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Lisboa, Lisboa, Portugal.

Abstract

Understanding the behavior of an infection network is typically addressed from

either a microscopic or a macroscopic point-of-view. The trade-off is between

following the individual states at some added complexity cost or looking at the

ratio of infected nodes. In this paper, we focus on developing an alternative

approach based on dynamical linear systems that combines the fine information

of the microscopic view without the associated added complexity. Attention

is shifted towards the problems of source localization and network topology

discovery in the context of infection networks where a subset of the nodes is

elected as observers. Finally, the possibility to control such networks is also

investigated. Simulations illustrate the conclusions of the paper with particular

interest on the relationship of the aforementioned problems with the topology

of the network and the selected observer/controller nodes.
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1. Introduction

The network topology identification problem refers to the challenge of de-

termining the links or connections among the various components in a network.

Current research trends relating to this topic include source localization and

structure discovery that can be found in many applications in fields such as



Biology [1], Social Sciences [2], Computer and Electrical Engineering, Business,

amongst others. In [3], network observability and source localization are dis-

cussed for an infection network model. The time before all nodes are infected

depends on the topology, namely on the nodes degree, i.e., the number of im-

mediate neighbors.

Motivation for this work comes from the study of infection networks of peo-

ple, namely for understanding outbreaks of diseases and infections in the world.

In computer sciences, it may be useful to understand the spread of computer

virus, exchange of P2P files or discover the topology of a network from the local

measurements of distributed algorithms. We also envisage the case where one

entity wants to estimate the network and is allowed to run a normal algorithm

that exchanges local values with neighbors.

There is a vast body of work in the context of epidemics networks avail-

able in the literature (the interested reader is directed to a survey of traditional

techniques in [4]). Typically, the initial approach is to consider a mean field

approximation of the infection process and then analyze what happens to the

average case or the percentage of infected nodes in the network. One of the ear-

liest works presented can be found in [5, 6] and additional study of the threshold

dividing the cases of full infection or recovery is given in [7]. Such models pre-

senting the evolution of the percentage of infected nodes have attracted a lot of

attention both in continuous-time [8] and discrete-time [9].

Different variants of epidemics can be found in the aforementioned literature:

Susceptible-Infected (SI), Susceptible-Infected-Susceptible (SIS), Susceptible-

Infected-Recovered (SIR), and, additionally the Susceptible-Exposed-Infected

(SEI) [10]. Other studies such as considering nodes entering and leaving in a

stochastic fashion [11] and studying the evolution by explicit series solution of

the SIR and SIS epidemic models [12] have also been considered. Nevertheless,

all these approaches have shortcomings in the sense that only the macroscopic

view is considered. If one would like to distinguish what happens to some indi-

vidual nodes, other alternatives are required.

An approach in a different direction found in the literature is to consider



the epidemics as a group of nodes interconnected by a network that has a state

indicating their current status: infected, recovered, etc. This normally entails

the use of Markov Chains to model the infection process and examples can be

found in [13, 14, 15, 16, 17]. These references investigate slightly different models

either with self-infection links or not in order to discuss what is the threshold

that leads the network to go to a full infected or disease-free state and how

the topology contributes to the transient. The Markov approach is intrinsically

a microscopic view that considers the individual states. Individual states will

amount to exponential state space, i.e., if there are 2 possible states and n nodes

it will be 2n, 3n if it is infected, susceptible and recovered, and so on. A clear

trade-off occurs between the two approaches in the sense that the macroscopic

loses important individual information but its description is amenable whereas

the microscopic view focuses on the particular nodes but has an exponential

state-space on the number of nodes. Efforts to analyze the Markov model and

simplify the computation needed to check the steady-state of this large state

space model have also been investigated in [18]. In [16] it is first computed

the probability that each node is infected by any neighbors before computing

relationships between the parameters that render a full infection or a disease-

free network. In this paper, the approach is focused on the microscopic view in

the deterministic setting where infected nodes will spread to their neighbors.

In this paper, the approach is to follow the model introduced in [3] as a

way to have a microscopic view while avoiding the exponential growth of the

state space by introducing a nonlinear operation on the state. The main objec-

tive is to leverage the model and make it suitable for more general discussions.

Three topics are of interest, namely source localization of the infection node

(discovering who was the initial infected node that caused the epidemic), net-

work topology identification (finding based on the measured output what is

likely to be the interconnection among the various nodes), and being able to

control the steady state in an optimized fashion for the simpler model (see [19]

for a discussion on the control of the complex macro version of the SIR model).

All problems are of practical interest in a real-world application: determining



who was the initial infected person or equipment; gathering information about

the interconnections in the network from the measurements of how the virus or

disease is spreading; controlling the propagation through a recovery process.

The subject being studied in this paper closely relates to that of Compressed

Sensing where some signal is intended to be reconstructed based on a partial

observation of the network state. In [20], the framework of compressed sensing

is used to retrieve the sparse network topology for a dynamical linear system.

The Least Absolute Shrinkage and Selection Operator (LASSO) have also been

used in [21, 22] with an `1 penalty to ensure a sparse solution (the `1 norm is

the sum of the absolute value of the entries of the vector and serves as a surro-

gate to minimize the number of non-zeros elements and get a sparse solution).

The herein proposed algorithm also adopts a similar penalty adjusted for our

respective problem.

In [23], authors propose the design of a Bayesian network to estimate the

probabilities associated with each connection in the network. A similar opti-

mization can be posed to construct the sparsest probability transitions of the

network from the data of the evolution of the state.

Recently, network identification problem has received a lot of attention by

different research communities. For example in smart grids, topology identi-

fication has been performed using convex optimization or voltage correlation

analysis in order to optimize the power system efficiency in [24] and [25], re-

spectively. In [24], a maximum a posterior-based mechanism, embedding the

prior information on the breaker status, is proposed to enhance the identifica-

tion accuracy. In [25], the goal is to reconstruct the topology of a portion of

the power distribution network, given a dataset of voltage measurements. For

Bayesian Networks (BNs), the authors in [26] proposed a BN structure learning

algorithm to determine large-scale BN structures from high-dimensional data.

The main idea also has some parallel to the concept of finding which links must

be present in the network based on their likelihood given the measurements.

In [27] and [28], it is considered the diffusion of a rumor or virus in a large-

scale network with deterministic propagation. Different models have also been



used with the purpose of determining the source of the infections based solely

on local measurements of some states of other nodes [3], [29], [30] and [31].

The method in [29] makes use of the Minimum Description Principle (MDP) to

find in an initial phase the more likely nodes to be classified as sources using

the submatrix-Laplacian method, and then determining the actual source by

a designed MDP. The localization of multiple sources is settled in [30], which

builds the graph Laplacian matrix in order to standardize each eigenvector com-

ponent. Resorting to a threshold, the network nodes are clustered by the time

they emitted. Therefore, multiple sources can be localized through the knowl-

edge of which nodes reduce the most the largest eigenvalue of the adjacency

matrix after its removal. The deterministic propagation has also been tested

using real data. In [31], a crawl of Twitter is used as a data set to a rumor

detection and single source identification through a greedy algorithm.

In another direction, finding the source of the spreading process can be

thought as the isolation of a fault occurring at one of the observed nodes. The

task can be performed in a distributed fashion resorting to filters that encode

each of the faults (i.e., each of the nodes injecting a non-zero signal) such as

the work in [32] and [33] for the collaborative version where nodes share their

estimates along with the normal procedure of the model. The models based on

fault identification typically have the disadvantage that one needs to consider

multiple combinations if more than one source is possible. Another point to

notice is that fault identification for this case will be equivalent to the possible

solutions to the observability equation so, in a sense, we are checking which

fault signals have the smallest norm.

Contributions This paper relates to the aforementioned approaches of con-

sidering a deterministic propagation [3], [27] and [28] instead of a stochastic

(typically using a Markov Chain) version. Deterministic propagation entails

that nodes become infected/informed depending on their neighbors and not as

a result of a random variable, as well as their state remaining unchanged unless

an additional process of cure is started. The intuitive idea is to avoid a complex

description of a microscopic view of the propagation but retaining the same



granularity. To this end, a linear model is considered for the system followed

by a non-linear operation corresponding to the observation. In a sense, this can

be thought of as the underneath state of the linear system corresponding to

the count of the virus and the saturation used to declare an infection when the

number of virus is sufficient to overcome the defense response.

In a social network context, this can be interpreted as the most likely opinion

of a person given the input he/she has received from his/her immediate contacts.

The idea is inspired in the work [3] followed by a generalization to an unknown

initial infection time. The source localization and network identification can

then be revisited through a cardinality minimization problem relaxed to be an

l1 minimization [34]. Leveraging this new approach, we are able to use linear

systems techniques to obtain results on how to control the infection. A previous

conference paper [35] from the same authors has already introduced the problem

of network topology identification for the model with unknown infection time.

This paper extends those results to the possibility of recovery and also studies

the control aspect of the network.

The contributions of this paper can be summarized as follows:

• A general diffusion model is presented that considers unknown initial infec-

tion time and can incorporate additional infection and recovery processes;

• The formulation of the topology identification as a linear program for the

general model;

• Definition of the controllability of the infection process and how to com-

pute control laws based on standard linear time-invariant systems theory;

• Formalization of the optimal control strategy for the infection network.

The remainder of the paper is organized as follows. We provide a descrip-

tion of the SI and SIR diffusion processes in Section 2. The source localization

problem and the observability of the proposed models are investigated in Sec-

tion 3. Section 4 describes the convex solution for the network topology discov-

ery problem under the diffusion models while Section 5 details the analysis of



the controllability and reachability of the infection networks in addition to pro-

viding ways to compute minimum energy controls that drive the system to the

full recovery or to any desirable configuration. Simulation results are presented

in Section 6. Concluding remarks and directions for future work are offered in

Section 7.

2. Infection Models

In the current section two models are detailed: Susceptible Infected (SI)

where the nodes are either infected or susceptible to be contaminated; and the

Susceptible Infected Recovered (SIR) which allows for nodes to return to a state

with no virus. In the sequel, details are provided on how to write the SI and

SIR models as a linear time invariant system with a nonlinear operation on

the output. The following general notation is going to be used throughout the

paper.

Notation : We let 1n := [1 . . . 1]ᵀ and 0n := [0 . . . 0]ᵀ indicate n-dimension

vector of ones and zeros. Dimensions are omitted when no confusion arises.

The vector ei denotes the canonical vector whose components equal zero, except

component i that equals one. The notation ‖v‖1 :=
∑n
i=1 |vi| for a vector v.

2.1. Susceptible Infected (SI) model

A network of n components is defined by the node set V := {1, 2, · · · , n}

and the edge set E ⊆ V × V containing all pairs (i, j) such that there exists a

connection from node i to node j. We define the adjacency matrix A ∈ Rn×n

representing the network structure corresponding to the set E.

Matrix A can be defined as

Aji =

1, if (i, j) ∈ E

0, otherwise

. (1)

Moreover, throughout the paper it is assumed an undirected topology which

implies that A is symmetric, i.e., A = Aᵀ.



Following the concepts in [3], a rumor or infection cannot be reversed and,

therefore, the nodes are either susceptible to the infection or already infected.

In the literature this model has been known as the Susceptible-Infected (SI)

model. As a consequence, a single infected node at the initial time will result

in all nodes receiving the infection at some point in the future, provided the

network is connected. The process is deterministic and following [3], if a node

is infected at discrete time t, all its neighbors will be infected at t+ 1.

The infection state is denoted as a binary vector x(t) ∈ {0, 1}n, where entries

equal to one in x(0) identify the infection sources. Naturally, for a connected

graph, there exists a horizon N = n − 1 (i.e., the largest diameter of a n-node

network) such that x(N) = 1n, corresponding to a full infection. The vector of

measurements y(·) ∈ {0, 1}m corresponds to the state of each m sensed nodes.

Since y(·) represents the measurements from the sensors, matrix C will have a

row per sensor with an entry equal to one corresponding to which node is being

sensed (for example, if node 2 is being measured we have
[
0 1 0 · · · 0

]
,

i.e., be equal to eᵀ
2). It is convenient to define the nonlinear operation that

will give the status of a node given its internal infection count. The following

notation applied to a matrix M:

Mij =

1, if Mij > 0

0, otherwise.
. (2)

Additionally, let us introduce the transition matrix that takes the initial state

to x(t) as:

Φ(t, tinitial) = At−tinitial + At−tinitial−1. (3)

Given the aforementioned definitions, the next theorem shows that the Susceptible-

Infected (SI) dynamics can be modeled through a dynamical system perspective

by considering a Linear Time-Invariant (LTI) followed by a nonlinear saturation

function to get the status of each node. This result can be found in [3] and is

added herein for completeness.

Theorem 1 (Diffusion Susceptible-Infected (DSI) model [3]). The SI model



is equivalent to the dynamical system modeled by the equations:

x(t) = Φ(t, 0)x(0)

y(t) = Cx(t)
, (4)

where Φ(t, 0) = At + At−1.

The network state equation in Theorem 1 assumes the initial infection time

is known and set to be the origin of the time index t. One of the objective of this

paper is to elaborate on a model that can encompass many variations of infection

networks. Initial time of infection is typically not known and for that reason

we introduce a General Diffusion Model which assumes an initial zero condition

and is subject to an exogenous excitation corresponding to the infection. As a

consequence, we can have the input vector u(·) serving as the injection of the

infection onto the source node at some later point in time. Therefore, we can

write a related model with a state vector z(t) ∈ {0, 1}n and infecting vector

u(t) ∈ {0, 1}n, having non-zero entries to signal new infections at time t. Given

that u(·) accounts for all infection processes, we have z(0) = 0n. We also

remark that multiple infections can be initiated at different time instants using

this model and, as discussed later in the paper, that the u(·) vector can also

be used as a recovery for the infection started at some origin node, resulting

in the SIR model. In the next theorem we show that the General Diffusion

Susceptible-Infected (GDSI) model is a shifted version of the DSI model. The

proof can be found in Appendix A.1.

Theorem 2 (General Diffusion Susceptible-Infected (GDSI)). The DSI

model in Eq. (4) without knowledge of the initial infection is equivalent to the

dynamical system defined by the following equations:

z(t) = Φ(t, 0)z(0) +

t−1∑
τ=0

Φ(t, τ + 1)u(τ)

y(t) = Cz(t)

, (5)



which can be rewritten as:

z(t) =

t−1∑
τ=0

Φ(t− τ − 1, 0)u(τ)

y(t) = Cz(t)

. (6)

A clear advantage of the GDSI model is that it allows to envisage other

possible scenarios to be studied other than the SI model. In particular, Eq.

(5) encompasses the SIR model and allows the case of nodes being healed and

multiple infections outbreaks. In such cases, the signal u can have different

types of values to model when an infection appeared in the network and when

a cured was applied to a specific node.

2.2. Susceptible Infected Recovered (SIR) model

The SIR model assumes that nodes can return to a state of no infection

by some exogenous action. The study of unknown initial state in Theorem 2

enables the introduction of more complex behaviors such as multiple infections

and recoveries using the u(·) signal in our linear time-invariant version of the

infection model in Eq. (5) with z(0) = 0n. By purposely choosing the input

u(·), it is possible to simulate different types of rules for how infections and

recoveries interact. In the following result, we present the case where the last

infection/recovery is the most powerful and eventually dominates over the entire

network. In a sense, the intuition behind Eq. (5) can be understood as the

state z(·) accounting for the number of bacteria/virus minus the number of

antibiotics/antivirals, followed by a saturation. Thus, if the count is positive, the

nonlinear operation translates that the node is infected and if zero or negative

it is recovered.

The following notation will be useful. The set of sorted times of the τ initial

infections and recoveries is given by Tτ = {t1, · · · , tτ}. When no subscripts

are used, it refers to the set of all infections/recoveries that happened in the

process (for example T with no subscript is the set of all sorted infection and

recovery times). The diameter of a network d represents the maximum number

of links in the shortest path from any node to any other node. In the next



theorem, it is shown that the SIR model can be represented using the GDSI in

Eq. (5) provided that one appropriately selects the input vector u(t) at each

time instant t.

Theorem 3 (DSIR model). The SIR model for a network of diameter d is

equivalent to the dynamical system given in Eq. (5) provided that

u(t) =

−1ᵀ
nΦ(t+ d, t)z(t)evt , if t ∈ T

0n, if t /∈ T
(7)

where vt is the infected/recovered node at time t. Moreover, Eq. (5) with Eq.

(7) becomes:

z(t) = Φ(t, ti1)ei1 −
∑
tτ∈T

ti1<tτ≤t

Φ(t, tτ + 1)Θ(τ, d, Tτ )eτ , (8)

where

Θ(τ, d, Tτ ) =
∑

b∈Ψ(Tτ )

|b|−1∏
ρ=1

(−1)|b|1ᵀΦ(tρ+1 + d, tρ + 1)eρ, (9)

for Ψ(Tτ ) being the set of 2τ−2 vectors with each vector being composed of the

indices in Tτ for which there exists a one in the binary vectors of the form

{1} × {0, 1}τ−2 × {1}.

Theorem 3 (the proof can be found in Appendix A.2) provides two important

facts about considering the GDSI model: it is possible to consider variants of

the SIR model by considering other definitions for the input vector u(·); if all

infection/recovery times and nodes are known except for one, the problem of

finding the source is equivalent to that of the DSI model albeit the formula for

the transition matrix becoming more complex.

3. Source Localization

Since the source localization problem can be viewed as the state estimation

of a dynamical model, one needs to discuss the observability of the system.



Towards that objective, concatenating all the measurement information of the

past N time instants yields
y(0)

y(1)
...

y(N − 1)

 =


C

CΦ(1, 0)
...

CΦ(N − 1, 0)

x(0), (10)

or equivalently,

YN = ONx(0). (11)

The YN corresponds to the concatenation of the measurements in the left-hand

side of Eq. (10) while the nm× n matrix ON is referred to as the observability

matrix, with standard analysis resulting in the next theorem.

Theorem 4 (Observability [3]). If the rank of the observability matrix ON

is equal to n, for the particular choice of observers, the initial state can be

obtained by

x(0) = (Oᵀ
NON )−1Oᵀ

NYN . (12)

As Theorem 4 only contains the network structure and the location of the

output nodes, the source localization does not depend on the initial infection

time. Another interesting remark is that, if the system is not observable, the

solution in Eq. (12) corresponds to the minimum `2-norm vector that satisfies

the undetermined linear equation in Eq. (11). However, such solution will not

typically be sparse which forces the adoption of a different approach. In the

next section, the case of a known initial time is firstly studied and used to gain

intuition towards the case of unknown initial infection.

3.1. Known initial time

Source localization in the DSI model is presented in the remainder of this

section, which is included here for completeness but can be found in [3]. It will be

helpful when dealing with GDSI, especially in DSIR model. Let us assume that

the initial state of the network is x(0) = ei, where ei is the canonical vector, the



equation x(0) = (Oᵀ
NON )−1Oᵀ

NYN in Theorem 4 provides the exact solution

for an observable scenario.

If the rank of the observability matrix is less than n, the alternative is to

solve the following optimization problem in order to get the minimal cardinality

solution. For shortening the notation, let us define ∆(v,mnorm,mwindow) :=

minv ||v||mnorm
s.t. Ymwindow

= Omwindow
v. Then, the localization is done by

computing ∆(x(0), 0, N).

Calculation of this solution entails a l0 pseudo-norm optimization attaining

its minimum for the sparsest x(0) that satisfies the constraints. Nevertheless,

the l0 norm is not convex implying that solving ∆(x(0), 0, N) is NP-hard. An

approximation of the sparsest solution can be found by resorting to the l1 min-

imization problem [3] using ∆(x(0), 1, N).

The norm selection is due to the fact that the l1 norm is the convex envelope

of the cardinality operator. Given that the problem is convex (in fact is a linear

program), a solution can be given by one of the solvers implemented in Yalmip

[36]. The remaining approximations to non-convex problems can be solved in a

similar fashion. In the next section, leveraging the GDSI model, we show how

to perform the source localization for the case where no initial time is known.

3.2. Unknown initial time

For the GDSI, the matrix Oτ in Eq. (10) will be considered for varying

values of τ , corresponding to the observability matrix for the first τ measure-

ments of the general model. Furthermore, from Theorem 2, we have z(t) =∑t
τ=1 Φ(t, τ)u(τ), meaning that τ is the only variable determining the matrix

Oτ and the state of the infection network for each time instant. It is possible

to test for each τ resorting to the l1 norm optimization ∆(u(τ), 1, τ).

The previous formulation essentially seeks to solve the source localization

with unknown initial time by testing each possible τ value that corresponds to

the tinitial of that infection. Nevertheless, all the optimization problems can be

cast together as ∆(ū, 1, t),

where with a slight abuse of notation, we are using Yt in the definition of



∆(·) as the stack of all available measurements from time instant one up to the

current time instant, the optimization variable ū is of size nt × 1 and gathers

the variables u(0),u(1), · · · ,u(t− 1) and the observability matrix is given by

Ot =


CΦ(1, 1) 0 · · · 0

CΦ(2, 1) CΦ(2, 2) · · · 0
...

...
. . . 0

CΦ(t, 1) CΦ(t, 2) · · · CΦ(t, t)

 . (13)

This formulation seeks to find the sparsest set of inputs u(0), · · · ,u(t− 1) such

that all constraints given by the measurements are validated. Remark that one

could add a set of weights to be multiplied by the vector ū as to favor solutions

where the entries equal to one in that vector appear in the beginning.

4. Network Structure Discovery

In this section, we focus on determining the uncertain network topology in

the DSI model from the known infection source and sensors. The envisioned

scenario entails that the network designer to be able to arbitrarily place in-

fected nodes and take measurements of the evolution of the infection in order

to construct the network topology from that output.

Under the aforementioned assumptions, the DSI model is suitable for the

task of discovering the network topology since the designer knows the initial

infection time that he/she started the process. Given the selected choice for

initial infected node, the Eq. (11) allows to place some constraints on the

network topology. Let matrix P represent the adjacency matrix underlying the

edge set E of the graph that is going to be used as the optimization variable

in the correspondent optimization program. Given that each entry is either 0

or 1 it naturally induces a Boolean Satisfiability problem. The objective of this

section is to reformulate and obtain a convex approximation of such problem.

Given that the network is undirected, P is symmetric, i.e., Pᵀ = P. Since

self-cycles are not possible in the context of our problem, we can add the con-

straints
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Figure 1: Network topology example used to illustrate the network discovery problem.

∀1≤i≤nPii = 0. (14)

Defining ON using P instead of A means that each of the rows in ON

represents a boolean clause that we denote by α`, 1 ≤ ` ≤ mN (there are N

time instants each producing a matrix with m rows). Consider the network in

Fig. 1 as an example and assume that node 1 was infected and nodes 3, 4 and 5

are selected as sensors. The measurement y(0) = 03 has no information apart

from the fact that the infected node is not one of the sensors making α1, α2

and α3 clauses with no information, i.e., the logical value of 1 (indeed this are

removed by any solver). The measurement y(1) = e1 allows to write α4, α5 and

α6 with some meaning. First, computing

CΦ(1, 0)x(0) =


P13

P14

P15

 ,Φ(t, 0) := Pt + Pt−1, (15)

determines that α4 = P13, α5 = ¬P14 and α6 = ¬P15, where the symbol ¬

stands for the logical negation. In doing so, the various clauses α` establish the

set of possible instantiations for the variables Pij representing the existence or

not of a link in the network.

The network discovery problem can then be cast as a Satisfiability Problem

(SAT) in conjunctive normal form α1 ∧ α2 ∧ · · · ∧ αmN . The SAT problem has

been extensively studied in the literature since it is one of the most well-known

problems to belong to the class of NP-complete. Solvers are available such as



the one in [37]. SAT Competition 2016 reflects recent developments with certain

experimental results, which contains statistical data showing SAT-VERIFIED

or UNSAT and only returning one possible result once it is satisfiable, which

means that the normal SAT solver has no guarantee of uniqueness. In our

case, this might not be suitable as, due to the small number of constraints,

the solver might simply return one of many possible assignments that could

be meaningless to our problem. Algorithms returning sparse instantiations can

be employed, using, for example, a memory efficient one that outputs all the

possible solutions, see [38]. This solver returns the set of all the assignments to

the important variables within certain constraints.

Besides the fact that the SAT problem is combinatorial by nature, and there-

fore its complexity increases exponentially with the network size and number of

clauses, requiring sparse solutions further adds to the complexity. Nevertheless,

the SAT problem can be equivalently formulated as an optimization problem

as:

min
P

1

s.t. A vec(P) >= β,

Pii = 0, 1 ≤ i ≤ n,

P = Pᵀ,

Pij = 0 ∨Pij = 1, i 6= j,

(16)

where A is built from the α` variables by placing 1 if the corresponding Pij

variable appears or −1 if it is its logical negation, β is a vector with entry i equal

to one minus the number of times the ith variables appears negated and vec(P)

is the vectorization operator applying only to the lower triangular part of P since

P is symmetric. As an example, if there was only three clauses P14, P12∨¬P13

and ¬P23∨¬P12 in a four node network, the constraint A vec(P) >= β would



be characterized by:


0 0 1 0 0 0

1 −1 0 0 0 0

−1 0 0 −1 0 0





P12

P13

P14

P23

P24

P34


>=


1

0

−1

 . (17)

Remark that the optimization problem in Eq. (16) is just testing the feasi-

bility of a solution and that the only source of non-convexity is the constraint

that the entries in P are either zero or one. One of the common approach is to

relax such assumption to the convex approach of 0 ≤ Pij ≤ 1. In particular,

finding the sparsest network topology that is feasible can be expressed as the

whole optimization problem

min
P

1ᵀ
nP 1n

s.t. A vec(P) >= β,

Pii = 0, 1 ≤ i ≤ n,

P = Pᵀ,

0 ≤ Pij ≤ 1, i 6= j,

(18)

which is convex and a linear program. Notice that we have not used the `1 norm

since all Pij >= 0 so there is no need to apply the absolute value operator and

also because the norm would not ensure the sparsest solutions for cases where

one of the nodes is fully connected (or is of higher degree than the rest).

5. Control of Infection Networks

In this section, we address the problem of how to control the infection net-

work process (i.e., making it reach a desired state of infected or recovered nodes)

and the related question of what is the optimal control to lead the network to

a infection-free state.



5.1. Controllability analysis

The first question that should be answered is the condition for controllability

of the system. Let us introduce the following definitions that are common in

standard controllability theory. First the notion of controllability and reacha-

bility subspaces. For the remaining of this section, matrix B(t) is a diagonal

matrix with elements equal to one if that node can be injected with an infection

or recovery. If all nodes are accessible, this is simply a identity matrix and the

vector u(·) is added to the state.

Definition 5. Given two times instants t1 > t0 ≥ 0, the reachable subspace

R[t0, t1] on the interval [t0, t1] consists of all states x1 for which there exists an

input sequence u(·) that transfers x(t0) = 0n to x(t1) = x1 in the DSIR model,

i.e.,

R[t0, t1] := {x1 ∈ Rn : ∃u(·),x1 =

t1−1∑
τ=t0

Φ(t1, τ + 1)B(τ)u(τ)}, (19)

and the controllable subspace C[t0, t1] on the interval [t0, t1] consists of all states

x0 for which there exists an input sequence u(·) that transfers x(t0) = x0 to

x(t1) = 0 in the DSIR model, i.e.,

C[t0, t1] := {x0 ∈ Rn : ∃u(·),

0 = Φ(t1, t0)x0 +

t1−1∑
τ=t0

Φ(t1, τ + 1)B(τ)u(τ)}.
(20)

Closely related are the concepts of gramians defined in the following.

Definition 6. Given two times t1 > t0 ≥ 0, the reachability and controllability

gramians are defined as:

WR(t0, t1) :=

t1−1∑
τ=t0

Φ(t1, τ + 1)B(τ)B(τ)ᵀΦ(t1, τ + 1)ᵀ (21)

WC(t0, t1) :=

t1−1∑
τ=t0

Φ(t0, τ + 1)B(τ)B(τ)ᵀΦ(t0, τ + 1)ᵀ. (22)

The controllability gramian assumes that the transition matrices are all non-

singular. In our case, the objective is to apply these definitions to the underlying



linear system (i.e., without the bar operation) and extract conclusions regarding

the nonlinear output. If one focused strictly on the traditional condition, it

would mean that the system should be fully reachable (i.e., R[t0, t1] = Rn)

whereas a milder condition might suffice. As an example consider a system

whose state of the underlying linear part is always of the form x(t) = α

1

2


and we would like to make the desired infection state

[
1 1

]ᵀ
. Clearly any

output leading to α > 0 would work since ∀α > 0 : x(t) =

1

1

 but the system

is not fully reachable.

Having introduced the required definitions, the next theorem summarizes

both the reachability and controllability of the infection networks. The proof

can be found in Appendix A.3.

Theorem 7. Given two time instants t1 > t0 ≥ 0 and xtarget, the DSIR model

can reach the observed state of xtarget if

∃x1 : x1 = xtarget,x1 ∈ R[t0, t1] = ImWR(t0, t1), (23)

where ImWR(t0, t1) is the image (also called the column space) of WR(t0, t1),

i.e., set of all linear combinations of vectors in the columns of the matrix. More-

over, if the graph topology (V,E) is connected and t1 − t0 ≥ d the infection

network is controllable.

5.2. Optimal control strategy

In this section, the question of designing optimal control strategies for the

network is addressed with respected to the energy of the control input. Resorting

to the concepts reviewed in the last section, it is possible to provide the following

result, proved in Appendix A.4.

Theorem 8. Given two time instants t1 > t0 ≥ 0 and xtarget, the minimum



energy u(·) for the DSIR model that can reach xtarget is given by:

min
x1

‖B(t)ᵀΦ(t1, t+ 1)ᵀη1‖2 ,

s.t. x1 = WR(t0, t1)η1,

x1 = xtarget

(24)

where WR(t0, t1) is defined in Eq. (21), and the minimum norm to control the

infection network using a single recovery at time t0 to an observed state x1 = 0n

is given by:

min
u

‖u‖2

s.t. Φ(t1, t0)x(t0) + Φ(t1, t0 + 1)u ≤ 0.

(25)

6. Simulation Results

In this section, we provide simulation results both for the proposed general

model to consider the source localization without prior knowledge of the initial

time and also to the algorithm for network topology discovery. We then progress

to present simulations showing the behavior of the infection network given the

computation of the control law as proposed in this paper.

The first simulation compares the accuracy of the source localization with

and without the knowledge of the initial time. The setup includes a randomly

selected network topology with n = 100. The probability of including each link

is set to 0.5 as to produce challenging examples, i.e., networks with lots of redun-

dant paths from the source to the sensors. The source and an initial sensor are

randomly selected following a uniform distribution. For each simulated model,

the found source is compared with the actual case. If the identification is false,

a new sensor is uniformly chosen from the remaining nodes. The experiment

is reproduced in a 1000 Monte Carlo experiment and the aggregate successful

recovery of the initial infection is presented in Fig. 2(a).

From the simulation results, a trend emerges that increasing the number

of sensor nodes has a direct impact on the accuracy of the source localization.
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Figure 2: Successful infection source localization for a 1000 Monte Carlo simulation as a
function of the minimum number of sensors in the known and unknown initial time models
(left) and the cumulative source identification (right).

This was expected as additional measurements place more constraints on the

optimization problems reducing the ambiguity. From the cumulative plot in

Figure 2(b), we can check the loss in performance due to the unknown initial

time. For this simulation and under the prescribed conditions, both models

had an 100% detection of the infection source albeit the unknown initial time

represented a need for 2 more sensors to achieve that. This highly depends on

the number of edges in the topology graph as more edges hinder the detection by

adding redundant links from the source to the remaining nodes. Selecting a 0.5

probability of existing each edge led to the 100% detection. Simulations suggest

that some networks have a large impact on the difference performance of the

two models. One possible reason for this behavior is the additional ambiguity

of not knowing the initial time.

An algorithm to discover the network topology for the model with known

initial information was also presented in this paper. In this setup, a 100 Monte

Carlo simulation was conducted. In each run, a random topology of 5 nodes is

selected with link probability equal to 0.5 along with a set of sensors selected

randomly following an uniform distribution. The identification starts by inject-

ing an infection in a random node and, if the output topology is different, a new

infection is selected from the nodes not used previously in this run. The least

number of sources needed before the network is correctly identified is shown in
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Figure 3: Successful network topology identifications depending on the number of injected
infections for 100 Monte Carlo experiment.

Figure 3. For the 100 cases, a 65% identification rate is reported with 55% of

the identifications requiring half the number of nodes to be initially infected.

A critical key influence in the need to have 5 infection processes to half of the

topologies is a consequence of the random network generations that is creating

high-degree networks with nodes having on average half of the nodes as neigh-

bors. The intuition behind this choice was that the best case scenario would be

the path graph since the infection of one of the single-neighbors nodes would

lead to detection as opposed to the complete network where n − 1 infections

are required (in each infection process the solver learns that the current initial

node is connected to all the others but no information regarding the connections

between the remaining nodes).

A topic also addressed in this paper was how one can apply control tech-

niques made possible by rewriting the model as a Linear Time-Invariant (LTI)

system with a nonlinear operation applied to the state giving the output. We

simulated a random 8-node network where links between each pair of nodes

have a 0.5 probability of existing. Three nodes are randomly selected to be

the infected/recovered nodes. The optimal controller is found by resorting to

the solution of the respective Discrete Algebraic Riccati Equation (DARE) us-

ing R = I and Q = 10I. The state is initiated with all infected nodes, i.e.,
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Figure 4: Statistics of the evolution of the error for an 8-node network with 3 controlled nodes
and a 1000 Monte Carlo runs.

x(0) = 1n and the desired final state is x∞ = 0n. During simulations, different

configurations of the final state were tested and the behavior of the Monte Carlo

experiment was always similar.

Figure 4 presents the statistics for the error norm, with each extremes of

the box representing the first and third quantiles, the average being the line

dividing the box and the extremes of the lines as the minimum and maximum.

Crosses are presented for outliers of these distributions. In the vertical axis it is

measured the norm of the error with respect to the evolution of the discrete time

variable. We would like to point out that, contrary to what one might expect,

in all instances the error first increases with the initial error being ‖x(0)−x∞‖

which in this case is
√

8. The typical errors after the 20 time instants of the

simulation is on the order of 10−4 and a fast settling time as depicted in Fig. 4.

In order to correctly picture the rate of convergence, we depict in Fig. 5

the statistics for each of the sorted 8 eigenvalues, i.e., the first box corresponds

to the smallest eigenvalue in magnitude and the last box for the largest. On

the vertical axis it is presented the value for the eigenvalues (real numbers with
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Figure 5: Statistics for the sorted eigenvalues of the closed loop system after applying optimal
control.

magnitude smaller or equal to one given that the dynamics is symmetric and

stable) with respect to the i order of that eigenvalue, meaning that the first

box is for the smallest eigenvalue and the last to the largest. The main point

was to check the existence of some outliers runs where the spectral radius of the

dynamics matrix is one and convergence is prevented. Such results motivate the

use of the underneath linear model discussed in this paper since it rarely is the

case.

7. Conclusions and Future Work

In this paper, we have presented an extension to the DSI model in its dynam-

ical system view. In particular, without forcing the initial infection to happen

at time equal to zero and allow an unknown time for the first infection. Such a

modification, although reducing the accuracy of the source localization problem,

increases the capability of this formulation to represent more advanced models.

In addition, it is proposed a solution for the network topology discovery problem

that is a convex relaxation of the integer programming approach to a traditional

Satisfiability (SAT) problem.



In simulations, we have found evidence that suggests a loss in the localization

success rate for the same number of sensors. The minimum number of sensor

nodes before having a correct localization is smaller than or equal to half of the

network in 60% of these random networks that are generated to have on average

half of all possible links.

The last batch of simulations tested the network topology discovery algo-

rithm based on a linear programming approach. For the considered model of

the random networks, evidence suggests that half of the cases required 5 infec-

tions processes to correctly identify the network.

Additionally, the problem of controlling the epidemics was tackled with a

theoretical approach made possible by the design model where a linear system

accounts for the evolution of the state whereas a nonlinear saturation opera-

tion outputs the infected and recovered nodes. Standard techniques for linear

systems were employed and shown in simulation to be very effective with fast

settling times in achieving the final configuration of the infection network.

As directions of future work, two main trends can be pursued: use the gen-

eral model framework to show how more evolved methods for infection networks

can be simulated (for example stochastic models of infection); and, investigate

algorithms to select the sequence of initial infections that render a faster net-

work topology discovery. In addition, it is possible to consider the case where

other information from distributed algorithms to further add restrictions to the

network topology. In the latter, during simulations we have confirmed that the

discovery time is highly dependent on the sequence of infections which motivates

the future theoretical study. It would also constitute an interesting topic to fur-

ther investigate if the identification of the source or topology of the network can

be improved by adding other processes output or a priori information.

Researchers in the modeling community can also pursue extending the cur-

rent underlying linear model to other alternatives in order to bring typical anal-

ysis from those areas to relevant questions from infections networks. In this

work, focus was primarily given to the control with minimum energy and local-

ization, a natural extension would be to include the characteristic uncertainty



associated to infection processes by using other modeling alternatives like fuzzy

models.
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Lisboa, Lisboa, Portugal.

References

[1] A. Bauer, C. Beauchemin, and A. Perelson. Agent-based modeling of

host–pathogen systems: The successes and challenges. Information Sci-

ences, 179(10):1379 – 1389, 2009. ISSN 0020-0255. doi: https://doi.org/

10.1016/j.ins.2008.11.012.

[2] E. Ferrara. Contagion dynamics of extremist propaganda in social networks.

Information Sciences, 418-419:1 – 12, 2017. ISSN 0020-0255. doi: https:

//doi.org/10.1016/j.ins.2017.07.030.
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[16] S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y. Moreno.

Discrete-time markov chain approach to contact-based disease spreading in

complex networks. Europhysics Letters, 89(3):38009, 2010.

[17] P. Mieghem, J. Omic, and R. Kooij. Virus spread in networks. IEEE/ACM

Transactions on Networking, 17(1):1–14, 2009. ISSN 1063-6692. doi: 10.

1109/TNET.2008.925623.

[18] N. Antulov-Fantulin, A. Lančić, H. Štefančić, and M. Šikić. FastSIR al-
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Appendix A. Proofs for the theorems in the paper

Appendix A.1. Proof of Theorem 2

In this appendix we provide the proof for Theorem 2 found in Section 2.

Theorem 2 (General Diffusion Susceptible-Infected (GDSI)). The DSI

model in Eq. (4) without knowledge of the initial infection is equivalent to the

dynamical system defined by the following equations:

z(t) = Φ(t, 0)z(0) +

t−1∑
τ=0

Φ(t, τ + 1)u(τ)

y(t) = Cz(t)

,

which can be rewritten as:

z(t) =

t−1∑
τ=0

Φ(t− τ − 1, 0)u(τ)

y(t) = Cz(t)

.

Proof. In order to prove that the general diffusion model is given by Eq.

(5), one has to show that Eq. (5) satisfies z(t) = x(t− tinitial), i.e., the general

model is a shifted version of the model with known initial time where tinitial is

the time where the infection was added in the general model.

Let us assume that indeed Eq. (5) is the state equation of the system. Then,

it is possible to simplify it to the format:

z(t) = Φ(t, 0)z(0) +

t−1∑
τ=0

Φ(t, τ + 1)u(τ)

=

t−1∑
τ=0

Φ(t, τ + 1)u(τ)

= Φ(t, 1)u(0) + Φ(t, 2)u(1) + ...+ Φ(t, t)u(t− 1),

(A.1)



where

Φ(t, tinitial) = At−tinitial + At−tinitial−1. (A.2)

In a simple SI, the infection signal u is defined as follows assuming node i is

infected at time tinitial:

u(t) =

ei t = tinitial

0n t 6= tinitial

. (A.3)

Therefore, for any time t,

z(t) = Φ(t, 1)u(0) + Φ(t, 2)u(1) + ...+ Φ(t, t)u(t− 1)

= Φ(t, tinitial + 1)u(tinitial),
(A.4)

or, equivalently,

z(t) = Φ(t− tinitial − 1, 0)u(tinitial), (A.5)

by the properties of the transition matrix and thus obtaining that the model

in Eq. (5) is equivalent to Eq. (6) and represents the standard model with a

shifted time index of tinitial time steps. Therefore, the transition matrix in Eq.

(5) becomes

Φ(t, tinitial) = Φ(t− tinitial, 0), (A.6)

and the conclusion follows.

Appendix A.2. Proof of Theorem 3

In this part of the appendix we present the proof for Theorem 3 found in

Section 2.

Theorem 3 (DSIR model). The SIR model for a network of diameter d is

equivalent to the dynamical system given in Eq. (5) provided that

u(t) =

−1ᵀ
nΦ(t+ d, t)z(t)evt , if t ∈ T

0n, if t /∈ T

where vt is the infected/recovered node at time t. Moreover, Eq. (5) with Eq.

(7) becomes:

z(t) = Φ(t, ti1)ei1 −
∑
tτ∈T

ti1<tτ≤t

Φ(t, tτ + 1)Θ(τ, d, Tτ )eτ ,



where

Θ(τ, d, Tτ ) =
∑

b∈Ψ(Tτ )

|b|−1∏
ρ=1

(−1)|b|1ᵀΦ(tρ+1 + d, tρ + 1)eρ,

for Ψ(Tτ ) being the set of 2τ−2 vectors with each vector being composed of the

indices in Tτ for which there exists a one in the binary vectors of the form

{1} × {0, 1}τ−2 × {1}.

Proof. Two steps are required to prove this theorem, namely a) that selecting

u as in Eq. (7) mimics a SIR model; b) that Eq. (5) with Eq. (7) results in the

Eqs. (8)-(9).

a) In order for the system in Eq. (5) to mimic the SIR model, it is required

that, at each time step after a new infection/recovery process, the only nodes

that are affected are those with infected/recovered neighbors in the previous

time instant.

Assume that node i is infected/recovered at time t from a process that

started at time τ and node j, which is not a neighbor of i, is affected by i at

time t+ 1. Since i and j are not neighbors, it implies that the transition matrix

in Eq. (5) has Φji(t+ 1, τ + 1) = 0 but since node j was affected by i it implies

Φji(t + 1, τ + 1) 6= 0, thus reaching a contradiction. Therefore, at most the

process can propagate to the neighbors. Assume now the recovery (the converse

for the infection follows the same reasoning) of node i at time t and a neighbor j

that was not recovered at t+ 1. This implies that
∑
`∈Neighbors(j) z`(t) > |zi(t)|.

However, by Eq. (7), |zi(t)| >
∑
` 6=i z`(t) >

∑
`∈Neighbors(j) z`(t) resulting in a

contradiction.

b) Given the state equation in Eq. (5), z(t) is a summation of transition

matrices multiplied by −Θ(τ, d, Tτ )eτ for each event τ and constants Θ corre-

spond to those defined in Eq. (7) (except in the initial infection when u = ei1).

Thus, gives the format in Eq. (8).

Notice that Eq. (7) defines u for the current infection/recovery at the ex-

penses of the state at the previous events except for the initial infection. As a

consequence, the input at event τ depends on all inputs up to τ − 1, forming



an unbalanced tree where each branch at the same level forks from zero to the

number of current branches minus one (construction of the collection of vectors

Ψ(Tτ )). Then, for each of the tree branches, a power of −1 is multiplied by the

constant of the vector u as defined by the definition for vector u, giving the final

expression for Eq. (9).

Appendix A.3. Proof of Theorem 7

In this subsection of the appendix it is presented the proof for Theorem 7

found in Section 5.

Theorem 7. Given two time instants t1 > t0 ≥ 0 and xtarget, the DSIR model

can reach the observed state of xtarget if

∃x1 : x1 = xtarget,x1 ∈ R[t0, t1] = ImWR(t0, t1),

where ImWR(t0, t1) is the image (also called the column space) of WR(t0, t1),

i.e., set of all linear combinations of vectors in the columns of the matrix. More-

over, if the graph topology (V,E) is connected and t1 − t0 ≥ d the infection

network is controllable.

Proof. The reachability result is a direct application of the reachability anal-

ysis for linear time-varying systems with the difference that there must exist

at least one state x1 in the underlying linear system that after the nonlinear

operation returns xtarget as the observed state.

In order to prove the controllability, notice that if the network is connected,

using Theorem 3 we know there exists an input that recovers all the nodes in

at most the diameter of the network. Therefore, it implies that t1− t0 ≥ d, and

the conclusion follows.

Appendix A.4. Proof of Theorem 8

In this appendix we show the proof for Theorem 8 found in Section 5.



Theorem 8. Given two time instants t1 > t0 ≥ 0 and xtarget, the minimum

energy u(·) for the DSIR model that can reach xtarget is given by:

min
x1

‖B(t)ᵀΦ(t1, t+ 1)ᵀη1‖2 ,

s.t. x1 = WR(t0, t1)η1,

x1 = xtarget

where WR(t0, t1) is defined in Eq. (21), and the minimum norm to control the

infection network using a single recovery at time t0 to an observed state x1 = 0n

is given by:

min
u

‖u‖2

s.t. Φ(t1, t0)x(t0) + Φ(t1, t0 + 1)u ≤ 0.

Proof. The minimum energy for the reachability in Eq. (24) is an optimization

ranging over all possible states x1 that generate xtarget as in Theorem 7. For

each such state, standard reachability theory for linear systems allows to find

the minimum energy path as that in the cost function in Eq. (24), and the

conclusion follows.

Notice that given Theorem 7, one needs an input u such that after d time

steps reaches the state 0n which implies that all entries i of xi(t1) ≤ 0. By

minimizing the energy over all inputs that achieve the goal, the conclusion

follows.


