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Many real-world networks known as attributed networks contain two types of information: topol-
ogy information and node attributes. It is a challenging task on how to use these two types of
information to explore structural regularities. In this paper, by characterizing potential relationship
between link communities and node attributes, a principled statistical model named PSB PG that
generates link topology and node attributes is proposed. This model for generating links is based
on the stochastic blockmodels following a Poisson distribution. Therefore, it is capable of detecting
a wide range of network structures including community structures, bipartite structures and other
mixture structures. The model for generating node attributes assumes that node attributes are high
dimensional and sparse and also follow a Poisson distribution. This makes the model be uniform and
the model parameters can be directly estimated by expectation-maximization (EM) algorithm. Ex-
perimental results on artificial networks and real networks containing various structures have shown
that the proposed model PSB PG is not only competitive with the state-of-the-art models, but also
provides good semantic interpretation for each community via the learned relationship between the
community and its related attributes.
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I. INTRODUCTION

Many complex systems in the real world take the form of networks, in which a collection of nodes joined together in
pairs by edges or links. Examples include social networks, biological networks, and information networks [1]. One of
the most important tasks in network analysis is to reveal community structures, where communities are groups of nodes
with relatively dense connections within groups but sparse connections between them [2-4]. Besides, as emergence
of online user-generated media (e.g., Twitter, Facebook and Microblogs), networks are not only characterized by
graphs containing node connectivity, but each node also contains rich attribute information. It has attracted a lot
of attention on how to identify community structures in these attributed networks (also called attributed graphs)
in recent years [5-7]. In this situation, three ways can be used to detect communities: using attribute information
only, using topological information only, combining the two types of information. Obviously, using only one type
of information will ignore another type of information. It has shown that combing network topology with attribute
information can not only improve the quality of community detection, but also has potential to provide the semantic
descriptions of communities, and help to understand the functions of communities [7-11].

Existing methods that joint the two types of information can be roughly classified into two categories: model-based
methods [12-21] and other heuristic methods [22-27]. Model-based methods are mainly on the basis of probabilistic
generative models. They model the relationships between node attributes and network structures. By maximizing
a corresponding joint likelihood function, the parameters including the node memberships and the relation between
network structures and node attributes are inferred.

In these models, some models uncover traditional community structure. For example, PCL DC [20] combined a
popularity-based conditional link (PCL) model [20] for links and a discriminative content (DC) model [20] for node
attributes. By introducing popularity and productivity of a node, PPL DC [19] extended PCL DC to directed and
undirected networks. Since both PCL DC and PPL DC assumed that nodes from the same community were more
likely to have links, the models could only detect traditional community structures also known as assortative structure
[13].

Some models uncover a broad range of structures including assortative structure, disassortative structure [13] and
other structures such as bipartite structures, core-peripheral structures and mixture structures. We call these broad
range structures general structures for simplicity. The typical models of this kind are BNPA [12], PPSB DC [16],
NEMBP [28]. BNPA combined Newman’s mixture model (NMM) [29] and a multinomial distribution under the frame
of Bayes to infer the number of communities and community structures. Thanks to NMM model, BNPA could detect
general structures. PPSB DC made use of the advantages of PPL [19] that could capture various node degrees and
GSB [30] that had the capability of detecting general structures. However, PPSB DC simply added the logistic DC
model to the objective function of link model in the similar way with PPL DC. Therefore, it has no ability to describe
the relationships between link communities and node attributes. In addition, we have found that the convergence
of PPSB DC can not be guaranteed since it used a two-stage method to iteratively infer the model parameters.
NEMBP combined degree-corrected stochastic blockmodel [31] and a multinomial distribution to detect structures,
and had a good semantic interpretability because it characterized the relationship between a link community and its
corresponding attribute cluster/topic. However, NEMBP needed to specify the number of topics and the number of
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communities in advance and supposed that the number of communities and the number of semantic topics were exact
the same in all experiments.

Bearing the convergence of a model and the ability to describing the diverse relationships between link communities
and node attributes in mind, in this study, we propose a joint probabilistic generative model based on the assumption
of block structure in stochastic blockmodels [32] and the idea of link communities [33-34] to generate both links and
node attributes. In the model, the process for generating links and that for generating node attributes both follow
Poisson distributions. This makes the likelihood function be constructed in an unified form and the model parameters
can be directly estimated by expectation-maximization (EM) algorithm with convergence properties [35-36]. Although
the multi-links and self-links would be generated because of Poisson distribution, computations become easier without
affecting the fundamental outcome significantly [31]. This is due to the influence of calculation error about multi-links
and self-links will vanish as the size n of the sparse network becomes large [31]. For using a Poisson distribution on
node attributes, we assume that node attributes are high dimensional and sparse [37]. This is common in a lot of
real networks such as paper citation or coauthor networks, user relationship networks on social platforms, etc. In
addition, the proposed generative model for links can generate a very wide range of network structures due to block
structure assumption. By sharing latent variables for links and node attributes, a probabilistic matrix measuring the
relationships of network structures and node attributes is introduced to the joint model, which simply assumes the
nodes in the same community share similar node attributes, therefore, is able to capture multiple semantics for a
community by analyzing its related attributes.

The remaining of this paper is organized as follows. In Section 2, we introduce our model. In Section 3, the model
parameters are estimated by expectation-maximization (EM) algorithm. In Section 4, we evaluate the newly proposed
model on a number of artificial benchmarks and real networks with various structures. In Section 5, we draw our
conclusions.

II. A GENERATIVE MODEL ON ATTRIBUTED NETWORKS

In this section, a joint generative model will be proposed for undirected networks with node attributes. Firstly,
we will introduce the process for generating links based on the block structure assumption [32] and the idea of link
communities [33-34]. Then, the hypothesis and the process for generating node attributes will be described.

Given an attributed network G(V,E,W ) with n nodes V = {1, 2, . . . , n}, m links E = {e1, e2, . . . , em} and K
node attributes, the network is usually represented by an adjacent matrix A = (Aij)n×n and an attribute matrix
W = (Wik)n×K , where Aij = 1 if a link exists between nodes i and j, or 0 otherwise; Wik = 1 if node i has the
k-th attribute, or 0 otherwise. Suppose the network A has c distinct link communities. The nodes connected to a
link community (i.e., a set of closely interrelated links [33]) form a collection of nodes which we call a deduced node

community Vr (r = 1, 2, · · · , c), then we have V =
c⋃

r=1
Vr and each node can belongs to multiple node communities

on account of link communities [33, 38].
In a standard stochastic blockmodel [32], a probability matrix Θ = (θrs)c×c controls the probabilities for generating

links in a network, where θrs is the connecting probability of two nodes i ∈ Vr and j ∈ Vs and is apparently only related
to the communities to which i and j belong. In this study, this constraint is relaxed by introducing a parameter matrix

D = (dir)n×c, where dir is the probability that a node i belongs to the r-th deduced community Vr and
n∑

i=1

dir = 1. We

then use D and Θ together to generate the expected adjacency matrix Â of a network G. Specifically, Ârs
ij = dirθrsdjs

is the expected number of links that lie between nodes i and j in communities Vr and Vs, respectively. Summing
over communities Vr and Vs, the expected total number of links between nodes i and j is Âij =

∑
rs
dirθrsdjs. This

generative process is similar with the model in [30]. Suppose the generation of links is independent of each other and

the real number of links follows a Poisson distribution with mean value Âij , we have

Pr (A|D,Θ) =
∏
i<j

(∑
r,s

dirθrsdjs

)aij

aij !
exp

{
−
∑
r,s

dirθrsdjs

}

×
∏
i

(
1

2

∑
r

dirθrrdir

)aii/2

(aii/2)!
exp

{
−1

2

∑
r

dirθrrdir

}
.

(1)

This model inherits an advantage of the standard stochastic blockmodel that can produce a wide variety of network
structures. For example, small off-diagonal elements and big diagonal elements of Θ would generate traditional
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community structure (i.e., a set of communities with dense internal connections and sparse external ones). Other
choices of probability matrix can generate multipartite, hierarchical, or core-periphery structures, etc.

Now, it’s time for the generative process of node attributes. Usually, the attributes of nodes in a network are
richness so that the dimensionality of attributes is high, but few nodes can have so many attributes at the same time.
In other words, the attributes of nodes are somewhat sparse. Generally, suppose Wik(k = 1, 2, . . . ,K) is independent
and identically distributed and is a binomial distribution (Wik = 0 or 1), high dimensionality and sparsity of node
attributes mean that the dimension K is large and the probability of Wik = 1 in the binomial distribution is small.
Thus, by Poisson limit theorem [37], a Poisson distribution can be used to generate node attributes. It is believed
that nodes in the same community share similar attributes. Let φrk denote the probability that community Vr has

the k-th attribute,
K∑

k=1

φrk = 1 and Φ = (φrk)c×K , then the propensity of a node i in community Vr possessing k-th

attribute can be represented as Ŵ r
ik = dirφrk. Summing over all communities Vr, the mean propensity of a node i

possessing k-th attribute is Ŵik =
∑
r
dirφrk, and we have

Wik ∼ Poisson(Ŵik) = Poisson

(∑
r

dirφrk

)
. (2)

By sharing latent variables for links and node attributes, the generative model for generating topology structure
and node attributes can be described as follows:

Pr (A,W |D,Θ,Φ) =
∏
i<j

(∑
r,s

dirθrsdjs

)aij

aij !
exp

{
−
∑
r,s

dirθrsdjs

}

×
∏
i

(
1

2

∑
r

dirθrrdir

)aii/2

(aii/2)!
exp

{
−1

2

∑
r

dirθrrdir

}

×
∏
i,k

(∑
r

dirφrk

)Wik

Wik!
exp

{
−
∑
r

dirφrk

}
,

(3)

where Θ is symmetrical and
∑
r,s
θrs = 1. Unlike PPSB DC [16] the attribute model in Eq.(3) still follows Poisson

generative process where the parameter Φ quantifies how much the network structures depend on node attributes.
Meanwhile, the attributes that are closely related to a community naturally represent the semantic of the community.
Such semantics can help explain why certain nodes belong to a community. And the semantics are complementary to
structural information for forming network structures.

III. EM ALGORITHM FOR INFERRING THE MODEL PARAMETERS

The model in Eq.(3) is specified by three types of parameters. The first is the observed data: the adjacent matrix
A and the attribute matrix W . The second is the latent data: the cluster label of nodes which takes value 1, 2, . . . , c.
The third is the model parameters: D, Θ and Φ. Neglecting constants and terms independent of the parameters, the
logarithm of Eq.(3) can be expressed as follows:

L (D,Φ,Θ) =
∑
i,j

[
1

2
aij log

(∑
r,s

dirθrsdjs

)
− 1

2

∑
r,s

dirθrsdjs

]

+
∑
i,k

[
Wik log

(∑
r

dirφrk

)
−
∑
r

dirφrk

]
.

(4)

Our goal is to infer group memberships of nodes, i.e., the probabilities of nodes belong to community Vr (r =
{1, 2, · · · , c}). Unfortunately, we cannot measure them directly because they are hidden or latent data. In this
study, an expectation-maximization (EM) algorithm [35] that is convergent and can easily handle models with hidden
variables is used to optimize the joint log-likelihood function.
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In E-step, given the current parameters D, Θ and Φ, calculating an expected value L̄ for the log-likelihood by
averaging over latent variables, we have

L̄ (D,Φ,Θ) =
1

2

∑
ijrs

[
aijq

rs
ij log

(
dirθrsdjs
qrsij

)
− dirθrsdjs

]
+
∑
ikr

[
Wikγ

r
ik log

(
dirφrk
γrik

)
− dirφrk

]
,

(5)

where

qrsij =
dirθrsdjs∑

rs
dirθrsdjs

, γrik =
dirφrk∑
r
dirφrk

(6)

are the expected probabilities of between nodes i(∈ Vr) and j(∈ Vs) to be linked and those of i(∈ Vr) possessing k-th
attribute, respectively. In fact, L̄(D,Θ,Φ) is the lower bound of L(D,Θ,Φ) according to the Jensen’s inequality.

In M-step, given values of qrsij and γrik, we can obtain the estimates of D, Θ and Φ that maximize the expected

log-likelihood L̄(D,Θ,Φ) in Eq.(5) by using Lagrange multiplicator method in the following.

dir =

∑
js

aijq
rs
ij +

∑
k

Wikγ
r
ik∑

ijs

aijqrsij +
∑
ik

Wikγrik
, θrs =

∑
ij

aijq
rs
ij∑

ijrs

aijqrsij
, φrk =

∑
i

Wikγ
r
ik∑

ik

Wikγrik
. (7)

Algorithm 1 EM algorithm for PSB PG

Input:
the adjacency matrix A
the attribute matrix W
the number of communities c
the maximum iteration IT and the threshold ε

Output:
the inferred parameters D,Θ,Φ

1: Initialize D(0),Θ(0),Φ(0)

2: Compute objective function L(0)
(
D(0),Φ(0),Θ(0)

)
by Eq.(4)

3: for t = 1 : IT do

4: E-step: Compute qrsij , γ
r
ik by Eq.(6)

5: M-step: Compute D(t), Θ(t), Φ(t) by Eq.(7)

6: Compute objective function L(t)
(
D(t),Φ(t),Θ(t)

)
by Eq.(4)

7: if
∣∣∣L(t)

(
D(t),Φ(t),Θ(t)

)
− L(t−1)

(
D(t−1),Φ(t−1),Θ(t−1)

)∣∣∣ < ε or t = IT then

8: D = D(t), Θ = Θ(t), Φ = Φ(t); Break;
9: end if

10: end for

The derivation of Eq.(7) can be found in Appendix A. The right term in dir of Eq.(7) visually shows how the node
attributes helps to enforce the intra-cluster similarity. Iteratively updating Eq.(6) and Eq.(7) guarantees to find a
local optimum of the lower bound L̄(D,Θ,Φ) [36]. The detail process for inferring the model parameters is showed
in Algorithm 1. For simplicity, we call the proposed model PSB PG (Poisson general stochastic block model for links
coupling Poisson generative model for attributes).

Initialized scheme of Θ. In the algorithm of PSB PG, the initial values of the matrix Θ will strongly affect the
convergence speed of the algorithm. We know that Θ reflects network structure contained in the network. When
the initial values of Θ are consistent with the actual network structure, the algorithm will converge quickly. When
the initial network structure (i.e., the initial values of Θ) violates the actual network structure, the algorithm will
converge slowly and might reach to the local optimal. Therefore, we use maximum entropy distribution [39] and the
idea of maximum likelihood to design the initialized scheme of Θ. In detail, given random values of parameters with
the exception of Θ, several runs with small number of iterations are performed in three schemes of Θ: the diagonal
elements are more large, the off-diagonal elements are more large, and all elements are almost equal. Then, the
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average of likelihood is calculated for each scheme. The scheme with the largest average likelihood is used to initialize
Θ in our algorithm.

The time complexity of PSB PG algorithm for fitting of our model is mainly controlled by E-step and M-step. For
each iteration in this algorithm, the time complexity to evaluate E-step is O(mc2 + nKc), where m is the number of
links, the time complexity to evaluate M-step is O

(
nc+ c2 + nKc

)
. As the number of communities is much smaller

than the number of nodes, i.e., c� n, the time complexity of M-step can be written as O(nKc). Then, the total time
complexity of the algorithm is O

(
IT
(
mc2 + nKc

))
.

IV. EXPERIMENTS

In this section, we will first evaluate the performance of our model PSB PG on synthetic networks. Through a
case study, we then assess whether the parameter Φ = (φrk)c×K can capture the relationships between communities
and node attributes. Finally, we will compare the proposed model PSB PG with four related methods mentioned in
Introduction section: PPSB DC [16], BNPA [12], NEMBP [28] and PCL DC [20] on artifical and real networks with
various structures. Where, by integrating node attributes into the models, PPSB DC, BNPA and NEMBP have the
ability to detect general structures, PCL DC is good at identifying classical community structures.

For networks with disjoint communities, the widely used Normalized Mutual Information (NMI) [40] index is
adopted to measure the accuracy of each method. For networks with overlapping communities, the generalized NMI
(GNMI) [41-42] is used. The two accuracy metrics are defined as follows.

NMI(V (T ), V (I)) =
H(V (T )) +H(V (I))−H(V (T ), V (I))

(H(V (T )) +H(V (I)))/2
, (8)

GNMI
(
V (T ), V (I)

)
=

1

2

[
H
(
V (T )

)
−H

(
V (T )|V (I)

)
+H

(
V (I)

)
−H

(
V (I)|V (T )

)]
max

{
H
(
V (T )

)
, H

(
V (I)

)} . (9)

Where V (T ) =
(
V

(T )
1 , V

(T )
2 , · · · , V (T )

c

)
and V (I) =

(
V

(I)
1 , V

(I)
2 , · · · , V (I)

c

)
are true communities and inferred com-

munities given a network, respectively; H(V (T ))(H(V (I))) is the entropy of the partition V (T )(V (I)); H(V (T ), V (I))
is the joint entropy; H(V (T ) | V (I)) is the conditional entropy inferring V (T ) given V (I) and vice versa. A larger
NMI means a better partition for a disjoint partition, and a larger GNMI means a better partition for a overlapping
partition.

IV.1. Effectiveness of PSB PG on Synthetic Networks

In this section, the efficiency of the proposed method is tested on artificial benchmarks with various structures
including non-overlapping community structures, overlapping community structures, bipartite structures, community
structures with multiple attribute semantics. Since generative models are sensitive to their initial values, we run our
model 30 times and report the average results.

LFR benchmarks with disjoint communities. Following the parameters used in [43], we generated networks
using the following parameter settings: {N = 500, k = 15,maxk = 45, µ = 0.1 ∼ 0.9,minc = 20,maxc = 50},
where N is the number of nodes, k is the average degree of nodes, maxk is the maximum degree of nodes, µ is the
mixing parameter, minc is the minimum for the community sizes, maxc is the maximum for the community sizes.
The strength of network structure is controlled by mixing parameter µ, which is the fraction of nodes connect to
nodes in the other communities. The smaller µ, the clearer the community structure is. The distributions of degrees
and community sizes are power laws with exponents η = 2 and β = 1, respectively. Under this parameter setting,
we generate a batch of artificial networks with µ = 0.1, 0.2, · · · , 0.9 and each network contains 14 communities (i.e.,
c = 14).

Given a LFR network, we then use the following strategy to generate node attributes. Assuming that each commu-
nity has strong correlation with h = 5 binary attributes (the correlation is controlled by the probability pin) and weak
correlation with the rest (c− 1)h = (14− 1)h = 65 binary attributes (this correlation is controlled by the probability
pout). Thus, each node in community Vr has 70 attributes. Given a community Vr, h = 5 attributes with strong
correlation were generated by W r

i,5 ∼ Ber(5, pin), the remaining 65 attributes with weak correlation were generated

by W
s(s 6=r)
i,65 ∼ Ber(65, pout). Fixed pout = 0.1, let pin range from 0.6 to 0.9. We generated 4 groups of attributed

networks. The larger pin, the tighter relationships between communities and node attribute are.
On these attributed networks, the community identification results of PSB PG were shown in Figure 1. As can be
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FIG. 1. The performance of the proposed method PSB PG on LFR networks with disjoint communities. The average NMI for
each µ was calculated from 30 runs. ”NOattr” represents the identification results on networks with no attributes.

seen from Figure 1, overall, integrating links of a network and node attributes will significantly boost the performance
of community detection, especially when µ ≥ 0.6. This can be easily explained by the right term of dir in Eq.(7).
Namely, when network structure is vague, the attribute information

∑
k

Wikγ
r
ik is very useful to improve the accuracy

of node assignments.
LFR benchmark with overlapping communities. It is well known LFR generator can generate overlapping

communities. In this study, we set om = 2 (which is the number of memberships of the overlapping nodes) and
on = 50, 100, or 150 (which is the number of overlapping nodes), therefore, the fraction of overlapping nodes is 10%,
20% or 30%. The rest parameters are the same as the ones of LFR benchmark with non-overlapping communities in
the previous experiments.

On these attributed networks, the overlapping community identification results of PSB PG were shown in Figure
2, where we use the diagonal element of Θ = (θrs)c×c as a threshold, if dir > θrr, we assigned the node i to the
community Vr.
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(a) Overlapping 10%
µ
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NOattr
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(b) Overlapping 20%
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(c) Overlapping 30%
µ

FIG. 2. The performance of the proposed method PSB PG on LFR networks with overlapping communities. The average
GNMI for each µ was calculated from 30 runs. ”NOattr” represents the identification results on networks with no attributes.

As can be seen from Figure 2, the identification results on networks with node attributes are better than the ones
without attributes. The bigger pin, the better accuracy is. For the mixing coefficient µ=0.8 or 0.9, the network
structures are not easy to be identified by any existing overlapping community detection method using topology
merely, but our proposed method works well when taking node attributes into account.

Bipartite networks. In this group of experiments, we evaluated the performance of the proposed method on
other network structures. We used Bipartite networks as an example, which were generated by ER (Erdös-Rényi)
model [44]. In detail, each network has two subgraphs with size 200 and 300, respectively. There are no links within
subgraph. And the connecting probability between-subgraphs is pER = 0.8, 0.6, 0.4, 0.2, 0.1, 0.05 or 0.01. Similarly,
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we assume each subgraph has strong correlation with h = 5 attributes at the strength pin = 0.6, . . . , 0.9 and has weak
correlation with the other. The bipartite identification results of PSB PG on these attributed networks were shown
in Figure 3.a.
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(a) Bipartite random graphs
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(b) Disassortative random graphs
θ12

FIG. 3. The performance of the proposed method PSB PG on (a) bipartite networks, (b) disassortative networks. The average
NMI of each point was calculated from 30 runs. ”NOattr” represents the calculated results with no attributes.

From Figure 3.a, the proposed method PSB PG works very well on the bipartite networks with or without attribute
information with the exception of pER = 0.01 under the condition no node attributes attached to the networks. At
this situation, the bipartite structure is too vague to be detected. However, with the help of node attributes, the
structure can be easily detected.

In Figure 3.b, we further showed the results of our method when a small number of links were generated within each
subgraph of a bipartite structure. These networks (i.e., disassortative networks [13]) in Figure 3 (b) were generated
using the idea of stochastic blockmodel, and the probability matrix of links between communities is

Θ = (θrs)c×c = (θrs)2×2 =

(
0.2 θ12
θ12 0.2

)
, (10)

where θ12 = 0.8, 0.6, 0.4 or 0.2. The size of networks are still 500, and two subgraphs are also 200 and 300, respectively.

As it is shown in Figure 3.b, when θ12 = 0.2, network structures are too vague to be detected, but at the help of
node attributes, the network structures still can be almost exactly detected by our model.

GN networks with multiple semantics for each community. In this group of experiments, we used GN-type
networks [2] as the basis, which can also be generated by LFR generator. Where each network contains 4 communities.
The generated network structure, their related topics and the identification results were showed in Figure 4.a-d.

In Figure 4.a, we assume community V 1 have 2 topics (i.e., Topic 1 and Topic 2), and each of the other three
communities V 2, V 3 and V 4 is related to the topic Topic 2, Topic 3 or Topic 4, respectively. In Figure 4.b, we
assume communities V 1 and V 2 share the same 2 topics: Topic 1 and Topic 2, the other two V 3 or V 4 only contain
one disjoint topic Topic 3 or Topic 4. Each topic contains 5 attributes showed in Figure 4.c-d. As shown in Figure
4.a-b, adding node attributes promotes the performance of community detection, especially when network structure
is not clear (Zout > 6). The results showed in Figure 4.a-b have demonstrated that the inconsistent memberships of
communities and attributes has little effect on the community detection ability of PSB PG.

In Figure 4.c-d, Φ = (φrk)c×K corresponds to the block matrix of Figure 4.a-b (zout = 1, pin = 0.9), respectively,
where φrk quantifies how much the community V r depends on the k-th attribute. The stronger the relevance of
communities and topics, the greater the corresponding value of φ. For example, in Figure 4.c, the inferred φ1k(k =
1, 2, . . . , 10) is significantly larger than the other φ1k(k = 11, 12, . . . , 20) because, the community V 1 is strongly
related to Topic 1 (including 1-5 attributes) and Topic 2 (including 6-10 attributes), and weakly related to Topic 3
and Topic 4. Similarly, in Figure 4.d, the inferred φ1k(k = 1, . . . , 10) and φ2k(k = 1, . . . , 10) are significantly larger
than the other φ1k(k = 11, 12, . . . , 20) and φ2k(k = 11, 12, . . . , 20) because community V 1 and community V 2 are
strongly related to Topic 1 and Topic 2. This phenomenon has illustrated that the newly proposed model PSB PG is
able to capture the relationships between communities and attributes, whenever they are consistent or inconsistent.
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FIG. 4. The performance of the proposed model PSB PG on GN networks when the memberships of communities and
attributes are inconsistent. ”Topic 1”, ”Topic 2”,”Topic 3” and ”Topic 4” stand for semantic topics. Each topic contains five
attributes. ”V 1”, ”V 2”, ”V 3” and ”V 4” represents communities. For (a) and (b), the average NMI was calculated from
30 runs. ”NOattr” represents the experimental results on networks without node attributes. For (c) and (d), each element of
Φ = (φrk)c×K quantifies how much the community V r relies on the k-th attribute.

IV.2. The Interpretability of Inferred Communities: A Case Study

In this section, by a case study, we intend to show the interpretability of the newly proposed model PSB PG by
analyzing the model parameter Φ = (φrk)c×K on the real Twitter dataset: ”politics-uk” [45]. The ”politics-uk” is
a collection of 419 users, corresponding to 419 members of Parliament in the United Kingdom. The ground truth
consists of five groups, corresponding to political parties: Conservative, Labour, Liberal Democrat (Libdem), Scottish
National Party (Snp) and other (see Figure 5). The 419 active users on Twitter post 539,592 tweets and contain
3,614 Twitter lists. The links are constructed by the users whom they follow. The attribute information of each user
covers a vector constructed from the aggregation of both ”names” and ”descriptions” of the 500 Twitter lists to which
each user has most recently been assigned. The dimension of attributes of each user is 2879. The data files can be
downloaded from http://mlg.ucd.ie/aggregation/index.html.

We select the top 100 attributes for each community according to their values of inferred φrk. The semantics implied
in each community can be visualized by Figure 5. We then have the semantic interpretation of each community by
using its mostly related attributes. Taking political party Labour as an example, the users in this party are more
concerned about working and government strategies. In general, the parameter matrix Φ = (φrk)c×K of our model is
capable of capturing the relationships between communities and attributes. These inferred attributes can help us to
understand the semantics of each community.

http://mlg.ucd.ie/aggregation/index.html
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FIG. 5. The inferred semantic interpretation of communities on the ”politics-uk” dataset. Users are coloured and labelled
based on the ground truth which consists of five groups, corresponding to five different political parties. The inferred top 100
attributes are placed beside each community.

IV.3. The Comparison of models on Artificial and Real Networks

In this section, we will compare the proposed model with the state-of-the-art generative models PPSB DC [16]
BNPA [12], NEMBP [28], PCL DC [20] on artificial networks and real networks with various structures.

First, we have compared these models on artificial networks contained different types of structures including
LFR6 community, LFR7 community, LFR8 community, ER Bipartite, SBM Disassortative, SBM Mixture GNmulti-
semantics. LFR6 community, LFR7 community and LFRm8 community stand for LFR networks with community
structures in Figure 1 when µ = 0.6, 0.7, 0.8 and pin = 0.6. ER Bipartite and SBM Disassortative represent the net-
works with bipartite structure and disassortative structure corresponding to Figure 3.a-b (pin = 0.6). SBM Mixture
stands for a network with mixture structure generated by SBM with block matrix

Θ =

 0.10 0.40 0.10
0.40 0.05 0.02
0.10 0.02 0.01

 ,

whose sizes of three communities are 80, 100 and 120 respectively, and each community has strong correlation with 5
binary attributes (pin = 0.6) and weak correlation with the rest 10 attributes (pout = 0.1). GNmulti-semantics stands
for the GN network corresponding to Figure 4.b (pin = 0.9, Zout = 1). The average accuracy (measured by NMI)
among 30 runs of the compared models are shown in Table I and the best results are marked in bold.

TABLE I. Comparison of generative models on synthetic networks

NMI PSB PG NEMBP BNPA PPSB DC PCL DC

(a) LFR6 community 0.9791±0.0211 0.9394±0.0170 0.9610±0.0022 0.8767±0.0263 0.9779±0.0089

(b) LFR7 community 0.9526±0.0236 0.9293±0.0205 0.9319±0.0162 0.8747±0.0498 0.8896±0.0369

(c) LFR8 community 0.8946±0.0279 0.9200±0.0185 0.9508±0.0054 0.8667±0.0304 0.5965±0.0422

(d) ER Bipartite 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9558±0.0213 0.0325±0.0196

(e) SBM Disassortative 1.0000±0.0000 1.0000±0.0000 0.0011±0.0003 0.9600±0.0238 0.0473±0.0528

(f) SBM Mixture 0.9481±0.0046 0.9047±0.0000 0.6760±0.0007 0.4579±0.0522 0.1857±0.0489

(g) GNmulti-semantics 1.0000±0.0000 0.9526±0.0857 0.8571±0.0000 0.8409±0.0536 0.8534±0.0136

As shown in Table I, for community structures (a, b, c), all of five models work well with the exception of PCL DC
on LFR8 community. Relatively speaking, PSB PG, NEMBP and BNPA are better than PPSB DC and PCL DC. For
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other network structures (d, e, f), the new model PSB PG is superior to other models. Unexpectedly, the performances
of BNPA are very poor on networks with mixture structures (i.e., e, f). PCL DC shows the worst performance on
these networks as expected since it is designed to detect community structures. Moreover, PSB PG shows the best
performance for detecting structures with multiple semantics. NEMBP shows a good semantic interpretability, but
the mixture of topics on communities leads to the worse performance than on communities where each contains a
single topic. An illustration example can be shown in Figure 6 and Figure 4.d by comparing the predicted relationships
between communities and corresponding topics of NEMBP and PSB PG. By Figure 6 (the communities V 1 and V 2
have multiple topics), the relationships between communities and attributes inferred by NEMBP is worse than the
ones by the new model PSB PG (Figure 4.d).
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FIG. 6. The relationships between communities and attributes inferred by NEMBP. The same relationships inferred by the
proposed method PSB PG are shown in Figure 4.d

We then have compared the proposed model with PPSB DC, BNPA, NEMBP, PCL DC on real networks with
mixture structures (the first four networks: Cornell, Texas, Washington, Wisconsin in WebKB datasets (http://www-
2.cs.cmu.edu/∼webkb/)) and community structures (Cora and Citeseer [46]). The properties of these networks are
showed in Table II, where n,m and c stand for the number of nodes, links and communities, respectively; K is the
dimension of node attributes. On these networks, we run all models 30 times and report their average accuracy (NMI).
The experimental results are showed in Table III. The best results are marked in bold.

TABLE II. The properties of real networks

Networks Cornell Texas Washington Wisconsin Cora Citeseer

n 195 187 230 265 2708 3312

m 304 328 446 530 5429 4723

K 1703 1703 1703 1703 1433 3703

c 5 5 5 5 7 6

TABLE III. Comparison of generative models on real networks

NMI PSB PG NEMBP BNPA PPSB DC PCL DC

Cornell 0.3115±0.0576 0.1848±0.0433 0.0777±0.0083 0.1211±0.0231 0.0531±0.0104

Texas 0.3072±0.0362 0.3036±0.0252 0.2217±0.0374 0.3056±0.0060 0.0398±0.0067

Washington 0.3013±0.0323 0.2140±0.0378 0.2555±0.0135 0.2391±0.0058 0.0956±0.0181

Wisconsin 0.3729±0.0279 0.2863±0.0539 0.3213±0.0102 0.2319±0.0089 0.0463±0.0096

Cora 0.3442±0.0382 0.4166±0.0259 0.4446±0.0169 0.4659±0.0090 0.3641±0.0228

Citeseer 0.2543±0.0364 0.2298±0.0199 0.3158±0.0077 0.3870±0.0091 0.3553±0.0335

http://www-2.cs.cmu.edu/~webkb/
http://www-2.cs.cmu.edu/~webkb/
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From Table III, it can be seen that the proposed model PSB PG has the best accuracy on the first four networks
with mixture structures (i.e., Cornell, Texas, Washington, Wisconsin), while PCL DC performs the worst on these
four network because it is designed to uncover classical community structures. On Cora and Citeseer, PPSB DC
has showed the best performance. However, PPSB DC can not converge in some cases, especially when the initial
values of block matrix θ completely opposite the real structure contained in a given network. For example, Figure
7.a shows a case that the objective function of PPSB DC oscillates with the number of iterations. At the same
initial values, PSB PG shows the tendency of convergence (see Figure 7.b). In summary, PSB PG is able to detect
general structures, especially good at identifying mixture structures, has flexible interpretability and its convergence
is guaranteed by the properties of EM algorithm [36]

(a) Iterations

Lo
gi

st
ic

 fu
nc

tio
n

0 50 100 150 200 250 300 350 400

−
9.

3
−

9.
1

−
8.

9
−

8.
7

−
8.

5

(b) Iterations

Li
ke

lih
oo

d 
ob

je
ct

iv
e 

fu
nc

tio
n

0 50 100 150 200 250 300 350 400−
18

96
30

−
18

66
60

−
18

36
90

FIG. 7. Convergence property of PPSB DC (a) and that of PSB PG (b) on Cornell network.

V. CONCLUSION AND DISCUSSION

It is a challenging task on exploring general network structures in attributed networks. In this study, based on the
block structure assumption in stochastic blockmodels and the idea of link communities, a principled generative model
PSB PG is proposed to joint these two types of information. The proposed model gives a unified generative process for
generating links and node attributes. The parameters of the model can be easily inferred by expectation-maximization
(EM) algorithm with guaranteed convergence. The experimental research has showed that PSB PG model not only
has the ability to detect a wide range of structures including non-overlapping and overlapping community structures,
bipartite structures, mixture structures, etc., but also provides a flexible way to give a semantic interpretation for
each detected community, whenever the community contains a topic or multiple topics.

In the future, we intend to further improve the effectiveness of our model by considering degree-corrected parame-
ters into the model akin to PPSB DC and NEMBP. Other direct extensions of this work concern more sophisticated
inference techniques rather than EM algorithm, such as stochastic variational inference [47], to speed up the compu-
tation.
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APPENDIX A

From Eq.(5), we know that the log-likelihood function is

L̄ (D,Φ,Θ) =
1

2

∑
ijrs

[
aijq

rs
ij log

(
dirθrsdjs
qrsij

)
− dirθrsdjs

]
+
∑
ikr

[
Wikγ

r
ik log

(
dirφrk
γrik

)
− dirφrk

]
.

(5)

Under the constraint
n∑

i=1

dir = 1, and ignoring irrelevant constants, one has

L̃ (D) =
1

2

∑
ijrs

[
aijq

rs
ij log (dirdjs)− dirθrsdjs

]
+
∑
ikr

[Wikγ
r
ik log (dir)− dirφrk] +

∑
r

γr

(
1−

∑
i

dir

)
.

(A1)

Taking the first derivative of the Lagrangian L̃ (D) with respect to dir and set it to be zero, we have

∂L̃ (D)

∂dir
=

∑
js

(
aijq

rs
ij

)
dir

−
∑
js

(θrsdjs) +

∑
k

Wikγ
r
ik

dir
−
∑
k

(φrk)− γr

=

∑
js

(
aijq

rs
ij

)
dir

−
∑
s

θrs +

∑
k

Wikγ
r
ik

dir
− 1− γr = 0.

(A2)

∑
ijs

(
aijq

rs
ij

)
−
∑
s

θrs +
∑
ik

(Wikγ
r
ik)− 1− γr=0. (A3)

By (A2) and (A3), we can have dir in Eq.(7) in the following.

dir =

∑
js

aijq
rs
ij +

∑
k

Wikγ
r
ik∑

ijs

aijqrsij +
∑
ik

Wikγrik
.

Note that the constraint
c∑

r,s=1
θrs = 1, one has

L̃ (Θ) =
1

2

∑
ijrs

[
aijq

rs
ij log (θrs)− dirθrsdjs

]
+ λ

(
1−

c∑
r,s=1

θrs

)
. (A4)

Taking the first derivative of the Lagrangian L̃ (Θ) with respect to θrs and setting it to be zero, one has

∂L̃ (Θ)

∂θrs
=

1

2

∑
ij

(
aijq

rs
ij

)
θrs

− 1

2

∑
ij

(dirdjs)− λ=0. (A5)

∑
ijrs

(
aijq

rs
ij

)
− 1− 2λ=0. (A6)

By (A5) and (A6), we can derive the equation θrs in Eq.(7) below.

θrs =

∑
ij

aijq
rs
ij∑

ijrs

aijqrsij
.
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Similarly, for φrk, one has

L̃ (Φ) =
∑
ikr

[Wikγ
r
ik log (φrk)− dirφrk] +

∑
r

ηr

(
1−

K∑
k=1

φrk

)
. (A7)

∑
i

Wikγ
r
ik

φrk
−
∑
i

dir − ηr = 0. (A8)

∑
ik

Wikγ
r
ik − 1− ηr = 0. (A9)

Then, we get the equation φrk in Eq.(7) as follows:

φrk =

∑
i

Wikγ
r
ik∑

ik

Wikγrik
.
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