied to the
standardized dataset, Forest, with different k-anonymity values. The values of compressed dimensions m̃ and the relative
energy loss ε2 employed in the PCA experiments for which the time and distortion are reported, are equal to 7 and 0.1,
respectively.

Table IV
Reference Distortion

Dataset Samples n Dimension m Anonymity k MDAV MDAV with PCA MDAV with
PCA on
Proximal
Data

Forest

2 0.0025 0.0047 0.004

5 0.088 0.0154 0.0133

581,012 10 10 0.0158 0.0262 0.0227

50 0.0417 0.0586 0.0545

100 0.058 0.0757 0.0733

Reference distortion values for MDAV, MDAV with PCA and MDAV with PCA on proximal data, applied to the
standardized dataset, Forest, with different k-anonymity values. The values of compressed dimensions m̃ and the relative
energy loss ε2 employed in the PCA experiments for which the time and distortion are reported, are equal to 7 and 0.1,
respectively.

VI. Conclusion and Future Development

This work addresses the problem of computational complexity of k-anonymous microaggregation for large datasets with
a substantial amount of numerical quasi-identifiers and records. We proceed by introducing two novel dimensionality-
reduction methods in the microaggregation field by means of PCA, named as MDAV with PCA and MDAV with
PCA on proximal data, which greatly reduce the running time of k-anonymous microaggregation of multivariate data,
maintaining the quality of the released information.

It is important to remember that even if our work is illustrated with the special case of the widely used algorithm
known as MDAV, the two novel methods abovementioned would be easily applicable to other microaggregation tech-
niques. Furthermore, we should stress on that the speed-up achieved through MDAV with PCA on proximal data is
the resulting synergy of dimensionality reduction and the superadditivity of the running time of microaggregation
algorithms with the number of records.

Our experiments indicate that our PCA methods lead to a distortion increment ∆D with respect to the total variance
of the dataset that does not increase, but rather decreases, with the anonymity factor k, as one can verify, for instance,
in Fig. 16. On the other hand, it is clear that the reference distortion Dref of conventional MDAV increases with k.
These observations imply that the relative distortion increment ∆D/Dref should decrease with k. This means that in
terms of this relative distortion metric, the PCA methods put forth in this work should be particularly efficient for
microaggregation with large values of the anonymity parameter k. For small values of k, the admissible energy loss ε2
should be set to a cautiously low value, depending on the relevance of time and distortion in the application at hand.
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For any value of k but a low ε2, a dataset with strong linear dependencies can be microaggregated significantly faster
in a lower-dimensional subspace, and with a low impact on data utility.

Moreover, experimental results on two standardized datasets, Large Census dataset and Forest dataset, confirm
considerably the reduction of k-anonymous microaggregation of multivariate data, maintaining the quality of the released
information by means of PCA. Applying MDAV with PCA method to both datasets, we achieved significant time gains
(≈ 14–31%) with very little impact on information utility (<2%, with respect to the total variance) with respect to
MDAV on the original data. However, when applying MDAV with PCA on proximal data method to both datasets again,
we obtained even further speed-up (≈ 48–64%), with mild distortion impact (<3%, with respect to the total variance).
As a concluding and essential message of our work, we have shown how useful PCA is in the microaggregation field,
which can be used alone as seen in MDAV with PCA method, or also it can be combined to other strategies as shown
in PCA and MDAV with PCA on proximal data method.

A. Concluding Remarks
As a summary of our work, Table V includes a brief description of the developed algorithms as well as some points that
should be taken into account when using them.

Table V
Microaggregation Methods Proposed

Algorithms Definition Remarks

MDAV w/ PCA • Perform PCA on the dataset.
• Execute MDAV on the dataset

of reduced dimension

• The performance of this algorithm relies on the
statistical structure of the information to be treated.
Datasets with most of their information conducive to
compression into a few dimensions will allow the
algorithm to be executed faster.

MDAV w/ PCA
on Proximal

Data

• Split the original dataset into
proximal and distal datasets.

• Perform PCA on the proximal
dataset only.

• Execute MDAV on the
dimensionally reduced proximal
dataset, and on the original
distal dataset, separately.

• The speed-up achieved is the resulting synergy of two
effects: first, dimensionality reduction, and secondly, the
superadditivity of the running time of microaggregation
algorithms in the number of records.

• Again, this algorithm relies on the algebraic-statistical
redundancy of the information processed, as in MDAV
with PCA.

B. Future Directions
Many avenues exist along which we could conduct future research. By means of illustration, we briefly elaborate on
our second, more complex method. Recall that said method implemented a prepartition of the dataset into a proximal
and distal part, applying PCA only to the former portion in order to keep the distortion overhead in check, be it due
to prepartitioning or dimensionality reduction. The procedure in question was advantageous not only because of the
reduction of dimensions, but also because of the superadditivity of MDAV. In fact, the time complexity of MDAV
is asymptotically quadratic in the number of records, and thus the benefit of the “divide and conquer” effect alone
proved significant. Even without PCA, the mere prepartition into a proximal and distal portion to accelerate MDAV
with negligible distortion overhead appears to be quite promising. Conceivably, this prepartition method could be
combined with any other techniques trading off running time for distortion, aside from PCA. Further, the proximal-
distal prepartition itself is not subject to strong restrictions on cell size, and could be carried out with clustering
methods alternative to MDAV, for instance with the Lloyd algorithm, also known as the k-means method (where k
here represents the number of cells and is unrelated to the notion of anonymity).

Another intriguing direction is the recursive application of the proximal-distal prepartition technique, possibly com-
bined with PCA. We provide an extremely preliminary model to motivate its potential. Suppose that an algorithm
required time t(n) = n2 in order to process n records (in units relative to t(1)). Rather than executing the algorithm
directly on the entire recordset, we might first split it in two parts, one containing a fraction 1− ν of the records, and
the other containing the remaining fraction ν, both relative to n. Here, the portion of 1− ν records would play the role
of proximal part, less sensitive to distortion changes. Assuming for simplicity in this preliminary analysis that the cost
of splitting and recombination were asymptotically negligible, the computation required by this approach would be

t′(n) = t((1− ν)n) + t(νn)
instead. In our simple, asymptotic argument, we shall disregard cell size restrictions and the fact that they should be
integer values instead of idealized real-valued approximations. For any ν ∈ (0, 1), we conduct a progressively recursive
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implementation only on the first (less sensitive) part of the dataset with a fraction 1 − ν of the records in S =
log 1

1−ν
n additional steps (none for ν = 1). Excluding the residual constant term t(1) = 1 at the end of the recursion,

asymptotically negligible, the time complexity would be(b),
S−1∑
s=0

t((1− ν)sνn) <
∞∑

s=0
((1− ν)sνn)2 = (νn)2

1− (1− ν)2 = ν

2− ν n
2.

This is lower than the original time n2, in fact vanishing as ν ↓ 0, and obviously (asymptotically) equal as ν ↑ 1. For
example, a conservative ν = 1/3 would yield an impressive reduction factor ν/(2− ν) = 1/5. But the distortion overhead
of such recursion, potentially prohibitive for aggressively small ν, would demand careful analysis.
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