
Hierarchical Clustering Supported by Reciprocal Nearest Neighbors

Wen-Bo Xie, 1,2 Yan-Li Lee, 3 Cong Wang, 1 Duan-Bing Chen, 1,2,4 Tao Zhou1,3*

1 Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of

China.

2 Union Big Data Tech. Inc., Chengdu 610041, People's Republic of China.

3 CompleX Lab, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.

4 The Center for Digitized Culture and Media, University of Electronic Science and Technology of China, Chengdu 611731,

People's Republic of China.

Abstract: Clustering is a fundamental analysis tool aiming at classifying data points into groups based on their

similarity or distance. It has found successful applications in all natural and social sciences, including biology,

physics, economics, chemistry, astronomy, psychology, and so on. Among numerous existent algorithms,

hierarchical clustering algorithms are of a particular advantage as they can provide results under different

resolutions without any predetermined number of clusters and unfold the organization of resulted clusters. At

the same time, they suffer a variety of drawbacks and thus are either time-consuming or inaccurate. We propose

a novel hierarchical clustering approach on the basis of a simple hypothesis that two reciprocal nearest data

points should be grouped in one cluster. Extensive tests on data sets across multiple domains show that our

method is much faster and more accurate than the state-of-the-art benchmarks. We further extend our method to

deal with the community detection problem in real networks, achieving remarkably better results in comparison

with the well-known Girvan-Newman algorithm.

Introduction

Clustering algorithm is of great importance in the studies of data mining. As an unsupervised machine

learning method, it can help people to understand data without clearly preassigned labels. Therefore, clustering

algorithm has already found many successful applications in disparate fields, such as biology, chemistry,

physics and social science (1). Accordingly, scientists have been studying clustering algorithms for more than a

half century, with a large number of excellent algorithms having been put forward and widely used. Well-

known algorithms can be divided into different categories, such as the partition methods (2, 3), the density-

based algorithms (4, 5), the affinity propagation algorithms (6, 7), the feature transformation methods (8-10),

and so on. The clustering results of these algorithms are often challenged by the poor readability, caused by the

lack of observable representative data point for each cluster, the exogenously determined number of clusters

together with the fixed granularity, and the unclear organization of resulted clusters.

Different from the above algorithms, a hierarchical clustering algorithm will produce a clustering tree,

which clearly reflects the organization of resulted clusters and could provide clustering results under different

resolutions without the help of a predetermined number of clusters (11, 12). Such remarkable advantage of

hierarchical clustering algorithms facilitates their applications in scientific analyses, including gene-related

predictions (13, 14), graph mining (15, 16), human brain analyses (17, 18), environmental assessment (19),

incidence relation identification (20, 21), and so on. Traditional hierarchical clustering algorithms are usually

highly time-consuming, which suffer growing challenges from the increasing data volume in the so-called big

data era.

Many fast algorithms for hierarchical clustering have been proposed, such as the algorithms via

constructing the clustering feature tree (CF Tree) (22, 23), the random sampling algorithms (24, 25), the

stepwise algorithms based on the nearest neighbor graph (26), and so forth. But these algorithms are subject to a

common drawback: accompanied by the improvement of efficiency, the algorithms’ accuracy drops. In a word,

the following general problems are still to be optimized (27-30). (i) The scalability problem: the algorithm

scales poorly in both memory and computing time with increasing data volume; (ii) The go-back problem: once

two clusters merge into a new cluster, the new one cannot be unfasten; (iii) The chaining effect problem: a few

data points (i.e. noisy data points) located between two weakly connected clusters may form a bridge so as to

merge these two clusters into one, eventually resulting in highly skewed dendrograms.

Facing the above-mentioned challenges, this article proposes a novel hierarchical clustering algorithm

(named as Reciprocal-nearest-neighbors Supported clustering, RS for short), which is based only on a compact

hypothesis that the two reciprocal nearest data points should be put in one cluster. According to extensive

experiments on University of California Irvine (UCI) data sets for machine learning (31) and Olivetti face data

set (32), with very low computational complexity, RS algorithm provides more accurate results than classical

benchmarks (e.g., group average (33) and CURE (25)) and state-of-the-art methods (e.g., affinity propagation (6)

and clustering via density peaks (4)). We further extend RS algorithm to deal with the community detection

problem (16, 34) in networks and demonstrate its advantage in comparison with the well-known Girvan-

Newman algorithm (35).

Algorithm

The RS algorithm treats each data point as a node, and starts from an empty set of sub-clustering trees

(SCTs for short) and a candidate set of all n nodes. If the candidate set is not empty, one node therein, denoted

by i , will be randomly selected. This node will be linked to its nearest neighbor
(1)

i . Notice that, we assume

the distance xyd between any two nodes x and y is well defined, and to avoid unnecessary complications

caused by multiple nearest neighbors, we disturb each distance xyd by adding a very small random variable

xy xyd as xy xy xyd d . After that, each node has only one nearest neighbor.
(1)

i will be further linked to

its nearest neighbor, denoted by
(2)

i . Setting
(0)

i i , such process will produce a chain

(0) (1) ()h

i i i . The construction stops if one of the following two conditions holds: (i)
() (2)h h

i i ,

which means
(2)h

i

 and
(1)h

i

 are reciprocal nearest neighbors (RNNs); (ii)
()h

i is not in the candidate set. If

the second condition holds, this chain will be linked to a certain existing SCT, while if the first condition holds,
(0) (1) (1)h

i i i will constitute a new chain-shaped SCT, with
(2)h

i

 and
(1)h

i

 being the two

supporting nodes. A unique artificial root, as the representative of this SCT, will be linked to these two

supporting nodes. After that, all nodes
(0) (1) (1), , , h

i i i
 will be removed from the candidate set. If the

candidate set is not empty, one node therein will be randomly selected and the above process will be

implemented again. Otherwise the whole procedure to construct SCTs will stop.

The next task is to prune the SCTs to avoid some very long and thin SCTs, which may accumulate

transmitted errors and thus reduce the algorithmic performance. For any node i , if it belongs to an SCT with

two supporting nodes p and q , its depth is defined as

1

1
2

i ip iqh l l , (1)

where ipl is the shortest path length between i and p in this SCT. Though with an artificial root, p and q are

assumed to be directly connected, so that 1ip iql l . Therefore,
ih can be considered as the path length

between i and the artificial root. For each SCT C, all nodes whose depths are larger than a threshold ()C will

be pruned. Every pruned node will be linked to an artificial root and form a special SCT consisted of only one

root and one node. The threshold is defined as

 () log (| | 1)C C , (2)

where | |C is the number of nodes in C , and x denotes the smallest integer no smaller than x . In later

experimental tests, the value of is fixed as 1.5 and the sensitivity analysis on the selection of the

parameter are presented in Figure S1 in the Supplementary Materials.

6 35

r

6 357

r

6 357 4 2

r

6 357 4 2

r

1

0

2

4

D
e
p
th

B C D E

3
2

4 5

6

7

1
A

6 357 4 2

r

1

F r

1

0

2

4

D
e
p
th

G

30
Depth

765421 3

7

6

5

4

2

1

3

3

0

D
e
p
th

0

1.0

0.5

Distance

Φ(C)=3x

y

Fig. 1. Illustration of the procedure to construct and prune the sub-clustering trees. (A) The original

distribution of the seven data points in a two-dimensional plane. (B) Node 6 is randomly selected as the initial

node to form the chain that ends with nodes 3 and 5 being the two RNNs. An artificial root is thus assigned to

the two supporting nodes. (C) Node 7 is randomly selected from the updated candidate set {1,2,4,7}, whose

nearest neighbor is node 6, so it is directed linked to node 6. (D) Node 2 is randomly selected from the updated

candidate set {1,2,4}, whose nearest neighbor is node 4, and node 4’s nearest neighbor is node 5. Hence this

chain will be linked to node 5 as 2 4 5 . (E) The last node in the candidate set, node 1, will be linked to its

nearest neighbor, say node 2. Plot (E) illustrates the full structure of the SCT with nodes 3 and 5 being the two

supporting nodes. Assuming 2 , so () 3C , and thus node 1 will be pruned since
1 4l . Node 1 will form

a special SCT as shown in plot (F). Plot (G) shows the heatmap of the normalized distance matrix as well as the

structure of SCTs after pruning, where the normalized distance between any two nodes i and j is defined as

maxijd d , in which ijd is the Euclidean distance between nodes i and j , and
maxd is the maximum Euclidean

distance between any pair of nodes.

Figure 1 illustrates a simple example where 7 data points are distributed in a two-dimensional plane, and

the distance between any two nodes is defined as their Euclidean distance. After the construction of SCTs, node

1 is pruned and thus there are eventually two SCTs. Generally speaking, there are many SCTs after pruning.

Then, we treat each SCT as a node (represented by its root) and implement the above constructing and pruning

processes again to obtain a higher-level clustering. Such procedure will be implemented iteratively, resulting in

the final clustering tree. Initially, all roots are put in the candidate set. The location of a root is either identical to

its linked node if it represents a special SCT with only one node being pruned in the last pruning process, or

defined as the midpoint of the two supporting nodes it links to. The distance between two roots is thus defined

as the Euclidean distance between their locations. From the initial data distribution to the final result, a full

procedure of the proposed RS algorithm is illustrated in Figure 2.

Original nodes Roots in 1st iterantion

Roots in 2nd iteration Final root

C The whole clustering tree

A The 1st iteration

B The 2nd iteration

1

2

3

Ite
ra

n
tio

n

0

Fig. 2. Illustration of the full procedure of the RS algorithm. (A) The initial data points (green circles) and

the result of the first iteration where roots are represented by yellow diamonds. Notice that, the SCTs

emphasized by shadow are the same to those shown in Figure 1. (B) The result of the second iteration where the

generated roots in this iteration are represented by blue triangles. (C) Final clustering tree obtained after three

iterations, where the red square is the highest-level root.

In a more general case where data points cannot be properly embedded in an Euclidean space and only a

distance between each pair of data points is well defined (see the last two examples in the next section), we can

still construct the SCTs but the distance between two roots cannot be updated as mentioned above, because the

specific locations of roots are not well defined. In such circumstance, the distance between two roots is updated

using only the information of distances instead of locations. Denoting
1r and

2r the two roots under

consideration, via some simple geometrical calculation, the distance between
1r and 2r , say 1 2| |rr , can be

determined according to the following three different situations: (i) if
1r is identical to a single point a , and 2r

is identical to a single point c , then
1 2| | | |rr ac ; (ii) if

1r is the midpoint of a and b , and
2r is identical to a

single point c , then
2 2 2

1 2

| | | | | |
| |

2 4

ac bc ab
rr

 ; (iii) if

1r is the midpoint of a and b , and
2r is the midpoint

of c and d , then
2 2 2 2 2 2

1 2

1
| | | | | | | | | | | | | |

2
rr ac ad bc bd ab cd .

Results

We test the performance of the proposed RS algorithm on eight selected data sets from the UCI database

(31), which is well recognized as a standard database for machine learning. The detailed information about

these data sets is presented in the Materials and Methods. Two classical clustering algorithms (i.e., the group

average (GA) (33) and CURE (25)) and two state-of-the-art methods (i.e., affinity propagation (AP) (6) and

clustering via density peaks (DP) (4)) are used for comparison. Detailed information about these benchmarks is

shown in the Materials and Methods. The Rand Index (36) is adopted to quantify the algorithms’ performance:

the larger the index is, the better the clustering result is. The mathematical definition of the Rand Index is

presented in the Materials and Methods.

Figure 3 compares the performance of RS and other considered algorithms on the UCI data sets. It can be

observed that RS is competitive with AP and performs overall better than other algorithms. In particular, for

mfeat-fourier and optidigits, many algorithms perform poorly while RS shows decent clustering ability. In

addition, we examine the efficiency of RS by comparing the required CPU time of RS with other algorithms. As

shown in Figure S2 in the Supplementary Materials, RS is the fastest one among all considered algorithms,

while GA and AP are of the highest and the second highest time complexity.

We next test the RS algorithm on the Olivetti face data set (32), which is a benchmark data set for

clustering and classification. This data set consists of 400 real face images in 40 categories, with each category

containing a person’s 10 different face images. Figure 4(A) illustrates the resulted clustering tree for the first 50

face images by RS. As shown in Figure 4(B), overall speaking, RS performs best. In particular, after two

iterations, RS obtains 39 clusters (very close to the value 40K for the ground truth) with Rand Index being

0.976. The full illustration is shown in Figure S3 in the Supplementary Materials.

R
a

n
d

 I
n

d
e
x

0

0.5

1.0

R
a
n

d
 I
n

d
e
x

0

0.5

1.0

R
a
n
d
 I

n
d
e

x

0

0.5

1.0

R
a

n
d
 I

n
d
e
x

K

0 5 10 15 20

K

0 5 10 15 20

A synthetic-control B mfeat-fourier

C optidigits D iris

E ecoli F dermatology

G glass H wine

B
a
la
n
c
e
d

U
n
b
a
la
n
c
e
d

RS GAGA CURE CURE AP DPDP

0 5 10 15 20 0 5 10 15 20

Fig. 3. Performance of algorithms on the UCI data sets. The X-axis denotes the number of clusters K , the

Y-axis shows the Rand Index, and each plot corresponds a selected data set. For GA, CURE and DP, K is

preassigned and thus adjustable, while for RS and AP, K is endogenous. For example, in RS, different

iterations correspond to different values of K . To be clear to readers, the results of RS and AP are respectively

emphasized by vertical blue solid lines and vertical red dash lines. The number of cluster, 38K , produced by

AP on optidigits is much larger than the value of the ground truth (i.e., 10K), so that we don’t show the

result of AP in plot (C).

The RS algorithm can also be extended to detect communities, which is a significant long-standing

challenge in network science (16, 34). The community structure is loosely defined as a number of communities

where each node belongs to one community and connections within a community are much denser than

connections in between communities (35). The community detection problem can be considered as a specialized

clustering algorithm where nodes are treated as data points (34), and thus a necessary step before transforming

community detection problem to clustering problem is to determine the similarity or distance between node

pairs (38).

Fig. 4. Result and Performance of algorithms on the Olivetti face data set. Plot (A) illustrates the resulted

clustering tree for the first 5 persons’ faces (i.e., 50 images) by RS, where images in the same color belong to

one category in the ground truth. Plot (B) compares the performance of RS with other considered algorithms. In

all relevant algorithms, the similarity between two face images is determined by the complex wavelet structural

similarity (37), and the corresponding distance is defined as the inverse of the similarity.

Denote A the adjacency matrix of an undirected network G . For the unweighted case, 1ija if nodes i

and j are adjacent (being directed connected by an edge), otherwise 0ija . For the weighted case, 0ija if

nodes i and j are not adjacent, otherwise ija represents the weight of the edge (i , j). The Laplace matrix of

G is then defined as L D A , where D is a diagonal matrix with its diagonal element
iid being equal to the

degree of node i . We apply the random walk theory (39) to define the distance between any two nodes as

 (,) (2)G ii jj ijD i j V l l l , (3)

where
1

N

G iii
V d

 , N is the number of nodes in G, and l is the corresponding element of the Moore-Penrose

inverse matrix of L (40). In the extended RS algorithm, each node is treated as a data point, the distance

between two adjacent nodes is calculated by Eq. (3), and the distance between two disadjacent nodes is set as

infinite. Due to the sparsity of the network, the algorithm will stop when the distance between any two roots is

infinite. At that time, there may be some isolated nodes resulted from the pruning process, as well as some

isolated reciprocal nearest neighbors. Each of these nodes, no matter a single node or one of RNNs, will be

merged to the its nearest community whose size, right after the stop of algorithm, is no less than 3. Here the

distance between a node i and a community C is defined as (,) min (,)
j C

D i C D i j

 .

We test this extended RS algorithm on four real networks: beach (41), netsci (42), jazz (43) and haverford

(44), of which two are unweighted and other two are weighted (see Materials and Methods for detailed

description). The corresponding numbers of communities obtained by RS for the above four networks are 6, 30,

24 and 124, respectively. Statistically speaking, the sizes of communities are relatively small. Therefore, to

overcome the possible resolution problem in community detection (45), we scan all edges in between

communities, then at each time step we select the edge with the smallest betweenness (46) (see the definition in

Materials and Methods) and merge the two communities bridged by this edge. This operation allows us to

obtain divisions with fewer communities. We use the triangle participation ratio (47) (TPR for short, see the

definition in Materials and Methods) as the metric to evaluate the algorithms’ performance. As shown in Fig. 5,

in comparison with the well-known Girvan-Newman algorithm (35) (see Materials and Methods for the

introduction), in most cases, the extended RS algorithm performs remarkably better.

A beach

RS

GN

T
P

R

0

0.2

0.4

0.6

0.8

K

2 3 4 5 6

B netsci

RS

GN

T
P

R

0.85

0.90

0.95

K

10 20 30

C jazz

RS

GN

T
P

R

0.2

0.4

0.6

0.8

1.0

K

5 10 15 20

D haverford

RS

GN

T
P

R

0

0.2

0.4

0.6

0.8

K

50 100

Fig. 5. Performance of the RS and GN algorithms in community detection. Each plot presents the result of a

real network, with X-axis denoting the number of communities K and Y-axis showing the metric of

performance (i.e., TPR). The TPRs for RS and GN are blue solid curves and yellow dash curves, respectively.

The blue shadows emphasize the regions where RS outperforms GN, while the yellow shadows indicate the

opposite cases.

Discussion

On the basis of a very intuitive hypothesis that two reciprocal nearest data points should belong to the same

cluster, we propose a simple clustering algorithm that outperforms related techniques on both efficiency and

accuracy. Beyond the better performance, our method has a strong interpretation power since it provides a

clustering tree that records the hierarchical organization of resulted clusters under different resolutions. We

further devise a way to calculate the distance between two artificial roots when their locations cannot be

explicitly determined, so that we can extend our method to deal with some related yet different challenges, like

the community detection problem in network science. Because of its simplicity, extendibility, efficiency and

effectivity, we believe our method will find wide applications in natural science, social science, engineering,

and so on.

To keep a record of artificial roots and to determine the distance between roots respectively ask for

additional space and time. Therefore, if one can quickly evaluate which one of the two reciprocal nearest

neighbors is the better representative data point, then the artificial roots are not necessarily introduced and the

algorithm’s efficiency can be further improved. We leave this idea as an open issue for future studies.

Considering the extended algorithm for community detection, the currently applied method (39) to determine

the distance between two nodes is highly time-consuming. Hopefully we can find out known measures or

design novel measures on similarity or distance between nodes (see examples in the review article (49) and

references therein) that can produce equally good or even better results in a much shorter time.

Materials and Methods

Data Description

UCI database (31) is one of the most well-known standard scientific databases, which maintains more

than 400 data sets as a service to the machine learning community and is continuously updated. Eight labeled

data sets are selected to test the performance of the proposed RS algorithm. Four of them are balanced data sets

(i.e., each category contains approximately equal number of data points) and the others are unbalanced data sets.

Parameters of these data sets are as shown in the Table 1.

Table 1: Basic information of the eight selected UCI data sets.

Type Data Set #Samples #Features #Classes

Balanced

synthetic-control 600 60 6

mfeat-fourier 2000 76 10

optdigits 5630 64 10

iris 600 4 3

Unbalanced

ecoli 336 7 8

dermatology 366 34 6

glass 214 9 2

wine 178 13 3

Networks. Four real networks are selected to test the performance of the RS algorithm on community

detection. (i) beach (41) is a human contact network of windsurfers. Each node represents a sportsman, and the

weight of an edge represents the number of contacts. (ii) netsci (42) is the largest connected component of the

co-authorship network of scientists in network science. The weight of an edge denotes the number of

corresponding co-authorized papers. (iii) jazz (43) is a collaboration network among jazz musicians, where two

musicians are connected if they have played together in a band. (iv) haverford (44) is a social friendship

network extracted from Facebook.

Table 2: Basic information of the four networks.

Type Name #Nodes #Edges Average Degree Clustering Coefficient

Weighted
beach 43 336 15.63 0.564

netsci 379 913 4.82 0.368

Unweighted
jazz 198 2742 27.70 0.520

haverford 1446 59589 82 0.323

Benchmark Clustering Methods

GA (33) is a typical hierarchical clustering algorithm which agglomerates sub-clusters according to their

distances. That is, two sub-clusters that have the minimum distance will be merged. GA is also named as

average-linkage method since the distance between two clusters in this algorithm is defined as the mean

distance between elements of each cluster.

CURE (25) is an efficient hierarchical algorithm, which introduces a sampling strategy before

agglomeration. Two main stages of CURE are as follows. (i) Choosing a constant number of well scattered

nodes of a cluster and shrinking them towards the centroid of the cluster. These shrunk nodes are treated as the

representatives of the cluster. (ii) Agglomerating sub-clusters according to the criteria like GA.

AP (6) is a novel clustering algorithm based on the message passing between nodes. Central nodes of

clusters are recognized by alternating two message passing steps, in which two matrices, responsibility and

availability, are updated iteratively. The process will stop after a preassigned number of iterations, or when the

elements in clusters remain unchanged for 10 iterations. Those nodes whose 'responsibility plus availability' is

positive are marked as the central nodes of clusters.

DP (4) is a density-based clustering algorithm, in which each node has two quantities, its local density and

its minimum distance from nodes of higher density, which are used to recognize the central nodes of clusters.

Each node is assigned to the same label as its nearest neighbor of higher density.

Rand Index

The Rand Index (36) is a widely used evaluation index for clustering algorithms, which measures the

similarity between two data partitions. Given a set S of n data points and its two partitions, the real partition

X and the algorithm-produced partition Y , the Rand Index R is defined as

a b
R

a b c d

, (4)

where a is the number of pairs in S that are in the same subset in X and in the same subset in Y ; b is the

number of pairs in S that are in the different subsets in X and in the different subsets in Y ; c is the number

of pairs in S that are in the same subset in X but in the different subsets in Y ; d is the number of pairs in S

that are in the different subsets in X but in the same subset in Y .

Betweenness Centrality

Betweenness Centrality (46) of a node i is defined as

, ,

(, ,)
()

(,)s i s t i t

g s i t
BC i

g s t

 , (5)

where (,)g s t is the number of shortest paths between s and t , and (, ,)g s i t is the number of shortest paths

between s and t that pass through node i .

Triangle Participation Ratio

Triangle Participation Ratio (TPR) (47) is defined as the ratio of nodes in a community that belong to the

triadic closure embedded in the corresponding community. The TPR indicator of the community C is defined

as follows:

|{ : , , , 1} |
() uv uw vw

C

u u v w C a a a
f C

n

 , (6)

where Cn denotes the number of nodes in the community C , and 1uva if there is an edge between nodes u

and v , otherwise, 0uva . The TPR value of one network is
1

()
| | C

f C

 , where is the sets of communities

by a certain method.

Girven-Newman Algorithm

The Girven-Newman (GN) algorithm (35) is a classical hierarchical community detection algorithm including

the following steps: (i) calculating the betweenness centrality of each edge; (ii) removing the edge with the

largest betweenness centrality; (iii) calculating the betweenness centralities for all remaining edges; (iv)

repeating the steps of (ii) and (iii) to obtain a series of community divisions.

References and Notes

1. P. N. Tan, M. Steinbach, A. Karpatne, V. Kumar, “Cluster analysis: basic concepts and algorithms” in Introduction to Data
Mining (Pearson, ed. 2, 2018), pp. 525-612.

2. J. Macqueen, Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symp. Math.

Statist. and Prob., Univ. California Press, Berkeley, 1967, vol. 1, pp. 281-297

3. A. K. Jain, Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651-666(2010).

4. A. Rodrigue, A. Laio, Clustering by fast search and find of density peaks. Science 344(6191), 1492-1496(2014).

5. D. Birant, A. Kut, ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208-

221(2007).

6. B. J. Frey, D. Dueck, Clustering by passing messages between data points. Science 315(5814), 972-976(2007).

7. L. Sun, C. Guo, C. Liu, H. Xiong, Fast affinity propagation clustering based on incomplete similarity matrix. Knowl. Info.

Syst. 51(3), 941-963(2017).

8. J. Vesanto, E. Alhoniemi, Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11(3), 586-600(2000).

9. S. A. Shah, V. Koltun, Robust continuous clustering. Proc. Natl. Acad. Sci. USA 114(37), 9814-9819(2017).

10. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal Mach. Intell. 22(8), 888-905(2000).

11. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1-15:58(2009).

12. P. Berkhin, (Pearson, ed. 2, 2018), pp. 525-612. “A survey of clustering data mining techniques” in Grouping Multidimens.

Data (Springer, Berlin, 2006), pp. 25-71.

13. L. Song, S. C. Huang, A. Wise, R. Castanon, J. R. Nery, H. Chen, M. Watanabe, J. Thomas, Z. Bar-Joseph, J. R. Ecker, A

transcription factor hierarchy defines an environmental stress response network. Science 354(6312), aag1550(2016).

14. D. L. B. Ma, A. P. Fisher, N. M. Clark, M. G. Fernandez-Espinosa, B. Möller, D. Weijers, Jan U. Lohmann, C. Williams,

O. Lorenzo, R. Sozzani, Predicting gene regulatory networks by combining spatial and temporal gene expression data in

Arabidopsis root stem cells. Proc. Natl. Acad. Sci. U.S.A. 114(36), E7632-E7640(2017).

15. M. E. J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113(2004).

16. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3-5), 75-174(2010).

17. M. Boly, V. Perlbarg, G. Marrelec, M. Schabus, S. Laureys, J. Doyon, M. Pélégrini-Issac, P. Maquet, H. Benali,

Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc. Natl. Acad. Sci. U.S.A. 109(15),

5856-5861(2012).

18. J. M. Schoffelen, A. Hultén, N. Lam, A. F. Marquand, J. Uddén, P. Hagoort, Frequency-specific directed interactions in

the human brain network for language. Proc. Natl. Acad. Sci. U.S.A. 114(30), 8083-8088(2017).

19. H. A. Dugan, S. L. Bartlett, S. M. Burke, J. P. Doubek, A. Hilary, F. E. Krivak-Tetley, N. K. Skaff, J. C. Summers, K. J.

Farrell, I. M. McCullough, A. M. Morales-Williams, D. C. Roberts, Z. Ouyang, F. Scordo, P. C. Hanson, K. C. Weathersb,

Salting our freshwater lakes. Proc. Natl. Acad. Sci. U.S.A. 114(17), 4453-4458(2017).

20. N. von Cramon-Taubadel, A. Strauss, M. Hubbe, Evolutionary population history of early paleoamerican cranial

morphology. Sci. Adv. 3(2), e1602289(2017).

21. A. Alkushi, B. A. Clarke, M. Akbari, N. Makretsov, P. Lim, D. Miller, A. Magliocco, A. Coldman, M. van de Rijn, D.

Huntsman, R. Parker, C. B. Gilks, Identification of prognostically relevant and reproducible subsets of endometrial

adenocarcinoma based on clustering analysis of immunostaining data. Mod. Pathol. 20, 1156-1165(2007).

22. T. Zhang, R. Ramakrishnan, M. Livny, Birch: A New Data Clustering Algorithm and Its Applications. Data Min. Knowl.
Discov. 1(2), 141-182(1997).

23. A. Kobren, N. Monath, A. Krishnamurthy, A. McCallum, A Hierarchical Algorithm for Extreme Clustering. KDD’17,
ACM, Halifax, Canada, 13 to 17 August 2017, pp. 255-264.

24. S. Guha, R. Rastogi, K. Shim, Rock: a robust clustering algorithm for categorical attributes. Inf. Syst. 25(5), 345-366(2000).

25. S. Guha, R. Rastogi, K. Shim, Cure: an efficient clustering algorithm for large database. Inf. Syst. 26(1), 35-58(2001).

26. G. Karypis, E. H. Han, V. Kumar, Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68-

75(1999).

27. M. J. Embrechts, C. J. Gatti, J. Linton, B. Roysam, “Hierarchical Clustering for Large Data Sets” in Advances in Intelligent

Signal Processing and Data Mining, P. Georgieva, L. Mihaylova, L. Jain, Eds. (Springer, Berlin, 2013), pp. 197-233.

28. G. Carlsson, F. Mémoli, Characterization, stability and convergence of hierarchical clustering methods. J. Mach. Learn.
Res. 11, 1425-1470(2010).

29. A. Fahad, et al., A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Trans. Emerging

Top. Comput. 2(3), 267-279(2014).
30. M. Gagolewski, M. Bartoszuk, A. Cena, Genie: a new, fast, and outlier-resistant hierarchical clustering algorithm. Inform.

Sci. 363, 8-23(2016).

31. M. Lichman, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,

School of Information and Computer Science (2013).

32. F. S. Samaria, A. C. Harter, Parameterisation of a stochastic model for human face identification. Proc. 2nd IEEE

Workshop Appl. Comput. Vision, IEEE, Sarasota USA, 5 to 7 December 1994, pp. 138-142.

33. J. H. Ward Jr, Hierarchical Grouping to Optimize an Objective Function. J. Amer. Statist. Assoc. 58(301), 236-244(1963).

34. S. Fortunato, D. Hric, Community detection in networks: A user guide. Phys. Rep. 659, 1-44(2016).

35. M. Girvan, M. E. J. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99(12),

7821-7826(2002).

36. W. M. Rand, Objective criteria for the evaluation of clustering methods. J. Amer. Statist. Assoc. 66(336), 846-850(1971).

37. M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, M. K. Markey, Complex wavelet structural similarity: a new image

similarity index. IEEE Trans. Image Process. 18(11), 2385-2401(2009).

38. B. Xiang, E. H. Chen, T. Zhou, Finding Community Structure Based on Subgraph Similarity, Studies in Computational
Intelligence 207, 73-81(2009).

39. F. Fouss, A. Pirotte, J. M. Renders, M. Saerens, Random-walk computation of similarities between nodes of a graph with

application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355-369(2007).

40. P. Courrieu, Fast Computation of Moore-Penrose Inverse Matrices, Neural Information Processing-Letters and Reviews

8(2), 25-29(2005).

41. L. C. Freeman, S. C. Freeman, A. G. Michaelson, On human social intelligence. J. Soc. Biol. Struct. 11(4), 415-425(1988).

42. M. E. J. Newman, Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3),

036104(2006).

43. P. M. Gleiser, L. Danon, Community structure in jazz. Adv. Complex Syst. 6(4): 565-573(2003).

44. A. L. Traud, P.J. Mucha, M.A. Porter, Social structure of Facebook networks. Physica A 391(16), 4165-4180(2012).

45. S. Fortunato, M. Barthelemy, Resolution limit in community detection. Proc. Natl. Acad. Sci. U.S.A. 104, 36-41(2007).

46. L. C. Freeman, A set of measures of centrality based on betweenness. Sociometry 40, 35-41 (1977).

47. J. Yang, J. Leskovec, Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181-

213(2015).

48. L. Lü, T. Zhou, Link Prediction in Complex Networks: A Survey, Physica A 390, 1150-1170 (2011).

Acknowledgments

Funding: This work is partially supported by the National Natural Science Foundation of China under Grant

Nos. 61433014 and 61673085, by the Science Strength Promotion Program of the UESTC under Grant No.

Y03111023901014006, and by the Fundamental Research Funds for the Central Universities under Grant No.

ZYGX2016J196.

Author contributions: W.B.X., D.B.C. and T.Z. conceived the research, W.B.X., Y.L.L. and C.W. performed

the experiments, W.B.X, Y.L.L., C.W., D.B.C. and T.Z. analyzed the data. T.Z. wrote the manuscript.

Competing interests: The authors declare that they have no competing interests.

Data and materials availability: All the data used in the experiments are available online. UCI data sets are

available in [http://archive.ics.uci.edu/ml], Olivetti face data set is available in

[http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html], and networks are available in

[http://networkrepository.com].

Supplementary Materials

synthetic-control

mfeat-fourier

ecoli

iris

optdigits

dermatology

glass

wineR
a
n

d
 I

n
d

e
x

0.7

0.8

0.9

1.0

α

1.0 1.5 2.0 2.5 3.0

Fig. S1. Sensitivity analysis on the value of the parameter for the eight UCI data sets. Each point denotes the

best Rand Index in iterations with the corresponding . The algorithm’s performance for synthetic-control,

mfeat-fourier, optdigits and glass is not sensitive to , while the performance for ecoli, iris, dermatology and

wine is relatively more sensitive to . Fortunately, for almost all cases, 1.5 will produce the best or nearly

the best results subject to the Rand Index, and thus in this paper, we fix 1.5 . If we are allowed to freely

tune the parameter , we can achieve slightly better performance than that reported in Fig. 3, Fig. 4 and Fig. 5.

However, it is not fair to other benchmarks, so that we only report the results corresponding to the fixed .

RS (1.65)

GA (3.19)

CURE (1.95)

AP (2.51)

DP (2.09)

C
P

U
 T

im
e

 (
m

s
)

102

104

106

108

1010

Data Size

102 103 104 105

Fig. S2. CPU times on random data sets. We compare the required CPU times of RS algorithm with other

algorithms on randomly generated data sets with different sizes. The relation between CPU times and data sizes

for each algorithm is fitted by a power-law curve, with the exponent shown in the legend. Obviously, RS is the

fastest algorithm while GA and AP are the slowest ones. The computation is implemented via a 3.4GHz 4 core

Intel Core i5 CPU.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

0

38 38 38 38 38 38

2222 22 22 2220

307 30 7 301 1 7 2913 9 9 9 9

20 20 20 20 0 0 0 05 5 5 5 5 5

37 37 37 37 3720 20 27 27 34 33 33 33 33 33 33 33 33 33 33

28 28 28 28 28 28 28 28 28 28 26 26 26 26 26 26 26 26 26 26

27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 261818 18

21 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20

23 23 23 23 23 23 23 231 1 35 35 35 35 35 35 35 35 35 35

30 30 30 30 304 4 4 4 4 13 13 13 13 137 7 73025

1 1 1 1 111 11 11 11 11 19 19 19 19 1934 34 34 34 34

30 30 30 30 30 30 30 30 30 30 20 20 20 200 016 16 16 16

0 0 0 0 012 12 12 12 12 32 32 32 32 32 32 32 32 32 32

0 0 02 2 2 217 17 17 7 7 7 7 7 7 7 7 7 7

31 31 31 31 31 31 3122 22 22 2220 20 20 202 2 2 225

8 8 8 8 8 8 8 8 8 8

14 14 14 14 14 14 14 14 14 14

25 25 25 25 25 25 25 25 25 25

31 3131 3118 18 18 18 18 18

29 29 29 29 29 29 29 29 29 29

6 6 6 6 6 6 6 6 6 6

0 0 0 0 0 0 030 30 30

0 0036 36 36 36 36 36 3625 25 25 25 25 25 25 25 25 25

8 8 8 8 815 15 15 15 15

24 24 2424 24 24 24 24 24 24

31 31 31 31 31 311 1 1 1

10 10 10 10 10 103 3 3 3 2 2 2 21717 17 1734 34

Labels

XX

X

X

XX

XX

Fig. S3. Result of RS on the whole Olivetti face data set. As shown in this figure, after two iterations we obtain

the result, where face images that belong to the same cluster are marked in the same number and color. Notice

that, there are several impure clusters which contain multiple person’s face images, which are marked by red

boxes. In addition, red crosses are used to mark those incorrectly classified face images.

