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Abstract

Eliciting user preferences from purchase records for the task of purchase pre-

diction is challenging because negative feedback is not explicitly observed, and

treating all the non-purchased items equally as negative feedback is unrealistic.

In this paper, we present a framework that leverages users’ past click records

to complement the missing user–item interactions of purchase records, i.e., non-

purchased items. We begin by formulating various model assumptions, each

assuming a different order of user preferences among purchased, clicked-but-

not-purchased and non-clicked items, to study the usefulness of leveraging click

records. We implement the model assumptions under the Bayesian Personalized

Ranking model, which maximizes the Area Under the Curve (AUC) for bipar-

tite ranking. However, we argue that using click records for bipartite ranking

needs a meticulously designed model owing to the relative unreliableness of click

records compared with purchase records. To address this issue, we ultimately

propose a novel learning-to-rank method for purchase prediction, called P3STop,

that is customized to be robust to relatively unreliable click records by particu-

larly focusing on the accuracy of the top-ranked items. Experimental results on

two real-world e-commerce datasets demonstrate that P3STop considerably out-
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performs the state-of-the-art implicit feedback–based recommendation methods,

especially for the top-ranked items.

Keywords: Learning-to-Rank, Matrix Factorization, E-Commerce, Purchase

Prediction

1. Introduction

Implicit feedback, such as purchases and clicks, are easily obtained from

system logs, but precisely eliciting users’ preferences from implicit feedback

for purchase prediction is challenging because negative feedback is not explic-

itly observed. In this respect, past research has focused on inferring users’

negative feedback from missing user–item interactions. Specifically, a uniform

weighting scheme [15, 41] in which all missing data are treated as negative

feedback (i.e., All Missing As Negative (AMAN) assumption) has been intro-

duced. However, this assumption is not entirely valid in that the reason why

items are not observed is uncertain; whether a user does not like them or a

user is simply not aware of them. To cope with the drawback of the AMAN

assumption, sampling–based approaches such as user-oriented sampling [33]

or item-popularity-oriented sampling [11, 40] have been proposed. However,

the sampling–based approaches are essentially based on predefined heuristic

weights [3] that are not guaranteed to always hold in the real data.

In this paper, we present a framework that leverages users’ past click records

to complement the missing user–item interactions of purchase records, i.e., non-

purchased items, aiming at purchase prediction. Precisely, we leverage users’

past click records in conjunction with their purchase records, both of which

are easily collected by e-commerce stores. Intuitively, click records reveal users’

general interest because users click on numerous items before making purchases.

Hence, we expect that users’ click records will complement the missing user–

item interactions of purchase records in a more data-driven manner compared

with previous uniform weighting scheme or sampling–based approaches.

By making use of click records, we begin by formulating various model as-
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sumptions regarding the order of user preferences among the missing user–item

interactions of purchase records, i.e., non-purchased items, which can be split

into two disjoint sets; clicked-but-not-purchased items and non-clicked items.

We empirically demonstrate that a model assumption in which users are as-

sumed to prefer purchased (P) items to clicked-but-not-purchased (CBNP) items

to non-clicked (NC) items, is beneficial for purchase prediction when imple-

mented under the Bayesian Personalized Ranking (BPR) model [41], which is a

pairwise bipartite ranking model that maximizes the AUC metric. To be precise,

we make three different positive−negative pairs over three disjoint itemsets, i.e.,

P−CBNP, CBNP−NC and P−NC, and learn a ranking function that is expected

to establish a total order in which positive instances precede negative ones in

each positive−negative pair of itemsets, which is equivalent to maximizing the

AUC.

However, clicks are weaker signal of user preference than purchases in prac-

tice. That is, a user may accidentally click on wrong items or may click on

items to see more details and end up not liking it, whereas a user is more

confident with purchased items. This indicates that clicks are relatively less

reliable than purchases in terms of user preference contained therein. To make

the matter worse, the number of click records greatly exceeds that of purchase

records, implying that the bipartite ranking model such as BPR can be domi-

nated by the relatively unreliable click records. Therefore, naively incorporating

click records for the bipartite ranking can be detrimental to the performance

of recommendation2, and the model should be meticulously designed to prop-

erly harness the click records for purchase prediction under bipartite ranking.

To this end, we propose a novel learning-to-rank method for purchase predic-

tion, called P3STop, that is customized to be robust to relatively unreliable

2Since the goal of recommender systems in e-commerce is to recommend items that are

likely to be purchased by users, the purchase prediction can be cast as the task of item rec-

ommendation. Therefore, we use the terms, i.e., “purchase prediction” and “recommendation”

interchangeably throughout this paper.
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Figure 1: A toy example of the push/pull mechanism.

click records. More precisely, P3STop minimizes the number of “negative” items

ranked above the last-ranked “positive” item. As a concrete example, consider

the following Toy Example in which we illustrate the push/pull mechanism of

modeling the pairwise relationship between P (“positive”) items (in blue), and

CBNP (“negative”) items (in green).

Toy Example. Figure 1a shows user u’s interaction history with items (v1, v2,

v3, v4,v5), and the ideal ranking list for user u is displayed in Figure 1b. That

is, for user u, we want to train our model so that the items are ordered in the

following order at the end of the model training: P items (pu), CBNP items

(cu\pu), NC items (I\cu). Assuming that items are incorrectly ranked as in

Figure 1c during the training process, we aim to push down as many incor-

rectly ranked CBNP (“negative”) items, i.e., v3, v4, below the bound set by the

last-ranked P (“positive”) item, i.e., v2. In other words, we push down the

relatively unreliable clicked items below the bound set by a solid purchased

item, which makes our model more robust to unreliable click records. An

alternative to the push mechanism (Figure 1c) is the pull mechanism (Fig-

ure 1d), which differs in the way that the bound is set. Precisely, it pulls up

the purchased items, i.e., v2, above the bound set by the first-ranked (“nega-

tive”) CBNP item, i.e., v3, as shown in Figure 1d. This method is, however,

prone to being dominated by unreliable click records, because the bound is set

by the possibly unreliable clicked item. In Section 4.1 and 4.2, we will describe
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the rationale behind each case3.

It is important to note that the above push mechanism in Figure 1c enables

the model to particularly focus on the accuracy of the top-ranked items. More

precisely, the upper bound of CBNP items (v3, v4) is set to the last-ranked P

item (v2), which is the item that the user is more confident with than any

CBNP item. In this regard, the bound set by a P item (v2) (Figure 1c) should

be relatively high and robust compared with the bound set by a clicked item (v3)

(Figure 1d). Therefore, pushing down the incorrectly ranked CBNP items below

the last-ranked P item allows greater focus on the accuracy of the top-ranked

items, because the bound set by the last-ranked P item is high and robust.

We argue that our proposed method generates more practical recommendation

results for users, since the top-ranked items get much more attention by users

in practice [1]. However, only a few recent studies have particularly considered

it for the task of recommendation [7, 14, 38].

Our main contributions are summarized as follows:

1. To complement the missing user–item interactions of purchase records, we

formulate various model assumptions regarding the order of user prefer-

ences among non-purchased items by taking the click records into account

(Section 3).

2. After we find a valid model assumption under the BPR model, we pro-

pose P3STop that is customized to be robust to relatively unreliable click

records by particularly focusing on the accuracy of the top-ranked items.

(Section 4).

3. Experimental results on two real-world e-commerce datasets demonstrate

that P3STop considerably outperforms the state-of-the-art implicit feedback–

based recommendation methods, especially for the top-ranked items. (Section 5).

3While the above push/pull mechanism is applied to the following pairs of itemsets, i.e.,

(pu ↔ cu\pu), (cu\pu ↔ I\cu), and (pu ↔ I\cu), we display here only the foremost pair

for brevity.
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Table 1: Notation

Symbol Description

U , I Set of Users, Set of Items

n,m Number of users and items

P ∈ Rn×m User-Item Purchase matrix

C ∈ Rn×m User-Item Click matrix

pu Items purchased by user u

cu Items clicked by user u

K Number of latent dimensions

α ∈ Rn×K User latent matrix

β ∈ Rm×K Item latent matrix

γ ∈ Rm Item bias

λ The strength of the model regularization

η Learning rate

It is worth noting that click records have been used for various tasks such as

click-through rate (CTR) prediction in online advertising [29, 60, 57] and Twit-

ter [21], user intent prediction [6, 28], repeat-buyer prediction [25], conversion

response prediction in display advertising [24], and session–based click predic-

tion [13]. However, not much effort has been devoted to purchase prediction,

and to the best of our knowledge, our work is the first to propose a framework

that leverages click records to complement the missing user–item interactions

of purchase records.

2. Problem Statement

We first introduce notations used throughout this paper (Table 1). Let U

and I be the set of users and items, respectively, and we have n users and m

items. The purchase records of users in U on items in I are represented by the

purchase matrix P = [pui]n×m, where pui = 1 if user u purchased item i, and 0
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otherwise. Likewise, the click records of users in U on items in I are represented

by the click matrix C = [cui]n×m, where cui = 1 if user u clicked item i, and 0

otherwise; counts are ignored in this work. pu and cu denote the sets of items

purchased and clicked by user u, respectively. We formally define our problem

in this paper as follows:

Problem Definition

Given: The purchase matrix P and click matrix C,

Goal: To recommend items i ∈ I\(pu ∪ cu) to each user u ∈ U ; among items

that the user has not previously interacted with (neither purchased nor clicked).

3. Ordering User Preferences among Non-purchased Items

In this section, we describe our framework that leverages click records to

complement the missing user–item interactions of purchase records. i.e., non-

purchased items. We begin by explaining our model assumptions regarding the

order of user preferences among non-purchased items (Section 3.1). Next, we

describe how our model assumptions are implemented under the BPR model

(Section 3.2). Then, we discuss two shortcomings of naively incorporating

click records under the BPR model (Section 3.3).

3.1. Defining the Model Assumptions

Recall the AMAN assumption made by previous pairwise learning-to-rank

methods [10, 34, 41].

AMAN Assumption. We assume that a user prefers purchased items to

non-purchased items.

i �u j, if i ∈ pu ∧ j ∈ I\pu (1)

Eqn. 1 implies that user u prefers purchased items i to non-purchased items

j. However, this assumption is oversimplified in that all non-purchased items

are equally considered as negative feedback, whereas in reality some of the

non-purchased items attract the user more than the others.
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To overcome the above limitation of the AMAN assumption, we incorpo-

rate users’ click records that reveal users’ general interest, assuming that users

click on numerous items before making purchases. Although the user preference

reflected therein is not as strong as in purchase records, we expect that click

records will complement the missing user–item interactions of purchase records.

To this end, given purchased items, we split the non-purchased items into two

disjoint sets, i.e., clicked-but-not-purchased items and non-clicked items, by us-

ing click records, and introduce three different model assumptions regarding the

order of user preferences among them. For each user u, we assume pu ⊂ cu ⊂ I,

i.e., all purchased items are selected from clicked items.

Assumption 1. We assume that a user prefers purchased items to non-

clicked items.

i �u j, if i ∈ pu ∧ j ∈ I\cu (2)

Instead of regarding non-purchased items as negative feedback as in Eqn. 1,

this time we regard non-clicked items as negative feedback. This narrows

down the candidates for negative feedback, i.e., from I\pu to I\cu, which is

expected to relieve the AMAN assumption.

Assumption 2. We assume that a user prefers purchased items to clicked-

but-not-purchased items, clicked-but-not purchased items to non-clicked items,

and purchased items to non-clicked items.

i �u j, j �u k, i �u k, if i ∈ pu ∧ j ∈ cu\pu ∧ k ∈ I\cu (3)

We extend Assumption 1 by adding another set of items. i.e., clicked-

but-not-purchased items (cu\pu). Eqn. 3 is based on the assumption that 1)

user u is more confident with purchased items (pu) than to clicked-but-not-

purchased items (cu\pu), because users generally decide to purchase items

over many other candidates (cu\pu) that reveal users’ general interest, which

implies that 2) user u prefers clicked-but-not-purchased items to the items

that are neither purchased nor clicked (I\cu).
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Assumption 3. We assume that a user prefers purchased items to clicked-

but-not-purchased items, and non-clicked items to clicked-but-not-purchased

items.

i �u j, k �u j, i �u k, if i ∈ pu ∧ j ∈ cu\pu ∧ k ∈ I\cu (4)

Eqn. 4 implies that user u dislikes items that are clicked-but-not-purchased

(cu\pu) more than those that are not clicked at all (I\cu). This assumption

is also intuitive in the sense that although being aware of clicked-only items

(cu\pu), the fact that the user still chose not to purchase them implies that

the user dislikes them.

3.2. Verifying the Model Assumptions

To figure out which of our three model assumptions (Eqn. 2,3,4) is valid,

we implement them under the BPR model [41], and name each of them P3S_1,

P3S_2 and P3S_3, respectively (P3S stands for modeling pairwise relationships

among three disjoint item sets). We only present here the equation for P3S_2,

which is based on Assumption 2. The equations for P3S_1 and P3S_3

are similarly formulated and hence omitted. For each user u, we maximize the

following loss function:

LP3S_2(u) =
∑
i∈pu

∑
j∈cu\pu

lnσ(x̂uij)

+
∑

j∈cu\pu

∑
k∈I\cu

lnσ(x̂ujk) +
∑
i∈pu

∑
k∈I\cu

lnσ(x̂uik)
(5)

where x̂uik = x̂ui − x̂uk, and x̂ui = αTuβi + γi denotes the predicted preference

of user u on item i computed by matrix factorization (MF); αu ∈ RK and

βi ∈ RK represent the K-dimensional latent factors for user u and item i,

respectively, and γi ∈ R denotes the item bias term for item i. σ(x̂uij) denotes

the probability that user u prefers item i to item j [41], which is approximated

by a sigmoid function σ(·). For more details of the optimization process, refer

to the original paper [41] that proposed the BPR model. We later show in

our experiments (Table 4) that P3S_2 outperforms P3S_1 and P3S_3, which

implies that Assumption 2 is the most valid model assumption.
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Note that other scoring functions such as neural network (NN)–based func-

tions [12, 13, 20] can also be applied to our framework by simply replacing MF.

However, as our focus is to propose a “framework” that can properly utilize click

records for purchase prediction rather than to prove the superiority of NN over

MF, we conduct experiments with MF as our scoring function in this paper.

3.3. Discussion: Shortcomings of P3S_2

Although P3S_2 is shown to be beneficial for purchase prediction when

implemented under the BPR model, it has two shortcomings. The first short-

coming is caused by the relative unreliableness of click records, whose amount

even greatly exceeds that of purchase records. Unlike purchases, clicks can occur

even without a user’s intent to purchase; a user may accidentally click on wrong

items or click on items out of simple curiosity, whereas a user is more confident

with purchased items. That is to say, the click records are more likely to be ir-

relevant to user preferences than the purchase records. Therefore, we argue that

relying too much on the relatively unreliable click records would be detrimental

to the performance of recommendation. However, since BPR was developed

for bipartite ranking in which every possible positive–negative instance pair is

taken into account, the model can be easily dominated by the relatively unreli-

able click records as their amount greatly exceeds that of purchase records. The

second shortcoming is caused by the objective of the BPR model. Although

users are mainly interested in top-ranked items [1], BPR maximizes the AUC,

which gives an equal weight to each training instance regardless of its position

in the list. In other words, a mistake in the higher part of the recommendation

list is equally penalized with one in the lower part, implying that optimizing the

AUC does not allow a particular focus on the accuracy of the top-ranked items.

Therefore, we propose a novel method that simultaneously addresses the above

shortcomings.

10



4. The Proposed Method: P3STop

Here, we describe our novel learning-to-rank method, P3STop, that is cus-

tomized to be robust to relatively unreliable click records by particularly focusing

on the accuracy of the top-ranked items. Since P3S_2, which is based on As-

sumption 2, turned out to be the most valid model (Table 4), we adopt it as

the underlying assumption of our proposed method, P3STop, hereinafter. Note

that under Assumption 2, purchased (P) items and non-clicked (NC) items

are always regarded as positive and negative items, respectively. In contrast,

clicked-but-not-purchased (CBNP) items can be considered as either positive or

negative items, depending on which pair of itemsets we are interested in. That

is, CBNP items are considered as negative items when compared with P items,

and are considered as positive items when compared with NC items.

4.1. Model Formulation

For each user u, we compute the sum of the number of 1) CBNP items

ranked above the least relevant P item, 2) NC items ranked above the least

relevant CBNP item, and 3) NC items ranked above the least relevant P item,

and minimize the sum as following:

LP3STop(u) =
1

|cu\pu|
∑

j∈cu\pu

I
[
(min
i∈pu

x̂ui) ≤ x̂uj

]

+
1

|I\cu|
∑

k∈I\cu

I
[
( min
j∈cu\pu

x̂uj) ≤ x̂uk

]

+
1

|I\cu|
∑

k∈I\cu

I
[
(min
i∈pu

x̂ui) ≤ x̂uk

]

=
1

|cu\pu|
∑

j∈cu\pu

max

[
0, 1− ((min

i∈pu

x̂ui)− x̂uj)

]

+
1

|I\cu|
∑

k∈I\cu

max

[
0, 1− (( min

j∈cu\pu

x̂uj)− x̂uk)

]

+
1

|I\cu|
∑

k∈I\cu

max

[
0, 1− ((min

i∈pu

x̂ui)− x̂uk)

]

(6)
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where x̂ui = αTuβi
4 and I[·] is the indicator function that returns 1 if the

argument is true, otherwise 0. Note that in Eqn. 6 the bound is set with respect

to positive items and thus more emphasis is placed on positive items than on

negative items, making our model robust to relatively unreliable negative items.

For example, consider the first term, where for user u, we set the upper bound of

the CBNP items j (∈ cu\pu) to the score of the last-ranked P item (mini∈pu
x̂ui)

(Figure 1c). Although the last-ranked P item i has the lowest score among all

P items pu, its score (mini∈pu
x̂ui) should be higher than the score (x̂uj) of any

CBNP item j (∈ cu\pu) because it was specifically chosen by user u from all

the clicked items (Assumption 2). Consequently, the upper bound set by

the last-ranked positive item will be high enough so that we obtain positive

items near the top by pushing down relatively unreliable negative items below

it. In summary, by minimizing LP3STop(u) for each user, we aim to put as many

unreliable negative items below positive items as possible, which results in high

accuracy especially for the top-ranked items. As for the optimization of Eqn. 6,

since I[·] is non-convex, making the optimization process difficult because of its

discrete nature, we replace it with the hinge loss function `(x) = max(0, 1− x),

which is a widely used convex surrogate for the indicator function [44].

Optimization Objective. Given the loss function LP3STop(u) for each user

u ∈ U as in Eqn. 6, the final objective function to minimize is formulated as

follows:

JP3STop(Θ) =
1

|U|
∑
u∈U
LP3STop(u) +

λα
2

∑
u∈U
||αu||22+

λβ
2

∑
i∈I
||βi||22 (7)

where λα and λβ are regularization parameters for the user and for the item

latent factors, respectively. We set λα = λβ = λ to reduce the model complexity.

We adopt the widely used stochastic gradient descent (SGD) method to optimize

the objective function in Eqn. 7. For each user u, we first sample a triple (i, j, k)

from the training set O = {Ou|u ∈ |U|} where Ou = {(i, j, k)|i ∈ pu ∧ j ∈

4The incorporation of the item bias term (γi) as in Eqn. 5 did not result in the performance

improvement, hence excluded.
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cu\pu ∧ k ∈ I\cu} , Ou denoting the training set for user u. We compute the

gradient for each parameter in Θ, i.e., αu, βi, βj , βk, and update each of them

by using SGD. The gradient for each parameter is computed as follows:

• The gradient of αu for u ∈ U :

∂LP3STop(u)

∂αu
= I[(min

i∈pu

x̂ui)− x̂uj ≤ 1]

βj − ∂ min
i∈pu

x̂ui

∂αu


+ I[( min

j∈cu\pu

x̂uj)− x̂uk ≤ 1]

βk − ∂ min
j∈cu\pu

x̂uj

∂αu


+ I[(min

i∈pu

x̂ui)− x̂uk ≤ 1]

βk − ∂ min
i∈pu

x̂ui

∂αu


(8)

• The gradient of βi for i ∈ pu

∂LP3STop(u)

∂βi
= I
[
(min
i∈pu

x̂ui)− x̂uj ≤ 1

]−∂ min
i∈pu

x̂ui

∂βi


+ I
[
(min
i∈pu

x̂ui)− x̂uk ≤ 1

]−∂ min
i∈pu

x̂ui

∂βi

 (9)

• The gradient of βj for j ∈ cu\pu
∂LP3STop(u)

∂βj
= I[(min

i∈pu

x̂ui)− x̂uj ≤ 1](αu)

+ I
[
( min
j∈cu\pu

x̂uj)− x̂uk ≤ 1

]−∂ min
j∈cu\pu

x̂uj

∂βj

 (10)

• The gradient of βk for k ∈ I\cu
∂LP3STop(u)

∂βk
= I[( min

j∈cu\pu

x̂uj)− x̂uk ≤ 1](αu)

+ I[(min
i∈pu

x̂ui)− x̂uk ≤ 1](αu)

(11)

Note that the derivatives given by:
∂min
i∈X

x̂ui

∂αu
= βi, where αTuβi is the minimum for i ∈ X

∂min
i∈X

x̂ui

∂βi
= αu

(12)
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where X ∈ {pu, cu\pu}.

4.2. Alternative Method: P3STopalt

As an alternative to our proposed method P3STop, we can consider another

method that relies more heavily on click records. For each user u, we compute

the sum of the number of 1) P items ranked below the most relevant CBNP

item, 2) CBNP items ranked below the most relevant NC item, and 3) P items

ranked below the most relevant NC item, and minimize the sum as follows:

LP3STopalt(u) =
1

|pu|
∑
i∈pu

I
[
x̂ui ≤ ( max

j∈cu\pu

x̂uj)

]

+
1

|cu\pu|
∑

j∈cu\pu

I
[
x̂uj ≤ ( max

k∈I\cu

x̂uk)

]

+
1

|pu|
∑
i∈pu

I
[
x̂ui ≤ ( max

k∈I\cu

x̂uk)

] (13)

This method, named P3STopalt, is distinguished from P3STop in that P3STopalt re-

sorts to the negative items to set the bound. To be precise, it sets the lower

bound of the positive items to the score of the top-ranked negative item; as op-

posed to P3STop that sets the upper bound of negative items to the last-ranked

positive item. Here, we want the lower bound to be high enough so that pulling

up the positive items above it is meaningful (Figure 1d). However, the negative

items always include relatively unreliable click records in this case, and thus the

lower bound set by the negative items is not guaranteed to be sufficiently high

and robust; in contrast to high and robust bound of P3STop set by positive

items. This implies that pulling up positive items above relatively low bound

would not yield high accuracy at the top. We later present the performance

of P3STopalt in the experiments (Table 5) to show the unreliableness of click

records compared with purchase records. We note that P3STopalt is an en-

hanced version of Inf-Push [7], whose underlying AMAN assumption is replaced

with Assumption 2 [23].

Complexity Analysis. Another benefit of P3STop is the improved time com-

plexity compared with previous pairwise methods developed for bipartite rank-
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ing, such as BPR and P3S. More precisely, the time complexity of evaluating

P3S_2 is O(|pu||cu\pu|+|cu\pu||I\cu|+|pu||I\cu|) = O(m2) whereas that for

P3STop is O(2×(|pu|+|cu\pu|+|I\cu|)) = O(m), which will become clear when

converted into a dual form [23]. We refer the readers to Section 3 of [23] for

the detailed proof regarding the entire process of converting a bipartite ranking

into a dual formulation, which in turn gives us the time complexity linear in the

number of items.

5. Experiments

The experiments are designed to answer the following research questions

(RQs):

RQ1. Are click records useful for purchase prediction?

RQ2. Does P3STop indeed focus on the accuracy near the top?

RQ3. Is P3STop robust to unreliable click records?

RQ4. How does the latent dimensionality affect the performance?

RQ5. Does P3STop outperform baselines without compromising the novelty of

item recommendations?

5.1. Experimental Settings

Dataset. We evaluated our proposed method on two real-world datasets

each of which contains both purchase records and click records for the same set

of users. The RecSys2015 dataset5 consists of sessions of click and purchase

sequences extracted from an e-commerce website, where we regard each session

is as a user. To the best of our knowledge, the RecSys2015 dataset is the only

public dataset in which a user is provided with both the purchase and click

records, and hence we ran experiments on a proprietary dataset from NAVER

5http://2015.recsyschallenge.com/challenge.html
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shopping, which is a web portal that provides a platform for online shopping.

We collected users’ click and purchase records for three months (Jan. 2017

through Mar. 2017). For both datasets, we removed users having fewer than

five purchases and twenty clicks. Moreover, to filter out possible abusing users

and items in both datasets, we removed the top 0.001% of users and items

in terms of the number of observations. After preprocessing, the RecSys2015

dataset contained 30,867 purchase records on 5,869 items and 102,939 click

records on 11,071 items from 7,076 users, and the NAVER shopping dataset

contained 23,373 purchase records on 6,743 items and 243,908 click records on

10,738 items from 5,317 users.

Methods Compared.

• BPR6 [41]: A pairwise learning-to-rank method based on the AMAN assump-

tion as in Eqn. 1.

• SLIM [32]: An extension of itemKNN [45] that models the userâĂŹs prefer-

ence for item i as a weighted combination of the userâĂŹs preference for item

j and the item similarity between i and j. It learns a item-item similarity

matrix from the data.

• CLiMF [46]: A collaborative ranking method for implicit feedback that di-

rectly maximizes Mean Reciprocal Rank (MRR).

• PMF [30]: An MF–based pointwise method that minimizes the rating pre-

diction error. As PMF is a common baseline method for rating prediction, we

modify it to model click and purchase records; we assign 1 to clicked items,

and 2 to purchased items.

6As a naive approach to incorporating both purchase and click records into BPR given

the (u, i ∈ pu, j ∈ I\pu) triple, we modified the value of (x̂ui − x̂uj) to 0.5 ∗ (x̂ui − x̂uj) for

j ∈ cu\pu under the assumption that the difference should not be as large as when item j

is not clicked at all. However, the performance improvement was not statistically significant,

hence we excluded the results for brevity.
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• eALS [11]: The state-of-the-art sampling–based MF method that samples

non-purchased items based on their popularity, which is shown to surpass the

uniform weighting scheme [15].

• GRU4REC [13]: State-of-the-art session–based click prediction method based

on GRU. As its goal (click prediction) differs from ours (purchase prediction),

we added a fully connected layer at the end of last hidden state of GRU4REC

for predicting the purchased items.

• P3S_1, P3S_2, P3S_3, P3STop, P3STopalt: Our proposed methods based

on Eqn. 2, 3, 4, 6, and 13, respectively. Note that P3S_2 degenerates to BPR

when click records are not provided.

• Inf-Push [7]: A collaborative ranking method based on explicit feedback that

focuses on the ranking performance at the top. Because this method was

originally designed for explicit feedback, we cannot directly compare it with

our proposed method. Instead, we treat purchased items as relevant and all

the non-purchased items as non-relevant.

• P3STopmix: A method that jointly minimizes the objective functions of P3STop

and P3STopalt as (1− ε) · LP3STop(u) + ε · LP3STopalt(u), where ε = 0.5.

Since our goal is not the click prediction but the purchase prediction, our base-

line competitors are built using the purchase records; except for PMF. In fact,

we tried the “click–based purchase prediction” for BPR (using only click records

instead of purchase records to predict purchases) to see how helpful click records

are for purchase prediction. However, its performance turned out to be very

poor, and hence excluded in the paper. Moreover, we assume that explicit feed-

back such as ratings are not provided, and thus we compare our methods with

implicit feedback–based methods.

Evaluation Setting. We adopt the leave-one-out evaluation, which has been

widely used in literature [10, 12, 11, 41]. More precisely, for both datasets,

we 1) chronologically ordered the sequence of purchase data and used the last
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records as test data and the remainder as training data, and 2) used the click

records of the user up to the timestamp of the last purchase in the training data

and discarded the rest. It is worth mentioning that as our target is purchase

prediction, where the goal is to predict an item to be purchased in the future,

randomly splitting the dataset is unrealistic. Precisely, if we randomly sample

a purchased item for each user (without considering the purchased order) and

use the rest of the purchased items for training, we will be predicting a past

event by using future events. Therefore, for each user, we held out the latest

purchased item as the test data, and thus we cannot apply conventional cross-

validation. Instead, we ran the experiments five times with different random

seeds for initialization for reliability of the results.

Predicting users’ future purchase among clicked items is rather a trivial task,

and obviously the performance is expected to be significantly improved by incor-

porating usersâĂŹ click record as in our method, because items are purchased

from clicked items. Indeed, our method greatly outperformed the competi-

tors under such setting. Therefore, to make the problem more challenging and

practical [42], we evaluate our method on how well it predicts usersâĂŹ future

purchase among non-clicked items. That is to say, the candidate items for rec-

ommendation for each user are the items that are neither clicked nor purchased

by the user in the past.

Evaluation Metrics. As our objective is to optimize the accuracy at the

top, we measured the ranking performance using three metrics that emphasize

the accuracy at the top (Recall@N , NDCG@N , MRR@N [8, 39, 56]) when

N is small, and one that does not (AUC). Moreover, since there is only one

relelevant item for each user, and that we are dealing with implicit feedback

datasets, MRR and NDCG provide the same insight. However, we included both

of them because they are the two most popularly used metrics in recommender

system research. Precision is not employed because each user has only one

test data in which case Precision is proportional to Recall. We do not consider

metrics, such as RMSE and MAE, as they are suitable for explicit feedback
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datasets [9, 18], but not for implicit feedback datasets. Recall that we split our

data into training/validation/test sets by selecting for each user u a random

item to be used for validation Vu and another for testing Tu. All remaining

data is used for training. The predicted ranking is evaluated on Tu with various

ranking metrics. Metrics used for evaluation are described as follows:

• Recall@N: The average of the ratio of all relevant items included in top-N

of the recommended list of items for each user.

Recall@N =
1

n

∑
u∈U

|rel(u,N)|
|rel(u)|

where rel(u,N) denotes the relevant (purchased) items among top-N rec-

ommended items, and rel(u) denotes relevant (purchased) items of user u

in the test set.

• Normalized Discounted Cumulative Gain (NDCG)

NDCG =
1

n

∑
u∈U

DCGu
IDCGu

where DCG and IDCG (Ideal DCG) are represented as:

DCGu =
∑

i∈rel(u)

1

log2(rankui + 1)

IDCGu =
∑

i∈rel(u)

1

log2(i+ 1)

where rankui denotes the rank of item i in user u’s recommendation list.

• Mean Reciprocal Rank (MRR)

MRR =
1

n

∑
u∈U

1

ranku

where ranku denotes the first rank of the relevant item in the recom-

mended list of user u.
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• Area Under ROC Curve (AUC)

AUC =
1

n

∑
u∈U

1

|E(u)|
∑

(i,j)∈Eu

I[x̂ui > x̂uj ]

where E(u) = {(i, j)|(u, i) ∈ Tu ∧ (u, j) /∈ (Pu ∪ Vu ∪ Tu)} and I[·] is an

indicator function that is equal to 1 if the argument is true. (x̂ui > x̂uj)

indicates that the rank of item i is higher than that of item j for user u.

Note that if we were not to focus on the top ranks, and if we had more than one

relevant item for each user, it would be more rational to test on deeper cut-offs

due to the robustness [50]. But in this work, we mainly focus on the accuracy

on the top ranks, and thus test on relatively shallow cut-offs. i.e., N = 10, 20.

In addition to the conventional ranking metrics described above, we also

evaluate on the novelty of the item recommendations provided by our method.

To this end, we adopt self-information (SI) [2, 59], which measures the unex-

pectedness of an item recommendation relative to its global popularity:

SI =
1

|U|
∑
u∈U

1

|L(u)|
∑
i∈L(u)

− log2

C(i)

|U|
(14)

where L(u) denotes a list of item recommendations for user u, C(i) denotes the

number of users that purchased item i.
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Table 2: Best performing hyperparameter values. Note that SLIM has two hyparparameters

for regularizations (L1/L2).

Data RecSys2015 Naver Shopping

Method K η λ K η λ

eALS 160 0.01 0.1 150 0.01 0.01

BPR 190 0.1 0.01 70 0.01 0.1

SLIM 150 - 0.01/5 150 - 0.01/3

CLiMF 60 0.05 0.5 190 0.1 0.1

PMF 160 0.01 0.1 170 0.01 0.1

GRU4REC 150 0.01 - 150 0.01 -

Inf-Push 190 0.01 0.01 180 0.1 0.01

P3S_2 180 0.05 0.01 200 0.01 0.01

P3STop 180 0.01 0.01 160 0.1 0.01
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Implementation. To make fair comparisons, we built on one of the most

widely used library for recommender systems, called LibRec7. We used their

implementations of BPR, SLIM, CLiMF and PMF, and implemented eALS,

variants of P3S and P3STop. We used PyTorch [36] to implement GRU4REC.

Parameters. For all baselines, we tuned the hyperparameters by per-

forming grid searches with K ∈ {10, 20, ..., 200}, and η (learning rate), λ ∈

{0.01, 0.05, 0.1}. For each user, we used the last purchased item as test data

and the remainder as training data. Therefore, conventional cross-validation

is not applicable here, as the data must be split based on time. Instead, we

made a validation dataset by using the last purchased item of training data,

and performed grid search on the validation dataset for five times with differ-

ent random seeds for initialization to find the best hyperparameters. The best

performing hyperparameter values for each method found by grid search on the

validation dataset are summarized in Table 2. For experiments, we report the

mean and the standard deviation over five runs with different random seeds for

initialization; the standard deviations in graphs are displayed as error bars.

Table 4: Comparisons of different assumptions for P3S.

Data Metric P3S_1 P3S_2 P3S_3

R
ec

Sy
s2

01
5 Recall@10 0.2772±0.0009 0.2955±0.0021 0.0017±0.0004

NDCG@10 0.1773±0.0005 0.1778±0.0017 0.0014±0.0003

MRR@10 0.1463±0.0006 0.1425±0.0012 0.0011±0.0003

AUC 0.8716±0.0006 0.9083±0.0009 0.4602±0.0035

N
av

er
Sh

op
pi

ng Recall@10 0.0602±0.0016 0.0618±0.0022 0.0028±0.0010

NDCG@10 0.0298±0.0006 0.0331±0.0004 0.0013±0.0007

MRR@10 0.0215±0.0006 0.0233±0.0003 0.0009±0.0006

AUC 0.8765±0.0029 0.9420±0.0005 0.4948±0.0050

7https://www.librec.net/
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5.2. Performance Analysis

RQ1) Usefulness of Click Records. We begin by showing which of our

model assumptions (Eqn. 2,3, or 4) performed the best in Table 4. We observe

that P3S_2, which is based on Assumption 2 (Eqn. 3), generally outper-

forms P3S_1 and P3S_3 on both datasets, with P3S_3 performing extremely

poorly. This implies that clicked-but-not-purchased items of a user are definitely

more helpful in eliciting the user’s preference than non-clicked items, and thus

this relationship should be taken into account for purchase prediction.

Given that P3S_2 is the right choice among the P3Ss, we now compare

its performance with state-of-the-art implicit feedback based–recommendation

methods in Table 3. We observe that P3S_2 consistently outperformed the pur-

chase record–based baselines, i.e., eALS, CLiMF and BPR, with very few excep-

tions. This indicates that when click records are properly combined with pur-

chase records to define the order of user preferences among non-purchased items,

we can complement the missing user–item interactions of purchase records,

which eventually leads to better recommendation quality. Other observations

from Table 3 are as follows: 1) BPR consistently outperformed PMF. Although

PMF utilizes both the click and purchase records for making recommendations,

it performed worse than BPR, which leverages only the purchase records. This

indicates that we should meticulously design a method when jointly modeling

both the click and purchase records, which in fact was one of the objectives for

this study. 2) GRU4REC, which is a click-based purchase prediction method,

generally performs worse than other methods based on either only purchase or

both click and purchase. This shows that while click records can be directly used

for click prediction as in [13], using only click records for purchase prediction

limits the prediction performance because click records are relatively weaker sig-

nal than purchases, which corroborates the benefit of our model assumptions for

purchase prediction. However, we note that GRU4REC performs better than

click–based version of BPR (not shown in Table 3), confirming the advantage of

considering the sequential information of click records by using GRU. 3) BPR

consistently outperformed eALS. This demonstrates the superiority of the pair-
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wise learning-to-rank method upon which our method is built. 4) Although we

expected CLiMF to perform better than BPR as in the original study [46], its

performance turned out to be very poor. We attribute this poor performance

to the difference in the target task, which leads to a different model formula-

tion. More precisely, CLiMF ignores all the missing user–item interactions and

only considers positive feedback, and we argue that this can be effective for

tasks with sufficient positive feedback such as friend recommendations (about

70 friends per user on average for the datasets used by [46]). However, the

poor performance of CLiMF in our task implies that this formulation is not

appropriate for purchase prediction where the amount of positive feedback is

usually small (four purchased items per user on average for the datasets used

in this work). In addition, the poor performance of CLiMF compared with

BPR, which leverages the negative feedback, corroborates the importance of

leveraging negative feedback in different target tasks. 5) SLIM performs rela-

tively better on RecSys2015 dataset compared with NAVER dataset. Precisely,

on Recsys2015 dataset, SLIM performs the second best among the baselines,

whereas it performs worse on NAVER dataset. This is mainly because SLIM

can only model relations between items that have been co-purchased by at least

some users, which implies that SLIM performs well on dense datasets than on

sparse datasets [16]. In the same vein, we attribute the inferior performance of

SLIM compared with BPR to the sparseness of our datasets.

RQ2) Focus on the Accuracy of the Top-Ranked Items. We observe

from Figure 2 that although P3S_2 outperforms BPR for relatively large Ns

(N ≥ 20), their performance is similar to BPR for smaller Ns less than 10; in

this range, BPR even performs better than P3S_2. However, providing accu-

rate recommendations in the lower part of the recommendation list as P3S_2 is

not desired for e-commerce stores because users are mainly interested in the

top-ranked items in practice [1]. Recall that the objective of our ultimate pro-

posed method, P3STop, is to focus on the accuracy of the top-ranked items.

The following observations are made regarding the performance of P3STop: 1)
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Figure 2: Comparisons over various Ns (RecSys2015).

From Table 3, in terms of Recall, NDCG and MRR, P3STop considerably out-

performs all competitors including P3S_2 for N = 10, 20, which are relatively

small Ns. 2) More importantly, for even smaller Ns less than 10 (Figure 2)8, we

observe that P3STop still outperforms both BPR and P3S_2, whereas for large

Ns (N ≥ 30), the performance gap between P3S_2 and P3STop starts to get

smaller, and the performance of P3STop almost equals to that of P3S_2 above

N = 300. This implies that P3STop focuses on the accuracy of the top-ranked

items (N ≤ 20) at the expense of the accuracy in the lower part of the recom-

mendation list (N ≥ 30), which answers RQ2. We observed similar results for

other metrics as well. 3) Above results are corroborated by the performance in

terms of AUC, a metric that treats a mistake in the higher part of the recom-

mendation list as equal to one the lower part. More precisely, P3S_2 consis-

tently outperforms P3STop in both datasets in terms of AUC, which implies

that P3S_2 provides a more balanced recommendation list; this conversely

shows that P3S_2 does not particularly focus on the top. We attribute this

performance to the fact that P3S_2 is built upon the BPR model, whose ob-

jective is to optimize for the AUC metric (Eqn. 5).

RQ3) Robustness to Unreliable Click Records. Table 5 shows the

8P3STop outperforms BPR from top-3, but excluded for the clarity of the graph.
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Table 5: Comparisons among “push” algorithms.

RecSys2015

Metric Inf-Push P3STop P3STopalt P3STopmix

R@10 0.1631±0.0018 0.3119±0.0047 0.1891±0.0034 0.1842±0.0024

N@10 0.0818±0.0011 0.1913±0.0050 0.1021±0.0032 0.0989±0.0015

M@10 0.0577±0.0011 0.1542±0.0051 0.0760±0.0032 0.0731±0.0015

Naver Shopping

R@10 0.0173±0.0015 0.0690±0.0015 0.0487±0.0026 0.0446±0.0018

N@10 0.0082±0.0008 0.0350±0.0007 0.0212±0.0013 0.0227±0.0014

M@10 0.0053±0.0007 0.0244±0.0010 0.0152±0.0011 0.0164±0.0012

comparisons among “push” algorithms that focus on accuracy of the top-ranked

items. Our proposed method P3STop (Figure 1c), which places more emphasis

on positive items than on negative items, considerably outperformed P3STopalt

(Figure 1d), which places more emphasis on negative items than on positive

items. This verifies that resorting to negative items deteriorates the recom-

mendation performance implying that click records are indeed relatively more

unreliable than purchase records, which answers RQ3.

Other observations from Table 5 are as follows; Note that Inf-Push [7] is a col-

laborative ranking method based on explicit feedback that pulls the incorrectly

ranked relevant items above non-relevant items. 1) Although P3STopalt per-

forms worse than P3STop, P3STopalt slightly outperforms Inf-Push, which ver-

ifies again that defining the order of user preferences among non-purchased

items as specified in Assumption 2 is indeed beneficial. 2) The perfor-

mance of Inf-Push is very poor compared with not only other “push” algo-

rithms but also the competitors listed in Table 3. Recall that Inf-Push is dis-

tinguished from P3STopalt in that the underlying assumption of P3STopalt, i.e.,

Assumption 2, is replaced with the AMAN assumption. Hence, similar

to P3STopalt explained in Section 4.2, the lower bound of purchased items set

by the top-ranked non-purchased item should be high enough so that pulling up
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purchased items above it yields desired results. However, the poor performance

of Inf-Push implies that non-purchased items should not be equally considered

as negative, and that we need to define the order of user preferences among

non-purchased items by taking into account clicked-but-not-purchased items.

3) The performance of P3STopmix is worse than both P3STop and P3STopalt,

which implies that jointly learning these two methods provides no benefit owing

to the unreliableness of click records.

NAVER Shopping

Figure 3: Recall@10 w.r.t. various Ks on both datasets.

RQ4) Dimensionality Analysis. Figure 3 shows the impact of the number

of latent dimensions K on Recall for both datasets. While the performance of

every method improved as K increased, the performance improvements were

more significant for P3S_2 and P3STop. We attribute this improvement to

the fact that these methods need a larger model capacity than the rest of the

methods because multiple relationships among itemsets are considered.

Self-information BPR P3STop

RecSys2015 8.8930 9.3439

NAVER Shopping 8.4382 10.0342

Table 6: Mean self-information of top-10 recommended items on both datasets.

RQ5) Preserving the novelty of recommendation. While it is im-
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portant to provide accurate recommendations to users, another aspect of a

successful recommender system that should not be neglected is the novelty

of recommendations, as accuracy alone does not always result in user satis-

faction [19]. In this respect, we compare the self-information (Equation 14 of

top-10 recommended items of BPR with those of P3STop in Table 6. We observe

that P3STop not only provides accurate recommendations compared with BPR,

but also novel recommendations. We argue that this is mainly due to the fact

that click records help reduce the dependence on the item popularity.

6. Related Work

6.1. Recommender Systems with Implicit Feedback

Although explicit feedback, such as rating, is a valuable source of information

that reveals user preferences, it is difficult to obtain a large quantity of such data.

Hence, the vast majority of work has focused on eliciting user preferences from

implicit feedback such as bookmarks [58], item purchases [41, 10], and TV chan-

nel tuning history [33]. These methods adopted the MF technique to model the

preference of users on items [18]. Specifically, Hu et al. proposed WMF that [15]

introduced the concept of confidence to measure the influence of observed items

and unobserved items on users’ preferences. Later, various sampling strategies

to generate negative examples from unobserved items were proposed [33, 11, 40].

Moreover, several pairwise learning-to-rank methods [41, 34, 54, 22] based on

pairwise comparisons between observed items and unobserved items have been

proposed. However, all the aforementioned methods are based on the AMAN

assumption or predefined heuristic weights, which limits further performance

improvement.

To cope with the aforementioned challenges, users’ social network informa-

tion has been leveraged. For example, a method introduced by Zhao et al.

assigned higher ranks to the items that a user’s friends prefer than to the items

that neither he nor his friends prefer [58]. This work was extended by Wang et

al. [52], who introduced a method that categorizes unobserved items into three
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groups regarding users’ strong and weak ties with other users. However, these

methods are only applicable when users’ social network information is available,

which is usually not the case for most e-commerce stores. Various other methods

that incorporate side information for solving the data sparsity issue of implicit

feedback have been proposed: review text [51], item image [10] and temporal

information [42]. However, this line of research is not directly related to our

proposed method in that ours does not consider any side information. More-

over, dwell time [55] can be used to emphasize more reliable clicks, however,

we argue that dwell time is a type of “temporal” side information that cannot

be readily obtained. Lastly, Parra et al. [35] proposed a parametric model to

map implicit feedback to explicit feedback under the assumption that there is

some correlation between implicit and explicit feedback. However, it requires

a minimal amount of explicit feedback, whereas ours entirely resort to implicit

feedback. Finally, as alternative approach for the same problem, we could think

of feature engineering–based methods. Feature engineering–based methods re-

fer to methods that manually generate features regarding the users and items.

However, the generation of features is domain-specific [5], labor intensive and

insufficient to uncover the underlying properties of data [49].

6.2. Modeling User Behavior

With the advent of e-commerce, much work has been devoted to under-

standing behavior of online users [28, 6], and specifically to predicting purchase

behaviors [24, 25]. As the former line of work, Lo et al. [28] studied user activity

and purchasing behaviors that vary over time, especially focusing on user pur-

chasing intent. Most recently, Cheng et al. [6] extended Lo et al. ’s work [28] by

generalizing their analysis on characterizing the relationship between a user’s

intent and his behavior. Our goal is different in that we focus on predicting

users’ purchases, rather than predicting users’ various intents from their online

behaviors. Meanwhile, as the latter line of work, given user demographics and

implicit feedback including click record and purchase record, Liu et al. [25]

proposed an ensemble method to predict which customers would return to the
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same merchant within six months period. They formulated the problem as a

classification task and trained various classification methods. While similarly

using both purchase record and click record, our task is different in that we aim

to predict items that users will purchase rather than to predict repeat buyers.

Moreover, Li et al. [24] proposed a MF–based method that predicts the conver-

sion response of users in display advertising, the goal of which inherently differs

from our task.

6.3. Optimizing the Accuracy at the Top

Considering that users are mainly interested in the top-ranked items [1], op-

timizing for the accuracy near the top is of great importance in practice. Thanks

to the success of the above approaches in general ranking tasks [31, 17, 44], they

have been recently adopted in the field of recommender systems. Weimer et al.

proposed CoFiRank [53], which directly optimizes Normalized Discounted Cu-

mulative Gain (NDCG) by minimizing its convex upper bound. Later, Shi et

al. proposed CLiMF [46], xCLiMF [48], and GAPfm [47], which optimize mean

reciprocal rank, expected reciprocal rank and graded average precision, respec-

tively. Among these methods, CLiMF is based on implicit feedback, whereas

others are based on explicit feedback, and thus we compared our proposed

method with CLiMF in our experiments in Section 5. Furthermore, Chris-

takopoulou and Banerjee proposed PushCR, which applies p-norm push, infinite

push and reverse-height push [44] to a collaborative ranking task in which the

ranking loss focuses on the accuracy of the top-ranked items for each user [7].

Hu and Li recently proposed DCR, which focuses on the accuracy at the top by

modeling user ratings based on an ordinal classification framework [14]. Lastly,

Forsati et al. [9] and Rafailidis and Crestani [38] incorporated user social

network data as side information to enhance the accuracy at the top. How-

ever, these methods cannot be directly compared with ours because 1) PushCR

and DCR consider explicit feedback, whereas ours is solely based on implicit

feedback, and 2) the latter works incorporate side information related to users,

whereas ours does not.
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6.4. Position Bias of Click Models

Position bias is a fundamental problem pertaining to click records, where

users tend to click on higher ranked items regardless of their relevance [43, 4]. To

tackle the position bias issue for CTR prediction, previous click models assume

that the click probability depends on the probability of examining a position,

and the relevance of the document displayed at that position. However, we

focus on purchase prediction rather than CTR prediction; we aim to overcome

the data sparsity of purchase records by leveraging their relationships with click

records. Hence, the position bias in terms of click models is out of scope for our

current work.

7. Conclusion & Future Work

In this paper, we introduced a framework that leverages users’ past click

records to complement the missing user–item interactions of purchase records.

To this end, we formulated various model assumptions that define the order

of user preferences regarding the non-purchased items, and demonstrated that

click records are indeed useful for purchase prediction. We then proposed a

novel learning-to-rank method, P3STop, that is customized to be robust to rel-

atively unreliable click records by particularly focusing on the accuracy of the

top-ranked items. We conducted extensive experiments on two real-world e-

commerce datasets and verified the benefit of our proposed method compared

with the state-of-the-art baselines. We believe that our method is beneficial to

any e-commerce stores, such as Amazon and eBay, which collect both purchase

and click records.

For future work, we plan to extend our framework 1) to model the temporal

and sequential information [37] of clicks and purchases by using Markov chain–

based methods [42] or deep learning–based approaches such as recurrent neural

networks [27, 57] and convolutional neural networks [26], 2) to incorporate side

information related to users and items, such as user reviews and item images,

to enhance the performance of the purchase prediction even further, and 3) to
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incorporate click count information for purchase prediction. Although the click

counts are important when the candidate purchase items are clicked-but-not-

purchased items, but not as important when the candidate purchase items are

items neither clicked nor purchased (as in our setting). However, we think that

it will be interesting to see how the click counts would help purchase prediction

in our setting.
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