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Abstract

We propose a new anti-synchronization concept, called general decay lag anti-
synchronization, by combining the definitions of decay synchronization and
lag synchronization. Novel criteria for the decay lag anti-synchronization of
multi-weighted delayed coupled reaction—diffusion neural networks (MWD-
CRDNNSs) with and without bounded distributed delays are derived by con-
structing an appropriate nonlinear controller and using the Lyapunov func-
tional method. Moreover, the robust decay lag anti-synchronization of MWD-
CRDNNs with and without bounded distributed delays is considered. Fi-
nally, two numerical simulations are performed to validate the obtained re-

sults.
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1. Introduction

Recently, coupled neural networks (CNNs) have attracted considerable
attention owing to their extensive application in chaos generator design, op-
timization, pattern recognition, secure communication, etc. [5, 10, 29, 32].
As is well known, one of the most important dynamic phenomena in CNNs
is synchronization, which has been extensively studied in recent years [8, 11,
23, 27, 32]. In [8], the H synchronization problem of the master and slave
structure of second-order neutral master—slave systems with time-varying
delays was investigated using the Lyapunov—Krasovskii method in terms of
a linear matrix inequality. The synchronization of Markovian CNNs with
random coupling strengths and nonidentical node-delays was considered in
[27] by designing a novel Lyapunov functional and using certain inequali-
ties. In fact, anti-synchronization is also an interesting phenomenon in the
real world. Anti-synchronization is the phenomenon in which the state vec-
tors of a synchronous system have the same absolute values but opposite
signs. As reported in [12, 31], anti-synchronization is important in commu-
nication systems and laser applications. Hence, it is meaningful to study
anti-synchronization of CNNs [12, 13, 16, 31]. Meng and Wang [12] designed
an anti-synchronization scheme for a class of delayed chaotic neural networks
based on the Halanay inequality and Lyapunov stability theory. Ren et al.
[13] investigated the exponential anti-synchronization problem for chaotic
delayed neural networks. The anti-synchronization of a class of memristive
CNNs was investigated by using randomly occurring control in [16].

In fact, time delay is ubiquitous and inevitable in CNNs owing to, for

instance, their finite transmission and switching speed, as well as traffic con-



gestion. Time delay may lead to undesirable results, such as instability and
poor performance. Consequently, it is necessary to consider the problems
of lag synchronization and lag anti-synchronization [2, 6, 17, 28]. A con-
troller based on the output of neuron cells was constructed by the authors
in [2] to study global exponential lag anti-synchronization in switched neural
networks with time-varying delays. [6] designed and used a feedback con-
troller to obtain novel results on the finite-time lag synchronization of CNNs.
The exponential lag anti-synchronization problem for memristive CNNs was
considered in [28]. Additionally, the estimation of the synchronization and
anti-synchronization convergence rate is a very interesting and useful sub-
ject. However, the convergence rate of the system is difficult to determine
in some cases, which prompts the definition of a new type of convergence
rate, namely, convergence with general decay [1, 14, 18, 19]. Several new
results on the general decay synchronization of delayed neural networks with
general activation functions were obtained using a nonlinear feedback con-
troller designed in [1]. Wang et al. [19] considered the decay synchronization
of a class of switched CNNs by constructing suitable nonlinear controllers.
The decay synchronization of delayed bidirectional associative memory neu-
ral networks was studied in [14]. To the best of our knowledge, the decay lag
anti-synchronization of CNNs has not yet been studied.

It is worth mentioning that reaction—diffusion was neglected in the afore-
mentioned studies. When electrons propagate in inhomogeneous electromag-
netic fields, reaction—diffusion in CNNs is inevitable. Thus, it is crucial
to consider reaction—diffusion terms in the study of CNNs, and numerous

studies on coupled reaction—diffusion neural networks (CRDNNs) have been



conducted [7, 15, 22, 26]. The passivity and synchronization of CRDNNs
with multiple time-varying delays were analyzed by impulsive control in [15].
Wang et al. [22] constructed suitable state feedback controllers to study lag
H oo synchronization of CRDNNs. However, there are currently no results on
decay lag anti-synchronization of CRDNNs.

It is worth noting that the network models used in the majority of
the studies above are single-weighted. In practice, numerous existing net-
works can be represented more precisely by multi-weighted complex dy-
namic networks (MWCDNSs), such as transportation networks, social net-
works, and communication networks. Multi-weighted CNNs (MWCNNSs),
which are a special type of MWCDNs, have attracted increasing attention
[4, 20, 30]. Based on Lyapunov stability theory and the robust adaptive
principle, Zhao et al. [30] investigated the synchronization of MWCNNs
with multiple coupled time-varying delays. In [20], sufficient conditions for
ensuring finite-time synchronization of MWCNNs were obtained. However,
the anti-synchronization of multi-weighted coupled reaction—diffusion neural
networks (MWCRDNNS) has not been extensively studied. In [4], the authors
were concerned with anti-synchronization and pinning control of MWCNNs
with and without reaction—diffusion terms. To the best of our knowledge, the
decay lag anti-synchronization of MWCRDNNSs has not been investigated.

Accordingly, the principal goal in the present study is to investigate the
general decay lag anti-synchronization of MWDCRDNNSs. The main contri-

butions of this study are as follows.

(1) The new concept of general decay lag anti-synchronization is presented

by generalizing lag synchronization and introducing -type functions.



(2) The decay lag anti-synchronization problem for MWDCRDNNs with
and without parametric uncertainties is discussed, and several criteria
are established by designing a suitable nonlinear controller and con-
structing an appropriate Lyapunov functional.

(3) The decay lag anti-synchronization and the robust decay lag anti-
synchronization of MWDCRDNNs with bounded distributed delays are

discussed and analyzed as well.

The rest of this paper is organized as follows. The definition of i-type
functions and several lemmas required in the subsequent sections are pro-
vided in Section 2. In Section 3, the MWDCRDNN is first presented,
after which the decay lag anti-synchronization and robust decay lag anti-
synchronization are investigated for this model. In Section 4, the decay lag
anti-synchronization and robust decay lag anti-synchronization of MWD-
CRDNNs with bounded distributed delays are analyzed. Several simulation
examples are provided in Section 5 to verify the obtained theoretical results.

Finally, this paper is concluded in Section 6.

2. Preliminaries

Definition 2.1. (/25]) If the function ¢(t): Ry — (0,+00) satisfies the
following conditions:

1) ¢ (t) is nondecreasing and differentiable,

2) ¥(0) =1 and (+00) = 400,

3) h(t) = % is decreasing, and

4)¥p,q 20, ¥(p+q) < ¢(P)P(q),

then it is called a V-type function.



Lemma 2.1. (see [9]) Let §2 be a cube |p,| < t,(r =1,2,---,p) and let Z(u)
be a real-valued function belonging to C*()) that vanishes on the boundary

o of Q, i.e., Z()|oo = 0. Then

07 \*
A dgﬁ/( )d,
/Q (p)dp N\ )

where ju = (pu, pra, - pip)" -

Lemma 2.2. (/3]) Let f(h) : [wi,ws] = RP (w1 < wy) be a vector function.

Then, for any constant matriz 0 < M € RP*P we have
w2—w1/ fER)M f(h (/ f(h dh) M(/ f(h)dh),
w1
provided that the integrals above are well defined.

We will use the following notations: A(-) denotes the eigenvalue of the cor-

responding matrix. For any e(u,t) = (e1(,t), e2(p,t), -+ en(p, t))T € RY,

we let le(-,1)]lo = \/foy S, €2, 1)dp, where © = {p = (s, .+ 1) |1 <
Lr,r:1,2,~-~,p}CRpand(,u,)EQXR.

3. General decay lag anti-synchronization of MWDCRDNNSs

3.1. General decay lag anti-synchronization of MWDCRDNNs

In this section, the considered MWDCNN model with reaction—diffusion

terms is described by

% = — AY.(ut) + HAY (i, t) + D (Ya(p, ) + By(Ya(p, 1))

+cle 1Y (. t) +cQZM oY () + -



+cmZMmFY t), s=1,2,---,N. (1)

Here, Yi(p,t) = (Yar (i, 1), Yao(t, ), -+, Yau (1, t))T € R™ is the state vector of
the s-th node. p = (p1, po, -+, pp)" € Q C RP. A = diag(ay,as, -+ ,a,) €
R"™"™ >0, B = (bsj)nxn € R and D = (dsj)nxn € R™™ are constant ma-
trices. A =37, BMQ, H = diag(hy, ho, -+, hy), hs > 0 is the transmission
diffusion coefficient, g(Ys(, 1)) = (g1(Yar (.t — 7(1))), go(Yaalp t — (1)),

g (Yan (st = (1)) € R, f(Yi(, 1) = (fi(Yar(u, 1)), fo(Yea(pt, 1)), -+,
frn(Yan(p,£)))T € R™, and 7(t) is the time-varying delay with 0 < 7(t) < 7

and 7(t) < v < 1. Ro¢, >0 (k= 1,2,---,m) is the coupling strength

for the k-th coupling form. T, € R™™ > 0 (k = 1,2,---,m) represents
the inner coupling matrix for the xth coupling form. M* = (Mf)nxn €
RM*N (5 = 1,2,---,m) expresses the coupling weight in the k-th coupling

form, where M, is defined as follows: if there exists a connection between
node s and node j for the s-th coupling form, then Mg = M7, > 0; other-
wise, M = M7, =0 (s # j). Finally, the diagonal elements of the matrix

M?" are defined as follows:

Z 5 s=12- N.

J#s

For the network (1),

Yo(p,t) = os(p, 1) € R", (p,t) € Q% [=7,0],
Yi(p,t) =0, (u,t) € 092 x [-7,400),

where ¢4(u,t)(s =1,2,--- N) is bounded and continuous on € x [—,0].



Remark 1. Recently, CNNs have attracted increasing attention owing to
their extensive application in chaos generator design, optimization, secure
communication, etc. [5, 10, 21, 29, 32, 33]. Therefore, numerous studies
have been conducted on the dynamical behavior of CNNs [8, 11, 23, 27, 32].
Unfortunately, the CNN models considered in these studies have only a single
weight. It is well known that several real-world networks, such as social, com-
munication, and transportation networks, can be represented by MWCDNs
with multiple node coupling. Furthermore, when electrons propagate in in-
homogeneous electromagnetic fields, diffusion is inevitable. For instance, the
overall structure and dynamic behavior of cellular neural networks depends
heavily not only on the evolution time and location (space) of each variable
but also on their interactions, which are derived from the spatial distribu-
tion structure of the entire network. Therefore, it is meaningful to discuss a

MWDCRDNN model in which the node state varies with time and space.

We consider the network model (1) to be the drive system. Then, the

corresponding response system is as follows:

8WST<;@ = — AW, (1, t) + HAW,(p1,t) + Bg(Wa(p. 1)) + Df (Wa(ps. 1))
m N
+ Z Z e ML W (g1, ) + 105 (41, 1), 2)

where s = 1,2, -+ | N, Wi(p, t) = (War(p, ), W (g, t), - - -, Wen(p1,1))" € R”
is the state vector of the s-th neuron at time ¢ and in space u, us(p,t) =
(wsr (p, ), o (g, ), -+ usn(p,t))T € R™ is a suitable controller for achieving
a certain control objective, and A, H, A, B, D, g(-), f(-), ¢x, MF

s L are

defined as in system (1).



For the network (2),

Wi, t) = os(p, t) € R™, (u,t) € Q x [-7,0],

Ws(p,t) =0, (u,t) € 02 X [—T,4+00),
where ps(p,t)(s =1,2,---, N) is bounded and continuous on Q x [—7,0].

Assumption 1. For any 1,7 € R, the functions g;(-) and fi(-) (i =
1,2, n) satisfy

lgi(m1) + 9i(72)| < Gily + 72,

|fi(y1) + fi(v2)| < Fily + 72l

where 0 < G; € R and 0 < F; € R. Let G = diag(G3,G3,--- ,G2) € R™"
and F = diag(F¢, F},--- , F?) € R,

Remark 2. Recently, the anti-synchronization of CNNs has received consid-
erable attention [12, 13, 16, 31]. In these studies, it is common to assume that
the activation function satisfies the Lipschitz condition and is odd. There-
fore, the functions g;(-) and f;(-) (¢ = 1,2,--- ,n) in the considered network

models will be required to satisfy this assumption throughout this paper.

Let es(p,t) = Wi, t) + Ys(p, t — 05). By (1) and (2), one has

) eapyt) + () + Bo(Van t = 02)) + Bo(a( 1)
+ Df(Ys(p,t = 05)) + Df(Wi(p, t)) + us(p, )
+ ZZCKM:ijej(”7t)’ (3)

where 05 > 0 (s =1,2,---, N) is the lag delay.

9



Definition 3.1. If there exists a constant A > 0 such that

oy 980
t—00 log@/)(t)

where e(p,t) = (ef (1, 1), €3 (1, 1), - -, e (u, 1)) and (t) is a P-type func-
tion as in Definition 2.1, then the network (3) is called ¥-type stable, that

—,

is, the drive-response systems (1) and (2) achieve general decay lag anti-

synchronization, where X is the convergence rate as e(p,t) — 0.

Remark 3. Recently, i-type stability for neural networks has attracted
considerable attention [14, 18, 19]. It is defined as follows:
1 Ws ) — }/S 1
s BV 1) = Yo O
t—o0 10g¢(t)

In this study, the synchronization error ||[Wy(-,t) — Ys(-, )| is changed to

<_)\73:1727"'7N' (4)

|Ws(+,t)+Ys(-, t —o)||, which implies that the state variables of the systems
(1) and (2) have the same amplitude but are different in sign and time. Then,

we have the following natural generalization of 1-type stability:

T L UACOED ACTET:A
t—00 logw(t)

To the best of our knowledge, the concept of decay lag anti-synchronization

<-\ s=1,2--- N

of MWDCRDNNS in Definition 3.1, which combines decay synchronization

and lag synchronization, has not previously been considered.

Before presenting the main results, we state a lemma that is important

in the proof. To this end, the following assumption is required.

Assumption 2. ([19]) There exist p(t) € C(R,RT) and e > 0 such that

10



sup /we p)ds < oo,

te[0,00)

where ¥(t) and (t) are as in Definition 2.1.

Lemma 3.1. ([19]) Under Assumption 2, if there exists a differentiable func-
tion V(t,eo(t)) : RT x R™ = R* and two constants 0 < a3 € R, 0 < ap € R

such that

(aullea(®))> < V(. colt).
V(£ eolt))l + £V (E eo(t)) < anp(t).

where ey(t) is a solution of network (3), and ¢ and p(t) are as in Assumption
ass?, then the system (3) is called 1p-type stable, that is, the drive-response
systems (1) and (2) achieve general decay lag anti-synchronization. In addi-

tion, the convergence rate is 5.

In this section, the nonlinear controller in the response system (2) is

designed as follows:

leC-DPepnt)
TeColE+ ple) ~ el

where R> ¢, >0, R> S, > 0.

us(p,t) = = By

For convenience, we let 5 = max {f}, ¢ = diag(q1, 42, ,qn), and

A 1<s<N
B = diag(B1, B2, -~ -, Bn).

Theorem 3.1. Under Assumptions 1 and 2, the system (3) is ¥-type stable
with convergence rate 5, i.e., the systems (1) and (2) achieve general decay
lag anti-synchronization if

=) M T+ Iy@ P —(B+§ @I, <0, (6)

k=1

11



Uy = Iy® ((er = D)L +

2

where Py = 5(DDT + BB + F 4+ 1<) + (1 + 5) [, — A= 320_, »H

Proof. We construct a Lyapunov functional for network (3) as follows:

N 0 gt
1
(0 =53 [ metuodes [ [ netunaudds
s—1 Q -7 Jit+p JQ
ST
+ e (p, h)(In @ G)e(p, h)dudh. 8
sy L e e Gt )
Obviously, (%He(-,t)”)2 < Vi(t), and it can be deduced from (8) that
N
Z/ (1. t)es(p, t du+7/ / (11, B)e(p, h)dpdh
-1 t—7

L / T / (1, ) (Iy & G)e(p, h)dpdh

2(1 —
/tT/ (1, b (IN® (t1, + 2(1G )))e(u,h)dudh
+ ggéef(u,t)es(u,t)du. (9)

By calculating the derivative of (8) along the trajectories of the system (3),

one obtains

t)<Z/QesT(u,t)(—Aes(u, 1)+ Bo(Y. +ch,@ e (0, )

+ Bg(Wa(u, 1) + Hley(j1,t) — B, |||| ((ﬂ;))l|||2 (e = ))
s

= gses(p, 1) + Df(Yi(p,t — o) )du /H/

1 T .
+ﬂfj%46UWXM®kaﬁWwdéemﬁdmmm

+ Df(Welp, 1))

, h)dudh

12



_ % /QeT(uﬂf — (1) Iy ® Gelp, t — T(t))dp, (10)

where e(p, t — (1)) = (e1 (.t = 7(t)), €5 (ut = 7(1)), -+ en (st — 7(1))"

By Assumption 1, one obtains

> el Bl (Yalit = 0,)) + g(Wi(1, 1))
%}; (1 )BB ey, 1) + €] (1, — (1)) Ges (1, — (1))
=5 DX © (BB)eln, 1)+ 56, t— (1)) (I © Ghelu, t—7(1), (1)

and

€s (”7t)D(f()/s(:uvt - Us)) + f(Ws(:uv t)))

Mz

1

< (. )(Iy ® (DD” + F))e(u,t). (12)

l\Dle

By Green’s formula,

aeSl :u7 aes ,ua )
si(p, t) DNegi(p, / dp,
/Qez(,u t)Aegi(p,t Z/ o o m

where lu] S {1727 7n}7 s = 1727"' 7N' Let 7T(/’L7t) = ([N®\/ﬁ>€<:u7t)

Furthermore, Lemma 2.1 implies

Z/ef(u,t)HAes(u,t)du
Oes; (1, t) Oeq (i,
SR UYL= TS

r=1 s=1 j=1 I=1 Q
de(p, t) de(p 1)
- J2 g paataildi
Z/( Oty ) veH) Oty s

13




P

__Z/(ﬁﬂ(,ut) aﬂ’ut)du
r—1 Y% a,ur a,ur
P

1
- Z L_Q 0 7TT(,u, t)7r<lu7 t)d:u
r=1 T

-y %2 |, )T @ Hely, t)dp. (13)

Egs. (10)—(13) yield

icn/ﬂeT,ut Y(ME @ T )e(u, t)du — /t/ (p, h)e(u, h)dudh

le(-, ) 2e. (i )
leC, o) +p<t>> o

1)y © (BB e, i+ [ € (a0l

X

WE

/Qe (1, 1) ( — Aeg(p,t) — qses(p, ) — By

©
Il
—

+

N = N
D\Jio\é

¢! (11, t)(In ® (DD + F))e(p, t)dp

+

hS]

/Q 7 (1) (I © H)e(p, 1)y

,2
Il
—_

i

+

2(1 /QQT(/% ) (In @ G)e(p, t)dp

m
=D o

)

OO O T el )= [ [ et

Il
s~ |

+
WE
S—

GZ(M t)( AeS(:u t) QSes(uat) H€< t>H es<u’t)>d

eI+ o(t)

+%/QBT(M,7§)(]N®(BBT)) e(p, t) d;wZﬁs/ (1, t)es(p, t)dp
—|—%/QeT(,u,t)([N@)(DDT_'_F))e('u’t)d’u—i_T/Qe (ks t)e(p, t)dp

[0ty @ Mete i =328 [ .0t

s=1

14



1

# 5= [ty @ Glelp )i
/ (u, ) (M™ @ Ty)e(u, t)du — /t / (1, h)e(p, h)dudh
" ; / (4, t)(Iy @ (DDT + F))e(u, )dp + 7 / 7 (1, (. )y
1

e / 7 (1, 1) (I ® (BBT))elp t)dps + / 7 (1) (— Iy ® A — (B

)@ L)elutdi =30 55 [ )Ty @ Byl

p(t) Y .
i H€<'7t>H2 +p(t) ;BS/QGS (Mvt)GS(Nat)dM

1 T
+ m/ﬂe (1, t)(In @ Ge(p, t)dp

m 1 G
</€T(u,t)[chM“ QT+ Iy ® (a(DDT+BBT+F+ 1—) + 71,
Q

k=1

Blle( HII*p(t)
—A— 6+q ®I] (p, t)dp +
; i le(- DI + p(t)
— /t /Qe w, h)e(p, h)dudh. (14)
By combining (9) and (14), we easily obtain that
Vi(t) + eVi(t) </ el (p,t) {icﬁM“ @, +Iy® (E(DDT +BBT + F + i)
Q —1 2 1 —n
T
Frhm A Z ~ () el + 1

- / el hydn + i [ ettty
+ a/; /Q el (p, h) (IN ® (71, + T%))e(u, h)dudh

15



“ 1 G
< [ ef(u,t MERQT, + 1 — (DD + BB + F + ——
/Qe(u,)[Zc ® +N®(2( + + +1_7)

k=1

F D= A=Y ) = (5 ) 9 L] e )+ 5000

r=1 T

N /: /Q (1) <[N ® ((er — 1)1, + 2(187?7)))6(”, h)dudh.

By (6) and (7), one obtains

Vi(t) +eVa(t) < Bp(t). (15)

Letting oy = %, ay = 3, we easily obtain that the network (3) is ¢-type
stable with convergence rate 5. Then, the drive system (1) and the response
system (2) achieve general decay lag anti-synchronization. The proof is com-

pleted.

Remark 4. Recently, the anti-synchronization of traditional neural networks
without reaction—diffusion terms, which are described by ordinary differential
equations, has been investigated [12, 13, 16, 31]. However, diffusion effects
cannot be prevented in neural networks when electrons move in an asymmet-
ric electromagnetic field. Thus, it is necessary to consider diffusion effects in
the study of neural networks. It should be noted that the network models in
the majority of the studies discussed above are single-weighted. In practice,
numerous networks are represented more precisely by using multiple weights
[4, 20, 30]. In this study, we investigate the decay lag anti-synchronization
of MWCRDNNSs. We note that the network models considered here are de-
scribed by partial differential equations, which implies that the state of each
neuron depends not only on the time variable but also on the space variable.

In fact, the main difficulty in extending the existing anti-synchronization re-

16



sults to decay lag anti-synchronization analysis of MWCRDNNSs arises from
the reaction—diffusion and multi-weighted terms, which cannot be handled by
existing techniques used in single-weight CNNs or without reaction—diffusion
terms. In addition, the definition of decay lag anti-synchronization and the
design of a suitable controller are also important. By using Green’s formula,
Lemmas 2.1, 2.2, and 3.1, as well as certain inequalities, several sufficient con-
ditions (dependent on the reaction—diffusion and multi-weighted terms) for
achieving decay lag anti-synchronization of the considered MWDCRDNNSs

are established.

3.2. General decay lag anti-synchronization of MWDCRDNNs with paramet-

ric uncertainties

It is well known that equipment limitations and external interferences in
neural network modeling may bring about bounded parameter deviations.
Therefore, the following MWDCRDNN with parametric uncertainties is con-

sidered in this section:

% — — AYi(p t) + HAY (1, £) + Df(Ya(i1, 1)) + Bg(Ya(p, 1))

+ZZCHMFY ), s=1,2,--- N, (16)
k=1 j=1
where Yi(u,t), A, f(), g(-), cu, ME, Tx, K =1,2,--- ,m are defined as

Sj’

in Section 3.1, and the parameters A, H, D, and B vary in certain given

17



ranges as follows:

)
Ap ={A =diag(a,): A~ <A< A" ie,0<a, <a, <a,

r=1,2---,nVAe A},
H;:={H = diag(h,) : H- < H< H",i.e.,,0<h < h,<h'
r=12--- nVH € H},
Dy :={D = (dj)nxn : D~ < D < D*,ice.,d; < dpj < dfr

j=12--- . n VD € D},

B :={B = (byj)nxn: B~ < B< B" Ji.e., b < by < b r

j=1,2,---,n,VB € By}.

\

For convenience, we define

drj—max{|d ||d 1}, r=1,2,- n, j=12,---.,n,
l;rj—maxﬂb ||b 1}, r=1,2,- n, j=12,---,n,
=YY &, QBZZZ?%-

r=1 j=1 r=1 j=1

We consider the network model (16) to be the drive system. Then, the

corresponding response system is

OW,s(p, 1)

S = — AW,(1t) + HAW, (1, 8) + Bg(W(,8)) + D (W, (11,1))

Zc MET Wi, t) + us(p, 1), (18)

1 5=

Ms

_|_

=
Il
—_

where s = ]-72a"' aNa WS(Mat)a A’ f()7 g()7 Crs M Ffm KR = ]-72a"' , M

3]7 Y

and ugs(p, t) are defined as in Section 3.1. The ranges of A, H, D, and B are
as in (17).

18



Let es(p,t) = Wi(u,t) + Ys(p, t — 0s). By (16) and (18), one can obtain

e (11, 1) J— _

5 = Aes(ut) + Hbes(p,t) + Bg(Y(p, t = 03)) + Bg(Wi(p, 1)

+Df(Y(t 0s)) + Df(We(p, ) + usp, 1)

‘|‘ZZC,@ Gl x€i (1, 1), (19)

k=1 j=1

where 0, > 0 (s = 1,2,--- , N) is the lag delay. The ranges of A, H, D, and
B are as in (17).

Definition 3.2. For all A € Ay, H € Hy, D € Dy, and B € By, if there

exists a constant A > 0 such that

: log|le(-, t)|]
lim sup —————
oot gt (D)

where e(uat) = (6{(/%1:)’ Gg(ﬂ, t)7 e aeﬁ(”at))T and ’ll)(t) is a @Z)—type fUTLC-
tion as in Definition 2.1, then the network (19) is called robustly 1-type sta-

< _>‘7

ble, that is, the drive-response systems (16) and (18) achieve general robust

decay lag anti-synchronization, where X is the convergence rate as e(u,t) — 0.

We construct the same nonlinear controller (5) for the response system

(18) in this section.

Theorem 3.2. Under Assumptions 1 and 2, the system (19) is robustly -
type stable with convergence rate 5, that is, systems (16) and (18) achieve
general robust decay lag anti-synchronization for all A € Ay, H € Hy, D €

D[, and B € B[ Zf

=Y M @T+ Iy P —(B+4) @1, <0, (20)

k=1
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e

2(1_7))<0, (21)

Uy = In® ((e7 = 1)L, +

whereP2:%(@D[n‘i‘QB[n"‘F‘i‘%)—'—(T—F%)[n—A_— b 1L12H—

Proof. We construct the same Lyapunov functional as in (8) for network

(19). Then, one obtains

<Z/ (u,t ( Aeg(p,t) + Bg(Y +chn ol wei(p, 1)

k=1 j=1

+ Bg(W,Gat) + Hoeu(it) — 6 ’|‘,Z<<'j7 g’ﬂ,jf’p‘;g D, (1.0)

— gueap ) + D (Yt Us))>du - / t / 7 (1, h)eju, h)dudh
) 000 Qe i | it

— 5 [ Mt = TO) 0y © Gt = rle)) (22)

+

By Assumption 1, it easily follows that

and

DX OBVt = o) + 971, 1)
éem DI ® (BBD)e(u, 1)+ 5, 1= (1)) (I © Celn, t—r(1)
<5 DX © (o Lo))ep, )+ e, t—7(H) (I @ Gl t~7(1), (2)

> el () D(f(Yalp,t — 00)) + f(Walu, 1))

<5e' () (In ® (DD + F))e(u, t)

<5e’ (1w t)(In @ (opIy + F))e(p, 1) (24)

20



By (13), one obtains

e (1, ) H Aey(p, t)dp

©
Il
—

WE
i :O\
E”’ﬂ

N
|
<o | =
S~

" (. t)(In @ H)e(p, t)du

%
I
-

e (p,t)(Iy ® H™)e(pu, t)dp. (25)

ﬁ
Il
—

N
|
M=
i§t\>| =
S~

Egs. (22)-(25) imply that

Va(t) <§m:cn/

DO el ) | [ et by

e, ) et t)
leC, O + ot >)d“

63(:“7 t) ( - A_GS(/% t) - QSes(Na t) Bs

/QGT(M)(IN ® (opln))e(p, t)dp + Zﬁ/ (ks t)es(p, t)dp

/QeT(u,t)(lNc@ (opl, + F))e(u, t)du+T/Qe (ks t)e(p, t)dp

1 T
— E/Qe () (Iny @ H )e(p, t)dp — ZBS/ s(p, t)dp
1

/Q 7 (. ) (I ® G)elp, t)dp

=3 e [0 elutin = [ [ el

=1 Q

X

+

3 | M0y (ool + Felps i+ [ et

+ % /Q " (1, t)(In © (08ln))e(p, t)dp + /Q () (— Iy @ A= (B

)@ L)eln i =" 5 [ a0y @ H el
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p(t) al _—
+ ||€(',t)||2+p(t) ;53[265 (,u,t) s(u,t)d,u

1

= / 7 (1, 1) (I ® G)e(yu, t)dp

- 1 G
< [ ef(ut MERQT, 4+ 1 —(opl, I, +F+— I,
/Qe (1, )LZ:C @, + N®(2(9D + ol + +1_7)+T
— A —
1

P

> %H) -Brpe In} (i, )y + Dl DIPP()

leC DI + p(?)

¢
[ [ mete ). (26)
t—7 JQ
Combining (9) and (26), one obtains
: “ 1 G
Vi(t) +eVi(t) </ e’ (p,t) {Z%M“ @+ Iy @ (5(opln + 0Bl + F + ——)
Q 2 1=

k=1

T R iYW I fn} e, )i+ Bp(t)

r=1 T

[ et man Z/ (1, e (i, )
t—1

+s/”/ (, b (IN®(T] +2<1 7))) (, h)dudh

1 G
< b] /@Mﬁ PH -[ _[ _[ F -
/Q T )[Zc ® T+ N®(2(QD + opl, + +1_7)

k=1
p

F(r+ )1 — A — Z%H ) — (B+q)®f] (1, )i+ Bp(t)

r=1 T

/tT/ (1, h <IN®((57—1)I +2<15G7)))e(u,h)dudh,

Vi(t) +eVa(t) < Bp(t).

By letting ai; = %, ay = 3, we easily obtain that the network (19) is robustly

By (20) and (21

Y-type stable with convergence rate 5. Then, the drive system (16) and the
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response system (18) achieve general robust decay lag anti-synchronization.

The proof is completed.

Remark 5. In some situations, environment noise, equipment limitations,
and external interferences may result in bounded parameter variation during
the network modeling process. In addition, it is not easy to render models
with the planed parameter values or ensure that the parameters are con-
stant. Hence, it is meaningful to consider parametric uncertainties; some
interesting results have been obtained regarding robust synchronization and
robust anti-synchronization of neural networks [12, 24, 25, 30]. In [12], the
authors studied the robust anti-synchronization of a class of delayed chaotic
neural networks. Unfortunately, the robust decay lag anti-synchronization
of MWDCRDNNSs has not been studied. In Section 3.2, we investigate the
robust decay lag anti-synchronization of MWDCRDNNSs with parametric un-

certainties, which is one of the main contributions of this study.

4. General decay lag anti-synchronization of MWDCRDNNs with
bounded distributed delays

4.1. General decay lag anti-synchronization of MWDCRDNNs with bounded
distributed delays

In this section, the following MWDCRDNN with bounded distributed

delays is considered:

9Yy(p, t)

2 = — AY, (1, t) + HAY, (1) + Bg(Y(, D) + DF (Y1)

m N t
+Y 0> e MED, /t e Y;(p, h)dh

k=1 j=1
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+ZZCHMFY ), s=1,2--- N. (27)

k=1 j=1

Here, Yi(u,t), A, H, X, B, D, f(:), g(-), ¢, M{, T'x are defined as
in Section 3.1. §(t) is the distributed delay, which satisfies 0 < §(¢t) < 9.
R>¢é >0 (k=1,2,---,m) is the coupling strength for the x-th coupling
form. T\, e R™"™ > 0 (k = 1,2,--- ,m) represents the inner coupling matrix
for the #-th coupling form. M* = (M%)yxy € RVY (k = 1,2,-++,m)
expresses the coupling weight in the k-th coupling form, where M +j 1s defined
as follows: if there exists a connection between node s and node j for the
k-th coupling form, then Z\}[:] = M]"S > 0; otherwise, Mg = Z\}[j’; =0 (s# 7).

Finally, the diagonal elements of the matrix M* are defined as follows:

§ 3_77 - 7 7"'7N'

J#s

For the network (27),

}/S(M?t) = QES(M’t) € R", (:u’t) € x [_67 0]7
}/S(M?t) =0, (:u’ t) € N X [—6, +OO),

where € = max{7, 6} and ¢,(, )(s = 1,2,--- , N is bounded and continuous
on  x [—¢,0].
We consider the network model (27) to be the drive system. Then, the

corresponding response system is

8W37(tu,t) — — AW, (1, t) + HAW, (1, t) + Bg(Wa(ji, 1) + Df (Wy(p, 1))

t

+> > &M W, (1, h)dh + (i, t)

=1 j=1 t—4(t)

=
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+ZZCKMFW ), s=1,2,---,N, (28)

k=1 j=1
where W(u,t), A, H, A, B, D, g(-), (), cx, ME, Tw, us(p,t) are defined

as in Section 3.1, and d(t), ¢k, MS], [, are defined as in (27).
For the network (28),

WS(M? t) = @8(”7t) € R", (M?t) € (X [_67 O]v
Wy(p,t) =0, (u,t) € 092 x [—€, +00),

where ¢4(p,t)(s =1,2,--+, N) is bounded and continuous on 2 x [—¢, 0].
Let es(p,t) = Wi, t) + Ys(p,t — 05). By (27) and (28), one obtains

OULD) eyl ) + Hdeu(yn,0) + By(Y T~ 02)) + Bo(Walo, 1)
m N
£ DFYAt —00) + DI (1) + 303 eME ey (1,1
r=1 j=1
m N t !
3OS et / (s W) dh -+ uy(u, ) (29)
=1l i1 t—5(t)

where 0, > 0 (s =1,2,--- , N) is the lag delay.
We construct the same nonlinear controller (5) for the response system

(28) in this section.

Remark 6. As there exist many parallel pathways of varying axon size and
length, neural networks often have a certain spatial extent. Thus, there
may be a distribution of conduction velocities along these pathways or a
distribution of propagation delays over a period of time in some cases, which
results in certain types of time delays, that is, distributed delays in neural

networks. Therefore, it is necessary to consider these delays in the study
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of anti-synchronization of neural networks; some related papers on the anti-
synchronization of neural networks have recently been published [16, 26].
However, the decay lag anti-synchronization of MWDCRDNNSs with bounded
distributed delays has never been considered. In this section, several decay
lag anti-synchronization criteria for MWCRDNNSs with bounded distributed

delays are derived.

Theorem 4.1. Under Assumptions 1 and 2, the system (29) is 1 -type stable
with convergence rate 5, that is, systems (27)and (28) achieve general decay

lag anti-synchronization, if

>

1

=Y 5 (MF T+ " eM® @ T+ Iy ® Py — (B+4) ® I, <0, (30)

k=1 k=1

T £6,6° G
\II3ZIN®(<€E+Z€C _1)[n+ °

k=1

m) <0, (31)

where Py = J(DDT+ BBT + F4+{%) + (5+e+ >0, ) [, —A=Y"_ L1

Proof. We construct a Lyapunov functional for the network (29) as

follows:

N
1
VQ(t)=§§/ S t)es(p,t du+// / (1, h)e(p, h)dpdhdp
s=1 —eJi+p

) (Iye G ,h)dudh
17)/”/ (1, ) (I @ G)e(p, h)dp
i
‘ / | € e mydpnap, (32)
P

t—5
e(-,t)|1)* < Via(t), and it can be deduced from (32) that

[\D
—~

Ms

+
1

&

Obviously, (5

N t
1
Vat) <33 [ llmteutidute [ [ & helph)audh
S:1 Q t*E Q
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g/t /QeT <[N® @252)1”2(161 ))) (1, h)dudh
+%g/ﬂef(u,t)es(u,t)du- (33)

By calculating the derivative of (32) along the trajectories of the system (29),

one obtains

t)<Z/Q(38T(u,t)(—Aes(u,t)+Bg( u,t—crs +ZZ€,@M Tei(p,t)

k=1 j=1

tL o lleC ) Pea(p )
+ZZ e g = B i PO

s t) + DFYa(uat — 0.)) + Bg(Wal 1)) + Hbses(p, t))du

1 / 1.6y © Glelie it | (el
/t/Q (1, )e(p, b d,udh+z

/M,u,ﬂ
1

- /Q T (it — 7(8)) (Iy ® G)e(p, t — 7(t))dp

_Z@f / /Q ¢ (0, By, h)dpdh. (34)

Obviously,

+

—7)

m N N
ZZZC’@ / (1,t) / e;(p, h)dhdp
s=1 j Q t—5(t)

k=1 s=1 j=1

S

™, ) (M @ 1) / e, h)dhdys
0 1—5(t)
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< zmj = ( / ;@ et h)dh)T ( / ;m et h)dh) du

T (1) (M* @ T%)2e(p, t)dp.

+
NE
po | £
S~
=
w
=

izzé“ng ez(:uvt)f‘m /t ej(,u, h)dhdu
- 0 :

—4(t)

<5 [ a0 [ bl hyndy

/AN
(]
sl L
D
o
s
=
N
=
=
&
>
B
e
o
=
T
=9
=

t
Cli T
F2 % | €l R dpdh (36)

By (11)—(13) and (34)—(36), one obtains
c;‘e/QeT(,u,t)(M"i @ y)e(p, t)du — /t_ /QeT(u, h)e(u, h)dudh

leC-, t)H%s(u,t))d

leC DI + p(?)

s
S
N\

i:

-+ Z /Q GZ(,[L, t) ( - Aes(,u, t) - QSBS(Mat) - 68

s=1

—~ 1 LINPIPE
—ZL—Q /Q €T<u,1ﬁ><lzv®H)e(zz,t)d/wzT /Q T (u, t)e(p, t)du
" k=1

r=1
1
2(1—9)

5 | € ot @ (BED)eutidu+ 5 [ & (u oty @ (DDT

+

[ €00 et )=, [ X tien(u
+
 Peutidu+ 305 [ a1 @ T el 0y
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N
—i—ZBs/e tes(p,t du+e/eT(u,t)e(,u,t)du
Q

s=1 Q

NP . o T
=5 /TM, e(u,t) d#+z / (1, ) (M" @ T%)2e(p, t)dps

k=1 Q

+ZCH/6T p, ) (M @ T )e(p, t)dp — / (1, h)e(p, h)dudh
Q

k=1 t—e

+3 |ty e (DD + F)etu -+ e [ Gttt

+5 | w0ty o BE e dut [ Eno(-Iyoa- (3

+4) @ L)e(p, t)dp — Z / (1, t)(In @ H)e(p, t)dp

rlr

+ H H2+p Z/BS/ €S<M7t)dlu
#
2(1 =)

1
< Tt M* @ T*) MR, +1 DDT + BB”
/Qe(ﬂ,)[zz( ® +Zc @Ty+ Iy @ (5(DD" +

k=1

+ /QeT(,u, t)(In @ Ge(p, t)du

A— Z +q)® [n} e(u, t)du

rlr

+ Bp(t) /t E / (1, h)e(p, h)dudh. (37)

By combining (33) and (37), we easily obtain

+F+— G+Z

Va(t) 4 eVa(t) ga/t e (u, h) (IN ® ((e+ Z 625 M, + 2<1Ci w))e(,u, h)dudh
+ / e’ (u,t) [i S (" @ T7)? + ich“ @l + Iy ® (%(DDT

k=1

+BBT+F+— e+zc””521—A Zﬂ

r=1 T
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+q) @ I, |e(p, t)dp + Bp(t) // (1, h)e(p, h)dpdh
t—e

N
19
+§;/ es:uat)d:u
L A . o 1
< Tt LM @ TF)? MR, +1 —(DD"
Le<u,>[;2< ® >+;c ST+ In ® (5
G €02
BBT+F +—— N, —A—
+BBTHF )+ +e+z 5 ;LE

+q)®fn]< Ddu+ Bp(t) // m <1N®(<

m 86/152 EG
' Zl g "Dt m))e(u, h)dudh.

By (30) and (31), one obtains

Va(t) + eVa(t) < Bp(1).

Letting oy = %, ay = [, one easily obtains that network (29) is ¢-type
stable with convergence rate $. Then, the drive system (27) and the response
system (28) achieve general decay lag anti-synchronization. The proof is

completed.

4.2. General decay lag anti-synchronization of MWDCRDNNs with bounded
distributed delays and parametric uncertainties
In this section, we consider the following MWDCRDNN with bounded
distributed delays and parametric uncertainties:

% = — AYu(p,t) + HAYu (1, t) + Bg(Ya(, £) + DF(Ya(po 1))

+ Z Z M / - Y;(p, h)dh

k=1 j=1
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+ZZCHMFY ), s=1,2,--- N, (38)

k=1 j=1

Whel‘eY;(/L,t), Aa g(')a f()’ 5( )7 Cm M Fm Ck,s M Pn(’% = 1a2>"' ,m)

87 sj?
are defined as in Section 4.1, and the ranges of A, H, B, and D are as in
(17).
We consider the network model (38) to be the drive system. Then, the

corresponding response system is

6W37(tu,t) o) + HAW, (. t) + Bg(W, (1, ) + DF(Wi(u, 1))

t
CuMG L o Wi (p, h)dh 4 us(p, t)
t—o(t

— — AW,

n
NE
M= =

x
Il
—

<
I
A

NE
NE

1 e MED Wi 1), s=1,2,--- N, (39)

1

g ')a f()’ ()7 Crs Mg; Fm US(Mat)’ ém M F (

EVR sj?
1,2,--+-,m) are defined as in Section 4.1, and the ranges of A, H, B, and
D are as in (17).

Let es(u, t) = Wy(p, t) + Ys(u, t — o). By (38) and (39), one obtains

des(t) J— _

— — Ae,(u,t) + Hiey (1) + Bg(Yy(uit — 0,)) + Bg(Wa(p. 1))

K 1

where W(u,t), A

—_ .

ot
+ Df(Ya(u,t = 05)) + DF(W, +ZZ¢H T e (s 1)
+ZZCH / ” e;(p, h)dh + us(p, t), (40)

where o5 > 0 (s = 1,2,---, N) is the lag delay, and the ranges of A, H, B,
and D are as in (17).
We construct the same nonlinear controller (5) for the response system

(39) in this section.
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Theorem 4.2. Under Assumptions 1 and 2, the system (40) is robustly -
type stable with convergence rate 5, that is, systems (38)and (39) achieve
general robust decay lag anti-synchronization for all A € Ay, H € H;, D €
Dy, and B € By if

=h ZE”" ME T4 " exM* @Ty+ Iy ® Py — (B+4) @ I, <0, (41)
r=1 k=1
" 26,02 eG
U, = Iy ® ((ce + = — 1), +
1 =In® ((eet ) ) 2(1—7)

k=1
where Py = §(0ply+opln+F+1%)+(5+e+ 3

) <0, (42)

)I A ZT‘ 1 L12 Hi
Proof. We construct the same Lyapunov functional as in (32) for network
(29). Then, one obtains

t) <Z/Q(38T(u,t)(—/l_es(,u, )+Bg(Y +ZZCKM Teei(p,t)

k=1 j=1

o [ i g JeCDIPe
+ZZM Ly = P+ DO

— gees(p 1)+ DF(Ya(pst — 0,)) + Bg(Waut)) + HAesw,t))dn

1
_i_i

> / O R T
/t/ (1 h)e(p, h dﬂdh+2 / (. )e(p, t)dp

— —/Q Tt —7(8) Iy @ G)e(p, t — 7(t))dp

_Z% /H /Q ¢ (1, h)e(p, h)dudh. (43)

From (23)-(25) and (36), it is easy to derive that

) <D e | () (MT T )e(u, t)dp — // (1, h)e(p, h)dudh
t—e

Q

k=1
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N

" e o g e Dl
#32 fimt () it = A

p
_Z 12 T ,u’ IN®H ,u, du+z / Ma :uv M
r=1

b Ja

1
2(1 =)
5 | €000 (enl el + 5 [ w0y @ (oo,

2

TR S R S L

+

Ik w,t)(fN@G)e(u,t)du—;ﬁs | €m0

+

+Zﬁs/ t)es(u, )du+e/eT(u,t)e(,u,t)du

Q

~

e 1
< Tt E(ME T MR, +1 I, I,
/Qe(u,)[z2( ® *ZC @ T+ Iy @ (F(enln + 05

k=1

+F+— +e+z A — Z;H)—(B

r=1 T
+ )8 1| el )+ ) - / et . (4
Combining (33) and (44), one obtains
Va(t) + eVi(t) <e /tt/ T (1, h) <1N ® ((e + Zm; éé(sﬂ)zn + 2(£ 7)))e(ﬂ, h)dudh

m

~ ) m 1

K= k=1

S e+zc“ )T, — A” — Z H) - (5
7"17"

+ci)®ln]e(m )dp + Bp(t) // (1, B)e(p, h)dpdh
t—e

N

> [ e tientu tn

s=1

+

[N Q)

33



m . m 1
g/eT(u,t){Zg(M“®F“)2+ZCHM“®PH+IN®(é(QDfn
Q r=1 r=1
G ¢.0° -1
+opln+ F ot o 7 +6+Z —A ZL2H)
r=1 T

" £6,.02 eG
+) 5~ Dt m))e(u, h)dpdh.

By (41) and (42),
Va(t) + eVa(t) < Bp(t).

Letting oy = %, ay = f3, one easily obtains that the network (40) is robustly
Y-type stable with convergence rate 5. Then, the drive system (38) and the
response system (39) achieve general robust decay lag anti-synchronization.

The proof is completed.

Remark 7. From the conditions of Theorems 3.1, 3.2, 4.1, and 4.2, it can
be clearly seen that the dimensions of these matrix inequalities depend on
the number of nodes in the network and the dimension of each node. When
the number and the dimension of the nodes are large, the implementation
complexity increases accordingly. In this case, it may be difficult to verify the
conditions by using Matlab. Therefore, it is an important and challenging
problem to establish more tractable conditions that ensures the decay lag
anti-synchronization of the considered MWDCRDNNSs, which will be a future

research direction.

Remark 8. In this study, several decay lag anti-synchronization and robust

decay lag anti-synchronization criteria for MWDCRDNNs with and without
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bounded distributed delays are derived using certain inequalities and Lya-
punov’s functional method. To the best of our knowledge, this is the first
step towards studying the decay lag anti-synchronization of MWDCRDNNS.
However, the time-varying delay 7(¢) in the considered model should satisfy
the conditions 0 < 7(¢t) < 7 and 7(t) < v < 1. In recent years, research
has been conducted on networks with unbounded time delay, and it is pos-
sible to remove the restriction on the derivative of the time delay (i.e., the
condition 7(t) < v < 1) by using delay interval decomposition. In future
work, it would be interesting to establish some less restrictive decay lag anti-
synchronization criteria by adopting these new methods or techniques to

remove the constraints on time delay.

5. Numerical Examples

Example 5.1. We consider the following MWDCNN with reaction—

diffusion terms:

W =AY (i, t) + HAY (1, 8) + DF(Ya(u, t)) + Bg(Ya(u, 1))

+03ZM1FY (1, t) +O4ZM .Y,
+0.2 Z M2T5Y;(n (45)
where s = 1,2,--- |5, fi(w) = M, gi(w) = W (1 =1,2,3),

Q={u|—1<pu<1}, I =diag(0.2,0.5,0.3), T'y = diag(0.1,0.2,0.3), T'y =

diag(0.3,0.1,0.4), 7(t) = 55 — 15€ ", T = 55, ¥ = 15; the matrices M*, M?,
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and M3 are chosen as follows:

—-03 0 01 02 0
0 —06 03 02 0.1

M'=] 01 03 —-06 0 02 |,

02 02 0 —06 02
0 01 02 02 -05

—06 01 0 03 0.2
01 —-03 0 01 0.1
M=| o0 0o -01 01 0 |,
03 01 01 —-05 0

0.2 01 0 0 -03

—05 02 01 0 02
02 —-04 0 01 0.1
M= 01 0 -01 O 0
0 01 0 -—04 03
02 01 0 03 —0.6

The parameters A, H, D, B in the network (45) may vary as follows:

A[ :{A = diag(al, as, CL3) 104 < aq < 05, 0.5 < a9 < 06,
0.6 < az < 0.7},

H[ :{H = diag(hl, hg, hg) :0.6 < hl < 07,07 < hg < 08,

0.8 < hy < 0.9}, (46)
1
Dy :={D = (d,;)3x3 : — 4+ 0.02<d,; < — +0.03},
D= il 50 <51y
B :={B = (b))3x3 : 0.01 <b,; < — 10.02}.
\ 1 { ( J)3><3 4(7"|‘j) + J 4(T ) + }
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Apparently, f;(-) and g;(-) (: = 1,2,3) satisfy Assumption 1 with F; =
0.25 and G; = 0.5, respectively. We consider (45) to be the drive system;

then, the corresponding response system is as follows:

oWy, t -

# = — AW (i, t) + HAW (1, ) + Bg(Wy(p1, 1)) + D f (Wi(p, 1))
+03ZM1FW .t +O4ZM2F2 )t
+OQZM T3l (3, ) + s (1 ). (47)

The parameters in the controller us(u,t) defined in (5) are chosen as follows:

= diag(0.7,0.8,0.5,0.3,0.4), 3 = diag(0.4,0.6,0.2,0.4,0.2), and p(t) =

e 03! Then, the nonlinear controller (5) takes the following form:
( wy(p,t) = — 0.7e1 (p, t) — 0. 4H” <( ))"'Lgil(eli’o §t,
us(p, t) = — 0.8es(p,t) — 0.6 IIH (( ’ ))H”;f(;’ogt,
ug(p,t) = — 0.5ez(p, t) — 0. 2H” <( ))’:’22?(:’:;, (48)
wg(p,t) = — 0.3eq(p, t) — 04”“ (( ))””fi‘{ji’o;,
\ us(p,t) = — 0.4es(p,t) — 0.2 ’:L<<_”t))"|’22j_5(:’02t.

The other parameters in (47) are defined as in (45). We choose ¢ = 0.02,
that is, the convergence rate is § = 0.01. For convenience, the lag delays are
chosen as o, = 0.008 (s = 1,2,---,5). Through a simple operation based on
the above parameters using the MATLAB toolbox, one obtains

() ={—2.5879, —2.3879, —2.3076, —2.1343, —2.0719, —1.9154, —1.8401,
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Figure 1: e,;(p,t) between systems (45) and (47), s =1,2,---,5, j=1,2,3.

— 1.8339, —1.7596, —1.7004, —1.6673, —1.5473, —1.4471, —1.4077,
— 1.3257},
A(Ty) = — 0.9962,

which satisfy the conditions (20) and (21).

By Theorem 3.2, the systems (45) and (47) achieve general robust de-
cay lag anti-synchronization under the nonlinear controller (48). The above
simulation result demonstrates the validity of Theorem 3.2 in Section 3. Fig-
ure 1 shows the trajectories of the three components of the errors states
(es(t),s = 1,2,---,5) between systems (45) and (47) under the controller
(48). It is clear that each component converges to 0 as the time ¢ gradually
increases to 1 s, and this state is maintained thereafter.

Example 5.2. We consider the following MWDCRDNN with bounded
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distributed delays:

% = — AY,(u,t) + HAY,(11,t) + Df(Ya(pi, 1)) + Bg(Ya(p 1)

+012M1F1/ (,u,h)thrO?)ZMlPl (s 1)
3(t)

+03ZM2F2/ (,u,h)dh+04ZM2F2 (s, t)

+02ZM3F3/ (,u,h)dh+02ZM3F3 (s, 1), (49)

6(t)

where s = 1,2,--- .5, fi(w) = %}'WH, gi(w) = W (i =1,2,3),
O ={ul—1<pu<1}, I = diag(0.2,0.5,0.3), Ty = diag(0.1,0.2,0.3), ['s =
diag(0.3,0.1,0.4), 'y = diag(0.4,0.2,0.3), I, = diag(0.1,0.5,0.4), I’y =
diag(0.2,0.2,0.4), 7(t) = g5 —15€ ', T =5, ¥ = 15, 0(t) = ;5 —s5€e7 ", 0 = 15;
the matrices M*, M2, M3, M, M2, and M3 are chosen as

—-03 0 01 02 0
0 —06 03 02 0.1

M'=] 01 03 —-06 0 02 |.

02 02 0 —06 02
0 01 02 02 —=05

—06 01 0 03 0.2
01 -03 0 01 0.1
M=| o0 0 -01 01 0 |,
03 01 01 -05 0

02 01 0 0 —03
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—-05 02 01 0 02
02 —-04 0 01 0.1
MP=| 01 0 =01 O 0 :
0 01 0 —04 03
02 01 0 03 =06

—05 02 0 02 0.1
02 —06 03 01 0
M= 0 03 —-07 02 02 |,
02 01 02 —07 0.2
01 0 02 02 -05

-05 0 03 02 0
0 —-02 0 01 0.1

M*=| 03 o0 —06 01 02 |,

02 01 01 -04 0
0 01 02 0 -03

—06 03 02 01 0
03 —06 01 0 02

MP=| 02 01 —04 0 01

01 0 0 —04 03
0 02 01 03 —06

The parameters A, H, D, B in the network (49) are defined by (46). Ap-
parently, f;(-) and g;(-) (i = 1,2, 3) satisfy Assumption 1 with F; = 0.5 and
G; = 0.25, respectively. We consider (49) to be the drive system; then, the
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corresponding response system is as follows:

W) _ 4y () + HAW, () + DF(Wa(ps ) + Bg(Wa (1))

ot
5
+0. 1ZM1 I Wi, h)dh + 0.3 " MLT W, (p,t)
t—5(t) =1
5
+0. 32]\42 I, Wi, h)dh + 0.4 " M2ZT5W;(p,t)
t—48(t) 1
5
+0. 2ZM3 I Wi, h)dh + 0.2~ MET3W;(u,t)
t—0(t) j=1
+ us(p, £). (50)

The parameters in the controller us(p,t) defined in (5) are chosen as follows:
— diag(0.6,0.8,0.2,0.4,0.1), § = diag(0.4,0.5,0.2,0.1,0.3), and p(t) =

e~ 03t Then, the nonlinear controller (5) takes the following form:

( — 06e le(- D) lPer(p, t)
uy(p,t) = — 0.6e1(p, t) — O4H (D7 e 08
. Cose e el ) |Pea(p, )
Z(Nat) =-038 Q(Nvt) 0'5” ( )||2 +6—0.3t’
sl ) = = 0:2esp,0) — 02 LD 6
oo el et
u4(,u,t) =-04 4(:uvt) 0.1 ” ( )”2 4 03t
y ot le(, 1) |1es (s 1)
\ s(p,t) = — 0.1es(p, t) — 03H (-, 1)]]2 + e03¢"

The other parameters in (50) are defined as in (49). We choose ¢ = 0.04,

that is, the convergence rate is § = 0.02. For convenience, the lag delays are

chosen as o, = 0.002 (s = 1,2,---,5). Through a simple operation based on
the above parameters by using the MATLAB toolbox, one obtains

A(Ey) ={—1.0422, —1.0761, —1.1873, —1.9750, —1.6756, —2.4221, —2.2289,
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Figure 2: e,;(p,t) between systems (49) and (50), s =1,2,---,5, j=1,2,3.

—2.1342, —1.8990, —1.6489, —1.2652, —1.3173, —1.5117, —1.4398,
— 1.4569},

A(W,) = — 0.9945,

which satisfy the conditions (41) and (42).

By Theorem 4.2, the systems (49) and (50) achieve general robust de-
cay lag anti-synchronization under the nonlinear controller (51). The above
simulation demonstrates the validity of Theorem 4.2 in Section 4. Fig-
ure 2 shows the trajectories of the three components of the errors states
(es(t),s = 1,2,---,5) between systems (49) and (50) under the controller
(51). It is clear that each component tends to 0 as the time ¢ gradually

increases to 1 s, and this state is maintained thereafter.

Remark 9. Owing to the difficulty in estimating the convergence rate of a
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system in practice, a new type of synchronization was proposed, namely de-
cay synchronization. It generalizes traditional synchronization concepts, such
as, exponential, asymptotic, and polynomial synchronization [1, 14, 18, 19].
However, these studies ignore the impact of time delay on the network,
which may lead to various undesirable results, such as instability and poor
performance. For this reason, lag synchronization of neural networks has
been extensively studied [2, 6, 17, 28]. In various applications, another in-
teresting phenomenon, that is, anti-synchronization, has been observed in
chaotic neural networks [12, 13, 31] and memristive neural networks [16, 28].
Unfortunately, decay lag anti-synchronization has not been considered to
date. In this study, the decay lag anti-synchronization of MWDCRDNNSs
with and without bounded distributed delays was first investigated, and re-
lated conditions were derived by introducing the concept of decay lag anti-

synchronization and designing an appropriate nonlinear controller.

Remark 10. In this section, the theoretical results were verified using two
numerical simulations, in which the parameters need only to satisfy the con-
ditions in the network model. Recently, the problem of decay synchronization
and lag synchronization of neural networks has attracted considerable atten-
tion [1, 2, 6, 14, 17-19, 28]. In these studies, purely numerical examples were
used to validate the derived theoretical results. Accordingly, we adopted the
same strategy here and used two numerical examples. It would be interesting

to find potential applications in future work.
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6. Conclusion

This study was concerned with the general decay lag anti-synchronization
of MWDCRDNNSs, which combines the concepts of anti-synchronization, de-
cay synchronization, and lag synchronization. Using Lyapunov function-
als, certain inequalities, and an appropriate nonlinear controller, we de-
rived sufficient conditions whereby the decay lag anti-synchronization of
MWDCRDNNs with and without parametric uncertainties is ensured. Sim-
ilarly, the decay lag anti-synchronization and the robust decay lag anti-
synchronization of MWDCRDNNs with bounded distributed delays were also
studied. Finally, several simulations were performed to validate the obtained

results.
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