
ProUM: Projection-Based Utility Mining on Sequence Data

Wensheng Gan1,5, Jerry Chun-Wei Lin1,2*, Jiexiong Zhang1, Han-Chieh Chao3, Hamido Fujita4 and Philip S. Yu5

1School of Computer Sciences and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China

2Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences (HVL), Bergen 5050, Norway

3Department of Electrical Engineering, National Dong Hwa University, Hualien 97401, Taiwan

4Faculty of Software and Information Science, Iwate Prefectural University, Morioka 020-8550, Japan

5Department of Computer Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA

Email: wsgan001@gmail.com, jerrylin@ieee.org, jiexiong.zhang@foxmail.com, hcc@ndhu.edu.tw, HFujita-799@acm.org, psyu@uic.edu

Abstract

Utility is an important concept in economics. A variety of applications consider utility in real-life situations, which has lead
to the emergence of utility-oriented mining (also called utility mining) in the recent decade. Utility mining has attracted a great
amount of attention, but most of the existing studies have been developed to deal with itemset-based data. Time-ordered sequence
data is more commonly seen in real-world situations, which is different from itemset-based data. Since they are time-consuming
and require large amount of memory usage, current utility mining algorithms still have limitations when dealing with sequence
data. In addition, the mining efficiency of utility mining on sequence data still needs to be improved, especially for long se-
quences or when there is a low minimum utility threshold. In this paper, we propose an efficient Projection-based Utility Mining
(ProUM) approach to discover high-utility sequential patterns from sequence data. The utility-array structure is designed to store
the necessary information of the sequence-order and utility. ProUM can significantly improve the mining efficiency by utilizing
the projection technique in generating utility-array, and it effectively reduces the memory consumption. Furthermore, a new upper
bound named sequence extension utility is proposed and several pruning strategies are further applied to improve the efficiency of
ProUM. By taking utility theory into account, the derived high-utility sequential patterns have more insightful and interesting infor-
mation than other kinds of patterns. Experimental results showed that the proposed ProUM algorithm significantly outperformed
the state-of-the-art algorithms in terms of execution time, memory usage, and scalability.

Keywords: economics, utility mining, sequence, projection, sequential pattern

1. Introduction

In the era of big data, data mining and data analytics [9] are
some of the fundamental technologies for discovering knowl-
edge in data, and they have become more prevalent in our life
due to the rapid growth of massive data [15]. Up to now, a
handful of methods have been proposed for discovering useful
and interesting patterns [3, 20] from different types of data. For
example, frequent pattern mining (FPM) [20] and association
rule mining (ARM) [3] from the transaction data have been ex-
tensively studied. One of the well-known applications of FPM
and ARM is in market basket analysis. In addition, mining se-
quence data, which is common for many real-life applications,
has also attracted a lot of attention. Sequential pattern mining
(SPM) is one of the well-studied research fields for mining se-
quence data [2, 35, 33]. Knowing the useful patterns and aux-
iliary knowledge from sequences/events can benefit a number
of applications, such as web access analysis, event prediction,
time-aware recommendation, and DNA detection [11]. Up to

∗Corresponding author. Email: jerrylin@ieee.org.

now, research has been conducted on mining interesting pat-
terns from transaction or sequential data [11, 15, 20, 33]. How-
ever, most of them are based on the co-occurrence frequency of
patterns.

Motivation. In reality, massive data, for example, a se-
quence, contains valuable but hidden auxiliary information. How-
ever, the measures of support [20] and confidence [2, 3] cannot
be effectively utilized to discover implicit or potential informa-
tion. For instance, implicit factors such as the utility, interest,
risk, and profit of objects in the data are not considered in tradi-
tional ARM or SPM. The main goal of tasks for data mining and
analytics is generally to achieve utility maximization. However,
most of the existing algorithms of FPM, ARM, and SPM are un-
able to discover the valuable targeted patterns that benefit util-
ity maximization. For example, support/frequency-based data
mining models might be insufficient for achieving a time-aware
recommendation for users based on the users’ click-stream or
purchase behavior. Specifically, a variety of applications con-
sider utility. Typical examples include the profit of products
in supermarkets and retail stores, the satisfaction feedbacks of
different restaurants, and the popularity of hot showing movies.

Preprint submitted to Information Science September 13, 2019

ar
X

iv
:1

90
4.

07
76

4v
2

 [
cs

.D
B

]
 1

2
Se

p
20

19

Thus, in these circumstances, the frequency framework loses its
adaptiveness.

Utility [32] is an important concept in Economics. The
emergence of a new mining anc omputing framework, called
utility mining, can be realized by taking utility theory [32] from
economics into account [18]. Utility mining is in the cross-
domain of information technology and economics. In the past
decade, utility mining has been extensively studied in areas like
high-utility itemset mining (HUIM) [6, 30, 31, 37], high-utility
sequential pattern mining (HUSPM) [7, 41, 44], and high-utility
episode mining (HUEM) [42]. It has been successfully ap-
plied to discover utility-driven knowledge in the cross-domain
of information technology and business. The identified pat-
terns, which can bring valuable profits for retailers or managers,
are more useful than those frequent-based patterns in business.
HUIM addresses the itemset-based data to mine high-utility
itemsets (HUIs), and HUSPM deals with the sequence data to
discover high-utility sequential patterns (HUSPs). In general,
the utility can be a user-specified subjective measure, such as
satisfaction, profit, risk, interest, and so on. Utility mining [18]
has become an important branch of data science, which is aimed
at utilizing the auxiliary information from data (e.g., itemsets,
events, and sequences). Time-ordered sequence data is more
commonly seen in real-world situations, which is different from
itemset-based data. To a certain extent, itemset data is a special
case of sequence data.

Challenges. Several prior studies have focused on improv-
ing the mining efficiency of HUSPM, such as USpan [44], Hus-
pExt [7], PHUS [21], and HUS-Span [41]. Among them, US-
pan [44], HuspExt [7], and HUS-Span [41] are all based on
a lexicographic sequence tree with two concatenation mecha-
nisms and several pruning strategies w.r.t. upper bounds on
utility. In general, some challenges remain in addressing the
problem of HUSPM, which are described below.

First, the computing mechanism of the utility of a pattern
is different from that of frequency of a pattern. The former is
more complicated and the utility of a sequence is not down-
ward closed. This means that the support-based pattern mining
techniques and models cannot be directly applied to discover
utility-driven patterns, and the pruning search space in HUSPM
is more difficult.

Second, the HUSPM problem is intrinsically more complex
than HUIM and FPM. HUSPM may easily face a critical com-
binatorial explosion of search space without powerful pruning
strategies w.r.t. upper bounds on utility because of the inherent
time order embedding in sequence data.

Third, a common way to identify the interesting HUSPs is
to recursively generate the projected sub-databases and then
scan these whole sub-databases. However, this is very ineffi-
cient and costly in memory when the number of sequences in
processed database is large-scale. Therefore, how to efficiently
reduce the size of the databases that need to be projected and
scanned is a crucial problem to be solved for efficiently discov-
ering HUSPs.

In summary, speeding up the execution time and reduc-
ing memory consumption without losing HUSPs are critical in
HUSPM. How to improve the mining efficiency of utility min-

ing on sequence data is still an open problem.
Contributions. In light of the aforementioned challenges,

we propose a novel utility mining framework, called Projection-
based Utility Mining on sequence data (ProUM). Based on the
developed utility-array with the projection mechanism, the utility-
driven mining model, ProUM, can not only extract the insight-
ful high-utility patterns but also achieve better efficiency. The
effectiveness and efficiency of the proposed ProUM is evaluated
by comparing it with the well-known frequency-based SPM
model and state-of-the-art utility mining algorithms. The major
contributions of this paper can be summarized as follows:

• We adopt utility and time-order significance as the key
criterion for evaluating utility mining on sequence data.
By considering the utility factor and time-order relations
among items/objects, we design an efficient method, called
Projection-based Utility Mining on sequence data (ProUM).

• A compact data structure, namely, utility-array, is pre-
sented to store the compact information (e.g., utility, po-
sition, and time order) of sequences from the processed
sequence database. ProUM can quickly discover a set
of high-utility sequential patterns based on the developed
utility-array with the projection mechanism.

• This projection-based approach utilizes several pruning
techniques in a depth-first search manner, which con-
sist of the utilization of utility property and the proposed
upper bound named sequence extension utility (SEU).
Therefore, ProUM is able to filter a large number of un-
promising patterns at an early stage and return the signif-
icant patterns in the mining process.

• Experiments on both real and synthetic datasets show
that the proposed utility-array representation achieves a
lossless compression capability of quantitative sequence
data. Moreover, ProUM significantly outperforms the
state-of-the-art algorithms, such as USpan and HUS-Span.

The remainder of this paper is organized as follows: Some
related works of support-based sequence mining and utility-
based mining on itemset-based data and sequence data are briefly
reviewed in Section 2. Some basic preliminaries and the prob-
lem statement of HUSPM are given in Section 3. Details of the
proposed data structure, pruning strategies with upper bound,
and the main procedure of the ProUM algorithm are described
in Section 4. The experimental evaluation of the proposed ProUM
algorithm is provided in Section 5. Finally, conclusions are
drawn in Section 6.

2. Literature Review

Much research has been conducted on frequency-based se-
quential pattern mining and utility mining of itemset-based data,
but fewer works have integrated utility theory for mining high-
utility patterns from event/sequence data. In this section, we
separately present the prior works on SPM, HUIM, and HUSPM.

2

2.1. Frequency-Based Mining on Sequences
Pattern (i.e., itemset, rule, and sequence) mining [20, 33] is

a kind of well-studied data mining and analytics model. The
applications of pattern mining models are very extensive, and
details can be referred to in the survey literature [11, 15, 18,
19]. A great effort has been put forth by the data mining com-
munity to discover frequent patterns from itemset-based data,
such as Apriori [3] and FP-growth [20] methods. Different
from itemset-based data, timely ordered sequence data is more
commonly seen in the real-world, in areas such as traffic data,
web access, customer shopping data, travel routes, stock mar-
ket trends, DNA chains, and so on [2, 11, 33, 35]. The prob-
lem of sequential pattern mining (SPM) from sequence data
was first presented by Agrawal and Srikant [2]. Frequent pat-
tern mining (FPM) from itemset-based data is closely related
to SPM [2, 11, 33, 35]. A number of algorithms have been
proposed to discover the complete frequent sequential patterns
from sequential databases, including SPADE [46], SPAM [8],
and PrefixSpan [33]. These algorithms use many strategies to
make the mining of sequential patterns more efficient and prac-
tical. Unfortunately, before discovering the final result sets,
SPM may produce a huge amount of candidates, partially due
to the combinatorial nature of the mining task and the timely
ordered information embedding in the sequences. Analysis is
difficult when dealing with long sequences because most of
the SPM algorithms may generate an exponential number of
sequences, especially when using a lower minimum support
threshold. Among them, the well-known PrefixSpan [33] al-
gorithm follows a pattern growth mechanism that uses a se-
ries of projected databases for achieving better mining perfor-
mance in terms of execution time and memory cost. It recur-
sively extracts the prefix sub-sequences, and then projects the
postfix sub-sequences into the sub-databases [33]. Comprehen-
sive overviews of sequential pattern mining have been given by
Fournier-Viger et al. [11] as well as Gan at al. [19].

2.2. Utility-Driven Mining on Transaction Data
The key measure for discovering patterns in the aforemen-

tioned FPM and SPM is the frequency (aka relevant co-occurrence)
[20]. In general, the statistical frequency is an objective mea-
sure while some subjective measures and useful factors (e.g.,
utility, business profit, risk, and preference) are ignored. There-
fore, the support/frequency-based data mining approaches can-
not return the real useful knowledge, which decreases the ef-
fectiveness of mining task. Up to now, a variety of applica-
tions have considered utility. A new mining and computing
framework named utility mining [18] has been proposed by
taking the utility theory from economics into account. Utility
mining has been developed to successfully applied to discover
utility-driven knowledge in many real-world applications. The
early works of utility mining were related to high-utility item-
set mining (abbreviated as HUIM) [6, 30, 31, 37], which ad-
dresses itemset-based data. In general, the utility can be any
user-specified subjective measure, such as satisfaction, profit,
risk, interest, and so on.

Many previous studies of utility mining have focused on
developing efficient algorithms that can achieve better mining

performance, such as Apriori-like approaches (e.g., Two-Phase
[31]), tree-based approaches (e.g., IHUP [6], UP-growth [39],
UP-growth+ [37]), list-based approaches (e.g., HUI-Miner [30],
FHM [12]), and other hybrid algorithms (e.g., EFIM [47]). In
addition to efficiency, the effectiveness of the data mining and
analytic models is also very important. Therefore, a number
of studies have been developed to improve the effectiveness for
mining utility-oriented patterns, and the current state-of-the-art
approaches have been provided in [18]. For instance, Lin et al.
studied the problem of dynamic high-utility itemset mining on
different types of dynamic data with record insertion [18, 25],
record deletion [26], and record modification [25]. In some
applications, the collected data is not precise and contains un-
certainty. There have been some interesting works that deal
with uncertain data for mining high-utility patterns [24]. At
the same time, other interesting issues of utility mining also
have been studied, such as utility mining with discount strate-
gies [26] or negative values [22], discovering top-k high-utility
patterns [38], correlated utility mining [13, 17], and HUIM in
big data [29]. Recently, a new utility measure, called utility oc-
cupancy [16], has been proposed to solve the drawbacks of the
existing utility mining models.

Different from the above-mentioned approaches, there are
several genetic algorithms (e.g., HUIM-BPSO [27] and ACO-
based HUIM-ACS [43]) methods that have been applied to deal
with the utility mining problem. However, evolutionary com-
putation techniques for HUIM do not provide any benefit for
improving the mining efficiency. Besides, the interesting topic
called privacy preserving utility mining [14] also has been ex-
tensively studied. A detailed survey of current development of
HUIM was reported by Gan et al. [18].

2.3. Utility-Driven Mining on Sequences
In addition to itemset-based data, sequence data also has

been addressed in utility mining, which is called high-utility
sequential pattern mining (HUSPM) [7, 41, 44]. In FPM and
SPM, the Apriori property [2, 3, 35] is widely adopted as the
downward closure property to prune the search space. However,
the Apriori property does not hold in HUSPM, and this makes
the analysis of HUSPM difficult. Due to the absence of the
downward closure property in sequence utility, the sequence-
weighted utilization (SWU) [4, 44] is utilized in HUSPM to
prune the search space. It has been proved that the SWU value
is an upper bound of the utilities of a sequence and all its super-
sequences. For extracting high-utility sequential patterns, Ahmed
et al. [5] first proposed two algorithms, UtilityLevel and Utili-
tySpan. UtilityLevel is an Apriori-like algorithm, and UtilityS-
pan is based on PrefixSpan [33]. UL and US discover HUSPs
in two phases by using SWU to prune the search space. They
first find the candidate sequences with a high SWU value, then
they compute the actual utilities of each sequence in candidates,
and finally all the HUSPs can be identified. Next, the UMSP
algorithm [34] was developed to discover high-utility mobile
sequences, and the UWAS-tree and IUWAS-tree [4] were de-
signed to find high-utility web log sequences.

Unfortunately, all these algorithms only consider single-item
sequences (i.e., itemset data that was addressed in HUIM) but

3

not the element-based sequences. Yin et al. [44] presented
a generic definition of the HUSP mining framework and pro-
posed a new mining algorithm named USpan. In the USpan
model, the quantitative sequences, along with their utility and
time order information, are represented as the utility-matrix
structure. Then, two upper bounds (SWU and sequence-projected
utilization (SPU) [44]) are applied to prune the search space,
which is represented as a lexicographic tree. To prune the lexi-
cographic tree for a better efficiency, SWU is utilized in a depth
pruning strategy and SPU is utilized in a breath pruning strat-
egy. However, the high-utility sequential patterns that are mined
by USpan are not complete. Alkan et al. proposed HuspExt [7]
with a Cumulate Rest of Match (CRoM) based pruning tech-
nique to improve the mining performance. HuspExt also uti-
lizes an upper bound on the utilities of the candidate sequences
to prune the search space. Lan et al. [21] further introduced
a projection-based PHUS algorithm to mine HUSPs using a
sequence-utility upper-bound (SUUB) model. The maximum
utility measure is introduced in the SUUB model to obtain a
tighter upper bound on the utility of a sequence.

The above algorithms (e.g., USpan [44] and HuspExt [7])
adopt SWU to prune the search space, however, they usually
suffer from the problem of an exponential number of candidate
sequences, especially when the user-defined minimum utility
threshold is small. The HUS-Span algorithm [41], which was
proposed recently, utilizes a new upper bound, called the pre-
fix extension utility (PEU). Although the results discovered by
HUS-Span are complete, HUS-Span is not efficient enough.
The generate-and-test approach creates an overflow of candi-
date sequences. Recently, some interesting issues of HUSPM
have been extensively studied that can improve the effective-
ness of mining high-utility sequential patterns. For example,
the problems of mining top-k high-utility sequential patterns
[45, 41], discovering periodic HUSPs [10], mining HUSPs with
multiple minimum utility thresholds [28], and incrementally
mining HUSPs on a dynamic database [40] have been addressed.
It should be noted that several genetic algorithms have been de-
veloped for HUIM (e.g., HUIM-BPSO [27] and HUIM-ACS
[43]), but they have not been proposed to deal with HUSPM
yet. More current development of HUSPM can be referred to
in literature reviews [14, 18, 36].

3. Preliminaries and Problem Formulation

This section introduces some basic concepts and principles
of sequence mining and utility-oriented sequence mining. Some
definitions from prior works are adopted to present the problem
clearly. More details about the background of sequence data
and sequence mining can be found in [11, 33, 46].

3.1. Sequence Data
Let I = {i1, i2, i3, · · · , in} be a set of distinct items. An item-

set X is a subset of items, that is, X ⊆ I. A sequence s is an
ordered list of itemsets (also called elements or events). Note
that the items within each element can be unordered, without
loss of generality, and it is assumed that they are sorted alpha-
betically. Additionally, “≺” is used to represent that one item

occurs before another item. In SPM, an item occurs once at
most in an element of a sequence. An item can occur multi-
ple times (also called occurred quantity) in an element while
in HUSPM. A group of the sequences stored with their identi-
fiers (sid) is called a sequence database, denoted as D. Thus,
a sequence database D = {s1, s2, · · · , sm} is a set of sequences/-
tuples (sid, e1, · · · , e j), where sid is a sequence id and e j is an
element that contains a set of items belonging to I.

The total number of items in a sequence is called its length.
A sequence with length k is called an k-sequence. The size
of a sequence is the number of itemsets/elements within this
sequence. For example, a sequence s = <[ac], [abc], [abd],
[ef]> consists of six distinct items and four elements. Thus, s
is called 10-sequence since the length of s is ten, and its size
is four. A k-itemset, also called k-q-itemset, is an itemset that
contains exactly k items. A k-sequence (k-q-sequence) is a se-
quence having k items.

Definition 1. (sub-sequence and sup-sequence) Given two se-
quences, α = <a1, · · · , am> and β = < b1, · · · , bn >, α is called a
sub-sequence of β iff1 each a j (1 ≤ j ≤ m) can be mapped by bi j

(a j ⊆ bi j) and preserves the order as 1 ≤ i1 < i2 < · · · < im ≤ n.
In other words, if α or β contains α, then β can be called a
super-sequence.

For example, in considering three sequences, α = <[ac], [c],
[abd]>, β = <[ac], [d]>, and γ = <[cd]>, α is said to be a super-
sequence of β while γ is not a sub-sequence of α. The reason
for this is that the sequence γ = <[cd]> cannot be mapped to
any sequence in α.

Definition 2. (sequence containing) Given two sequences, t1
and t2, then t2 uniquely contains t1 iff there is only one t1 ⊆ t2
such that t1 = t2, denoted as t1 v t2. Similarly, for a sequence
t and a sequence s, s uniquely contains t, denoted as t v s, iff
there is only one s′ and s′ ⊆ s such that s′ ∼ t.

A quantitative sequential database (shown in Table 1), is
used as a running example in this paper. Table 1 has five se-
quences/transactions and six items. In addition, each item i j

in D is associated with a unit utility (also called external util-
ity), which is denoted as pr(i j). The unit utility (e.g., price and
profit) for each item is provided in Table 2, which can be called
the profit-table. In general, the profit-table is based on the prior
knowledge of similar users or contents. In the running example,
the unit utility of an item (e) is $6.

Definition 3. (quantitative sequence) For the addressed HUSPM
problem, the processed database is the quantitative sequence
database (q-database) that each item i j ∈ I (1 ≤ j ≤ n) in an ele-
ment/itemset v is associated with a quantity (also called internal
utility), denoted as q(i j, v). For convenience, “q-” is used to re-
fer to the object associated with quantity throughout this paper.
Thus, the term “q-sequence” means a sequence with quantities,
and “sequence” means a sequence without quantities. Simi-
larly, the “q-itemset” means an itemset having quantities while
an “itemset” does not have quantities.

1In this paper, the term “iff” means “if and only if”.

4

Table 1: A quantitative sequence database
SID Q-sequence
S 1 <[(a:2) (c:1)], [(c:2)], [(b:10) (f :3)], [(a:2) (e:1)] >
S 2 <[(f :2)], [(a:5) (d:2)], [(c:2)], [(b:4)], [(a:4) (d:1)]>
S 3 <[(a:4)], [(b:4)], [(f :5)], [(a:1) (b:2) (e:1)]>
S 4 <[(a:3) (b:4) (d:5)], [(c:2) (e:1)]>
S 5 <[(b:1) (e:1)], [(c:1)], [(f :2)], [(d:2)], [(a:4) (e:2)]>

Table 2: A profit-table
Item a b c d e f
Profit $3 $2 $10 $4 $6 $1

3.2. Utility Mining on Sequence Data
Utility mining incorporates the utility theory and mining

techniques to deal with complex data, such as quantitative se-
quence data. Some definitions in the utility framework on se-
quence data are briefly introduced below.

Definition 4. (utility of q-item) Let q(i j, v) be the quantity of
(i j) in a q-itemset v, and pr(i j) be the unit profit of (i j). The
utility of a q-item (i j) in a q-itemset v is denoted as u(i j, v) and
defined as:

u(i j, v) = q(i j, v) × pr(i j). (1)

Definition 5. (utility of q-itemset) The utility of a q-itemset v is
denoted as u(v) and defined as:

u(v) =
∑
i j∈v

u(i j, v). (2)

Definition 6. (utility of q-sequence) The utility of a q-sequence
s = <v1, v2, · · · , vd> is defined as:

u(s) =
∑
v∈s

u(v). (3)

Definition 7. (utility of q-database) The utility of a quantitative
sequential database D is the sum of the utility of each of its q-
sequences:

u(D) =
∑
s∈D

u(s). (4)

For instance, consider the running example in Table 1. The
utility of the item (a) in the first q-itemset in S 1 is calculated
as: u(a, [(a:2) (c:1)]) = q(a, [(a:2) (c:1)]) × pr(a) = 2 × $3 =

$6. In addition, the utility of the first q-itemset <[(a:2) (c:1)]>
is u([(a:2) (c:1)]) = u(a, [(a:2) (c:1)]) + u(c, [(a:2) (c:1)]) = 2
× $3 + 1 × $10 = $16. We have that u(S 1) = u([(a:2) (c:1)])
+ u([(c:2)]) + u([(b:10) (f :3)]) + u([(a:2) (e:1)]) = $16 + $20
+ $23 + $12 = $71. Therefore, the overall utility in Table 1 is
u(D) = u(S 1) + u(S 2) + u(S 3) + u(S 4) + u(S 5) = $71 + $69 +

$38 + $63 + $52 = $293.

Definition 8. (sequence matching) Given a q-sequence s = <v1,
v2, · · · , vd> and a sequence t = <w1,w2, · · · ,wd′>, if d = d′ and
the items in vk are the same as the items in wk for 1 ≤ k ≤ d,
then t matches s, which is denoted as t ∼ s.

For instance, in Table 1, the sequences <[ac]>, <[ac], [b]>,
<[a], [b], [e]> all match S 1. A sequence in a q-sequence database
may have more than one match in a q-sequence. For instance,
<[a], [b]> has two matches in S 3, such as <[a:4], [b:4]> and
<[a:4], [b:2]>. The measure of the utility of sequences for
HUSPM is more challenging than that for SPM and HUIM due
to the multiple matching cases.

Definition 9. (q-itemset containment) Given two itemsets w and
w′, the itemset w is contained in w′ (denoted as w ⊆ w′) if w is a
subset of w′ or w is the same as w′. Given two q-itemsets v and
v′, v is said to be contained in v′ if for any item in v there exists
the same item having the same quantity in v′. This is denoted
as v ⊆ v′.

Definition 10. (q-sequence containment) Given two sequences
t = <w1,w2, · · · ,wd> and t′ = <w′1,w

′
2, · · · ,w

′
d′>, the sequence

t is contained in t′ (denoted as t ⊆ t’) if there exists an integer
sequence 1 ≤ k1 ≤ k2 ≤ · · · ≤ d′ such that w j ⊆ w′k j

for 1 ≤ j ≤
d. In addition, consider two q-sequences s = <v1, v2, · · · , vd>
and s′ = <v′1, v

′
2, · · · , v

′
d′>. We say s is contained in s′ (denoted

as s ⊆ s′) if there exists an integer sequence 1 ≤ k1 ≤ k2 ≤

· · · ≤ d′ such that v j ⊆ v′k j
for 1 ≤ j ≤ d. In the following, t ⊆ s

is used to indicate that t ∼ sk ∧ sk ⊆ s for convenience.

For example, the itemset [ab] is contained in the itemset
[abe], while [abe] does not contain the item [f]. The q-itemset
[(a:1) (b:2)] is contained in [(a:1) (b:2) (e:1)], but it is not con-
tained in [(a:3) (b:4) (d:5)]. In Table 1, S 3 contains [(a:1)
(b:2)], but S 4 does not contain it. Consequently, the sequences
<[(a:4)], [(b:4)]> and <[(a:4)], [(b:2)]> are contained in S 3, but
<[(a:3)], [b:2]> is not contained in S 3.

It should be noted that the definition of utility of sequence
originally proposed in [4, 5] is too specific. Therefore, the later
studies [41, 44] have adopted “the maximum utility of all occur-
rences of a sequence t in a q-sequence s” as the real utility of
t in s. The proposed model in this paper follows this definition
of utility.

Definition 11. (maximal utility of t in s) Consider a sequence t
and a q-sequence s. The utility of t in s, denoted as u(t, s), may
have different utility values. The maximum utility is chosen
among these utility values as the utility of t in s, as defined
below:

u(t, s) = max{u(sk)|t ∼ sk ∧ sk ⊆ s}. (5)

Definition 12. (utility of a sequence in D) Let u(t) denote the
overall utility of a sequence t in a quantitative sequential database
D. It is defined as:

u(t) =
∑

t⊆s∧s∈D

u(t, s). (6)

For instance, consider two sequences <[a], [b]> and <[f],
[ad]> in Table 1. <[a], [b]> has two utility values in S 3, and
thus u(<[a], [b]>, S 3) = max{u(<[a:4], [b:4]>), u(<[a:4], [b:2]>)}
= max{$20, $16} = $20. <[f], [ad]> also has two utility val-
ues in S 2, such that u(<[f], [ad]>, S 2) = max{u(<[f :2], [(a:5)

5

(d:2)]>), u(<[f :2], [(a:4) (d:1)]>)} = max{$25, $18} = $25. In-
tuitively, the calculation of the overall utility of a sequence in
the sequence database is quite a bit more complicated than that
of HUIM and SPM.

Therefore, the overall utility of <[a], [b]> in Table 1 can be
obtained as u(<[a], [b]>) = u(<[a], [b]>, S 1) + u(<[a], [b]>,
S 2) + u(<[a], [b]>, S 3) = $26 + $23 + $20 = $69. Notice that
<[a], [b]> is different for <[b], [a]> because HUSPM considers
the time orders embedding in sequences. Thus, <[b], [a]> is
contained in S 5 while <[a], [b]> is not contained in S 5.

3.3. Problem Definition
Definition 13. (high-utility sequential pattern, HUSP) In a quan-
titative sequential database D, a sequence t is said to be a high-
utility sequential pattern (denoted as HUSP) if its overall utility
in D satisfies:

HUS P← {t|u(t) ≥ δ × u(D)}. (7)

where δ is the minimum utility threshold δ (usually given as a
percentage).

In the running example, it is assumed that δ is set as 25%,
and then δ ×u(D) = 25% × $293 = $73.25. Thus, since u(<[a],
[b]>) = $69 < $73.25, <[a], [b]> is not a HUSP. Based on the
above-stated concepts, the formal definition of the utility min-
ing on sequence data (also called high-utility sequential pattern
mining) problem can be defined below.

Problem Statement: Given a quantitative sequential database
D (with a profit-table) and a user-defined minimum utility thresh-
old δ, the utility-driven mining problem of high-utility sequen-
tial pattern mining (HUSPM) consists of enumerating all HUSPs
whose overall utility values in this database are no less than the
prespecified minimum utility account, such as δ × u(D).

Therefore, the goal of HUSPM is to search for the set of
sequences that achieves the highest utility score and their utility
values are not less than the minimum utility value.

4. Proposed Utility Mining Algorithm: ProUM

This section describes the proposed projection-based ProUM
algorithm for discovering high-utility sequence-based patterns
by recursively projecting the utility-array based on the prefix
sequences. ProUM utilizes the utility-array data structure to
avoid multiple scans of the original database and projecting of
the sub-databases. Only the compact utility-array is needed to
be projected and scanned in each mining process. The frame-
work of the proposed ProUM algorithm is presented in Figure
1. First, details of the search space, the utility-array structure,
and the projection mechanism are presented below.

4.1. Lexicographic Sequence Tree
According previous studies (e.g., SPAM [8], PrefixSpan [33],

USpan [44]), and the complete search space of SPM and HUSPM
can be represented abstractly as the lexicographic sequence tree
[8]. For the addressed problem for mining high-utility sequen-
tial patterns, a lexicographic q-sequence tree (LQS-tree) that

1-sequences that

SWU(t) ≥ δ × u(D)

Recursively call

Project-Search

I-Concatenation

Quantitative sequential

database

Initial utility-arrays

HUSPs

S-Concatenation

LQS-tree

LQS-tree

Figure 1: Framework of the ProUM algorithm

was used in USpan [44] is adopted to present the search space
of ProUM.

Definition 14. (lexicographic q-sequence tree) A lexicographic
q-sequence tree (LQS-tree) is a variant of the lexicographic tree
structure [8] satisfying the following conditions:

• Each node in LQS-tree is associated with a q-sequence
along with the utility of the sequence while the root is
empty and labeled with “<root>”.

• All the nodes except the root in LQS-tree are the prefix-
based extension of its parent node; in other words, any
node’s child is an extension sequence/node of the node
itself.

• All the children of any node in LQS-tree are listed in an
increasing order, for example, lexicographic order.

It should be noted that the LQS-tree is just a conceptual
structure, and the real visited/searched space may be different
depending on different cases. Additionally, if δ = 0, then the
complete set of the found high-utility sequential patterns from
the sequence data is equal to a complete LQS-tree, which cov-
ers the complete search space. It is important to notice that the
utility property in LQS-tree is different from the frequent/sup-
port property in the previous lexicographic tree [8, 33].

Definition 15. (I-Concatenation and S-Concatenation) There
are two operations, called I-Concatenation and S-Concatenation,
to generate new sequences based on prefix node in LQS-tree.

• Given a sequence t and an item i j, the I-Concatenation of
t with i j consists of appending i j to the last itemset of t,
denoted as <t ⊕ i j>I−Concatenation.

6

• An S-Concatenation of t with an item i j consists of adding
i j to a new itemset appended after the last itemset of t, de-
noted as <t ⊕ i j>S−Concatenation.

For example, given a sequence t = <[a], [c]> and a new item
(d), <t⊕c>I−Concatenation =<[a], [cd]> and<t⊕c>S−Concatenation =

<[a], [c], [d]>, then based on the definition of sequence length
and sequence size, the I-Concatenation does not increase the
length of sequence t while the S-Concatenation increases the
length of sequence t since the number of itemsets in t increases
by one. All the candidate sequences in the search space w.r.t.
LQS-tree can be enumerated for the purpose of mining HUSPs
based on the two prefix-based operations.

Without loss of generality, it is assumed that the concate-
nated nodes in LQS-tree are listed in alphabetical order. In the
running example in Table 1, the sequence in S 1 is listed as <[(a)
(c)], [(c)], [(b) (f)], [(a) (e)] > instead of <[(c) (a)], [(c)], [(f)
(b)], [(e) (a)]. The expression of a sequence is unique using
such a convention.

It should be noted that each LQS-tree node represents a can-
didate of the search space of HUSPs. A part of the LQS-tree
can be referred to in [28, 44]. All the child nodes of a par-
ent node are assumed to be ordered lexicographically with I-
extension2 sequences before the S -extension3 sequences. The
most straightforward way for spanning the tree structure is to
traverse and determine the lexicographic tree node one-by-one
using either the Depth-First-Search (DFS) strategy or the Breadth-
First-Search (BFS) strategy. Three questions remain to be an-
swered: (1) how to compact the necessary information (e.g.,
utility, order of sequences, and position in each sequence) from
the sequence database into the LQS-tree; (2) how to effectively
traverse the nodes in LQS-tree and then quickly calculate their
utility values; and (3) how to effectively prune the search space
without spanning the compete LQS-tree. To address these prob-
lems, we propose a new data structure, utility-array, and several
pruning strategies, which are respectively described as the fol-
lowing subsections.

4.2. Utility-Array and Projection Mechanism
Real sequences may often be very long in some application

scenarios; for example, web search sequences, DNA, network
intrusion access/log, and numerous other sequence data are all
complex and long. This may easy lead to a huge search space
for HUSPM. By adopting the concept of remaining utility [44,
41], we propose a new compact data structure, called utility-
array, for storing the necessary information from the sequence
data, including the utility information of item/sequence as well
as their time/sequence order.

Definition 16. (remaining utility [44, 41]) Given a sequence t
and a sequence database D, the remaining utility of t in a q-
sequence s is the overall utilities of all items whose positions

2Notice that the terms I-Concatenation and I-extension are used inter-
changeably in this paper

3Notice that the terms S-Concatenation and S -extension are used inter-
changeably in this paper

are after t in s, and defined as: urest(t, s) = max{urest(t, pk, s)},
where pk is the k-position, and urest(t, pk, s) =

∑
i′∈s∧t≺i′ u(i′).

Thus, the overall remaining utility of t in D is defined as: urest(t)
=
∑

s∈D urest(t, s).

Basically, the remaining utility of a sequence means the sum
of the utilities after this sequence. Intuitively, the remaining
utility is based on matching position. For example, a sequence
<s> has two remaining utility values in S 1: urest(<a>, p1, s1) =

$10 + $20 + ($20 + $3) + ($6 + $6) = $65 and urest(<a>, p2, s1)
= $6. In addition, the remaining utility of <[a], [b]> in s1
is urest(<[a], [b]>, s1) = $3 + ($6 + $6) = $15 and urest(<[a],
[b]>) = urest(<[a], [b]>, s1) + urest(<[a], [b]>, s2) + urest(<[a],
[b]>, s3) = $15 + $16 + $36 = $67. Based on the concept of
remaining utility, we introduce a data structure to represent the
necessary information (both the utility and sequence order w.r.t.
position) of each q-sequence.

Definition 17. (utility-array) Suppose that all the items in a q-
sequence s in a q-sequence database have different unique oc-
curred positions are {p1, p2, · · · , pk}, where {p1 < p2 < · · · <
pk}, and the total number of positions is equal to the length of s.
The utility-array of a q-sequence s = 〈e1, e2, · · · , en〉 (en is the
n-element in s) consists of a set of arrays from left to right in s.
Each array is related to an item i j in each position pk and con-
tains the following fields: arraypk = [eid, item, u, ru, next pos,
next eid]. Details are given below:

• Field eid is the element ID of an element containing i j;

• Field item is the name of item i j;

• Field u is the actual utility of i j in position pk;

• Field ru is the remaining utility of i j in position pk;

• Field next pos is the next position of i j in s;

• Field next eid is the position of the first item in next ele-
ment (eid+1) after current element (eid).

In addition, the utility-array records the first occurred position
of each distinct item in s. In summary, a utility-array of a q-
sequence s is a set of arrays related to each item in s and con-
tains the position, utility, and sequence order information.

In the running example in Table 1, the constructed utility-
array can be described in Table 3, and it can be seen that the first
occurring position of each distinct item in s is also recorded in
the utility-array, for example, the first occurring positions of a
and f are 1 and 5, respectively. Intuitively, the utility-array con-
tains all the necessary information of each sequence t, including
not only the utility values of each item in each position/element
but also the sequence order and position information4.

Definition 18. (position in utility-array) Each array has a unique
position as an index in the designed utility-array structure. More-
over, the size of the arrays in the utility-array of a q-sequence s

4Note that “-” means the position is empty.

7

Table 3: The utility-array structure of S 1

.

eid item u ru next pos next eid
array1 1 a $6 $65 6 3
array2 1 c $10 $55 3 3
array3 2 c $20 $35 - 4
array4 3 b $20 $15 - 6
array5 3 f $3 $12 - 6
array6 4 a $6 $6 - -
array7 4 e $6 $0 - -

is equal to the length of s. This position represents a match of
an item i j in s and can be used as an index for quickly retrieving
the utility-array and calculating the detailed information of i j.

In the implementation details, an array is used to store the
set of information of the compact utility-array. Thus, position
posk indexes arrayposk . For example, in Table 3, the array1 is
indexed by position 1, and the array2 is indexed by position
2. First, the 1-sequences with the low SWU values in each se-
quence are removed when calculating the compact utility-array
of original sequence database D. Then, the new (revised) trans-
actions are used to construct the initial utility-arrays. Inspired
by the database projection idea of PrefixSpan [33], we present
the following prefix-projected and span mechanism in utility-
array.

Definition 19. (prefix, suffix, and projection [33]) Assume all
the items in an element of a sequence database D are listed al-
phabetically. Given two sequences, α = <e1, e2, · · · , en>, and β
= <e′1, e′2, · · · , e′m> (m ≤ n), β is called a prefix of α iff it meets
the following conditions: (1) e′i = ei for i ≤ m − 1; (2) e′m ⊆ em;
and (3) all the items in (em−e′m) are alphabetically after those in
e′m. Additionally, the remaining part/elements after the prefix β
in a sequence are called suffix with regards to prefix β. Let α be
a sequence in D, then the α-projected sub-database, denoted as
D|α, is the collection of suffixes of the sequences (which con-
tains α) in D with regards to prefix α.

The ProUM algorithm recursively partitions the processed
utility-array based on the projection mechanism [33]. Specif-
ically, each subset of the extracted sequential patterns are fur-
ther divided when necessary. Thus, the projection mechanism
[33] forms a divide-and-conquer framework. Correspondingly,
ProUM recursively constructs the corresponding projected utility-
arrays but not the projected sub-databases.

Definition 20. (projected utility-array) Let t be a sequence in
D, and the utility-array of t is denoted as t.ua. The t-projected
utility-array, denoted as (D.ua)|t, is the collection of suffix of
arrays in D.ua w.r.t. prefix t.

For example, the projected utility-array of <[a] [c]> in S 1 is
shown in Table 4. Similarly, the other utility-arrays of <[a] [c]>
can be projected in other sequences, for example, S 2 and S 4.
As an accurate representation, utility-array provides provably
equivalent decomposition as projected database from the orig-
inal sequence data, but it requires much less memory space. It

Table 4: The projected utility-array of <[a][c]> in S 1.
eid item u ru next pos next eid

array4 3 b $20 $15 - 6
array5 3 f $3 $12 - 6
array6 4 a $6 $6 - -
array7 4 e $6 $0 - -

proceeds by dividing the initial utility-arrays into smaller ones
projected on the subsequences that were obtained so far, and
only their corresponding suffixes are kept. The number of trans-
actions/sequences in the projected utility-array is less than orig-
inal database. This can substantially reduce the cost of the pro-
jection operation when the projected utility-arrays can be held
in the main memory. By combining sequences from a series of
projected utility-arrays, all the HUSPs and the candidates can
be acquired.

It is important to notice that, instead of constructing the pro-
jected sub-database that only contain the updated sequences, a
set of the projected compact utility-array of each sequence is
only constructed s ∈ D. In other words, only the projected
utility-arrays in each projection process are constructed and then
scanned for constructing the next updated ones. Different from
previous studies [41, 44] that require scanning the projected
sub-database to construct the data structure (e.g., utility-matrix
[44] and utility-chain [41]), the proposed ProUM algorithm does
not need to construct and scan the projected sub-database.

Based on the designed utility-array and its construction pro-
cess, the following desirable properties of the utility-array can
be obtained: (1) The obtained information from utility-array is
exact. Since the utility-array of (l+1)-sequence is constructed
based on the built utility-array of l-sequences, it is parameter-
free and contains the complete information. (2) It is space ef-
ficient because it requires an inconsequential space overhead
to construct and project a series of utility-arrays, which allows
massive sequences to be processed in main memory (for most
data mining, disk is death). (3) It has simplicity and intuitive-
ness because it can be constructed in deterministic time and
regarded as the representation of quantitative sequences.

4.3. Proposed Upper Bound and Pruning Strategies

It is known that the complete search space of SPM or HUSPM
is much more difficult than FIM. For HUSPM, it has 2m×n pos-
sible candidates in total, where m is the total number of all the
possible distinct items in the database, and n is the number of el-
ements in the longest sequence. However, in HUSP mining, the
downward closure property (e.g., the Apriori property [2, 35])
does not hold for the utility of sequence patterns. Because SWU
has the downward closure property, the current algorithms (e.g.,
USpan [44] and HuspExt [7]) adopt SWU to prune the search
space. However, they usually suffer from the problem of an ex-
ponential number of candidate sequences since SWU is a loose
upper bound to over-estimate the true utility of a sequence.

An optimization with a new upper bound is proposed be-
low to further improve ProUM’s efficiency. The search space
of ProUM can be systematically explored by utilizing the pre-
sented pruning strategies.

8

Definition 21. The sequence-weighted utilization (SWU) [44]
of a sequence t in a quantitative sequential database D is de-
noted as SWU(t) and defined as follows:

S WU(t) =
∑

t⊆s∧s∈D

u(s). (8)

For example, in Table 1, SWU(<a>) = u(S 1) + u(S 2) +

u(S 3) + u(S 4) + u(S 5) = $71 + $69 + $38 + $63 + $52 = $293,
and SWU(<[a] [c]>) = u(S 1) + u(S 2) + u(S 4) = $71 + $69 +

$63 = $203.

Theorem 1. (global downward closure property [44]) Given a
quantitative sequential database D and two sequences t and t′,
if t ⊆ t′, then:

S WU(t′) ≤ S WU(t). (9)

Theorem 2. Given a quantitative sequential database D and a
sequence t, it can be obtained that:

u(t) ≤ S WU(t). (10)

The proof for Theorem 1 and Theorem 2 can further re-
ferred to in [7, 44]. To improve the performance of utility min-
ing, the USpan algorithm [44] introduces an upper bound based
on the remaining utility concept. Details are introduced below.

Definition 22. (first match) Given two q-sequences s and s′, if
s ⊆ s′, then the extension of s in s′ is said to be the rest of s′

after s, and is denoted as <s′-s>rest. Given a sequence t and a
q-sequence s, if t ∼ sk ∧ sk ⊆ s (t ⊆ s), the rest of t in s is the
rest part of s after sk, which is denoted as <s-t>rest, where sk is
the first match of t in s.

As an example, consider the sequence t = <[a], [b]>, q-
sequences s = <[a:4], [b:2]>, and S 3 in Table 1. The remaining
part of s in S 3 is <S 3 - s>rest = <[(e:1)]>, and thus it is unique.
However, two remaining parts of t exist in S 3 since it has two
matches of t in S 3, and the first one is <[a:4], [b:4]>. Based on
our definition, <S 1 - t>rest = <[(f :5)], [(a:1) (b:2) (e:1)]>.

Definition 23. (sequence-projected utilization, SPU [44]) The
sequence-projected utilization (SPU) of a sequence t in a se-
quence database D is denoted as SPU(t) and defined as follows:

S PU(t) =
∑

i∈s′∧s′⊆s∧s∈D

(urest(i, s) + up(t, s)), (11)

where i is the pivot of t in s, and urest(i, s) is referred to the
remaining utility at q-item i (exclusive) in q-sequence s, such as
urest(i, s) =

∑
i′∈s∧i≺i′ u(i′). up(t, s) is the utility of t in position

pivot (p) in s. Note that the pivot is the first place where the
q-subsequences match t.

Thus, the SPU value of sequence t is the sum of the remain-
ing utilities and utilities of the far left subsequences that match
t. However, this is not a true upper bound on utility. When us-
ing SPU to prune the search space in the LQS-tree with DFS
strategy, it may miss some of the real HUSPs. Other reports of
this serious problem can be referred to in [36]. Therefore, we
propose a real upper-bound on utility for mining HUSPs and
the details are given below.

Definition 24. (sequence extension utility of t in s) The sequence
extension utility (SEU) is used to present the maximum util-
ity of the possible extensions that based on the prefix t. Let
SEU(t, s) denote the SEU of a sequence t in s, and it indicates
how much of the sequence’s overall utility remains to be ex-
tended/concatenated. It is defined as follows:

S EU(t, s) = urest(i, s) + u(t, s), (12)

where urest(i, s) is the remaining utility of i in s, i is the pivot of
t in s, w.r.t. is the first occurring position of s′ ∼ t, and u(t, s) is
the maximum utility of t in s.

Based on the definition of <s − t>rest (cf. Definition 24), it
can be seen that urest(i, s) is equal to <s−t>rest. For consistency,
<s − t>rest is used in the following contents.

Definition 25. (sequence extension utility t in D) The overall
sequence extension utility of a sequence t in a quantitative se-
quential database D is denoted as SEU(t) and defined as fol-
lows:

S EU(t) =
∑

t⊆s∧s∈D

(u(t, s) + u(< s − t >rest)), (13)

where u(t, s) is the maximum utility value of t in s.

It should be noted that u(t, s) is the maximum utility of t in s
(also can be referred to Definition 13) while the up(t, s) cannot
guarantee the maximum utility of t in s. SEU is different from
SPU. Intuitively, in each q-sequence s that t ⊆ s, SEU contains
less utility values than SWU.

Note that u(<s - t>rest) can be obtained from the constructed
utility-array of t in s, which contains the remaining utility of t
in each position. For example, in the sequence t= <[a], [b]> in
Table 1, SEU(t) = u(t, S 1) + u(<S 1 - t>rest) + u(t, S 2) + u(<S 2 -
t>rest) + u(t, S 3) + u(<S 3 - t>rest) = ($18 + $15) + ($23 + $16)
+ ($20 + $18) = $110.

Theorem 3. (local downward closure property) Given a quan-
titative sequential database D and two sequences t and t′, if
t ⊆ t′, it can be obtained that:

S EU(t′) ≤ S EU(t). (14)

Proof. Suppose that sq′ is a q-sequence that satisfies u(sq′)
= u(t′, s), where t′ ∼ sq′ ∧ sq′ ⊆ s ∧ s ∈ D. The sequence t′

can be divided into two parts as the prefix t and the extension
e such that t + e = t′. Correspondingly, the sequence sq′ can
also be divided into two parts as the prefix sq′t matching t and
the extension sq′e matching e such that sq′t + sq′e = sq′ . Then, we
have:

S EU(t′, s) = u(t′, s) + u(< s − t′ >rest)
= u(sq′t) + u(sq′e) + u(< s − t′ >rest)
≤ u(t, s) + u(sq′e) + u(< s − t′ >rest)
≤ u(t, s) + u(< s − t >rest)
= S EU(t, s).

9

Thus, S EU(t′, s) ≤ S EU(t, s). According to t ⊆ t′, it is
obtained that the set of sequences where t′ ⊆ s is a subset of
that of t ⊆ s. Therefore, S EU(t′) =

∑
t′⊆s∧s∈D{u(t′, s) + u(<s −

t′>rest)} ≤
∑

t′⊆s∧s∈D{u(t, s) + u(<s − t>rest)} ≤
∑

t⊆s∧s∈D{u(t, s)
+ u(<s − t>rest)} = S EU(t). So far, this theorem holds.

Theorem 4. The SEU value of a sequence t is an upper bound
on the utility of this sequence in a quantitative sequential database
D. It always has the following relationship:

u(t) ≤ S EU(t). (15)

Proof. We have that u(t) =
∑

t⊆s∧s∈D{u(t, s)} ≤
∑

t⊆s∧s∈D{u(t, s)
+ u(<s − t>rest)} = S EU(t).

Definition 26. (promising HUSP) A sequence t in D is called
a promising high-utility sequential pattern iff: 1) if the node for
t is an I-Concatenation node and satisfies SWU(t) ≥ δ×u(D) or
SEU(t) ≥ δ×u(D); and 2) if the node for t is an S-Concatenation
node and satisfies SWU(t) ≥ δ×u(D) or SEU(t) ≥ δ×u(D); oth-
erwise, this sequence/node is called an invalid or unpromising
pattern.

Based on Theorem 4, if the upper bound SEU is less than δ
× u(D), then ProUM can be directly stopped from going deeper
and the search procedure can be backtracked. The SEU value
of a sequence is an upper bound on the utilities of its extension
(the part of its super-sequences). It should be noted that the
SEU has the local downward closure property but not the global
downward closure property. The reason for this is that some
super-sequences of a node/sequence t are not in the subtree of
t, and they may be the promising HUSPs even though t’s SEU
value is less then δ × u(D). SEU can be used to effectively prune
the search space in finding HUSPs. In general, SEU is tighter
than the previous upper bound SWU. Note that for any non-root
node N in the LQS-tree, the SEU can be quickly obtained as an
upper bound of all the nodes in the subtree rooted at node N.

Strategy 1. (Pruning of the unpromising one-q-sequences by
SWU, called the PUO strategy): Let t be the sequence rep-
resented by a node N in the LQS-tree, t′ be represented as a
child node of N, and δ be the minimum utility threshold. If
SWU(t) ≥ δ × u(D), then ProUM can be stopped from explor-
ing node N. The reason for this is that the sequence t′ is always
a super-sequence of t. Hence, u(t′) ≤ SWU(t′) ≤ SWU(t) < δ ×
u(D). The upper bound SWU has the global downward closure
property, and thus any super-sequence t′ and its extensions can-
not be a desired HUSP. Note that the PUO is a global pruning
strategy.

Strategy 2. (Pruning of the unpromising k-q-sequences by
SEU, called the PUK strategy): The upper bound SEU of a se-
quence t can be utilized to prune the unpromising k-q-sequence
in its subtree at an early stage when traversing the LQS-tree
with the DFS strategy. Thus, if SEU(t) < δ × u(D), then the
generation of the utility-arrays of its I-Concatenation and S-
Concatenation can be stopped, and traversing all the subtrees
from t can be stopped. This is because the utility of t and any of

t’s offspring would not more than SEU(t). Note that the PUK
is a local pruning strategy that can be used in the depth pruning
in LQS-tree, for example, I-extension pruning and S -extension
pruning.

For example, to avoid constructing the utility-array of the
unpromising (k+1)-sequences, the PUK strategy can be applied
when scanning the projected sub-databases for k-sequences. This
filter operation can reduce both the execution time and mem-
ory cost. In summary, the PUO strategy can be used for both
width pruning and depth pruning, but it is only used for width
pruning in the proposed ProUM algorithm; ProUM utilizes the
more powerful PUK strategy for depth pruning. The former
also affects the performance of the later. With the PUK strat-
egy, ProUM can easily be stopped from going deeper and the
search procedure can be backtracked.

4.4. Proposed ProUM Algorithm
The details of LQS-tree, utility-array, the projection mecha-

nism, and the pruning strategies with SWU and SEU have been
introduced as far. To summarize, the pseudocode of main pro-
cedure of ProUM is shown in Algorithm 1. A quantitative se-
quence database D, a profit-table ptable, and a minimum utility
threshold δ are contained in the input for ProUM; the output in-
cludes all the high-utility sequential patterns (HUSPs). Without
loss of generality, it is assumed that the proposed ProUM tra-
verses the LQS-tree using the Depth-First-Search (DFS) strat-
egy. By deleting the 1-sequences that SWU(t) < δ × u(D)
(Line 3), it first scans the original database once to obtain the
SWU value of each 1-sequence t ∈ D (Line 2), and then the re-
vised database D′ is obtained. Then, the revised database D′ is
scanned once to construct the initial utility-arrays for all the se-
quences in D′ (Line 4). After that, ProUM recursively projects a
series of sub-utility-arrays based on the prefix sequences (Line
5) by traversing the LQS-tree with DFS strategy.

Algorithm 1 The ProUM algorithm
Input: D; ptable; δ.
Output: HUSPs: the complete set of high-utility sequential

patterns.
1: initialize D.ua = ∅;
2: scan the original database once to get the SWU value of

each 1-sequence;
3: get the revised database D′, by deleting the 1-sequences

that SWU(t) < δ × u(D) (the PUO strategy);
4: scan the revised database D′ once to construct the initial

utility-arrays D.ua for all sequences in D′;
5: call Project-Search(∅, I∗,D.ua, δ).
6: return HUSPs

The details of the projection and searching procedure are
presented in Algorithm 2. When visiting a node/sequence t,
ProUM first initializes two sets, iItem = ∅ and sItem = ∅ (Line
1). Then, to obtain the promising items for I-Concatenation and
S -Concatenation (Line 2), it scans the projected utility-array
(D.ua)|t once. Note that the SEU value of each item is cal-
culated simultaneously during the utility-array scanning (Line

10

Algorithm 2 The Project-Search procedure
Input: t: a sequence as prefix; (D.ua)|t: the projected utility-

array of t; δ: the minimum utility threshold.
Output: HUSPs: the set of high-utility sequential patterns

with prefix t.
1: initialize iItem = ∅ and sItem = ∅;
2: scan the projected utility-array (D.ua)|t once to:

1) put I-Concatenation items of t into iItem;
2) put S -Concatenation items of t into sItem;
3) calculate the SEU values of these items form (D.ua)|t;

3: remove unpromising items i j ∈ iItem that have SEU(i j) < δ
× u(D) (the PUK strategy);

4: remove unpromising items i j ∈ sItem that have SEU(i j) <
δ × u(D) (the PUK strategy);

5: for each item i ∈ iItem do
6: t′ ← I-Concatenation(t, i);
7: construct the projected utility-array (D.ua)|t′ ;
8: if SEU(t′) ≥ δ × u(D) then
9: if u(t′) ≥ δ × u(D) then

10: output t′ into HUSPs;
11: end if
12: call Project-Search(t′, (D.ua)|t′ , δ).
13: end if
14: end for
15: for each item i ∈ sItem do
16: t′ ← S -Concatenation(t, i);
17: construct the projected utility-array (D.ua)|t′ ;
18: if SEU(t′) ≥ δ × u(D) then
19: if u(t′) ≥ δ × u(D) then
20: output t′ into HUSPs;
21: end if
22: call Project-Search(t′, (D.ua)|t′ , δ).
23: end if
24: end for
25: return HUSPs

2). After obtaining the updated two sets of iItem and sItem,
ProUM removes unpromising items that have SEU(i j) < δ ×
u(D) in iItem and sItem, respectively (Lines 3 to 4, the PUK
strategy). Next, all these items in iItem and sItem may be used
to generate the promising extensions t′ as descendant of t. The
process of items in iItem is shown in Lines 5 to 14. For a new
extension t′ whose prefix is t (Line 6), it first constructs the pro-
jected sub-utility-array (D.ua)|′t based on the previous utility-
array (D.ua)|t (Line 7). At the same time, the SEU value of this
I-Concatenation can be calculated. Then, ProUM checks this
t′ whether is able to be the extension as descendant of t. The
PUK strategy is used (Line 8, using SEU upper bound). If its
SEU < δ × u(D), then ProUM backtracks to the parent of t;
otherwise, ProUM continues to check the overall utility of this
extension t′ and outputs t′ as a final HUSP if t′ satisfies δ × u(D)
(Lines 9 to 11). Additionally, ProUM calls the Project-Search
procedure to begin the next projection and search with respect
to prefix t′ (Line 12). Finally, ProUM recursively explores the
other extension nodes in iItem (Line 5) in a similar manner.
Similarly, ProUM performs the above procedure to handle each
S -extension item in sItem (Lines 15 to 24).

Implementation details. During the t-projected utility-array
scan with respect to s, to calculate the SEU(t, s) value, an intu-
itive method is to scan all arrays in the utility-array of s. ProUM
has an efficient implementation. The SEU value of the sequence
is obtained simultaneously when constructing the utility-array
of a sequence/transaction. Thus, SEU of s is added into the
utility-array of s. By also storing this SEU value, we can avoid
scanning all the elements in the utility-array for calculating the
upper bound SEU of t in D. Thus, for a given sequence t, its
SEU value can be quickly obtained since it can be accumulated
from the stored SEU values by a set of sequences/transactions
w.r.t. sid.

5. Experiments

Several experiments were conducted to demonstrate the ef-
fectiveness and efficiency of the proposed projection-based util-
ity mining ProUM algorithm.

Evaluation metric. In general, the evaluation metric of
comparison for utility-oriented sequential mining algorithms con-
sists of effectiveness analysis with derived patterns, efficiency
analysis with execution time and memory consumption, and
scalability evaluation. In the following subsections, we use
these metrics to evaluate the performance of ProUM.

Compared baselines. For efficiency analysis, USpan [44]
(replacing the original SPU by SEU) and the state-of-the-art
HUS-Span [41] algorithm were selected as the baselines. It
should be noted that the CRoM that was used in HuspExt [7]
is not a true upper bound, and the discovered results by Hus-
pExt are not complete. Therefore, HuspExt is not compared
in the following experiments. Two variants of ProUM (respec-
tively denoted as ProUM∗, and ProUM) were compared to eval-
uate the effect of the proposed pruning strategies. ProUM is a
hybrid optimization algorithm, as shown in Algorithm 1 and
Algorithm 2. In addition, the difference between ProUM and

11

Table 5: Dataset features
Dataset #|D| #|I| avg(#S) max(#S) avg(#Seq) ave(#Ele) description

1.

Sign 730 267 52 94 51.99 1.0 language utterance
Bible 36,369 13,905 21.64 100 17.85 1.0 text
SynDataset-160k 159,501 7,609 6.19 20 26.64 4.32 synthetic sequences
Kosarak10k 10,000 10,094 8.14 608 8.14 1.0 web click stream
Leviathan 5,834 9,025 33.81 100 26.34 1.0 text
yoochoose-buys 234,300 16,004 1.13 21 2.11 1.97 purchase data

2.

C8S6T4I3D|X|K (10k) 10,000 7,312 6.22 18 26.99 4.35 synthetic dataset
C8S6T4I3D|X|K (80k) 79,718 7,584 6.19 18 26.69 4.32 synthetic dataset
C8S6T4I3D|X|K (160k) 159,501 7,609 6.19 20 26.64 4.32 synthetic dataset
C8S6T4I3D|X|K (240k) 239,211 7,617 6.19 20 26.66 4.32 synthetic dataset
C8S6T4I3D|X|K (320k) 318,889 7,620 6.19 20 26.64 4.32 synthetic dataset
C8S6T4I3D|X|K (400k) 398,716 7,621 6.18 20 26.64 4.32 synthetic dataset

1.2% 1.3% 1.4% 1.5% 1.6% 1.7%
0

50

100

150

200

250
(a) Sign

δ

R
u

n
ti
m

e
 (

s
e

c
.)

0.5% 0.6% 0.7% 0.8% 0.9% 1.0%
0

200

400

600

800

1000
(b) Bible

δ

R
u

n
ti
m

e
 (

s
e

c
.)

1.69% 1.70% 1.71% 1.72% 1.73% 1.74%
0

1000

2000

3000

4000

5000
(d) Kosarak10k

δ

R
u

n
ti
m

e
 (

s
e

c
.)

0.065% 0.070% 0.075% 0.080% 0.085% 0.090%
0

1000

2000

3000
(c) SynDataset−160K

δ

R
u

n
ti
m

e
 (

s
e

c
.)

0.024% 0.026% 0.028% 0.030% 0.032% 0.034%
0

100

200

300

400
(f) yoochoose−buys

δ

R
u

n
ti
m

e
 (

s
e

c
.)

1.00% 1.05% 1.10% 1.15% 1.20% 1.25%
0

20

40

60

80
(e) Leviathan

δ

R
u

n
ti
m

e
 (

s
e

c
.)

USpan HUS−Span ProUM* ProUM

Figure 2: Runtime by varying δ

ProUM∗ is that in Algorithm 2 Lines 3 to 4, ProUM∗ adopts the
PUO strategy to filter the unpromising items in iItem and sItem.

5.1. Data Description and Experimental Configuration
Datasets. For the performance tests, a total of seven datasets

were chosen for the different characteristics they displayed. The
goal was to show the efficiency of the developed algorithm in a
wide range of situations. The chosen datasets and their charac-
teristics are displayed in Table 5. Note that #|D| is the number of
sequences, #|I| is the number of different symbols/items in the
dataset, #S is the length of a sequence s, #Seq is the number of
elements per sequence, and #Ele is the average number of items
per element/itemset. SynDataset-160K is a synthetic sequential
dataset generated by IBM Quest Dataset Generator [1]. The
original yoochoose-buys5 dataset contains the quantity and unit

5https://recsys.acm.org/recsys15/challenge/

profit of each object/item while other datasets6 do not contain
the quantity and unit profit. Therefore, we adopted a simulation
method that is widely used in previous studies [23, 30, 37] to
generate the quantitative and profit information for each objec-
t/item in datasets except for yoochoose-buys.

Experimental configuration. All the compared algorithms
in the experiments were implemented in Java language. Note
that the original USpan algorithm with SPU upper bound may
cause incomplete mining results. Thus, the USpan code used
here is a revised and optimized version. Furthermore, SPU
was replaced with SEU in USpan so that it could discover the
complete HUSPs. All the experiments were performed on a
personal ThinkPad T470p computer with an Intel(R) Core(TM)
i7-7700HQ CPU @ 2.80 GHz 2.81 GHz processor, 32 GB of
RAM, and with 64-bit Microsoft Windows 10 operating system.

6http://www.philippe-fournier-viger.com/spmf/index.php

12

https://recsys.acm.org/recsys15/challenge/
http://www.philippe-fournier-viger.com/spmf/index.php

Table 6: Number of patterns (candidates and final results) under various δ values
of patterns under various δ values

δ1 δ2 δ3 δ4 δ5 δ6

#P1 6,598,217 5,265,824 4,250,363 3,490,867 2,886,277 2,418,799
#P2 6,598,217 5,265,825 4,250,363 3,490,869 2,886,278 2,418,799

(a) Sign #P3 24,586,054 19,345,657 15,424,452 12,536,127 10,269,881 8,534,821
#P4 6,598,215 5,265,822 4,250,359 3,490,865 2,886,274 2,418,798

#HUSPs 78,336 56,395 41,151 30,440 22,702 17,274
#P1 92,563 59,041 40,766 29,183 21,227 16,488
#P2 95,012 60,588 41,786 29,940 21,746 16,887

(b) Bible #P3 262,465 163,564 109,449 76,979 56,443 42,205
#P4 100,706 64,091 43,983 31,630 23,486 17,831

#HUSPs 2,760 1,714 1,124 764 553 411
#P1 8,751,355 5,357,157 3,313,183 2,122,646 1,394,602 948,156
#P2 8,752,654 5,357,847 3,313,681 2,123,007 1,394,913 948,397

(c) SynDataset-160K #P3 23,917,337 13,187,663 8,101,205 5,412,965 3,735,188 2,645,849
#P4 8,753,634 5,358,865 3,314,487 2,123,613 1,395,359 948,520

#HUSPs 58,710 17,903 4,794 1,344 394 172
#P1 124,833,772 82,478,688 51,535,423 24,542,377 12,100,103 5,524,463
#P2 - - 51,535,979 24,542,940 12,100,669 5,525,033

(d) Kosarak10k #P3 478,850,673 321,429,317 204,661,580 100,469,791 42,141,209 20,427,300
#P4 124,833,676 82,478,593 51,535,330 24,542,295 12,100,024 5,524,390

#HUSPs 23 22 22 22 22 21
#P1 - - - - 46,193 41,610
#P2 76,549 68,058 60,557 54,084 48,162 43,361

(e) Leviathan #P3 205,381 181,067 159,208 140,946 125,177 111,605
#P4 82,625 73,315 65,076 58,140 52,181 47,031

#HUSPs 1,802 1,520 1,322 1,152 9,96 869
#P1 325,473 304,534 278,131 250,138 201,440 158,219
#P2 312,780 304,737 278,318 250,307 201,620 158,409

(f) yoochoose-buys #P3 314,346 305,226 280,022 251,896 203,867 159,858
#P4 313,724 304,642 279,481 251,434 203,422 159,463

#HUSPs 317,682 296,890 273,926 238,273 191,203 146,761

5.2. Efficiency Analytics
As previously mentioned, a good high-utility sequence min-

ing method should be efficient and able to scale well to handle
long sequence data. Thus, the running time of the compared
methods were compared under different parameter settings. We
increased the minimum utility threshold from δ1 to δ6 on each
dataset while keeping the tested data size fixed. To obtain ac-
curate experimental results under each setting, each compared
approach was ran three times, and the average running times are
plotted in Figure 2. As shown, the runtime of USpan exceeded
10,000 seconds in Leviathan when the minimum utility thresh-
old was lower than 1.20%, and thus USpan only has two points
in Figure 2(e).

As shown in each sub-figure of Figure 2, ProUM is intu-
itively the most efficient except in yoochoose-buys. Both the
proposed algorithm with or without using the PUK strategy
(ProUM and ProUM∗) to prune the unpromising candidates be-
fore constructing the utility-arrays consistently outperformed
the state-of-the-art HUS-Span approach, even by up to 3 or-
ders of magnitude. For the Kosarak10k data in Figure 2(d), the
performance of ProUM decreased when δ increased, but it de-
creased slowly afterwards when δ = 1.72%. USpan always re-
quired a longer execution time than ProUM and ProUM∗, from
2,890 seconds to 130 seconds. In particular, HUS-Span had the
longest execution time in this dataset, and it consumed 5,000
seconds when δ was smaller than 1.71%. In general, ProUM
outperformed ProUM∗ in all the test datasets under different
parameter settings. For example, in Figure 2(a), the difference
of the runtime between ProUM∗ and ProUM can be observed.

When δ = 1.2% on the Sign dataset, the runtime of ProUM∗

closed to 115 seconds while the runtime of ProUM was approx-
imately 60 seconds. These observations can also be intuitively
seen on other datasets, such as Figure 2(c), Figure 2(d), and
Figure 2(e). These observations indicate that the local down-
ward closure property of the SEU upper bound plays an active
role in pruning the search space of the projection-based ProUM
algorithm.

In addition, it is interesting to observe that USpan some-
times ran even faster than HUS-Span. In many cases, however,
it is not clear whether the recently proposed HUS-Span was
faster than the USpan method that was optimized for this ex-
periment. For example, when the experiment was conducted on
Sign, SynDataset-160K, and Kosarak10k, it seems that HUS-
Span had a longer running time than USpan. For the SynDataset-
160K shown in Figure 2(c), HUS-Span was the most time con-
suming among the four algorithms. It required 2,824 seconds
when δ was set to 0.065%, which was quite a bit longer than
the others. The performance of USpan, ProUM∗, and ProUM
declined before δ = 0.075%, and it nearly remained stable
afterwards. In other datasets, such as Bible, Leviathan, and
yoochoose-buys, USpan performed worse than HUS-Span as
well as the two variants of the proposed ProUM model. A pos-
sible reason for this is that HUS-Span needs additional time to
scan the projected sub-databases for calculating the utility in-
formation from the built utility-chains. In addition, in some
datasets, the upper bound PEU sometimes had a similar effect
to that of the proposed SEU upper bound.

The projection mechanism of utility-array makes a contri-

13

bution to the improvement, which can be observed in SynDataset-
160K and Kosarak10k. This is because the small size of the
utility-array creates a favorable SEU value that enhances the
computation of the later processes. Specifically, based on an
observation of the runtime between ProUM and ProUM∗, the
PUK strategy plays an active role in filtering the unpromising
patterns before constructing the set of utility-arrays. In sum-
mary, the enhanced ProUM algorithm that utilizes powerful
pruning strategies always had the best performance compared
to the baseline ProUM∗ as well as USpan and the state-of-the-
art HUS-Span algorithm. The designed ProUM algorithm is
acceptable and efficient in discovering high-utility sequential
patterns on different types of datasets.

Summary of efficiency study. The above-stated results
demonstrate the efficiency of ProUM. Under different parame-
ter settings (when δ is large), ProUM always required less time
than the existing HUSPM algorithms. In addition, the divide-
and-conquer strategy was applied to project the utility-arrays
during the recursive mining processes. All the experimental re-
sults demonstrate the suitability of the proposed ProUM models
for dealing with both real or synthetic datasets.

5.3. Candidate Analysis
The generated patterns of the four compared algorithms were

investigated to evaluate the effect of pruning strategies by con-
ducting under the same parameter settings, as shown in Figure
2. The results of the different kinds of generated patterns, both
generated candidates and final HUSPs, are plotted in Table 6.
Note that the #HUSPs is the number of final discovered HUSPs,
and #P1, #P2, #P3, and #P4 are the numbers of the candidates
generated by USpan, HUS-Span, ProUM∗, and ProUM, respec-
tively.

As shown in Table 6, it can be clearly observed that, on
all the tested datasets, the number of HUSPs was always quite
a bit less than that of the candidate patterns (e.g., #P1, #P2,
#P3, and #P4) under various minimum utility thresholds. For
example, in Kosarak10k, the discovered HUSPs were changed
from 23 to 21 while the related candidates were increased from
8,753,634 up to 23,917,337. These results reflect the fact that
there are a huge number of candidate patterns that are gener-
ated in a HUSPM algorithm but very few of them are the final
interesting desired patterns. As mentioned previously, there are
several challenges in utility mining when dealing with sequence
data. How to effectively prune the search space in HUSPM is
more difficult due to the absence of the downward closure prop-
erty in the sequence utility.

Intuitively, on all tested datasets with different parameter
settings, #P1 and #P4 was nearly equal to #P2 while #P2 had
the most number of candidates among all the compared candi-
date patterns. This is because the previously mentioned upper
bound error in the USpan algorithm was replaced by the pro-
posed SEU upper bound in our experiments. Thus, both USpan
and ProUM used the same upper bounds, SWU and SEU, to
prune the search space. This results in nearly the same results
of the number of the candidate patterns. It is interesting to ob-
serve that #P4 was nearly equal to #P2, which indicates that
the SEU used in ProUM had a similar powerful pruning ability

to PEU that was used in HUS-Span for the addressed HUSPM
problem.

Specifically, the difference between #P3 and #P4 proves the
effectiveness of the PUK strategy for ProUM. That is, the pro-
posed SEU upper bound has a better ability to prune the search
space than the loose SWU. Although both SWU and SEU af-
fect the candidate patterns for mining HUSPs, in general, the
numbers of #P4 were always quite smaller than those of #P3.
For example, as shown in Bible, #P4 changed from 262,465 to
42,205 while #P3 had its number decreased from 100,706 to
17,831 when varying δ from 0.5% to 1.0%. Therefore, ProUM∗

adopts the PUO strategy to filter the unpromising items in iItem,
and sItem is not more powerful than ProUM, which utilizes
PUK strategy (w.r.t. the SEU upper bound) to remove these
unpromising items.

Discussion. These results of the patterns indicate that the
proposed upper bound SEU is more suitable than SWU to prune
the subtrees of LQS-tree for mining HUSPs. The results demon-
strate the positive effect of pruning strategies in ProUM for dis-
covering utility-driven sequential patterns.

5.4. Memory Evaluation
In this subsection, the mining efficiency is evaluated in terms

of memory consumption. All parameters are set to the default
values shown in Figure 2 unless otherwise stated. Figures 3(a)
to (f) respectively show plots of the results of the peak mem-
ory usage of all the compared algorithms. Note that Java API
was used to calculate the peak memory consumption of each
compared algorithm during the whole mining process.

As shown, the projection utility-array-based models, both
ProUM∗ and ProUM, performed significantly better than the
baselines. Although the HUS-Span algorithm also utilizes the
projection technique, it needed to project the sub-databases be-
fore the construction of utility-chains. This consumes more ex-
ecution time and memory cost than ProUM, which only projects
and scans the sub-utility-arrays. For example, as shown in Fig-
ures 3 (a) and (f), the peak memory consumption for ProUM
was significantly less than that of HUS-Span because ProUM
consumes the reasonable memory to store the compact utility-
arrays and generate promising patterns. In addition, the im-
proved variant ProUM consumes less memory than the baseline
ProUM∗ that adopts the PUO strategy to remove the unpromis-
ing items.

Figure 3 shows the effects of the parameter - minimum util-
ity threshold δ on the memory performance of ProUM. As shown
on all datasets, the memory usage of ProUM∗ and ProUM did
not change much when δ increased while the memory usage of
USpan and HUS-Span may change more substantially in most
cases. For example, when δ = 1.20%, ProUM consumed only
1,000 MB on Leviathan while HUS-Span consumed more than
2,000 MB. The performance gap is more obvious on yoochoose-
buys, mainly because USpan and HUS-Span were ineffective
on Leviathan and yoochoose-buys. The decrease with δ was
quite rapid because a small δ makes all the compared HUSPM
algorithms execute searching in LQS-tree more times, which
makes it harder to return the mined results, especially for the
existing USpan and HUS-Span algorithms. In addition, a very

14

1.2% 1.3% 1.4% 1.5% 1.6% 1.7%
0

500

1000

1500

2000
(a) Sign

δ

M
e

m
o

ry
 (

M
B

)

0.5% 0.6% 0.7% 0.8% 0.9% 1.0%
0

1000

2000

3000

4000
(b) Bible

δ

M
e

m
o

ry
 (

M
B

)

1.00% 1.05% 1.10% 1.15% 1.20% 1.25%
0

1000

2000

3000

(e) Leviathan

δ

M
e

m
o

ry
 (

M
B

)

1.69% 1.70% 1.71% 1.72% 1.73% 1.74%
0

500

1000

1500
(d) Kosarak10k

δ

M
e

m
o

ry
 (

M
B

)

0.065% 0.070% 0.075% 0.080% 0.085% 0.090%
0

1000

2000

3000
(c) SynDataset−160K

δ

M
e

m
o

ry
 (

M
B

)

USpan HUS−Span ProUM* ProUM

0.024% 0.026% 0.028% 0.030% 0.032% 0.034%
0

500

1000

1500

2000
(f) yoochoose−buys

δ

M
e

m
o

ry
 (

M
B

)

Figure 3: Memory usage by varying δ

large δ brings no extra benefit to the discovered results of HUSPM.
Hence, in practice, δ does not need to be too large.

Summary. The proposed ProUM model with several prun-
ing strategies consumed less memory than HUS-Span for all the
parameter settings and also less than that of the optimized US-
pan in most cases. USpan had the least memory consumption
in Figures 3(c) and 3(d). Nonetheless, the best performing US-
pan on memory consumption for these cases had much worse
execution times in Figure 2(d). As previously mentioned, one
of the advantages of ProUM is that it is able to filter a large
amount of unpromising patterns at an early stage by building
the projected utility-arrays.

5.5. Scalability Test

Scalability is important mainly because many real-world
data is massive, especially large-scale sequence data. There-
fore, scalability is an important acceptance criteria for a de-
signed data mining model. In this subsection, ProUM is ana-
lytically compared with the existing methods on a large-scale
dataset, and the experimental results are shown in Figures 4 (a)
to (c), respectively.

Figure 4 shows the results of scalability performance in
the synthetic dataset C8S6T4I3D|X|K in terms of different data
sizes from 10K to 400K sequences. The running time of each
algorithm increased linearly as the number of sequences grew.
ProUM showed superior scalability with respect to the dataset
size among the compared methods. For the test dataset that con-
tained element-based sequences, USpan performed better than
the HUS-Span algorithm that utilizes the PEU upper bound.
For example, the running time of HUS-Span exceeded 2,000
seconds when dealing with 400K sequences. According to the
memory usage, ProUM required more memory than other base-
lines, as shown in the center sub-figure. In addition, the amount

of memory used was bounded in ProUM through the pruning
strategies that were employed. The candidate patterns still show
that #P3 was similar to #P1 and #P2 (Figure 4(c)). Note that
here #P3 is number of generated candidates in ProUM.

Discussion. In summary, the scalability results confirm the
intuition that the projected ProUM method using utility-array
with a series of indexing positions is scalable for large-scale
datasets, and it is superior to the existing algorithms.

6. Conclusions

In general, utility-based sequence analytics are more use-
ful than other support-based data mining techniques. However,
utility mining on sequence data can easily suffer from several
problems, not just with critical combinational explosion but
also from computational complexity caused by sequencing be-
tween itemsets/elements. How to improve the mining efficiency
of utility mining on sequence data is still an open problem. To
this end, we developed a projection-based utility mining algo-
rithm, called ProUM, for the fast mining of high-utility sequen-
tial patterns. A new data structure, called utility-array, was also
proposed, which can be directly used to calculate the utility and
remaining utility of a sequence without scanning the database.
Based on the projection mechanism in applying in utility-array,
the presented solutions, including two utility bounds, the cor-
responding pruning strategies, and the ProUM algorithm, are
proposed. ProUM was compared with USpan and HUS-Span,
which are the state-of-the-art algorithms for mining HUSPs in
sequence data. Extensive experimental results on both synthetic
and real-life datasets demonstrated that ProUM had a better ef-
ficiency compared to the state-of-the-art baselines.

15

10K 80K 160K 240K 320K 400K
0

500

1000

1500

2000

(a) C8S6T4I3D|X|K (δ: 0.001)

Dataset size |D| (K)

R
u
n
ti
m

e
 (

s
e
c
.)

USpan

HUS−Span

ProUM

10K 80K 160K 240K 320K 400K
0

0.5

1

1.5

2

2.5
x 10

6 (c) C8S6T4I3D|X|K (δ: 0.001)

Dataset size |D| (K)

#
 p

a
tt
e
rn

s

HUSPs

P1

P2

P3

10K 80K 160K 240K 320K 400K
0

1000

2000

3000

(b) C8S6T4I3D|X|K (δ: 0.001)

Dataset size |D| (K)

M
e
m

o
ry

 (
M

B
)

USpan

HUS−Span

ProUM

Figure 4: Scalability test.

Acknowledgment

This work was partially supported by the Shenzhen Tech-
nical Project under project No. KQJSCX 20170726103424709
and No. JCYJ 20170307151733005. Specifically, Wensheng
Gan was supported by the CSC (China Scholarship Council)
Program during the study at University of Illinois at Chicago,
IL, USA.

References

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Quest synthetic data gener-
ator. http://www.Almaden.ibm.com/cs/quest/syndata.html, 1994.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns.
In The International Conference on Data Engineering, pages 3–14. IEEE,
1995.

[3] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining
association rules. In Proceedings of the 20th International Conference on
Very Large Data Bases, volume 1215, pages 487–499, 1994.

[4] Chowdhury-Farhan Ahmed, Syed-Khairuzzaman Tanbeer, and Byeong-
Soo Jeong. Mining high utility web access sequences in dynamic web log
data. In 11th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing,
pages 76–81. IEEE, 2010.

[5] Chowdhury-Farhan Ahmed, Syed-Khairuzzaman Tanbeer, and Byeong-
Soo Jeong. A novel approach for mining high-utility sequential patterns
in sequence databases. ETRI Journal, 32(5):676–686, 2010.

[6] Chowdhury-Farhan Ahmed, Syed-Khairuzzaman Tanbeer, Byeong-Soo
Jeong, and Young-Koo Lee. Efficient tree structures for high utility pat-
tern mining in incremental databases. IEEE Transactions on Knowledge
and Data Engineering, 21(12):1708–1721, 2009.

[7] Oznur Kirmemis Alkan and Pinar Karagoz. CRoM and HuspExt: Improv-
ing efficiency of high utility sequential pattern extraction. IEEE Transac-
tions on Knowledge and Data Engineering, 27(10):2645–2657, 2015.

[8] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential
pattern mining using a bitmap representation. In Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 429–435. ACM, 2002.

[9] Ming-Syan Chen, Jiawei Han, and Philip S. Yu. Data mining: an overview
from a database perspective. IEEE Transactions on Knowledge and data
Engineering, 8(6):866–883, 1996.

[10] Duy-Tai Dinh, Bac Le, Philippe Fournier-Viger, and Van-Nam Huynh.
An efficient algorithm for mining periodic high-utility sequential patterns.
Applied Intelligence, 48(12):4694–4714, 2018.

[11] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage-Uday Kiran, and
Yun-Sing Koh. A survey of sequential pattern mining. Data Science
and Pattern Recognition, 1(1):54–77, 2017.

[12] Philippe Fournier-Viger, Cheng-Wei Wu, Souleymane Zida, and Vin-
cent S Tseng. FHM: Faster high-utility itemset mining using estimated
utility co-occurrence pruning. In International Symposium on Method-
ologies for Intelligent Systems, pages 83–92. Springer, 2014.

[13] Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Tzung-Pei Hong,
and Philip S Yu. CoUPM: Correlated utility-based pattern mining. In
Proceedings of the IEEE International Conference on Big Data, pages
2607–2616. IEEE, 2018.

[14] Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Shyue-Liang
Wang, and Philip S Yu. Privacy preserving utility mining: a survey. In
Proceedings of the IEEE International Conference on Big Data, pages
2617–2626. IEEE, 2018.

[15] Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, and Justin Zhan.
Data mining in distributed environment: a survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 7(6):e1216, 2017.

[16] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, and Han-
Chieh Chao. Exploiting high utility occupancy patterns. In Asia-Pacific
Web and Web-Age Information Management Joint Conference on Web and
Big Data, pages 239–247. Springer, 2017.

[17] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, and Hamido Fujita. Extracting non-redundant correlated purchase
behaviors by utility measure. Knowledge-Based Systems, 143:30–41,
2018.

[18] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, Vincent S Tseng, and Philip S Yu. A survey of utility-oriented
pattern mining. arXiv preprint arXiv:1805.10511, 2018.

[19] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, and Philip S Yu. A survey of parallel sequential pattern mining.
ACM Transactions on Knowledge Discovery from Data, 13(3):25, 2019.

[20] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent
patterns without candidate generation: A frequent-pattern tree approach.
Data Mining and Knowledge Discovery, 8(1):53–87, 2004.

[21] Guo-Cheng Lan, Tzung-Pei Hong, Vincent S Tseng, and Shyue-Liang
Wang. Applying the maximum utility measure in high utility sequential
pattern mining. Expert Systems with Applications, 41(11):5071–5081,
2014.

[22] Jerry Chun-Wei Lin, Philippe Fournier-Viger, and Wensheng Gan. FHN:
An efficient algorithm for mining high-utility itemsets with negative unit
profits. Knowledge-Based Systems, 111:283–298, 2016.

[23] Jerry Chun-Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung-Pei
Hong, and Han-Chieh Chao. FDHUP: Fast algorithm for mining dis-
criminative high utility patterns. Knowledge and Information Systems,
51(3):873–909, 2017.

[24] Jerry Chun-Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung-Pei
Hong, and Vincent S Tseng. Efficient algorithms for mining high-utility
itemsets in uncertain databases. Knowledge-Based Systems, 96:171–187,
2016.

[25] Jerry Chun-Wei Lin, Wensheng Gan, and Tzung-Pei Hong. A fast updated
algorithm to maintain the discovered high-utility itemsets for transaction
modification. Advanced Engineering Informatics, 29(3):562–574, 2015.

[26] Jerry Chun-Wei Lin, Wensheng Gan, and Tzung-Pei Hong. A fast main-
tenance algorithm of the discovered high-utility itemsets with transaction
deletion. Intelligent Data Analysis, 20(4):891–913, 2016.

[27] Jerry Chun-Wei Lin, Lu Yang, Philippe Fournier-Viger, Tzung-Pei Hong,
and Miroslav Voznak. A binary PSO approach to mine high-utility item-
sets. Soft Computing, 21(17):5103–5121, 2017.

[28] Jerry Chun-Wei Lin, Jiexiong Zhang, and Philippe Fournier-Viger. High-
utility sequential pattern mining with multiple minimum utility thresh-
olds. In Asia-Pacific Web and Web-Age Information Management Joint

16

Conference on Web and Big Data, pages 215–229. Springer, 2017.
[29] Ying-Chun Lin, Cheng-Wei Wu, and Vincent S Tseng. Mining high utility

itemsets in big data. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pages 649–661, 2015.

[30] Mengchi Liu and Junfeng Qu. Mining high utility itemsets without can-
didate generation. In Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management, pages 55–64. ACM,
2012.

[31] Ying Liu, Wei-Keng Liao, and Alok Choudhary. A two-phase algorithm
for fast discovery of high utility itemsets. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 689–695. Springer, 2005.

[32] Alfred Marshall. From principles of economics. In Readings in the Eco-
nomics of the Division of Labor: the Classical Tradition, pages 195–215.
World Scientific, 2005.

[33] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Mei Chun Hsu. PrefixSpan: Mining sequential pat-
terns efficiently by prefix-projected pattern growth. In The International
Conference on Data Engineering, pages 215–224. IEEE, 2001.

[34] Bai-En Shie, Hui-Fang Hsiao, Vincent S Tseng, and Philip S Yu. Mining
high utility mobile sequential patterns in mobile commerce environments.
In Proceedings of International Conference on Database Systems for Ad-
vanced Applications, pages 224–238. Springer, 2011.

[35] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns:
generalizations and performance improvements. In Proceedings of In-
ternational Conference on Extending Database Technology, pages 1–17.
Springer, 1996.

[36] Tin Truong-Chi and Philippe Fournier-Viger. A survey of high utility
sequential pattern mining. In High-Utility Pattern Mining, pages 97–129.
Springer, 2019.

[37] Vincent S Tseng, Bai-En Shie, Cheng-Wei Wu, and Philip S Yu. Efficient
algorithms for mining high utility itemsets from transactional databases.
IEEE Transactions on Knowledge and Data Engineering, 25(8):1772–
1786, 2013.

[38] Vincent S Tseng, Cheng-Wei Wu, Philippe Fournier-Viger, and Philip S
Yu. Efficient algorithms for mining top-k high utility itemsets. IEEE
Transactions on Knowledge and Data Engineering, 28(1):54–67, 2016.

[39] Vincent S Tseng, Cheng-Wei Wu, Bai-En Shie, and Philip S Yu. UP-
Growth: an efficient algorithm for high utility itemset mining. In Proceed-
ings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 253–262. ACM, 2010.

[40] Jun-Zhe Wang and Jiun-Long Huang. On incremental high utility se-
quential pattern mining. ACM Transactions on Intelligent Systems and
Technology, 9(5):55, 2018.

[41] Jun-Zhe Wang, Jiun-Long Huang, and Yi Cheng Chen. On efficiently
mining high utility sequential patterns. Knowledge and Information Sys-
tems, 49(2):597–627, 2016.

[42] Cheng-Wei Wu, Yu-Feng Lin, Philip S Yu, and Vincent S Tseng. Mining
high utility episodes in complex event sequences. In Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 536–544. ACM, 2013.

[43] Jimmy Ming-Tai Wu, Justin Zhan, and Jerry Chun-Wei Lin. An ACO-
based approach to mine high-utility itemsets. Knowledge-Based Systems,
116:102–113, 2017.

[44] Junfu Yin, Zhigang Zheng, and Longbing Cao. USpan: an efficient al-
gorithm for mining high utility sequential patterns. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 660–668. ACM, 2012.

[45] Junfu Yin, Zhigang Zheng, Longbing Cao, Yin Song, and Wei Wei. Effi-
ciently mining top-k high utility sequential patterns. In Proceedings of the
IEEE 13th International Conference on Data Mining, pages 1259–1264.
IEEE, 2013.

[46] Mohammed J Zaki. SPADE: an efficient algorithm for mining frequent
sequences. Machine Learning, 42(1-2):31–60, 2001.

[47] Souleymane Zida, Philippe Fournier-Viger, Jerry Chun-Wei Lin, Cheng-
Wei Wu, and Vincent S Tseng. EFIM: a fast and memory efficient algo-
rithm for high-utility itemset mining. Knowledge and Information Sys-
tems, 51(2):595–625, 2017.

17

	1 Introduction
	2 Literature Review
	2.1 Frequency-Based Mining on Sequences
	2.2 Utility-Driven Mining on Transaction Data
	2.3 Utility-Driven Mining on Sequences

	3 Preliminaries and Problem Formulation
	3.1 Sequence Data
	3.2 Utility Mining on Sequence Data
	3.3 Problem Definition

	4 Proposed Utility Mining Algorithm: ProUM
	4.1 Lexicographic Sequence Tree
	4.2 Utility-Array and Projection Mechanism
	4.3 Proposed Upper Bound and Pruning Strategies
	4.4 Proposed ProUM Algorithm

	5 Experiments
	5.1 Data Description and Experimental Configuration
	5.2 Efficiency Analytics
	5.3 Candidate Analysis
	5.4 Memory Evaluation
	5.5 Scalability Test

	6 Conclusions

