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Abstract

We propose a new anti-synchronization concept, called general decay lag anti-

synchronization, by combining the definitions of decay synchronization and

lag synchronization. Novel criteria for the decay lag anti-synchronization of

multi-weighted delayed coupled reaction–diffusion neural networks (MWD-

CRDNNs) with and without bounded distributed delays are derived by con-

structing an appropriate nonlinear controller and using the Lyapunov func-

tional method. Moreover, the robust decay lag anti-synchronization of MWD-

CRDNNs with and without bounded distributed delays is considered. Fi-

nally, two numerical simulations are performed to validate the obtained re-

sults.
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1. Introduction

Recently, coupled neural networks (CNNs) have attracted considerable

attention owing to their extensive application in chaos generator design, op-

timization, pattern recognition, secure communication, etc. [5, 10, 29, 32].

As is well known, one of the most important dynamic phenomena in CNNs

is synchronization, which has been extensively studied in recent years [8, 11,

23, 27, 32]. In [8], the H∞ synchronization problem of the master and slave

structure of second-order neutral master–slave systems with time-varying

delays was investigated using the Lyapunov–Krasovskii method in terms of

a linear matrix inequality. The synchronization of Markovian CNNs with

random coupling strengths and nonidentical node-delays was considered in

[27] by designing a novel Lyapunov functional and using certain inequali-

ties. In fact, anti-synchronization is also an interesting phenomenon in the

real world. Anti-synchronization is the phenomenon in which the state vec-

tors of a synchronous system have the same absolute values but opposite

signs. As reported in [12, 31], anti-synchronization is important in commu-

nication systems and laser applications. Hence, it is meaningful to study

anti-synchronization of CNNs [12, 13, 16, 31]. Meng and Wang [12] designed

an anti-synchronization scheme for a class of delayed chaotic neural networks

based on the Halanay inequality and Lyapunov stability theory. Ren et al.

[13] investigated the exponential anti-synchronization problem for chaotic

delayed neural networks. The anti-synchronization of a class of memristive

CNNs was investigated by using randomly occurring control in [16].

In fact, time delay is ubiquitous and inevitable in CNNs owing to, for

instance, their finite transmission and switching speed, as well as traffic con-
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gestion. Time delay may lead to undesirable results, such as instability and

poor performance. Consequently, it is necessary to consider the problems

of lag synchronization and lag anti-synchronization [2, 6, 17, 28]. A con-

troller based on the output of neuron cells was constructed by the authors

in [2] to study global exponential lag anti-synchronization in switched neural

networks with time-varying delays. [6] designed and used a feedback con-

troller to obtain novel results on the finite-time lag synchronization of CNNs.

The exponential lag anti-synchronization problem for memristive CNNs was

considered in [28]. Additionally, the estimation of the synchronization and

anti-synchronization convergence rate is a very interesting and useful sub-

ject. However, the convergence rate of the system is difficult to determine

in some cases, which prompts the definition of a new type of convergence

rate, namely, convergence with general decay [1, 14, 18, 19]. Several new

results on the general decay synchronization of delayed neural networks with

general activation functions were obtained using a nonlinear feedback con-

troller designed in [1]. Wang et al. [19] considered the decay synchronization

of a class of switched CNNs by constructing suitable nonlinear controllers.

The decay synchronization of delayed bidirectional associative memory neu-

ral networks was studied in [14]. To the best of our knowledge, the decay lag

anti-synchronization of CNNs has not yet been studied.

It is worth mentioning that reaction–diffusion was neglected in the afore-

mentioned studies. When electrons propagate in inhomogeneous electromag-

netic fields, reaction–diffusion in CNNs is inevitable. Thus, it is crucial

to consider reaction–diffusion terms in the study of CNNs, and numerous

studies on coupled reaction–diffusion neural networks (CRDNNs) have been
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conducted [7, 15, 22, 26]. The passivity and synchronization of CRDNNs

with multiple time-varying delays were analyzed by impulsive control in [15].

Wang et al. [22] constructed suitable state feedback controllers to study lag

H∞ synchronization of CRDNNs. However, there are currently no results on

decay lag anti-synchronization of CRDNNs.

It is worth noting that the network models used in the majority of

the studies above are single-weighted. In practice, numerous existing net-

works can be represented more precisely by multi-weighted complex dy-

namic networks (MWCDNs), such as transportation networks, social net-

works, and communication networks. Multi-weighted CNNs (MWCNNs),

which are a special type of MWCDNs, have attracted increasing attention

[4, 20, 30]. Based on Lyapunov stability theory and the robust adaptive

principle, Zhao et al. [30] investigated the synchronization of MWCNNs

with multiple coupled time-varying delays. In [20], sufficient conditions for

ensuring finite-time synchronization of MWCNNs were obtained. However,

the anti-synchronization of multi-weighted coupled reaction–diffusion neural

networks (MWCRDNNs) has not been extensively studied. In [4], the authors

were concerned with anti-synchronization and pinning control of MWCNNs

with and without reaction–diffusion terms. To the best of our knowledge, the

decay lag anti-synchronization of MWCRDNNs has not been investigated.

Accordingly, the principal goal in the present study is to investigate the

general decay lag anti-synchronization of MWDCRDNNs. The main contri-

butions of this study are as follows.

(1) The new concept of general decay lag anti-synchronization is presented

by generalizing lag synchronization and introducing ψ-type functions.
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(2) The decay lag anti-synchronization problem for MWDCRDNNs with

and without parametric uncertainties is discussed, and several criteria

are established by designing a suitable nonlinear controller and con-

structing an appropriate Lyapunov functional.

(3) The decay lag anti-synchronization and the robust decay lag anti-

synchronization of MWDCRDNNs with bounded distributed delays are

discussed and analyzed as well.

The rest of this paper is organized as follows. The definition of ψ-type

functions and several lemmas required in the subsequent sections are pro-

vided in Section 2. In Section 3, the MWDCRDNN is first presented,

after which the decay lag anti-synchronization and robust decay lag anti-

synchronization are investigated for this model. In Section 4, the decay lag

anti-synchronization and robust decay lag anti-synchronization of MWD-

CRDNNs with bounded distributed delays are analyzed. Several simulation

examples are provided in Section 5 to verify the obtained theoretical results.

Finally, this paper is concluded in Section 6.

2. Preliminaries

Definition 2.1. ([25]) If the function ψ(t): R+ → (0,+∞) satisfies the

following conditions:

1) ψ(t) is nondecreasing and differentiable,

2) ψ(0) = 1 and ψ(+∞) = +∞,

3) ψ(t) := ψ̇(t)
ψ(t)

is decreasing, and

4) ∀p, q > 0, ψ(p+ q) 6 ψ(p)ψ(q),

then it is called a ψ-type function.
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Lemma 2.1. (see [9]) Let Ω be a cube |µr| < ιr(r = 1, 2, · · · , p) and let Z(µ)

be a real-valued function belonging to C1(Ω) that vanishes on the boundary

∂Ω of Ω, i.e., Z(µ)|∂Ω = 0. Then

∫

Ω

Z2(µ)dµ 6 ι2r

∫

Ω

(

∂Z

∂µr

)2

dµ,

where µ = (µ1, µ2, · · · , µp)T .

Lemma 2.2. ([3]) Let f(h) : [ω1, ω2] → Rp (ω1 < ω2) be a vector function.

Then, for any constant matrix 0 < M ∈ Rp×p, we have

(ω2 − ω1)

∫ ω2

ω1

fT (h)Mf(h)dh >

(
∫ ω2

ω1

f(h)dh

)T

M

(
∫ ω2

ω1

f(h)dh

)

,

provided that the integrals above are well defined.

We will use the following notations: λ(·) denotes the eigenvalue of the cor-
responding matrix. For any e(µ, t) = (e1(µ, t), e2(µ, t), · · · , eN(µ, t))T ∈ RN ,

we let ‖e(·, t)‖2 =
√

∫

Ω

∑N
s=1 e

2
s(µ, t)dµ, where Ω = {µ = (µ1, µ2, · · · , µp)T | |µr| <

ιr, r = 1, 2, · · · , p} ⊂ Rp and (µ, t) ∈ Ω× R.

3. General decay lag anti-synchronization of MWDCRDNNs

3.1. General decay lag anti-synchronization of MWDCRDNNs

In this section, the considered MWDCNN model with reaction–diffusion

terms is described by

∂Ys(µ, t)

∂t
=−AYs(µ, t) +H△Ys(µ, t) +Df(Ys(µ, t)) +Bg(Ŷs(µ, t))

+ c1

N
∑

j=1

M1
sjΓ1Yj(µ, t) + c2

N
∑

j=1

M2
sjΓ2Yj(µ, t) + · · ·
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+ cm

N
∑

j=1

Mm
sjΓmYj(µ, t), s = 1, 2, · · · , N. (1)

Here, Ys(µ, t) = (Ys1(µ, t), Ys2(µ, t), · · · , Ysn(µ, t))T ∈ Rn is the state vector of

the s-th node. µ = (µ1, µ2, · · · , µp)T ∈ Ω ⊂ Rp. A = diag(a1, a2, · · · , an) ∈
Rn×n > 0, B = (bsj)n×n ∈ Rn×n, and D = (dsj)n×n ∈ Rn×n are constant ma-

trices. △ =
∑p

r=1
∂2

∂µ2r
, H = diag(h1, h2, · · · , hn), hs > 0 is the transmission

diffusion coefficient, g(Ŷs(µ, t)) = (g1(Ys1(µ, t− τ(t))), g2(Ys2(µ, t− τ(t))),

· · · , gn(Ysn(µ, t− τ(t))))T ∈ Rn, f(Ys(µ, t)) = (f1(Ys1(µ, t)), f2(Ys2(µ, t)), · · · ,
fn(Ysn(µ, t)))

T ∈ Rn, and τ(t) is the time-varying delay with 0 6 τ(t) 6 τ

and τ̇ (t) 6 γ < 1. R ∋ cκ > 0 (κ = 1, 2, · · · , m) is the coupling strength

for the κ-th coupling form. Γκ ∈ Rn×n > 0 (κ = 1, 2, · · · , m) represents

the inner coupling matrix for the κth coupling form. Mκ = (Mκ
sj)N×N ∈

RN×N (κ = 1, 2, · · · , m) expresses the coupling weight in the κ-th coupling

form, where Mκ
sj is defined as follows: if there exists a connection between

node s and node j for the κ-th coupling form, then Mκ
sj = Mκ

js > 0; other-

wise, Mκ
sj = Mκ

js = 0 (s 6= j). Finally, the diagonal elements of the matrix

Mκ are defined as follows:

Mκ
ss = −

N
∑

j=1

j 6=s

Mκ
sj, s = 1, 2, · · · , N.

For the network (1),

Ys(µ, t) = φs(µ, t) ∈ R
n, (µ, t) ∈ Ω× [−τ, 0],

Ys(µ, t) = 0, (µ, t) ∈ ∂Ω× [−τ,+∞),

where φs(µ, t)(s = 1, 2, · · · , N) is bounded and continuous on Ω× [−τ, 0].
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Remark 1. Recently, CNNs have attracted increasing attention owing to

their extensive application in chaos generator design, optimization, secure

communication, etc. [5, 10, 21, 29, 32, 33]. Therefore, numerous studies

have been conducted on the dynamical behavior of CNNs [8, 11, 23, 27, 32].

Unfortunately, the CNN models considered in these studies have only a single

weight. It is well known that several real-world networks, such as social, com-

munication, and transportation networks, can be represented by MWCDNs

with multiple node coupling. Furthermore, when electrons propagate in in-

homogeneous electromagnetic fields, diffusion is inevitable. For instance, the

overall structure and dynamic behavior of cellular neural networks depends

heavily not only on the evolution time and location (space) of each variable

but also on their interactions, which are derived from the spatial distribu-

tion structure of the entire network. Therefore, it is meaningful to discuss a

MWDCRDNN model in which the node state varies with time and space.

We consider the network model (1) to be the drive system. Then, the

corresponding response system is as follows:

∂Ws(µ, t)

∂t
=− AWs(µ, t) +H△Ws(µ, t) +Bg(Ŵs(µ, t)) +Df(Ws(µ, t))

+
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκWj(µ, t) + us(µ, t), (2)

where s = 1, 2, · · · , N ,Ws(µ, t) = (Ws1(µ, t),Ws2(µ, t), · · · ,Wsn(µ, t))
T ∈ Rn

is the state vector of the s-th neuron at time t and in space µ, us(µ, t) =

(us1(µ, t), us2(µ, t), · · · , usn(µ, t))T ∈ Rn is a suitable controller for achieving

a certain control objective, and A, H, △, B, D, g(·), f(·), cκ, Mκ
sj , Γκ are

defined as in system (1).
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For the network (2),

Ws(µ, t) = ϕs(µ, t) ∈ R
n, (µ, t) ∈ Ω× [−τ, 0],

Ws(µ, t) = 0, (µ, t) ∈ ∂Ω × [−τ,+∞),

where ϕs(µ, t)(s = 1, 2, · · · , N) is bounded and continuous on Ω× [−τ, 0].

Assumption 1. For any γ1, γ2 ∈ R, the functions gi(·) and fi(·) (i =

1, 2, · · · , n) satisfy

|gi(γ1) + gi(γ2)| 6 Gi|γ1 + γ2|,

|fi(γ1) + fi(γ2)| 6 Fi|γ1 + γ2|,

where 0 < Gi ∈ R and 0 < Fi ∈ R. Let G = diag(G2
1, G

2
2, · · · , G2

n) ∈ Rn×n

and F = diag(F 2
1 , F

2
2 , · · · , F 2

n) ∈ Rn×n.

Remark 2. Recently, the anti-synchronization of CNNs has received consid-

erable attention [12, 13, 16, 31]. In these studies, it is common to assume that

the activation function satisfies the Lipschitz condition and is odd. There-

fore, the functions gi(·) and fi(·) (i = 1, 2, · · · , n) in the considered network

models will be required to satisfy this assumption throughout this paper.

Let es(µ, t) = Ws(µ, t) + Ys(µ, t− σs). By (1) and (2), one has

∂es(µ, t)

∂t
=− Aes(µ, t) +H△es(µ, t) +Bg( ̂Ys(µ, t− σs)) +Bg(Ŵs(µ, t))

+Df(Ys(µ, t− σs)) +Df(Ws(µ, t)) + us(µ, t)

+

m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκej(µ, t), (3)

where σs > 0 (s = 1, 2, · · · , N) is the lag delay.
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Definition 3.1. If there exists a constant λ > 0 such that

lim sup
t→∞

log‖e(·, t)‖
logψ(t)

6 −λ,

where e(µ, t) = (eT1 (µ, t), e
T
2 (µ, t), · · · , eTN(µ, t))T and ψ(t) is a ψ-type func-

tion as in Definition 2.1, then the network (3) is called ψ-type stable, that

is, the drive-response systems (1) and (2) achieve general decay lag anti-

synchronization, where λ is the convergence rate as e(µ, t) → 0.

Remark 3. Recently, ψ-type stability for neural networks has attracted

considerable attention [14, 18, 19]. It is defined as follows:

lim sup
t→∞

log‖Ws(·, t)− Ys(·, t)‖
logψ(t)

6 −λ, s = 1, 2, · · · , N. (4)

In this study, the synchronization error ‖Ws(·, t) − Ys(·, t)‖ is changed to

‖Ws(·, t)+Ys(·, t−σs)‖, which implies that the state variables of the systems

(1) and (2) have the same amplitude but are different in sign and time. Then,

we have the following natural generalization of ψ-type stability:

lim sup
t→∞

log‖Ws(·, t) + Ys(·, t− σs)‖
logψ(t)

6 −λ, s = 1, 2, · · · , N.

To the best of our knowledge, the concept of decay lag anti-synchronization

of MWDCRDNNs in Definition 3.1, which combines decay synchronization

and lag synchronization, has not previously been considered.

Before presenting the main results, we state a lemma that is important

in the proof. To this end, the following assumption is required.

Assumption 2. ([19]) There exist ρ(t) ∈ C(R,R+) and ε > 0 such that

ψ(t) 6 1,
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sup
t∈[0,∞)

∫ t

0

ψε(β)ρ(β)dβ <∞,

where ψ(t) and ψ(t) are as in Definition 2.1.

Lemma 3.1. ([19]) Under Assumption 2, if there exists a differentiable func-

tion V (t, e0(t)) : R
+ × Rn → R+ and two constants 0 < α1 ∈ R, 0 < α2 ∈ R

such that

(α1‖e0(t)‖)2 6 V (t, e0(t)),

V̇ (t, e0(t))|(3) + εV (t, e0(t)) 6 α2ρ(t),

where e0(t) is a solution of network (3), and ε and ρ(t) are as in Assumption

ass2, then the system (3) is called ψ-type stable, that is, the drive-response

systems (1) and (2) achieve general decay lag anti-synchronization. In addi-

tion, the convergence rate is ε
2
.

In this section, the nonlinear controller in the response system (2) is

designed as follows:

us(µ, t) =− βs
‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

− qses(µ, t), s = 1, 2, · · · , N, (5)

where R ∋ qs > 0, R ∋ βs > 0.

For convenience, we let β = max
16s6N

{βs}, q̂ = diag(q1, q2, · · · , qN), and

β̂ = diag(β1, β2, · · · , βN).

Theorem 3.1. Under Assumptions 1 and 2, the system (3) is ψ-type stable

with convergence rate ε
2
, i.e., the systems (1) and (2) achieve general decay

lag anti-synchronization if

Ξ1 =
m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗ P1 − (β̂ + q̂)⊗ In < 0, (6)
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Ψ1 = IN ⊗
(

(ετ − 1)In +
εG

2(1− γ)

)

< 0, (7)

where P1 =
1
2
(DDT +BBT + F + G

1−γ ) + (τ + ε
2
)In − A−

∑p
r=1

1
ι2r
H.

Proof. We construct a Lyapunov functional for network (3) as follows:

V1(t) =
1

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ+

∫ 0

−τ

∫ t

t+ρ

∫

Ω

eT (µ, h)e(µ, h)dµdhdρ

+
1

2(1− γ)

∫ t

t−τ(t)

∫

Ω

eT (µ, h)(IN ⊗G)e(µ, h)dµdh. (8)

Obviously, ( 1√
2
‖e(·, t)‖)2 6 V1(t), and it can be deduced from (8) that

V1(t) 6
1

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ+ τ

∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
1

2(1− γ)

∫ t

t−τ

∫

Ω

eT (µ, h)(IN ⊗G)e(µ, h)dµdh

=

∫ t

t−τ

∫

Ω

eT (µ, h)

(

IN ⊗
(

τIn +
G

2(1− γ)

)

)

e(µ, h)dµdh

+
1

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ. (9)

By calculating the derivative of (8) along the trajectories of the system (3),

one obtains

V̇1(t) 6
N
∑

s=1

∫

Ω

eTs (µ, t)

(

−Aes(µ, t) +Bg( ̂Ys(µ, t− σs)) +
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκej(µ, t)

+ Bg(Ŵs(µ, t)) +H△es(µ, t)− βs
‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

+Df(Ws(µ, t))

− qses(µ, t) +Df(Ys(µ, t− σs))

)

dµ−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ+τ

∫

Ω

eT (µ, t)e(µ, t)dµ

12



− 1

2

∫

Ω

eT (µ, t− τ(t))(IN ⊗G)e(µ, t− τ(t))dµ, (10)

where e(µ, t− τ(t)) = (eT1 (µ, t − τ(t)), eT2 (µ, t− τ(t)), · · · , eTN(µ, t− τ(t)))T .

By Assumption 1, one obtains

N
∑

s=1

eTs (µ, t)B(g( ̂Ys(µ, t− σs)) + g(Ŵs(µ, t)))

6
1

2

N
∑

s=1

(

eTs (µ, t)BB
T es(µ, t) + eTs (µ, t− τ(t))Ges(µ, t− τ(t))

)

=
1

2
eT(µ, t)(IN ⊗ (BBT))e(µ, t)+

1

2
eT(µ, t−τ(t))(IN ⊗G)e(µ, t−τ(t)), (11)

and

N
∑

s=1

eTs (µ, t)D(f(Ys(µ, t− σs)) + f(Ws(µ, t)))

6
1

2
eT (µ, t)(IN ⊗ (DDT + F ))e(µ, t). (12)

By Green’s formula,

∫

Ω

esl(µ, t)△esj(µ, t)dµ = −
p

∑

r=1

∫

Ω

∂esl(µ, t)

∂µr

∂esj(µ, t)

∂µr
dµ,

where l, j ∈ {1, 2, · · · , n}, s = 1, 2, · · · , N . Let π(µ, t) = (IN ⊗
√
H)e(µ, t).

Furthermore, Lemma 2.1 implies

N
∑

s=1

∫

Ω

eTs (µ, t)H△es(µ, t)dµ

=−
p

∑

r=1

N
∑

s=1

n
∑

j=1

n
∑

l=1

hl

∫

Ω

∂esj(µ, t)

∂µr

∂esl(µ, t)

∂µr
dµ

=−
p

∑

r=1

∫

Ω

(

∂e(µ, t)

∂µr

)T

(IN ⊗H)
∂e(µ, t)

∂µr
dµ
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=−
p

∑

r=1

∫

Ω

(

∂π(µ, t)

∂µr

)T
∂π(µ, t)

∂µr
dµ

6−
p

∑

r=1

1

ι2r

∫

Ω

πT (µ, t)π(µ, t)dµ

=−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H)e(µ, t)dµ. (13)

Eqs. (10)–(13) yield

V̇1(t) 6
m
∑

κ=1

cκ

∫

Ω

eT (µ, t)(Mκ ⊗ Γκ)e(µ, t)dµ−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+

N
∑

s=1

∫

Ω

eTs (µ, t)

(

− Aes(µ, t)− qses(µ, t)− βs
‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

)

dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (BBT ))e(µ, t)dµ+ τ

∫

Ω

eT (µ, t)e(µ, t)dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (DDT + F ))e(µ, t)dµ

−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H)e(µ, t)dµ

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ

=
m
∑

κ=1

cκ

∫

Ω

eT (µ, t)(Mκ ⊗ Γκ)e(µ, t)dµ−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+

N
∑

s=1

∫

Ω

eTs (µ, t)

(

− Aes(µ, t)− qses(µ, t)− βs
‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

)

dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (BBT ))e(µ, t)dµ+

N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (DDT + F ))e(µ, t)dµ+ τ

∫

Ω

eT (µ, t)e(µ, t)dµ

−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H)e(µ, t)dµ−
N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ

14



+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ

=
m
∑

κ=1

cκ

∫

Ω

eT (µ, t)(Mκ ⊗ Γκ)e(µ, t)dµ−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (DDT + F ))e(µ, t)dµ+ τ

∫

Ω

eT (µ, t)e(µ, t)dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (BBT ))e(µ, t)dµ+

∫

Ω

eT (µ, t)(−IN ⊗A− (β̂

+ q̂)⊗ In)e(µ, t)dµ−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H)e(µ, t)dµ

+
ρ(t)

‖e(·, t)‖2 + ρ(t)

N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ

6

∫

Ω

eT (µ, t)

[ m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(DDT +BBT + F +

G

1− γ
) + τIn

− A−
p

∑

r=1

1

ι2r
H
)

− (β̂ + q̂)⊗ In

]

e(µ, t)dµ+
β‖e(·, t)‖2ρ(t)
‖e(·, t)‖2 + ρ(t)

−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh. (14)

By combining (9) and (14), we easily obtain that

V̇1(t) + εV1(t) 6

∫

Ω

eT (µ, t)

[ m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(DDT +BBT + F +

G

1− γ
)

+ τIn − A−
p

∑

r=1

1

ι2r
H
)

− (β̂ + q̂)⊗ In

]

e(µ, t)dµ+
β‖e(·, t)‖2ρ(t)
‖e(·, t)‖2 + ρ(t)

−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh+
ε

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ

+ ε

∫ t

t−τ

∫

Ω

eT (µ, h)

(

IN ⊗
(

τIn +
G

2(1− γ)

)

)

e(µ, h)dµdh

15



6

∫

Ω

eT (µ, t)

[ m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(DDT +BBT + F +

G

1− γ
)

+ (τ +
ε

2
)In − A−

p
∑

r=1

1

ι2r
H
)

− (β̂ + q̂)⊗ In

]

e(µ, t)dµ+ βρ(t)

+

∫ t

t−τ

∫

Ω

eT (µ, h)

(

IN ⊗
(

(ετ − 1)In +
εG

2(1− γ)

)

)

e(µ, h)dµdh.

By (6) and (7), one obtains

V̇1(t) + εV1(t) 6 βρ(t). (15)

Letting α1 = 1√
2
, α2 = β, we easily obtain that the network (3) is ψ-type

stable with convergence rate ε
2
. Then, the drive system (1) and the response

system (2) achieve general decay lag anti-synchronization. The proof is com-

pleted.

Remark 4. Recently, the anti-synchronization of traditional neural networks

without reaction–diffusion terms, which are described by ordinary differential

equations, has been investigated [12, 13, 16, 31]. However, diffusion effects

cannot be prevented in neural networks when electrons move in an asymmet-

ric electromagnetic field. Thus, it is necessary to consider diffusion effects in

the study of neural networks. It should be noted that the network models in

the majority of the studies discussed above are single-weighted. In practice,

numerous networks are represented more precisely by using multiple weights

[4, 20, 30]. In this study, we investigate the decay lag anti-synchronization

of MWCRDNNs. We note that the network models considered here are de-

scribed by partial differential equations, which implies that the state of each

neuron depends not only on the time variable but also on the space variable.

In fact, the main difficulty in extending the existing anti-synchronization re-
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sults to decay lag anti-synchronization analysis of MWCRDNNs arises from

the reaction–diffusion and multi-weighted terms, which cannot be handled by

existing techniques used in single-weight CNNs or without reaction–diffusion

terms. In addition, the definition of decay lag anti-synchronization and the

design of a suitable controller are also important. By using Green’s formula,

Lemmas 2.1, 2.2, and 3.1, as well as certain inequalities, several sufficient con-

ditions (dependent on the reaction–diffusion and multi-weighted terms) for

achieving decay lag anti-synchronization of the considered MWDCRDNNs

are established.

3.2. General decay lag anti-synchronization of MWDCRDNNs with paramet-

ric uncertainties

It is well known that equipment limitations and external interferences in

neural network modeling may bring about bounded parameter deviations.

Therefore, the following MWDCRDNN with parametric uncertainties is con-

sidered in this section:

∂Ys(µ, t)

∂t
=−AYs(µ, t) +H△Ys(µ, t) +Df(Ys(µ, t)) +Bg(Ŷs(µ, t))

+
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκYj(µ, t), s = 1, 2, · · · , N, (16)

where Ys(µ, t), △, f(·), g(·), cκ, Mκ
sj, Γκ, κ = 1, 2, · · · , m are defined as

in Section 3.1, and the parameters A, H, D, and B vary in certain given

17



ranges as follows:



























































































AI :={A = diag(ar) : A
−
6 A 6 A+, i.e., 0 < a−r 6 ar 6 a+r ,

r = 1, 2, · · · , n, ∀A ∈ AI},

HI :={H = diag(hr) : H
−
6 H 6 H+, i.e., 0 < h−r 6 hr 6 h+r ,

r = 1, 2, · · · , n, ∀H ∈ HI},

DI :={D = (drj)n×n : D−
6 D 6 D+, i.e., d−rj 6 drj 6 d+rj, r,

j = 1, 2, · · · , n, ∀D ∈ DI},

BI :={B = (brj)n×n : B−
6 B 6 B+, i.e., b−rj 6 brj 6 b+rj , r,

j = 1, 2, · · · , n, ∀B ∈ BI}.

(17)

For convenience, we define

d̃rj = max{|d−rj|, |d+rj|}, r = 1, 2, · · · , n, j = 1, 2, · · · , n,

b̃rj = max{|b−rj|, |b+rj|}, r = 1, 2, · · · , n, j = 1, 2, · · · , n,

̺D =
n

∑

r=1

n
∑

j=1

d̃2rj, ̺B =
n

∑

r=1

n
∑

j=1

b̃2rj .

We consider the network model (16) to be the drive system. Then, the

corresponding response system is

∂Ws(µ, t)

∂t
=− AWs(µ, t) +H△Ws(µ, t) +Bg(Ŵs(µ, t)) +Df(Ws(µ, t))

+
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκWj(µ, t) + us(µ, t), (18)

where s = 1, 2, · · · , N, Ws(µ, t), △, f(·), g(·), cκ, Mκ
sj , Γκ, κ = 1, 2, · · · , m,

and us(µ, t) are defined as in Section 3.1. The ranges of A, H, D, and B are

as in (17).

18



Let es(µ, t) = Ws(µ, t) + Ys(µ, t− σs). By (16) and (18), one can obtain

∂es(µ, t)

∂t
=− Aes(µ, t) +H△es(µ, t) +Bg( ̂Ys(µ, t− σs)) +Bg(Ŵs(µ, t))

+Df(Ys(µ, t− σs)) +Df(Ws(µ, t)) + us(µ, t)

+
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκej(µ, t), (19)

where σs > 0 (s = 1, 2, · · · , N) is the lag delay. The ranges of A, H, D, and

B are as in (17).

Definition 3.2. For all A ∈ AI , H ∈ HI , D ∈ DI , and B ∈ BI , if there

exists a constant λ > 0 such that

lim sup
t→∞

log‖e(·, t)‖
logψ(t)

6 −λ,

where e(µ, t) = (eT1 (µ, t), e
T
2 (µ, t), · · · , eTN(µ, t))T and ψ(t) is a ψ-type func-

tion as in Definition 2.1, then the network (19) is called robustly ψ-type sta-

ble, that is, the drive-response systems (16) and (18) achieve general robust

decay lag anti-synchronization, where λ is the convergence rate as e(µ, t) → 0.

We construct the same nonlinear controller (5) for the response system

(18) in this section.

Theorem 3.2. Under Assumptions 1 and 2, the system (19) is robustly ψ-

type stable with convergence rate ε
2
, that is, systems (16) and (18) achieve

general robust decay lag anti-synchronization for all A ∈ AI , H ∈ HI , D ∈
DI , and B ∈ BI if

Ξ2 =

m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗ P2 − (β̂ + q̂)⊗ In < 0, (20)
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Ψ2 = IN ⊗
(

(ετ − 1)In +
εG

2(1− γ)

)

< 0, (21)

where P2 =
1
2
(̺DIn + ̺BIn + F + G

1−γ ) + (τ + ε
2
)In − A− −

∑p

r=1
1
ι2r
H−.

Proof. We construct the same Lyapunov functional as in (8) for network

(19). Then, one obtains

V̇1(t) 6
N
∑

s=1

∫

Ω

eTs (µ, t)

(

−Aes(µ, t) +Bg( ̂Ys(µ, t− σs)) +
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκej(µ, t)

+ Bg(Ŵs(µ, t)) +H△es(µ, t)− βs
‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

+Df(Ws(µ, t))

− qses(µ, t) +Df(Ys(µ, t− σs))

)

dµ−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ+τ

∫

Ω

eT (µ, t)e(µ, t)dµ

− 1

2

∫

Ω

eT (µ, t− τ(t))(IN ⊗G)e(µ, t− τ(t))dµ. (22)

By Assumption 1, it easily follows that

N
∑

s=1

eTs (µ, t)B(g( ̂Ys(µ, t− σs)) + g(Ŵs(µ, t)))

6
1

2
eT(µ, t)(IN ⊗ (BBT))e(µ, t)+

1

2
eT(µ, t−τ(t))(IN ⊗G)e(µ, t−τ(t))

6
1

2
eT(µ, t)(IN ⊗ (̺BIn))e(µ, t)+

1

2
eT(µ, t−τ(t))(IN ⊗G)e(µ, t−τ(t)), (23)

and

N
∑

s=1

eTs (µ, t)D(f(Ys(µ, t− σs)) + f(Ws(µ, t)))

6
1

2
eT (µ, t)(IN ⊗ (DDT + F ))e(µ, t)

6
1

2
eT (µ, t)(IN ⊗ (̺DIn + F ))e(µ, t). (24)
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By (13), one obtains

N
∑

s=1

∫

Ω

eTs (µ, t)H△es(µ, t)dµ

6−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H)e(µ, t)dµ

6−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H−)e(µ, t)dµ. (25)

Eqs. (22)–(25) imply that

V̇1(t) 6

m
∑

κ=1

cκ

∫

Ω

eT (µ, t)(Mκ ⊗ Γκ)e(µ, t)dµ−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
N
∑

s=1

∫

Ω

eTs (µ, t)

(

− A−es(µ, t)− qses(µ, t)− βs
‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

)

dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (̺BIn))e(µ, t)dµ+

N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (̺DIn + F ))e(µ, t)dµ+ τ

∫

Ω

eT (µ, t)e(µ, t)dµ

−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H−)e(µ, t)dµ−
N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ

=
m
∑

κ=1

cκ

∫

Ω

eT (µ, t)(Mκ ⊗ Γκ)e(µ, t)dµ−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (̺DIn + F ))e(µ, t)dµ+ τ

∫

Ω

eT (µ, t)e(µ, t)dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (̺BIn))e(µ, t)dµ+

∫

Ω

eT (µ, t)(−IN ⊗ A− − (β̂

+ q̂)⊗ In)e(µ, t)dµ−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H−)e(µ, t)dµ
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+
ρ(t)

‖e(·, t)‖2 + ρ(t)

N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ

6

∫

Ω

eT (µ, t)

[ m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(̺DIn + ̺BIn + F +

G

1− γ
) + τIn

− A− −
p

∑

r=1

1

ι2r
H−)− (β̂ + q̂)⊗ In

]

e(µ, t)dµ+
β‖e(·, t)‖2ρ(t)
‖e(·, t)‖2 + ρ(t)

−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh. (26)

Combining (9) and (26), one obtains

V̇1(t) + εV1(t) 6

∫

Ω

eT (µ, t)

[ m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(̺DIn + ̺BIn + F +

G

1− γ
)

+ τIn − A− −
p

∑

r=1

1

ι2r
H−)− (β̂ + q̂)⊗ In

]

e(µ, t)dµ+ βρ(t)

−
∫ t

t−τ

∫

Ω

eT (µ, h)e(µ, h)dµdh+
ε

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ

+ ε

∫ t

t−τ

∫

Ω

eT (µ, h)

(

IN ⊗
(

τIn +
G

2(1− γ)

)

)

e(µ, h)dµdh

6

∫

Ω

eT (µ, t)

[ m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(̺DIn + ̺BIn + F +

G

1− γ
)

+ (τ +
ε

2
)In − A− −

p
∑

r=1

1

ι2r
H−)− (β̂ + q̂)⊗ In

]

e(µ, t)dµ+ βρ(t)

+

∫ t

t−τ

∫

Ω

eT (µ, h)

(

IN ⊗
(

(ετ − 1)In +
εG

2(1− γ)

)

)

e(µ, h)dµdh.

By (20) and (21),

V̇1(t) + εV1(t) 6 βρ(t).

By letting α1 =
1√
2
, α2 = β, we easily obtain that the network (19) is robustly

ψ-type stable with convergence rate ε
2
. Then, the drive system (16) and the
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response system (18) achieve general robust decay lag anti-synchronization.

The proof is completed.

Remark 5. In some situations, environment noise, equipment limitations,

and external interferences may result in bounded parameter variation during

the network modeling process. In addition, it is not easy to render models

with the planed parameter values or ensure that the parameters are con-

stant. Hence, it is meaningful to consider parametric uncertainties; some

interesting results have been obtained regarding robust synchronization and

robust anti-synchronization of neural networks [12, 24, 25, 30]. In [12], the

authors studied the robust anti-synchronization of a class of delayed chaotic

neural networks. Unfortunately, the robust decay lag anti-synchronization

of MWDCRDNNs has not been studied. In Section 3.2, we investigate the

robust decay lag anti-synchronization of MWDCRDNNs with parametric un-

certainties, which is one of the main contributions of this study.

4. General decay lag anti-synchronization of MWDCRDNNs with

bounded distributed delays

4.1. General decay lag anti-synchronization of MWDCRDNNs with bounded

distributed delays

In this section, the following MWDCRDNN with bounded distributed

delays is considered:

∂Ys(µ, t)

∂t
=−AYs(µ, t) +H△Ys(µ, t) +Bg(Ŷs(µ, t)) +Df(Ys(µ, t))

+

m
∑

κ=1

N
∑

j=1

ĉκM̂
κ
sjΓ̂κ

∫ t

t−δ(t)
Yj(µ, h)dh
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+
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκYj(µ, t), s = 1, 2, · · · , N. (27)

Here, Ys(µ, t), A, H, △, B, D, f(·), g(·), cκ, Mκ
sj, Γκ are defined as

in Section 3.1. δ(t) is the distributed delay, which satisfies 0 < δ(t) < δ.

R ∋ ĉκ > 0 (κ = 1, 2, · · · , m) is the coupling strength for the κ-th coupling

form. Γ̂κ ∈ Rn×n > 0 (κ = 1, 2, · · · , m) represents the inner coupling matrix

for the κ-th coupling form. M̂κ = (M̂κ
sj)N×N ∈ RN×N (κ = 1, 2, · · · , m)

expresses the coupling weight in the κ-th coupling form, where M̂κ
sj is defined

as follows: if there exists a connection between node s and node j for the

κ-th coupling form, then M̂κ
sj = M̂κ

js > 0; otherwise, M̂κ
sj = M̂κ

js = 0 (s 6= j).

Finally, the diagonal elements of the matrix M̂κ are defined as follows:

M̂κ
ss = −

N
∑

j=1

j 6=s

M̂κ
sj, s = 1, 2, · · · , N.

For the network (27),

Ys(µ, t) = φ̂s(µ, t) ∈ R
n, (µ, t) ∈ Ω× [−ǫ, 0],

Ys(µ, t) = 0, (µ, t) ∈ ∂Ω × [−ǫ,+∞),

where ǫ = max{τ, δ} and φ̂s(µ, t)(s = 1, 2, · · · , N) is bounded and continuous

on Ω× [−ǫ, 0].
We consider the network model (27) to be the drive system. Then, the

corresponding response system is

∂Ws(µ, t)

∂t
=− AWs(µ, t) +H△Ws(µ, t) +Bg(Ŵs(µ, t)) +Df(Ws(µ, t))

+

m
∑

κ=1

N
∑

j=1

ĉκM̂
κ
sjΓ̂κ

∫ t

t−δ(t)
Wj(µ, h)dh+ us(µ, t)
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+
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκWj(µ, t), s = 1, 2, · · · , N, (28)

whereWs(µ, t), A, H, △, B, D, g(·), f(·), cκ, Mκ
sj, Γκ, us(µ, t) are defined

as in Section 3.1, and δ(t), ĉκ, M̂
κ
sj , Γ̂κ are defined as in (27).

For the network (28),

Ws(µ, t) = ϕ̂s(µ, t) ∈ R
n, (µ, t) ∈ Ω× [−ǫ, 0],

Ws(µ, t) = 0, (µ, t) ∈ ∂Ω× [−ǫ,+∞),

where ϕ̂s(µ, t)(s = 1, 2, · · · , N) is bounded and continuous on Ω× [−ǫ, 0].
Let es(µ, t) = Ws(µ, t) + Ys(µ, t− σs). By (27) and (28), one obtains

∂es(µ, t)

∂t
=− Aes(µ, t) +H△es(µ, t) +Bg( ̂Ys(µ, t− σs)) +Bg(Ŵs(µ, t))

+Df(Ys(µ, t− σs)) +Df(Ws(µ, t)) +
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκej(µ, t)

+

m
∑

κ=1

N
∑

j=1

ĉκM̂
κ
sjΓ̂κ

∫ t

t−δ(t)
ej(µ, h)dh+ us(µ, t), (29)

where σs > 0 (s = 1, 2, · · · , N) is the lag delay.

We construct the same nonlinear controller (5) for the response system

(28) in this section.

Remark 6. As there exist many parallel pathways of varying axon size and

length, neural networks often have a certain spatial extent. Thus, there

may be a distribution of conduction velocities along these pathways or a

distribution of propagation delays over a period of time in some cases, which

results in certain types of time delays, that is, distributed delays in neural

networks. Therefore, it is necessary to consider these delays in the study
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of anti-synchronization of neural networks; some related papers on the anti-

synchronization of neural networks have recently been published [16, 26].

However, the decay lag anti-synchronization of MWDCRDNNs with bounded

distributed delays has never been considered. In this section, several decay

lag anti-synchronization criteria for MWCRDNNs with bounded distributed

delays are derived.

Theorem 4.1. Under Assumptions 1 and 2, the system (29) is ψ-type stable

with convergence rate ε
2
, that is, systems (27)and (28) achieve general decay

lag anti-synchronization, if

Ξ3 =
m
∑

κ=1

ĉκ

2
(M̂κ ⊗ Γ̂κ)2+

m
∑

κ=1

cκM
κ ⊗ Γκ+IN ⊗ P3 − (β̂+q̂)⊗ In < 0, (30)

Ψ3 = IN ⊗
(

(εǫ+
m
∑

κ=1

εĉκδ
2

2
− 1)In +

εG

2(1− γ)

)

< 0, (31)

where P3 =
1
2
(DDT+BBT +F+ G

1−γ )+( ε
2
+ǫ+

∑m
κ=1

ĉκδ
2

2
)In−A−∑p

r=1
1
ι2r
H.

Proof. We construct a Lyapunov functional for the network (29) as

follows:

V2(t) =
1

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ+

∫ 0

−ǫ

∫ t

t+ρ

∫

Ω

eT (µ, h)e(µ, h)dµdhdρ

+
1

2(1− γ)

∫ t

t−τ(t)

∫

Ω

eT (µ, h)(IN ⊗G)e(µ, h)dµdh

+

m
∑

κ=1

ĉκδ

2

∫ t

t−δ

∫ t

ρ

∫

Ω

eT (µ, h)e(µ, h)dµdhdρ. (32)

Obviously, ( 1√
2
‖e(·, t)‖)2 6 V2(t), and it can be deduced from (32) that

V2(t) 6
1

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ+ ǫ

∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh
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+
1

2(1− γ)

∫ t

t−τ

∫

Ω

eT (µ, h)(IN ⊗G)e(µ, h)dµdh

+

m
∑

κ=1

ĉκδ
2

2

∫ t

t−δ

∫

Ω

eT (µ, t)e(µ, t)dµdh

6

∫ t

t−ǫ

∫

Ω

eT (µ, h)

(

IN ⊗
(

(ǫ+
m
∑

κ=1

ĉκδ
2

2
)In +

G

2(1− γ)

)

)

e(µ, h)dµdh

+
1

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ. (33)

By calculating the derivative of (32) along the trajectories of the system (29),

one obtains

V̇2(t) 6
N
∑

s=1

∫

Ω

eTs (µ, t)

(

−Aes(µ, t) +Bg( ̂Ys(µ, t− σs)) +
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκej(µ, t)

+
m
∑

κ=1

N
∑

j=1

ĉκM̂
κ
sjΓ̂κ

∫ t

t−δ(t)
ej(µ, h)dh− βs

‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

+Df(Ws(µ, t))

− qses(µ, t) +Df(Ys(µ, t− σs)) +Bg(Ŵs(µ, t)) +H△es(µ, t)
)

dµ

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ+ǫ

∫

Ω

eT (µ, t)e(µ, t)dµ

−
∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh+
m
∑

κ=1

ĉκδ
2

2

∫

Ω

eT (µ, t)e(µ, t)dµ

− 1

2

∫

Ω

eT (µ, t− τ(t))(IN ⊗G)e(µ, t− τ(t))dµ

−
m
∑

κ=1

ĉκδ

2

∫ t

t−δ

∫

Ω

eT (µ, h)e(µ, h)dµdh. (34)

Obviously,

m
∑

κ=1

N
∑

s=1

N
∑

j=1

ĉκM̂
κ
sj

∫

Ω

eTs (µ, t)Γ̂κ

∫ t

t−δ(t)
ej(µ, h)dhdµ

=
m
∑

κ=1

ĉκ

∫

Ω

eT (µ, t)(M̂κ ⊗ Γ̂κ)

∫ t

t−δ(t)
e(µ, h)dhdµ

27



6

m
∑

κ=1

ĉκ

2

∫

Ω

(
∫ t

t−δ(t)
e(µ, h)dh

)T(∫ t

t−δ(t)
e(µ, h)dh

)

dµ

+

m
∑

κ=1

ĉκ

2

∫

Ω

eT (µ, t)(M̂κ ⊗ Γ̂κ)2e(µ, t)dµ. (35)

Then, by Lemma 2.2, one obtains

m
∑

κ=1

N
∑

s=1

N
∑

j=1

ĉκM̂
κ
sj

∫

Ω

eTs (µ, t)Γ̂κ

∫ t

t−δ(t)
ej(µ, h)dhdµ

6

m
∑

κ=1

ĉκ

2

∫

Ω

δ(t)

∫ t

t−δ(t)
eT (µ, h)e(µ, h)dhdµ

+

m
∑

κ=1

ĉκ

2

∫

Ω

eT (µ, t)(M̂κ ⊗ Γ̂κ)2e(µ, t)dµ

6

m
∑

κ=1

ĉκ

2

∫

Ω

eT (µ, t)(M̂κ ⊗ Γ̂κ)2e(µ, t)dµ

+

m
∑

κ=1

ĉκδ

2

∫ t

t−δ

∫

Ω

eT (µ, h)e(µ, h)dµdh. (36)

By (11)–(13) and (34)–(36), one obtains

V̇2(t) 6

m
∑

κ=1

cκ

∫

Ω

eT (µ, t)(Mκ ⊗ Γκ)e(µ, t)dµ−
∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
N
∑

s=1

∫

Ω

eTs (µ, t)

(

− Aes(µ, t)− qses(µ, t)− βs
‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

)

dµ

−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H)e(µ, t)dµ+
m
∑

κ=1

ĉκδ
2

2

∫

Ω

eT (µ, t)e(µ, t)dµ

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ−
N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (BBT ))e(µ, t)dµ+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (DDT

+ F ))e(µ, t)dµ+
m
∑

κ=1

ĉκ

2

∫

Ω

eT (µ, t)(M̂κ ⊗ Γ̂κ)2e(µ, t)dµ
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+
N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ+ ǫ

∫

Ω

eT (µ, t)e(µ, t)dµ

=
m
∑

κ=1

ĉκδ
2

2

∫

Ω

eT (µ, t)e(µ, t)dµ+
m
∑

κ=1

ĉκ

2

∫

Ω

eT (µ, t)(M̂κ ⊗ Γ̂κ)2e(µ, t)dµ

+

m
∑

κ=1

cκ

∫

Ω

eT (µ, t)(Mκ ⊗ Γκ)e(µ, t)dµ−
∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (DDT + F ))e(µ, t)dµ+ ǫ

∫

Ω

eT (µ, t)e(µ, t)dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (BBT ))e(µ, t)dµ+

∫

Ω

eT (µ, t)(−IN ⊗A− (β̂

+ q̂)⊗ In)e(µ, t)dµ−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H)e(µ, t)dµ

+
ρ(t)

‖e(·, t)‖2 + ρ(t)

N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ

6

∫

Ω

eT (µ, t)

[ m
∑

κ=1

ĉκ

2
(M̂κ ⊗ Γ̂κ)2 +

m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(DDT +BBT

+ F +
G

1− γ
) + (ǫ+

m
∑

κ=1

ĉκδ
2

2
)In − A−

p
∑

r=1

1

ι2r
H
)

− (β̂ + q̂)⊗ In

]

e(µ, t)dµ

+ βρ(t)−
∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh. (37)

By combining (33) and (37), we easily obtain

V̇2(t) + εV2(t) 6ε

∫ t

t−ǫ

∫

Ω

eT (µ, h)

(

IN ⊗
(

(ǫ+

m
∑

κ=1

ĉκδ
2

2
)In +

G

2(1− γ)

)

)

e(µ, h)dµdh

+

∫

Ω

eT (µ, t)

[ m
∑

κ=1

ĉκ

2
(M̂κ ⊗ Γ̂κ)2 +

m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(DDT

+BBT + F +
G

1− γ
) + (ǫ+

m
∑

κ=1

ĉκδ
2

2
)In −A−

p
∑

r=1

1

ι2r
H
)

− (β̂
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+ q̂)⊗ In

]

e(µ, t)dµ+ βρ(t)−
∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
ε

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ

6

∫

Ω

eT (µ, t)

[ m
∑

κ=1

ĉκ

2
(M̂κ ⊗ Γ̂κ)2 +

m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(DDT

+BBT+F +
G

1− γ
) + (

ε

2
+ ǫ+

m
∑

κ=1

ĉκδ
2

2
)In−A−

p
∑

r=1

1

ι2r
H
)

−(β̂

+ q̂)⊗ In

]

e(µ, t)dµ+ βρ(t) +

∫ t

t−ǫ

∫

Ω

eT (µ, h)

(

IN ⊗
(

(εǫ

+
m
∑

κ=1

εĉκδ
2

2
− 1)In +

εG

2(1− γ)

)

)

e(µ, h)dµdh.

By (30) and (31), one obtains

V̇2(t) + εV2(t) 6 βρ(t).

Letting α1 = 1√
2
, α2 = β, one easily obtains that network (29) is ψ-type

stable with convergence rate ε
2
. Then, the drive system (27) and the response

system (28) achieve general decay lag anti-synchronization. The proof is

completed.

4.2. General decay lag anti-synchronization of MWDCRDNNs with bounded

distributed delays and parametric uncertainties

In this section, we consider the following MWDCRDNN with bounded

distributed delays and parametric uncertainties:

∂Ys(µ, t)

∂t
=−AYs(µ, t) +H△Ys(µ, t) +Bg(Ŷs(µ, t)) +Df(Ys(µ, t))

+

m
∑

κ=1

N
∑

j=1

ĉκM̂
κ
sjΓ̂κ

∫ t

t−δ(t)
Yj(µ, h)dh
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+
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκYj(µ, t), s = 1, 2, · · · , N, (38)

where Ys(µ, t), △, g(·), f(·), δ(t), ĉκ, M̂κ
sj , Γ̂κ, cκ, M

κ
sj, Γκ(κ = 1, 2, · · · , m)

are defined as in Section 4.1, and the ranges of A, H, B, and D are as in

(17).

We consider the network model (38) to be the drive system. Then, the

corresponding response system is

∂Ws(µ, t)

∂t
=− AWs(µ, t) +H△Ws(µ, t) +Bg(Ŵs(µ, t)) +Df(Ws(µ, t))

+

m
∑

κ=1

N
∑

j=1

ĉκM̂
κ
sjΓ̂κ

∫ t

t−δ(t)
Wj(µ, h)dh+ us(µ, t)

+
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκWj(µ, t), s = 1, 2, · · · , N, (39)

where Ws(µ, t), △, g(·), f(·), δ(t), cκ, Mκ
sj , Γκ, us(µ, t), ĉκ, M̂

κ
sj, Γ̂κ(κ =

1, 2, · · · , m) are defined as in Section 4.1, and the ranges of A, H, B, and

D are as in (17).

Let es(µ, t) = Ws(µ, t) + Ys(µ, t− σs). By (38) and (39), one obtains

∂es(µ, t)

∂t
=− Aes(µ, t) +H△es(µ, t) +Bg( ̂Ys(µ, t− σs)) +Bg(Ŵs(µ, t))

+Df(Ys(µ, t− σs)) +Df(Ws(µ, t)) +
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκej(µ, t)

+
m
∑

κ=1

N
∑

j=1

ĉκM̂
κ
sjΓ̂κ

∫ t

t−δ(t)
ej(µ, h)dh+ us(µ, t), (40)

where σs > 0 (s = 1, 2, · · · , N) is the lag delay, and the ranges of A, H, B,

and D are as in (17).

We construct the same nonlinear controller (5) for the response system

(39) in this section.
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Theorem 4.2. Under Assumptions 1 and 2, the system (40) is robustly ψ-

type stable with convergence rate ε
2
, that is, systems (38)and (39) achieve

general robust decay lag anti-synchronization for all A ∈ AI , H ∈ HI , D ∈
DI , and B ∈ BI if

Ξ4 =

m
∑

κ=1

ĉκ

2
(M̂κ ⊗ Γ̂κ)2+

m
∑

κ=1

cκM
κ ⊗ Γκ+IN ⊗ P4 − (β̂+q̂)⊗ In < 0, (41)

Ψ4 = IN ⊗
(

(εǫ+
m
∑

κ=1

εĉκδ
2

2
− 1)In +

εG

2(1− γ)

)

< 0, (42)

where P4 =
1
2
(̺DIn+̺BIn+F+ G

1−γ )+( ε
2
+ǫ+

∑m
κ=1

ĉκδ
2

2
)In−A−−

∑p
r=1

1
ι2r
H−.

Proof. We construct the same Lyapunov functional as in (32) for network

(29). Then, one obtains

V̇2(t) 6
N
∑

s=1

∫

Ω

eTs (µ, t)

(

−A−es(µ, t) +Bg( ̂Ys(µ, t− σs)) +
m
∑

κ=1

N
∑

j=1

cκM
κ
sjΓκej(µ, t)

+

m
∑

κ=1

N
∑

j=1

ĉκM̂
κ
sjΓ̂κ

∫ t

t−δ(t)
ej(µ, h)dh− βs

‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

+Df(Ws(µ, t))

− qses(µ, t) +Df(Ys(µ, t− σs)) +Bg(Ŵs(µ, t)) +H△es(µ, t)
)

dµ

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ+ǫ

∫

Ω

eT (µ, t)e(µ, t)dµ

−
∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh+

m
∑

κ=1

ĉκδ
2

2

∫

Ω

eT (µ, t)e(µ, t)dµ

− 1

2

∫

Ω

eT (µ, t− τ(t))(IN ⊗G)e(µ, t− τ(t))dµ

−
m
∑

κ=1

ĉκδ

2

∫ t

t−δ

∫

Ω

eT (µ, h)e(µ, h)dµdh. (43)

From (23)–(25) and (36), it is easy to derive that

V̇2(t) 6
m
∑

κ=1

cκ

∫

Ω

eT (µ, t)(Mκ ⊗ Γκ)e(µ, t)dµ−
∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh
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+
N
∑

s=1

∫

Ω

eTs (µ, t)

(

− A−es(µ, t)− qses(µ, t)− βs
‖e(·, t)‖2es(µ, t)
‖e(·, t)‖2 + ρ(t)

)

dµ

−
p

∑

r=1

1

ι2r

∫

Ω

eT (µ, t)(IN ⊗H−)e(µ, t)dµ+
m
∑

κ=1

ĉκδ
2

2

∫

Ω

eT (µ, t)e(µ, t)dµ

+
1

2(1− γ)

∫

Ω

eT (µ, t)(IN ⊗G)e(µ, t)dµ−
N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ

+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (̺BIn))e(µ, t)dµ+
1

2

∫

Ω

eT (µ, t)(IN ⊗ (̺DIn

+ F ))e(µ, t)dµ+
m
∑

κ=1

ĉκ

2

∫

Ω

eT (µ, t)(M̂κ ⊗ Γ̂κ)2e(µ, t)dµ

+

N
∑

s=1

βs

∫

Ω

eTs (µ, t)es(µ, t)dµ+ ǫ

∫

Ω

eT (µ, t)e(µ, t)dµ

6

∫

Ω

eT (µ, t)

[ m
∑

κ=1

ĉκ

2
(M̂κ ⊗ Γ̂κ)2 +

m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(̺DIn + ̺BIn

+ F +
G

1− γ
) + (ǫ+

m
∑

κ=1

ĉκδ
2

2
)In − A− −

p
∑

r=1

1

ι2r
H−)− (β̂

+ q̂)⊗ In

]

e(µ, t)dµ+ βρ(t)−
∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh. (44)

Combining (33) and (44), one obtains

V̇2(t) + εV2(t) 6ε

∫ t

t−ǫ

∫

Ω

eT (µ, h)

(

IN ⊗
(

(ǫ+

m
∑

κ=1

ĉκδ
2

2
)In +

G

2(1− γ)

)

)

e(µ, h)dµdh

+

∫

Ω

eT (µ, t)

[ m
∑

κ=1

ĉκ

2
(M̂κ ⊗ Γ̂κ)2 +

m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(̺DIn

+ ̺BIn + F +
G

1− γ
) + (ǫ+

m
∑

κ=1

ĉκδ
2

2
)In − A− −

p
∑

r=1

1

ι2r
H−)− (β̂

+ q̂)⊗ In

]

e(µ, t)dµ+ βρ(t)−
∫ t

t−ǫ

∫

Ω

eT (µ, h)e(µ, h)dµdh

+
ε

2

N
∑

s=1

∫

Ω

eTs (µ, t)es(µ, t)dµ
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∫

Ω

eT (µ, t)

[ m
∑

κ=1

ĉκ

2
(M̂κ ⊗ Γ̂κ)2 +

m
∑

κ=1

cκM
κ ⊗ Γκ + IN ⊗

(1

2
(̺DIn

+ ̺BIn + F +
G

1− γ
) + (

ε

2
+ ǫ+

m
∑

κ=1

ĉκδ
2

2
)In − A− −

p
∑

r=1

1

ι2r
H−)

−(β̂ + q̂)⊗ In

]

e(µ, t)dµ+ βρ(t) +

∫ t

t−ǫ

∫

Ω

eT (µ, h)

(

IN ⊗
(

(εǫ

+
m
∑

κ=1

εĉκδ
2

2
− 1)In +

εG

2(1− γ)

)

)

e(µ, h)dµdh.

By (41) and (42),

V̇2(t) + εV2(t) 6 βρ(t).

Letting α1 =
1√
2
, α2 = β, one easily obtains that the network (40) is robustly

ψ-type stable with convergence rate ε
2
. Then, the drive system (38) and the

response system (39) achieve general robust decay lag anti-synchronization.

The proof is completed.

Remark 7. From the conditions of Theorems 3.1, 3.2, 4.1, and 4.2, it can

be clearly seen that the dimensions of these matrix inequalities depend on

the number of nodes in the network and the dimension of each node. When

the number and the dimension of the nodes are large, the implementation

complexity increases accordingly. In this case, it may be difficult to verify the

conditions by using Matlab. Therefore, it is an important and challenging

problem to establish more tractable conditions that ensures the decay lag

anti-synchronization of the considered MWDCRDNNs, which will be a future

research direction.

Remark 8. In this study, several decay lag anti-synchronization and robust

decay lag anti-synchronization criteria for MWDCRDNNs with and without
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bounded distributed delays are derived using certain inequalities and Lya-

punov’s functional method. To the best of our knowledge, this is the first

step towards studying the decay lag anti-synchronization of MWDCRDNNs.

However, the time-varying delay τ(t) in the considered model should satisfy

the conditions 0 6 τ(t) 6 τ and τ̇(t) 6 γ < 1. In recent years, research

has been conducted on networks with unbounded time delay, and it is pos-

sible to remove the restriction on the derivative of the time delay (i.e., the

condition τ̇(t) 6 γ < 1) by using delay interval decomposition. In future

work, it would be interesting to establish some less restrictive decay lag anti-

synchronization criteria by adopting these new methods or techniques to

remove the constraints on time delay.

5. Numerical Examples

Example 5.1. We consider the following MWDCNN with reaction–

diffusion terms:

∂Ys(µ, t)

∂t
=−AYs(µ, t) +H△Ys(µ, t) +Df(Ys(µ, t)) +Bg(Ŷs(µ, t))

+ 0.3

5
∑

j=1

M1
sjΓ1Yj(µ, t) + 0.4

5
∑

j=1

M2
sjΓ2Yj(µ, t)

+ 0.2
5

∑

j=1

M3
sjΓ3Yj(µ, t), (45)

where s = 1, 2, · · · , 5, fi(ω) = |ω+1|−|ω−1|
8

, gi(ω) = |ω+1|−|ω−1|
4

(i = 1, 2, 3),

Ω = {µ| − 1 < µ < 1}, Γ1 = diag(0.2, 0.5, 0.3), Γ2 = diag(0.1, 0.2, 0.3), Γ3 =

diag(0.3, 0.1, 0.4), τ(t) = 1
20

− 1
10
e−t, τ = 1

20
, γ = 1

10
; the matrices M1, M2,
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and M3 are chosen as follows:

M1 =























−0.3 0 0.1 0.2 0

0 −0.6 0.3 0.2 0.1

0.1 0.3 −0.6 0 0.2

0.2 0.2 0 −0.6 0.2

0 0.1 0.2 0.2 −0.5























,

M2 =























−0.6 0.1 0 0.3 0.2

0.1 −0.3 0 0.1 0.1

0 0 −0.1 0.1 0

0.3 0.1 0.1 −0.5 0

0.2 0.1 0 0 −0.3























,

M3 =























−0.5 0.2 0.1 0 0.2

0.2 −0.4 0 0.1 0.1

0.1 0 −0.1 0 0

0 0.1 0 −0.4 0.3

0.2 0.1 0 0.3 −0.6























.

The parameters A, H, D, B in the network (45) may vary as follows:







































































AI :={A = diag(a1, a2, a3) : 0.4 6 a1 6 0.5, 0.5 6 a2 6 0.6,

0.6 6 a3 6 0.7},

HI :={H = diag(h1, h2, h3) : 0.6 6 h1 6 0.7, 0.7 6 h2 6 0.8,

0.8 6 h3 6 0.9},

DI :={D = (drj)3×3 :
1

3(r + j)
+ 0.02 6 drj 6

1

3(r + j)
+ 0.03},

BI :={B = (brj)3×3 :
1

4(r + j)
+ 0.01 6 brj 6

1

4(r + j)
+ 0.02}.

(46)
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Apparently, fi(·) and gi(·) (i = 1, 2, 3) satisfy Assumption 1 with Fi =

0.25 and Gi = 0.5, respectively. We consider (45) to be the drive system;

then, the corresponding response system is as follows:

∂Ws(µ, t)

∂t
=− AWs(µ, t) +H△Ws(µ, t) +Bg(Ŵs(µ, t)) +Df(Ws(µ, t))

+ 0.3
5

∑

j=1

M1
sjΓ1Wj(µ, t) + 0.4

5
∑

j=1

M2
sjΓ2Wj(µ, t) + · · ·

+ 0.2

5
∑

j=1

M3
sjΓ3Wj(µ, t) + us(µ, t). (47)

The parameters in the controller us(µ, t) defined in (5) are chosen as follows:

q̂ = diag(0.7, 0.8, 0.5, 0.3, 0.4), β̂ = diag(0.4, 0.6, 0.2, 0.4, 0.2), and ρ(t) =

e−0.3t. Then, the nonlinear controller (5) takes the following form:







































































u1(µ, t) =− 0.7e1(µ, t)− 0.4
‖e(·, t)‖2e1(µ, t)
‖e(·, t)‖2 + e−0.3t

,

u2(µ, t) =− 0.8e2(µ, t)− 0.6
‖e(·, t)‖2e2(µ, t)
‖e(·, t)‖2 + e−0.3t

,

u3(µ, t) =− 0.5e3(µ, t)− 0.2
‖e(·, t)‖2e3(µ, t)
‖e(·, t)‖2 + e−0.3t

,

u4(µ, t) =− 0.3e4(µ, t)− 0.4
‖e(·, t)‖2e4(µ, t)
‖e(·, t)‖2 + e−0.3t

,

u5(µ, t) =− 0.4e5(µ, t)− 0.2
‖e(·, t)‖2e5(µ, t)
‖e(·, t)‖2 + e−0.3t

.

(48)

The other parameters in (47) are defined as in (45). We choose ε = 0.02,

that is, the convergence rate is ε
2
= 0.01. For convenience, the lag delays are

chosen as σs = 0.008 (s = 1, 2, · · · , 5). Through a simple operation based on

the above parameters using the MATLAB toolbox, one obtains

λ(Ξ2) ={−2.5879,−2.3879,−2.3076,−2.1343,−2.0719,−1.9154,−1.8401,
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Figure 1: esj(µ, t) between systems (45) and (47), s = 1, 2, · · · , 5, j = 1, 2, 3.

− 1.8339,−1.7596,−1.7004,−1.6673,−1.5473,−1.4471,−1.4077,

− 1.3257},

λ(Ψ2) =− 0.9962,

which satisfy the conditions (20) and (21).

By Theorem 3.2, the systems (45) and (47) achieve general robust de-

cay lag anti-synchronization under the nonlinear controller (48). The above

simulation result demonstrates the validity of Theorem 3.2 in Section 3. Fig-

ure 1 shows the trajectories of the three components of the errors states

(es(t), s = 1, 2, · · · , 5) between systems (45) and (47) under the controller

(48). It is clear that each component converges to 0 as the time t gradually

increases to 1 s, and this state is maintained thereafter.

Example 5.2. We consider the following MWDCRDNN with bounded
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distributed delays:

∂Ys(µ, t)

∂t
=− AYs(µ, t) +H△Ys(µ, t) +Df(Ys(µ, t)) +Bg(Ŷs(µ, t))

+ 0.1

5
∑

j=1

M̂1
sjΓ̂1

∫ t

t−δ(t)
Yj(µ, h)dh+ 0.3

5
∑

j=1

M1
sjΓ1Yj(µ, t)

+ 0.3

5
∑

j=1

M̂2
sjΓ̂2

∫ t

t−δ(t)
Yj(µ, h)dh+ 0.4

5
∑

j=1

M2
sjΓ2Yj(µ, t)

+ 0.2
5

∑

j=1

M̂3
sjΓ̂3

∫ t

t−δ(t)
Yj(µ, h)dh+ 0.2

5
∑

j=1

M3
sjΓ3Yj(µ, t), (49)

where s = 1, 2, · · · , 5, fi(ω) = |ω+1|−|ω−1|
4

, gi(ω) = |ω+1|−|ω−1|
8

(i = 1, 2, 3),

Ω = {µ| − 1 < µ < 1}, Γ1 = diag(0.2, 0.5, 0.3), Γ2 = diag(0.1, 0.2, 0.3), Γ3 =

diag(0.3, 0.1, 0.4), Γ̂1 = diag(0.4, 0.2, 0.3), Γ̂2 = diag(0.1, 0.5, 0.4), Γ̂3 =

diag(0.2, 0.2, 0.4), τ(t) = 1
20
− 1

10
e−t, τ = 1

20
, γ = 1

10
, δ(t) = 1

10
− 1

10
e−t, δ = 1

10
;

the matrices M1, M2, M3, M̂1, M̂2, and M̂3 are chosen as

M1 =























−0.3 0 0.1 0.2 0

0 −0.6 0.3 0.2 0.1

0.1 0.3 −0.6 0 0.2

0.2 0.2 0 −0.6 0.2

0 0.1 0.2 0.2 −0.5























,

M2 =























−0.6 0.1 0 0.3 0.2

0.1 −0.3 0 0.1 0.1

0 0 −0.1 0.1 0

0.3 0.1 0.1 −0.5 0

0.2 0.1 0 0 −0.3























,
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M3 =























−0.5 0.2 0.1 0 0.2

0.2 −0.4 0 0.1 0.1

0.1 0 −0.1 0 0

0 0.1 0 −0.4 0.3

0.2 0.1 0 0.3 −0.6























,

M̂1 =























−0.5 0.2 0 0.2 0.1

0.2 −0.6 0.3 0.1 0

0 0.3 −0.7 0.2 0.2

0.2 0.1 0.2 −0.7 0.2

0.1 0 0.2 0.2 −0.5























,

M̂2 =























−0.5 0 0.3 0.2 0

0 −0.2 0 0.1 0.1

0.3 0 −0.6 0.1 0.2

0.2 0.1 0.1 −0.4 0

0 0.1 0.2 0 −0.3























,

M̂3 =























−0.6 0.3 0.2 0.1 0

0.3 −0.6 0.1 0 0.2

0.2 0.1 −0.4 0 0.1

0.1 0 0 −0.4 0.3

0 0.2 0.1 0.3 −0.6























.

The parameters A, H, D, B in the network (49) are defined by (46). Ap-

parently, fi(·) and gi(·) (i = 1, 2, 3) satisfy Assumption 1 with Fi = 0.5 and

Gi = 0.25, respectively. We consider (49) to be the drive system; then, the
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corresponding response system is as follows:

∂Ws(µ, t)

∂t
=− AWs(µ, t) +H△Ws(µ, t) +Df(Ws(µ, t)) +Bg(Ŵs(µ, t))

+ 0.1
5

∑

j=1

M̂1
sjΓ̂1

∫ t

t−δ(t)
Wj(µ, h)dh+ 0.3

5
∑

j=1

M1
sjΓ1Wj(µ, t)

+ 0.3

5
∑

j=1

M̂2
sjΓ̂2

∫ t

t−δ(t)
Wj(µ, h)dh+ 0.4

5
∑

j=1

M2
sjΓ2Wj(µ, t)

+ 0.2

5
∑

j=1

M̂3
sjΓ̂3

∫ t

t−δ(t)
Wj(µ, h)dh+ 0.2

5
∑

j=1

M3
sjΓ3Wj(µ, t)

+ us(µ, t). (50)

The parameters in the controller us(µ, t) defined in (5) are chosen as follows:

q̂ = diag(0.6, 0.8, 0.2, 0.4, 0.1), β̂ = diag(0.4, 0.5, 0.2, 0.1, 0.3), and ρ(t) =

e−0.3t. Then, the nonlinear controller (5) takes the following form:






































































u1(µ, t) =− 0.6e1(µ, t)− 0.4
‖e(·, t)‖2e1(µ, t)
‖e(·, t)‖2 + e−0.3t

,

u2(µ, t) =− 0.8e2(µ, t)− 0.5
‖e(·, t)‖2e2(µ, t)
‖e(·, t)‖2 + e−0.3t

,

u3(µ, t) =− 0.2e3(µ, t)− 0.2
‖e(·, t)‖2e3(µ, t)
‖e(·, t)‖2 + e−0.3t

,

u4(µ, t) =− 0.4e4(µ, t)− 0.1
‖e(·, t)‖2e4(µ, t)
‖e(·, t)‖2 + e−0.3t

,

u5(µ, t) =− 0.1e5(µ, t)− 0.3
‖e(·, t)‖2e5(µ, t)
‖e(·, t)‖2 + e−0.3t

.

(51)

The other parameters in (50) are defined as in (49). We choose ε = 0.04,

that is, the convergence rate is ε
2
= 0.02. For convenience, the lag delays are

chosen as σs = 0.002 (s = 1, 2, · · · , 5). Through a simple operation based on

the above parameters by using the MATLAB toolbox, one obtains

λ(Ξ4) ={−1.0422,−1.0761,−1.1873,−1.9750,−1.6756,−2.4221,−2.2289,
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Figure 2: esj(µ, t) between systems (49) and (50), s = 1, 2, · · · , 5, j = 1, 2, 3.

− 2.1342,−1.8990,−1.6489,−1.2652,−1.3173,−1.5117,−1.4398,

− 1.4569},

λ(Ψ4) =− 0.9945,

which satisfy the conditions (41) and (42).

By Theorem 4.2, the systems (49) and (50) achieve general robust de-

cay lag anti-synchronization under the nonlinear controller (51). The above

simulation demonstrates the validity of Theorem 4.2 in Section 4. Fig-

ure 2 shows the trajectories of the three components of the errors states

(es(t), s = 1, 2, · · · , 5) between systems (49) and (50) under the controller

(51). It is clear that each component tends to 0 as the time t gradually

increases to 1 s, and this state is maintained thereafter.

Remark 9. Owing to the difficulty in estimating the convergence rate of a
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system in practice, a new type of synchronization was proposed, namely de-

cay synchronization. It generalizes traditional synchronization concepts, such

as, exponential, asymptotic, and polynomial synchronization [1, 14, 18, 19].

However, these studies ignore the impact of time delay on the network,

which may lead to various undesirable results, such as instability and poor

performance. For this reason, lag synchronization of neural networks has

been extensively studied [2, 6, 17, 28]. In various applications, another in-

teresting phenomenon, that is, anti-synchronization, has been observed in

chaotic neural networks [12, 13, 31] and memristive neural networks [16, 28].

Unfortunately, decay lag anti-synchronization has not been considered to

date. In this study, the decay lag anti-synchronization of MWDCRDNNs

with and without bounded distributed delays was first investigated, and re-

lated conditions were derived by introducing the concept of decay lag anti-

synchronization and designing an appropriate nonlinear controller.

Remark 10. In this section, the theoretical results were verified using two

numerical simulations, in which the parameters need only to satisfy the con-

ditions in the network model. Recently, the problem of decay synchronization

and lag synchronization of neural networks has attracted considerable atten-

tion [1, 2, 6, 14, 17–19, 28]. In these studies, purely numerical examples were

used to validate the derived theoretical results. Accordingly, we adopted the

same strategy here and used two numerical examples. It would be interesting

to find potential applications in future work.
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6. Conclusion

This study was concerned with the general decay lag anti-synchronization

of MWDCRDNNs, which combines the concepts of anti-synchronization, de-

cay synchronization, and lag synchronization. Using Lyapunov function-

als, certain inequalities, and an appropriate nonlinear controller, we de-

rived sufficient conditions whereby the decay lag anti-synchronization of

MWDCRDNNs with and without parametric uncertainties is ensured. Sim-

ilarly, the decay lag anti-synchronization and the robust decay lag anti-

synchronization of MWDCRDNNs with bounded distributed delays were also

studied. Finally, several simulations were performed to validate the obtained

results.
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[11] H. Lü, W. L. He, Q. L. Han, C. Peng, Fixed-time synchronization for

coupled delayed neural networks with discontinuous or continuous acti-

vations, Neurocomputing 314 (2018) 143 - 153.

[12] J. Meng, X. Y. Wang, Robust anti-synchronization of a class of delayed

chaotic neural networks, Chaos 17 (2007) 023113.

[13] F. L. Ren, J. D. Cao, Anti-synchronization of stochastic perturbed de-

layed chaotic neural networks, Neural Computing and Applications 18

(2009) 515 - 521.

46



[14] M. Sader, A. Abdurahman, H. J. Jiang, General decay synchronization

of delayed BAM neural networks via nonlinear feedback control, Applied

Mathematics and Computation 337 (2018) 302 - 314.

[15] H. A. Tang, S. K. Duan, X. F. Hu, L. D. Wang, Passivity and syn-

chronization of coupled reaction-diffusion neural networks with multiple

time-varying delays via impulsive control, Neurocomputing 318 (2018) 30

- 42.

[16] W. P. Wang, L. X. Li, H. P. Peng, W. N. Wang, J. Kurths, J. H. Xiao, Y.

X. Yang, Anti-synchronization of coupled memristive neutral-type neural

networks with mixed time-varying delays via randomly occurring control,

Nonlinear Dynamics 4 (2016) 2143 - 2155.

[17] J. A. Wang, X. H. Ma, X. Y. Wen, Q. L. Sun, Pinning lag synchroniza-

tion of drive-response complex networks via intermittent control with two

different switched periods, Physica A 461 (2016) 278 - 287.

[18] L. M. Wang, Y. Shen, G. D. Zhang, General decay synchronization

stability for a class of delayed chaotic neural networks with discontinuous

activations, Neurocomputing 179 (2016) 169 - 175.

[19] L. M. Wang, Y. Shen, G. D. Zhang, Synchronization of a class of

switched neural networks with time-varying delays via nonlinear feed-

back control, IEEE Transactions on Cybernetics 46 (2016) 2300 - 2310.

[20] J. L. Wang, M. Xu, H. N. Wu, T. W. Huang, Finite-time passivity of

coupled neural networks with multiple weights, IEEE Transactions on

Network Science and Engineering 5 (2018) 184 - 197.

47



[21] N. Wang, H. R. Karimi, H. Y. Li, S. F. Su, Accurate tra-

jectory tracking of disturbed surface vehicles: a finite-time

control approach, IEEE/ASME Transactions on Mechatronics,

https://doi.org/10.1109/TMECH.2019.2906395.

[22] Q. Wang, J. L. Wang, S. Y. Ren, Y. L. Huang, Analysis and adaptive

control for lag H∞ synchronization of coupled reaction-diffusion neural

networks, Neurocomputing 319 (2018) 144 - 154.

[23] Y. Y. Wang, H. R. Karimi, H. C. Yan, An adaptive event-triggered

synchronization approach for chaotic lur’e systems subject to aperiodic

sampled data, IEEE Transactions on Circuits and Systems II: Express

Briefs 66 (2019) 442 - 446.

[24] L. S. Wang, Y. Y. Gao, Global exponential robust stability of reaction-

diffusion interval neural networks with time-varying delays, Physics Let-

ters A 350 (2006) 342 - 348.

[25] F. G. Wu, S. G. Hu, Razumikhin-type theorems on general decay stabil-

ity and robustness for stochastic functional differential equations, Inter-

national Journal of Robust and Nonlinear Control 22 (2012) 763 - 777.

[26] H. Q. Wu, X. W. Zhang, R. X. Li, R. Yao, Adaptive anti-synchronization

and H∞ anti-synchronization for memristive neural networks with mixed

time delays and reaction-diffusion terms, Neurocomputing 168 (2015) 726

- 740.

[27] X. S. Yang, J. D. Cao, J. Q. Lu, Synchronization of Markovian cou-

pled neural networks with nonidentical node-delays and random coupling

48



strengths, IEEE Transactions on Neural Networks and Learning Systems

23 (2012) 60 - 71.

[28] G. D. Zhang, J. Han, B. Xiong, Exponential lag anti-synchronization

of memristive neural networks with time delays, Chinese Automation

Congress (CAC), Jinan, 2017.

[29] Y. F. Zhang, Z. Y. He, A secure communication scheme based on cellular

neural network, IEEE International Conference on Intelligent Processing

Systems, Beijing, 1997.

[30] Y. P. Zhao, P. He, H. S. Nik, J. Ren, Robust adaptive synchronization of

uncertain complex networks with multiple time-varying coupled delays,

Complexity 20 (2014) 62 - 73.

[31] H. Y. Zhao, Q. Zhang, Global impulsive exponential anti-

synchronization of delayed chaotic neural networks, Neurocomputing 74

(2011) 563 - 567.
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