
U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o

Pre-processing approaches for collaborative filtering based
on hierarchical clustering

Fernando Soares de Aguiar Neto
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Fernando Soares de Aguiar Neto

Pre-processing approaches for collaborative filtering based
on hierarchical clustering

Master dissertation submitted to the Institute of
Mathematics and Computer Sciences – ICMC-USP,
in partial fulfillment of the requirements for the
degree of the Master Program in Computer Science
and Computational Mathematics. EXAMINATION
BOARD PRESENTATION COPY

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Marcelo Garcia Manzato
Co-advisor: Prof. Dr. Ricardo José Gabrielli
Barreto Campello

USP – São Carlos
September 2018



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados inseridos pelo(a) autor(a)

                                       Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: 
                                       Gláucia Maria Saia Cristianini - CRB - 8/4938 
                                       Juliana de Souza Moraes - CRB - 8/6176

d284a
de Aguiar Neto, Fernando Soares
   Abordagens de pré-processamento para filtragem
colaborativa baseada em agrupamento hierárquico /
Fernando Soares de Aguiar Neto; orientador Marcelo
Garcia Manzato; coorientador Ricardo J. G. B.
Campello. -- São Carlos, 2018.
   64 p.

   Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2018.

   1. Sistemas de Recomendação. 2. Agrupamento de
Dados. 3. Otimização. I. Garcia Manzato, Marcelo,
orient. II. J. G. B. Campello, Ricardo, coorient.
III. Título. 



Fernando Soares de Aguiar Neto

Abordagens de pré-processamento para filtragem
colaborativa baseada em agrupamento hierárquico

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação
e Matemática Computacional. EXEMPLAR DE
DEFESA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Marcelo Garcia Manzato
Coorientador: Prof. Dr. Ricardo José Gabrielli
Barreto Campello

USP – São Carlos
Setembro de 2018





ACKNOWLEDGEMENTS

To my family that always supported me. To all professors that helped me at the develop-
ment of this work, providing insight and knowledge. To my laboratory colleagues that provided
valuable discussions and feedback. To my Advisor and Co-Advisor, both were crucial to the
final state of this work.

Also, I would like to thank CNPq1 and FAPESP2 for the financial support, also thank
CeMEAI for the computational aid given to our experiments by the mean of Euler-Cluster3.

1 Grant #132633/2016-7
2 Grant #2016/04798-5
3 Funded by FAPESP, grant #2013/07375-0





RESUMO

AGUIAR NETO, F. S. Abordagens de pré-processamento para filtragem colaborativa base-
ada em agrupamento hierárquico. 2018. 64 p. Dissertação (Mestrado em Ciências – Ciências
de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2018.

Sistemas de Recomendação auxiliam usuários a encontrar conteúdo relevante, como filmes,
livros, músicas entre outros produtos baseando-se em suas preferências. Tais preferências são
obtidas ao analisar interações passadas dos usuários, no entanto, dados coletados com esse
propósito tendem a tipicamente possuir alta dimensionalidade e esparsidade. Técnicas baseadas
em agrupamento de dados têm sido propostas para lidar com esses problemas de foma eficiente
e eficaz ao dividir os dados em grupos similares baseando-se em características pré-definidas.
Ainda que essas técnicas tenham recebido atenção crescente na comunidade de sistemas de
recomendação, tais técnicas são usualmente atreladas a um algoritmo de recomendação específico
e/ou requerem parâmetros críticos, como número de grupos. Neste trabalho, apresentamos três
variantes de um método de propósitvo geral de extração ótima de grupos em uma hierarquia,
atacando especificamente problemas em Sistemas de Recomendação. Os métodos de extração
propostos não requerem parâmetros críticos e podem ser aplicados antes de qualquer sistema de
recomendação. Os experimentos mostraram resultados promissores no contexto de nove bases
de dados públicas conhecidas em diferentes domínios.

Palavras-chave: Sistemas de Recomendação, Agrupamento de Dados, Otimização, Dissertação.





ABSTRACT

AGUIAR NETO, F. S. Pre-processing approaches for collaborative filtering based on hierar-
chical clustering. 2018. 64 p. Dissertação (Mestrado em Ciências – Ciências de Computação e
Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2018.

Recommender Systems (RS) support users to find relevant content, such as movies, books, songs,
and other products based on their preferences. Such preferences are gathered by analyzing past
users’ interactions, however, data collected for this purpose are typically prone to sparsity and
high dimensionality. Clustering-based techniques have been proposed to handle these problems
effectively and efficiently by segmenting the data into a number of similar groups based on
predefined characteristics. Although these techniques have gained increasing attention in the
recommender systems community, they are usually bound to a particular recommender system
and/or require critical parameters, such as the number of clusters. In this work, we present three
variants of a general-purpose method to optimally extract users’ groups from a hierarchical
clustering algorithm specifically targeting RS problems. The proposed extraction methods do
not require critical parameters and can be applied prior to any recommendation system. Our
experiments have shown promising recommendation results in the context of nine well-known
public datasets from different domains.

Keywords: Recommender Systems, Clustering, Optimization, Dissertation.
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CHAPTER

1
INTRODUCTION

This work presents techniques that aid Recommender Systems. This chapter presents the
context and motivation that lead to the development of this research, along with the presented
work main contributions.

1.1 Contextualization
Recommender Systems (RS) are algorithms that filter relevant content for users, using

data gathered from their personal interests and previous feedback. The need for such systems
has increased with the growing amount of information generated with globalization and Internet
(RICCI et al., 2011).

RS can be classified into two categories, depending on their goal: i) rating prediction, in
which the system predicts a score for each user-item pair; and ii) item recommendation, in which
a ranking of relevant items is retrieved to the user (AGGARWAL, 2016). Both tasks are aided
by filtering techniques, such as Collaborative Filtering (CF), Content-Based Filtering (CBF)
and Hybrid Filtering (HF). While CF uses previous interactions of similar users or items to
compute recommendations, CBF uses characteristics extracted from items to construct a users’
preference profile and achieve recommendations based on such information. Hybrid methods,
in turn, mix CF and CBF into a single approach in order to mitigate the weaknesses of each
individual technique and improve overall performance by combining their strengths (RICCI et

al., 2011; BOBADILLA et al., 2013; BURKE, 2007).

1.2 Motivation
Regardless of the filtering technique adopted, RS face challenges such as sparsity and

high dimensionality of data (AGGARWAL, 2016). Sparsity means that much of the information
about the users’ preferences is missing, given that users generally do not interact with most
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available items, e.g. usually one does not listen or provide feedback to most songs from a radio.
High dimensionality, on the other hand, occurs because there are too many attributes to describe
users, assuming users are described by their interactions with each item, and typically there is a
large number of items (RICCI et al., 2011).

Recently, clustering techniques have gained increasing attention as an approach to reduce
high dimensionality and sparsity of data, improving the quality of recommendations (NA-
JAFABADI et al., 2017; COSTA; MANZATO; CAMPELLO, 2016; PEREIRA; HRUSCHKA,
2015; ZAHRA et al., 2015; VLACHOS et al., 2014; CONNOR; HERLOCKER, 2001; UNGAR;
FOSTER, 1998). Clustering makes it possible to group users and/or items with similar character-
istics, discovering topics of interest while possibly also detecting and removing noise (BILGE;
POLAT, 2013; LI; KIM, 2003). However, many techniques proposed in the literature are bound
to their own recommendation strategy, i.e. the information extracted during the clustering step
is useful only for a specific recommendation algorithm. This way, the clustering step cannot
be performed as a general-purpose pre-processing step regardless of the (possibly multiple,
different) RS that will be applied later. Besides, these approaches usually tackle problems such as
sparsity and high dimensionality in an indirect way only, by reducing the number of users/items
(COSTA; MANZATO; CAMPELLO, 2016; CONNOR; HERLOCKER, 2001) or extracting
information gathered on the clustering step (NAJAFABADI et al., 2017; LI; KIM, 2003). There
is no guidance to actively mitigate these problems other than somehow grouping users or items.
In addition, some algorithms are highly susceptible to parametrization (SUNANDA; VINEELA,
2015; SHINDE; KULKARNI, 2012), and/or require enriched information that may not be avail-
able for every application domain (COSTA; MANZATO; CAMPELLO, 2016; NAJAFABADI
et al., 2017). Finally, many of these methods do not take into consideration that an RS usually
demands a minimum amount of information in order to work properly, especially CF approaches.

1.3 Objectives
The main objective of this research is to explore the impact of hierarchical clustering

techniques applied prior to the recommendation. In particular, we aim to understand how these
techniques can be used to improve the quality of recommendations by segregating dissimilar
users in many groups. Therefore, our research hypothesis is that by generating user’s profile
groups at special abstraction levels and apply recommender algorithms independently in each of
these groups can generate better recommendations than the same recommender algorithm using
the whole database.

1.4 Contributions
In order to fill the gaps discussed and attain our objectives, we propose a pre-processing

step for recommender systems that can be applied prior to any recommender algorithm, cate-
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gorizing the users into disjoint groups or clusters. We propose three variants of a method that
automatically provides an optimal partition from a hierarchy of clusters given some optimization
criteria: two are based on the notion of cluster lifetime (BAGLA, 2006; CAMPELLO et al.,
2013), leading to a partition with more stable clusters; and the other explicitly minimizes the
sparsity of the interactions within clusters, directly tacking the sparsity problem that is common
in RS. All strategies ensure that there is a minimum number of users in each resulting group,
in order to provide a minimum amount of information needed for any recommender that may
be applied subsequently. The proposed methods in principle require very little information to
operate, and they can be extended in order to use more information, when available. Last but not
the least, they require no critical parameter.

In summary, the main contributions of this research are:

∙ A pre-processing clustering technique that: (i) relies only on information widely available
in databases, e.g. history logs and ratings, but can be easily extended to use more complex
information when available, and (ii) can be applied prior to any recommender algorithm,
reducing the amount of information to be processed by RS;

∙ Three variants to optimally extract groups from a hierarchy of clusters that specifically tar-
get RS problems; two based on the notion of cluster lifetime (BAGLA, 2006; CAMPELLO
et al., 2013), and the other based on the sparsity of the interactions within a group;

∙ An optimization solution for the problem of cluster extraction from a clustering hierarchy
that ensures a minimum number of users in each extracted cluster and can be adapted to
operate with different clustering quality criteria, without requiring any critical parameter;

∙ A cluster quality criterion explicitly based on the sparsity of the data, which depends only
on internal information of a cluster and can thus be pre-computed independently for each
cluster in a collection of candidates.

1.5 Dissertation Organization
The remainder of dissertation is organized as follows: in Chapter 2 we discuss the

background related to the presented work, concepts both from RS and clustering, including the
extraction technique which is base to this work, besides related works on clustering techniques
to support recommendation; in Chapter 3 the proposed cluster extraction methods are explained
in detail; Chapter 4 presents the experimental evaluation, methodology and discussion of the
results; lastly, in Chapter 5 we address final remarks, summarize the work and its contributions,
also discuss perspectives for future work.
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CHAPTER

2
LITERATURE REVIEW

In this chapter are presented the main concepts related to this work, important for a
better understanding of the presented research, starting with a Recommender Systems overview,
then Clustering and FOSC extraction technique, ending with works that use clustering to aid
recommendation task.

2.1 Notation

In the context of recommendation algorithms, we use special letters to denote users, u

and v, whereas for items we use letters i and j. The sets of users and items are denoted by U

and I, respectively, whereas |U | and |I| denote their cardinality (numbers of users and items).
For recommendation, we use rui to denote a known rating or score of a user-item interaction
(between a user u and an item i), while r̂ui is used to refer to a predicted one.

For clustering, we use C to refer to a cluster of data objects, |C| is its cardinality (cluster
size), and Cn is the cluster of index n. A hierarchy of clusters can be expressed as a binary-tree,
where each node represents a cluster, the root-node, C1, represents the cluster that contains all
objects, and each internal node Cn have a left child, denoted by Cl

n, and a right child, denoted by
Cr

n. Nodes without descendants are called external nodes or leaves.

2.2 Recommender Systems

As introduced before, Recommender Systems are algorithms that filter relevant content
for users, using data gathered from their personal interests and previous feedback. They can
be classified in many categories, according to the desired output (rating prediction or ranking),
the filtering technique (e.g. Collaborative Filtering) and the approach used to aggregate the
information (e.g. neighborhood-based) (AGGARWAL, 2016; BOBADILLA et al., 2013).
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For the desired output, two main tasks are attributed to RS, rating prediction and ranking
(also referred as item recommendation). Rating prediction intents to predict the specific rating a
user would give to each item on the system; on the other hand, item recommendation aims to
rank items in order of preference for each user. Independent of the task, RS are aided by filtering
techniques which help to select the desired information in order to predict the recommendations.

2.2.1 Recommender Systems Filtering

The literature presents many filtering techniques: some use item’s description (Content
Based Filtering); others explore the relations and similarities between users or items (Collabora-
tive Filtering); some explore other information, e.g. demographic or context (Community and
Context Based Filterings); and finally, it is possible to mix any other filtering techniques in order
to achieve a Hybrid Filtering approach(BURKE, 2007).

Each filtering approach has its own advantages and limitations, being Hybrid Filtering
and Collaborative Filtering very common, Content Based Filtering is also widely used, although
item information might not be available for every domain. Collaborative Filtering uses similarities
between users to achieve recommendations, it is based on the idea that similar people will have
similar interests, therefore it is important to define a representation for each user.

2.2.2 Users’ Profile

Each filtering technique may ask for specific information about each user, for instance
Community-Based Filtering may ask for demographic information about a user. For CF it is
used information about the preferences of each user. Such representation is usually called Users’
Profile.

The needed information can be acquired mainly in two ways: by implicit interactions,
where the users do not feel they are providing information; or explicit interactions, where the user
actively provides information to the system. Examples of implicit interactions are: transaction
history (JAWAHEER; SZOMSZOR; KOSTKOVA, 2010); listened songs; or web site access
(BOBADILLA et al., 2013). Implicit interactions are generated constantly by the user by simply
using the system, hence there is no effort to generate them. However, even abundant, implicit
interactions tend to lead to imprecise information (AMATRIAIN; PUJOL; OLIVER, 2009). On
the other hand, explicit interactions require the user to actively give his opinion about some
product, which usually happens only on extremes, either the user really likes or dislikes the item,
concentrating this type of feedback on the edges; besides, explicit information tend to be less
abundant (AMATRIAIN; PUJOL; OLIVER, 2009).

Usually, users’ profiles are stored and manipulated by the use of a matrix, associating
each pair user-item to a value of interest, e.g. rating. However, such approach offers little
information and is prone to traditional problems in RS, as for huge sparsity of information and
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high data dimensionality. In this context, much research has explored ways to enrich users’
profiles, sometimes simply by acquiring more information. For instance in (ADOMAVICIUS et

al., 2011) the authors explore the use of context information, i.e. each transaction is associated
to the occasion it occurred. Another example, in (NAJAFABADI et al., 2017), the authors enrich
information about items, and use clustering and association rules combined to achieve a better
representation of the user and therefore a better recommendation.

The information by itself is not sufficient to generate good recommendations, an al-
gorithm to process all information and then generate recommendations is used, and many
approaches are being explored.

2.2.3 Recommender Systems Algorithms

Recommender Systems need algorithms to process the information and generate recom-
mendations. Each filtering technique has its algorithms and approaches, given that each filtering
attacks the recommendation task in a different way. CF has been widely explored (BOBADILLA
et al., 2013; RICCI et al., 2011) and will be explored in this work, motivated because it needs
little information about users or items, being easy to implement in every domain. Therefore, this
subsection explains some approaches used in CF also used in the evaluation of this work. Also
it is worth to notice that some approaches described here can be adapted to work with other
filtering techniques and incorporate more information; also, the solution described in this work
is not limited to CF.

There are three main approaches to CF: Neighborhood-based algorithms that explore the
ratings given by a subset of similar users; Latent Factor approaches, which assume that there are
latent factors that describe the item and the users preferences; and also global recommendations,
which provide a non-personalized recommendation for every user. Each described in more detail
below, alongside with one example algorithm which was applied to this work:

∙ Neighborhood-based: Selects a subset of the data which are more similar to a user or item,
its so-called neighborhood, then, only the information pertinent to the neighborhood is used
to generate the recommendations. One example is the User-Knn algorithm (KOREN, 2010),
the prediction of an unknown score for a user-item pair r̂ui is made by checking if the k most
similar users to u interacted with item i. We denote Itvi = 1 if user v interacted with item i,
and 0 otherwise. The neighborhood is generated using some similarity function between
users, denoted sim(u,v). Finally, it predicts the score r̂ui considering the neighborhood
N(u) and their interactions, as follows:

r̂ui = ∑
v∈N(u)

Itvisim(u,v) (2.1)
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User-Knn then sorts the scores r̂u. to generate a ranking of items to be recommended to
user u.

∙ Latent Factor or Matrix Factorization: Assumes that the user-item interactions matrix
R : U × I, is incomplete but is a product of two lower rank matrices, hence R̂ = WHt ,
where W : |U |× k and H : |I|× k, being k the dimensionality/rank of the approximation,
and each row Wu or Hi can be interpreted as users or items described by latent factors, that
exist but are unobserved. Therefore, a prediction using MF is defined as in Equation (2.2).

r̂ui = ⟨wu,hi⟩=
k

∑
f=1

wu f ·hi f (2.2)

One example of algorithm that is latent factor based is BPRMF, which stands for Bayesian
Personalized Ranking Matrix Factorization (RENDLE et al., 2012). It consists in optimiz-
ing a ranking (BPR) of items for each user by the use of implicit information, i.e. a user
interacted or not with a given item, which helps to infer the relative order of preference
between two items. It can be used to optimize different recommender models, such as
Matrix Factorization (MF).

∙ Non-Personalized: Is the simplest of all approaches, simply recommending based on a
global view of each item. For instance, the Most Popular algorithm recommends the items
by its global popularity, independent of each user’s interactions (ADOMAVICIUS et al.,
2016). To recommend item i to a user u, this method counts all interactions that item i

received from users in the dataset, r̂ui = |Ti|, where Ti is the set of interactions involving
item i. The predicted scores r̂ui for those items i unknown to user u (i.e., for which the
entries rui in the user-item matrix are unknown) are sorted in decreasing order, and the top
items are recommended to that user.

2.3 Clustering

Clustering methods categorize a dataset into clusters, in such a way that similar data
objects tend to belong to the same cluster whereas objects that are not similar to each other tend
to belong to different clusters (GAN; MA; WU, 2007).

2.3.1 Hierarchical Clustering

Clustering algorithms can be mainly divided into partitional and hierarchical. Partitional
algorithms aim to find a “flat” clustering solution consisting of a given number of mutually
exclusive clusters, usually a partition of the data into disjoint subsets. Depending on the algorithm,
the number of clusters may be arbitrarily set by the user or automatically determined, oftentimes
as a consequence of some other user-defined parameter. Hierarchical algorithms, on the other
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hand, produce a complete collection of nested partitions with all possible numbers of clusters,
usually without requiring any parameter. If a flat clustering solution is needed though, it must be
somehow extracted from the hierarchy, which may require user-defined parameters depending
on the technique adopted. In this paper, we employ an effective and efficient technique that does
not require any parameter at all.

Figure 1 – Hierarchy of clusters displayed as a dendrogram.

This work explores the use of hierarchies of clusters, therefore this section is focused on
hierarchical clustering approaches. Hierarchies of clusters can be obtained in many ways, for
instance one algorithm can start by isolating every object into its own cluster, called singleton,
then clusters can be merged pair by pair following some criteria, e.g. minimum distance between
objects of each cluster. Each time clusters are merged a new partition can be extracted, and once
all clusters have been merged hierarchically, it is possible to analyze many different possibilities
to extract a “flat” partition from the resulting hierarchy. The hierarchy can be represented in many
ways, one of them is by the means of a dendrogram. An example of dendrogram is illustrated
in Figure 1, where the horizontal axis shows the objects xn, and the vertical axis shows a scale,
indicating when each cluster merger occurred, notice that at first (bottom) each object is isolated,
then they merge with another cluster, for instance x6 and x8 merge into C4 and x7 and x9 merge
into C5, clusters continue to merge until only one cluster rests, C2 merges with C3 forming C1.
Notice that this hierarchy presents many possibilities to extract clusters, one could extract a
partition by using the clusters in a arbitrary level, e.g. if we cut the dendrogram at scale 10, we
would have clusters C2 = {x2,x1,x3,x4} and C3 = {x5,x6,x8,x7,x9}. Many other more elegant
approaches can be used to extract clusters and this work extends one of them, further explained
(in Subsection 2.3.3), to the recommendation scenario. Before that, is important to explain briefly
some of the clustering algorithms used in this work.

2.3.2 Algorithms

Three main clustering algorithms are related to this work: K-Means, which is a classic
prototype-based algorithm; K-Medoids, which is a medoid-based variant of K-Means; and
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Ward’s Agglomerative Hierarchical Clustering (Ward’s AHC) method, which is used as a basis
for our proposed data pre-processing approaches for RS.

∙ K-Means: is a prototype-based clustering algorithm that randomly generates k cluster
prototypes, where k is the user-defined number of clusters (given as input), and iteratively
adjusts these prototypes as cluster centroids aiming to minimize the total within-cluster
variances. The algorithm basically iterates between two steps, namely, assignment of data
objects to the closest cluster centroid and adjustment of the centroids, until convergence
is reached. Solutions are only guaranteed to be locally optimal, since they depend on the
initial prototype initialization. This algorithm is therefore susceptible to bad initialization
and usually requires multiple runs to produce more reliable results (GAN; MA; WU, 2007;
BAGLA, 2006; ZAHRA et al., 2015).

∙ K-Medoids: is also a prototype-based clustering algorithm, which works similarly to
K-Means, except that the prototypes (called medoids), instead of unconstrained centroids,
are forced to coincide with objects in the dataset (PARK; LEE; JUN, 2006). Since centroid
computation is not required, K-Medoids can operate solely with pairwise distances between
data objects, rather than the objects themselves, and unlike K-Means this distance does
not need to be Euclidean. In fact, any (dis)similarity measure can be used, such as Pearson
or Cosine, which are commonly used in recommendation.

∙ Ward’s AHC Method: is an agglomerative hierarchical clustering method (WARD, 1963;
GAN; MA; WU, 2007), also known as “minimum variance method”. It works as follows
(BAGLA, 2006): first, each data object is considered a cluster on its own, called singleton,
so initially the number of clusters is the same as the database size. In each step, the
algorithm merges a pair of clusters, thus producing a new hierarchical level that has
necessarily one cluster less than the previous level, until all objects belong together to a
single cluster at the highest level (root of the clustering hierarchy/cluster tree). The pair
of clusters to be merged in each step consists of the two clusters such that the increment
in the total variance of the resulting clusters as a result of the merger is minimal, i.e. the
variation between the within-cluster variances before and after the merger is minimized.
In principle, Ward’s method has a geometrical interpretation only when squared Euclidean
distance is used, but the algorithm is oftentimes used successfully (although heuristically)
with other (dis)similarity measures. This is particularly important in recommendation
because Euclidean distance is well-known not to produce the best results in this domain,
due to the sparsity and high-dimensionality of the data (HOULE et al., 2010), so other
measures need to be in place.
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2.3.3 Cluster Extraction

In this work are proposed automatic strategies designed to produce optimal data clusters
for recommendation. This is achieved by selectively picking disjoint clusters from a clustering
hierarchy according to a suitable optimization criterion. Our proposed strategies are specialized
instances of a general-purpose framework, called FOSC (Framework for Optimal Selection of
Clusters from hierarchies) (CAMPELLO et al., 2013), which is explained below.

Let {C1, C2, ..., Ck} be a collection of clusters in a clustering hierarchy produced by
some hierarchical clustering algorithm. In the following, for the sake of simplicity and without
any loss of generality, we assume that the clustering hierarchy is (or can be) represented as
a binary cluster tree. This is the case, for instance, of all classic AHC algorithms, including
Ward’s (Section 2.3.2). The root of the cluster tree, C1, contains the entire set of data objects. In
order to select optimal clusters from this cluster tree to form the final partition, P, an objective
function J(P) is needed. FOSC is not limited to the selection of one of the levels of the hierarchy,
which corresponds to the traditional horizontal cut through a clustering hierarchy. Instead, it can
actually perform local (rather than global) cuts that allow clusters to be extracted from different
hierarchical levels along different branches of the cluster tree. This is only possible, however, if
the objective function J to be maximized satisfies two properties, namely: (i) J must be additive,
which means that it can be written as a sum of individual components S(Cn), each of which is
associated with a single cluster Cn of the selected partition P; and (ii) these components must
be local, which means that every term S(Cn) must be computable locally to Cn, independent of
what the other clusters that compose the candidate partition P are.

The property of locality allows the value S(Cn) of every cluster in the cluster tree to
be computed prior to the decision on which clusters will compose the final solution to be
extracted. Additivity means that the objective function can be written as J(P) = ∑Cn∈P S(Cn),
and the problem is then to choose a collection P of clusters such that P is a valid partition (with
disjoint clusters whose union is the dataset) that is globally optimal in that it maximizes J(P).
Mathematically, the optimization problem can be formulated as (CAMPELLO et al., 2013):

Maximize
δ2,...,δk

J =
k

∑
n=2

δnS(Cn)

subject to:

δn ∈ {0,1}, n = 2, ..., k

∑m∈Ih
δm = 1, ∀h such that Ch is a lea f

(2.3)

where δn is an indicator that determines whether Cn belongs (δn = 1) or not (δn = 0) to the flat
solution P and Ih is the set of cluster indexes on the path from a leaf cluster Ch (included) to the
root (excluded). The constraints involving these paths ensure that no data object is assigned to
more than one cluster in any valid solution (partition) P, while also ensuring that every object is
assigned to a cluster. Problem (2.3) can be solved very efficiently, in linear time and memory
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with the number of candidate clusters in the clustering hierarchy, i.e., O(k),1 using dynamic
programming (FITZGIBBON; ALLISON; DOWE, 2000). The dynamic programming algorithm
proposed in (CAMPELLO et al., 2013) tackles the problem by iteratively solving and aggregating
increasingly bigger instances of the same problem, and is based on the observation that any
subtree of the cluster tree is also a cluster tree. This approach is very efficient as it needs only
two traversals through the cluster tree, one bottom-up and another one top-down. For the sake of
simplicity, we describe here a conceptually equivalent, recursive solution, shown in Equation
(2.4).

J*Cn
=

S(Cn), i f Cn is a lea f cluster in hierarchy

max{S(Cn), J*Cl
n
+ J*Cr

n
}, otherwise

(2.4)

where Cl
n and Cr

n are the left and right child nodes of an internal node Cn of the cluster tree,
respectively, and J*Cn

is the optimal value of the objective function corresponding to the best
partition that can be extracted from the subtree rooted at cluster Cn. The solution to Problem (2.3)
is the collection of clusters corresponding to the sequence of recursive choices in Equation (2.4)
needed to compute J*C1

, where C1 is the root of the cluster tree. This solution can be interpreted as
follows: if the quality of a given cluster Cn, as measured by S(Cn), is better than the aggregated
quality of the best possible collection of its sub-clusters, then we discard the sub-clusters and
keep Cn (δn = 1), otherwise we discard Cn instead (δn = 0). Ties can be resolved arbitrarily
as they do not affect the final value of the objective function. In our implementation, ties are
resolved prioritizing the simpler model, i.e., a parent cluster is preferred to its children.

In (CAMPELLO et al., 2013), the authors proposed a cluster quality measure, S(Cn),
based on the notion of lifetime of an object belonging to a cluster in the clustering hierarchy.
Clustering hierarchies produced by most hierarchical clustering algorithms, including AHCs
such as Ward’s, bring a horizontal bar with a scale associated with the different hierarchical
levels. In AHCs, this scale represents a related measure of dissimilarity between the pair of
clusters that have been merged at each hierarchical level. As an example, consider the clustering
hierarchy of a collection of 9 data objects show in Figure 2-c. The root of the tree, cluster C1,
results from the merger of clusters C2 and C3, which occurs at value 11 of the scale. Cluster C2,
in turn, results from another merger that occurs at value 9 of the scale. Therefore, notice that
the scale span of any data object belonging to cluster C2, namely x1, x2, x3 or x4, is the interval
[9,11], which has length 2, so we say that the lifetime of an object x in cluster C2, L(x,C2),
is 2. Since more prominent clusters are expected to have more objects with longer lifetimes,
the measure of cluster Stability was proposed in (CAMPELLO et al., 2013) as the sum of the

1 Assuming that the hierarchy with the values S(Cn) of each cluster is provided as input.
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lifetimes of the objects in the cluster:

S(Cn) = ∑
x∈Cn

L(x,Cn) (2.5)

Figure 2 – Three alternative representations of the same clustering hierarchy: (a) The simplified hierarchy
filtered with MCS = 2; (b) The complete hierarchy, without any prior filtering (MCS = 1); (c)
The complete hierarchy displayed as a dendrogram, with the clusters of the simplified hierarchy
indicated by labels in the corresponding nodes. In (a) and (b), the optimal FOSC solution
according to the Stability criterion is highlighted in colors (clusters C2, in blue, and C3, in
purple)

From Equation (2.5), it is clear that, since L(x1,C2)= L(x2,C2)= L(x3,C2)= L(x4,C2)=

2 in the example of Figure 2-c, then it follows that S(C2) = 4*2= 8. Not all clustering hierarchies
are such that the lifetimes of all objects in a cluster are necessarily the same though. For instance,
Figures 2-a and 2-b display two alternative representations of the same hierarchical representation
(dendrogram) in Figure 2-c. Rows correspond to hierarchical levels, columns correspond to
data objects, and entries represent cluster indexes (labels). While Figure 2-b is a complete
hierarchy that is fully equivalent to the dendrogram in Figure 2-c, i.e., a binary tree where every
single internal or leaf node is deemed a different cluster, this is not the case in the so-called
simplified hierarchy shown in Figure 2-a. This type of hierarchy simplification, as proposed
in (CAMPELLO et al., 2013), is obtained by defining an optional minimum threshold, called
minimum cluster size (MCS), below which a group of objects is not considered a cluster. This
way, when interpreting the hierarchy in a top-down fashion, only when a cluster splits into two
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clusters each of which has at least MCS objects the split is considered valid and the two new
clusters get new labels. When one of the child clusters (or both) does not meet the minimum size
requirement, it is labeled as noise (0) and the parent cluster keeps its original label, so it only
“shrinks” (or disappears) rather than splits.

This kind of simplification can significantly reduce the size of clustering hierarchies.
For instance, the complete hierarchy in Figure 2-b (as well as its equivalent dendrogram rep-
resentation in Figure 2-c) has 2 * 9− 1 = 17 different clusters, whereas the simplified one in
Figure 2-a keeps only the 5 most prominent ones. A side effect of simplification is that, in
a simplified hierarchy, different objects can have different lifetimes in the same cluster. For
instance, notice in Figure 2-a that objects x1 and x3 join cluster C2 at level 3 of the scale and stay
in this cluster up to level 11, when cluster C2 merges with C3 giving rise to C1, so their lifetimes
is L(x1,C2) = L(x3,C2) = 11−3 = 8. Object x2, however, joins cluster C2 only at level 6, so its
lifetime in this cluster is L(x2,C2) = 11−6 = 5. Similarly, we have L(x4,C2) = 11−9 = 2, and
the stability of C2 can thus be computed from Equation (2.5) as S(C2) = 2*8+5+2 = 23.

Notice that Stability as defined in Equation (2.5) satisfies the property of locality required
by FOSC, as it can be pre-computed independently for each candidate cluster in the cluster tree.
If we define an objective function given by the Overall (Sum of) Stability of the clusters to be
selected by FOSC to be part of the extracted partition P, i.e., J(P) = ∑Cn∈P S(Cn), this objective
function is by definition additive and, then, FOSC can be applied (CAMPELLO et al., 2013).

In Section 3.2, we propose three alternatives to the standard, general-purpose Stability-
based FOSC formulation described above, which change the way S(Cn) is calculated and/or the
way noise is handled, always specifically targeting the idiosyncrasies of the recommendation
scenario.

2.4 Related Work

In this section, we review previous studies that apply clustering to traditional recommen-
dation problems. In most of these studies, e.g. (NAJAFABADI et al., 2017; ZAHRA et al., 2015;
VLACHOS et al., 2014), the clustering step is embedded as part of the recommendation system,
binding the clustering phase to a specific recommender algorithm, preventing or hindering the
use of a different algorithm.

The use of data clustering to support recommendation is not a recent idea. In a 1998 paper
(UNGAR; FOSTER, 1998), the authors introduced a method to predict if a user will have interest
in a given item, which works essentially by generating groups of users and items, with the aid of
statistical models in order to find spots with high probability of a user-item interaction. Similarly,
recent studies make explicit use of co-clustering/bi-clustering techniques, which cluster users
and items simultaneously, in order to guide decision making in recommendation. For instance,
in (VLACHOS et al., 2014) the authors apply co-clustering by first grouping users and items
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independently with K-Means, then the groups in each dimension are combined and the resulting
co-clusters are used to detect user-item pairs for which the user is likely to have interest in the
item. However, in order to rank these pairs, the authors combine a variety of external information
about users, which may not be available in many RS applications/databases.

Other studies perform clustering of either items or users in order to support recommenda-
tion. In (LI; KIM, 2003), the authors describe a K-Means clustering-based recommender strategy
that recommends items to users based on pairwise similarities between items. This approach
needs attributes to describe the items, which may not be available, and it is sensitive to parameters
as well as to the randomness involved in the initialization of K-Means. Instead of items, Shinde
and Kulkarni (SHINDE; KULKARNI, 2012) cluster users by their rating tendencies, namely,
users that tend to give high ratings, low ratings, or neutral. The proposed method applies a
centroid-based clustering algorithm that requires two critical parameters in order to obtain three
groups and centroids which are then used to predict the rating that a user would give to each item.
In a similar approach, Zahra et al. (ZAHRA et al., 2015) explore many centroid-based strategies
to cluster users, where a cluster centroid can be interpreted as the mean rating given by the users
of the corresponding group, recommendations are then provided based on the nearest k centroids.
In (NAJAFABADI et al., 2017), the authors propose the use of hierarchical clustering in order to
categorize items based on external attributes (e.g. author, year, etc. of a music). Once the items
have been categorized, users are related to groups of items based on their interactions, using
association rules, and users’ preferences are estimated. All these approaches require extended
information beyond an ordinary user-item matrix, for instance (SHINDE; KULKARNI, 2012;
ZAHRA et al., 2015) use explicit feedback of scores whereas (NAJAFABADI et al., 2017) use
enriched description of the items. Extended information may not be available in every application
domain. In addition, the clustering phase is often bound to the particular recommender algorithm
adopted. For instance, it is not possible to apply a matrix factorization recommender system when
using the method in (ZAHRA et al., 2015), given the way the data is handled at the clustering
phase of that method.

The use of clustering to segment the database as a pre-processing step for recommenda-
tion can be motivated by different reasons, such as reduce sparsity (CONNOR; HERLOCKER,
2001), reduce computational time (SUNANDA; VINEELA, 2015), or to improve quality of
predictions by performing more personalized, group-focused recommendations (COSTA; MAN-
ZATO; CAMPELLO, 2016). This type of approach allows the application of any recommender
system subsequently to the clustering step. In (CONNOR; HERLOCKER, 2001), the authors seg-
ment items using Average-Linkage hierarchical clustering, then recommendations are performed
considering only the interactions within subgroups of items, which is motivated by the reduction
in the sparsity of the data, since items in the same group are expected to be similar in terms of
interactions. Similarly, the authors in (SUNANDA; VINEELA, 2015) also use Average-Linkage
to cluster items, but in this case items are clustered based on their textual description, and the
main motivation is to reduce computational time in the recommendation step, since the number
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of items in each recommender is reduced. Both aforementioned studies, however, arbitrarily
choose critical parameters to select clusters from the Average-Linkage clustering hierarchy.

Aiming to improve the quality of recommendations, the authors in (COSTA; MANZATO;
CAMPELLO, 2016) use different types of feedback, e.g. ratings and accesses to items, in order
to produce multiple group-focused recommendations. K-Medoids clustering is applied to each
type of feedback in order to group users, then for each group of users a recommender is applied
to the corresponding interactions, and finally the predictions obtained from each type of feedback
are combined in order to generate a single list of recommendations for each user. This approach,
like many others reviewed here, require enriched information, in this case different types of
feedback, which may not be available in every application domain. In addition, a recommender
must be trained for each type of feedback, which may increase the computational cost of the
recommender step.

In summary, clustering has been used to support recommendation, either as a pre-
processing step where the data is processed in such a way that any recommender can be
applied (CONNOR; HERLOCKER, 2001; SUNANDA; VINEELA, 2015; COSTA; MANZATO;
CAMPELLO, 2016), or as a tool to infer or elicit information to be used in a particular recom-
mender algorithm (PEREIRA; HRUSCHKA, 2015; VLACHOS et al., 2014; LI; KIM, 2003;
SHINDE; KULKARNI, 2012; ZAHRA et al., 2015; NAJAFABADI et al., 2017). The first
approach is more general in scope since it permits any recommender system to be applied,
tacking sparsity and reducing computational burden. This is the approach we follow in this paper.

Our proposal differs from others reviewed here in section 2.4, e.g. (SUNANDA; VI-
NEELA, 2015; NAJAFABADI et al., 2017; VLACHOS et al., 2014; COSTA; MANZATO;
CAMPELLO, 2016), for not requiring enriched information or any specific type of feedback,
while being able to use enriched information when it is available. Furthermore, previous studies
rely heavily on critical user-defined parameters, which can be relatively simple such as the
number of clusters (CONNOR; HERLOCKER, 2001; COSTA; MANZATO; CAMPELLO,
2016) or more complex thresholds that are hard to tune for each particular dataset (SHINDE;
KULKARNI, 2012). Our proposal does not suffer from these limitations.

2.5 Final Remarks

In this chapter concepts important for a better understanding of this research were
presented, specially the FOSC cluster extraction technique which is the foundation of this work.

Concepts regarding Recommender Systems were also presented, starting with a brief
contextualization, then explaining filtering methods and three approaches to Collaborative
Filtering: neighborhood-based; latent-factor and non-personalized, including representative
examples of those. Moreover, clustering was contextualized, some algorithms were presented,
two partitional (K-Means and K-Medoids) and one hierarchical (Ward’s AHC) were described,
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the concept of hierarchical clustering was explained, alongside with a dendrogram representation
for hierarchies. In addition, a cluster extraction approach that optimizes the quality of the selected
clusters was presented, such an approach will be extended in this work and its understanding
is fundamental. Lastly, the related work was described, in particular the literature that applies
clustering to aid the recommendation task, highlighting the main issues in the area, such as: the
binding between clustering and recommender phases; the amount of information needed to apply
such techniques; or parameter sensitivity. With each solution being addressed in this work.

The following chapter addresses the three proposed cluster extraction approaches that
where developed.
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CHAPTER

3
PROPOSAL

In this chapter are presented three novel variants of the standard FOSC formulation
described in Section 2.3.3, which are specifically designed to directly tackle RS problems,
namely data sparsity and the need to ensure that there is a minimum amount of user information
in each group in order to successfully perform group-based recommendation.

3.1 Contextualization

Even though the cluster extraction techniques investigated in this work can in principle
be applied to both users or items, here we focus on the problem of clustering users as a pre-
processing step prior to the application of RS. The groups of users generated by our clustering
techniques can be inputted into an RS according to the following scheme:

Figure 3 – Scheme to apply hierarchical clustering to aid RS.
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1. Apply a hierarchical clustering algorithm to the rows of the user-item interaction matrix in
order to produce a clustering hierarchy of users according to their interactions with the
items;1

2. Extract a partition of disjoint clusters of users from the hierarchy using one of our new
variants of FOSC suitable for the RS domain;

3. For each extracted cluster, apply a recommender algorithm, considering only information
regarding the users in that cluster;

4. Concatenate the generated rankings (of user-item pairs) in order to perform the final
recommendation.

Notice that the scheme above can indirectly help reduce data dimensionality in RS
because, by considering subsets of similar users independently, certain categories of items may
not have any interactions at all inside certain groups of users, and can thus be ignored by the
respective recommender. Also, notice that the automatic extraction of clusters from a clustering
hierarchy is advantageous when compared to the direct partitioning clustering approach: first,
the number of clusters does not need to be estimated or provided as input by the analyst;
second, hierarchical algorithms are parameterless and deterministic, so they are not susceptible
to initialization of prototypes or any other source of randomness that may affect other algorithms
(e.g. K-Means); third, the clustering and the extraction can be treated as separate problems, so
different clustering and extraction techniques can be combined; lastly, FOSC can extract clusters
from multiple hierarchical/granularity levels, which may contain clusters with highly different
densities and sizes, which is a difficult problem for most flat clustering algorithms.

3.2 Cluster Extraction for RS
In principle, the standard FOSC formulation described in Section 2.3.3 could be applied

in Step 2 of the scheme proposed above. However, the standard formulation has not been
designed to directly tackle RS problems. One of these problems is the need to ensure that there
is a minimum number of users in each group in order to successfully perform group-based
recommendation. Recall that an optional, minimum cluster size threshold, MCS > 1, can be
applied to simplify the clustering hierarchy prior to the application of FOSC (see the example
in Figure 2). In other words, clusters that do not meet the minimum size requirement can be
disregarded as noise in the simplified hierarchy, as a pre-processing mechanism that is already
available in the original FOSC formulation. Nevertheless, this mechanism may not be suitable in
the RS domain. In fact, it may not be suitable to use such a simplified hierarchy in recommender
systems because some data objects may end up as noise in the extracted partition. For instance,
1 A suitable (dis)similarity measure between users, as rows of the user-item interaction matrix, is

required. Pearson or Cosine are recommended in RS applications.
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if a solution P = {C2,C4,C5} was extracted from the simplified hierarchy in Figure 2-a, object
x5 would be left unclustered as noise (0). This may be inappropriate in the RS context because
the corresponding user would be excluded from the recommendation, provided that it does not
belong to any cluster. Besides, it is meaningless to put all noise objects (i.e., all unclustered
users) into a common “rag bag cluster”, because noise-labeled users can be completely unrelated
to each other.

To avoid the occurrence of noise, we always use a complete hierarchy, such as in Figure
2-b, when performing cluster extraction for recommendation. Therefore, we need an alternative
mechanism to enforce that the extracted clusters meet the minimum size threshold and thereby
ensure that there is enough user information in each group to perform recommendation. Our
solution is to enforce the threshold MCS during the optimization process to extract clusters, rather
than as a pre-processing of the clustering hierarchy.

The difference between enforcing MCS > 1 before or during FOSC can be illustrated
using once again the example in Figure 2. For instance, in the simplified hierarchy in Figure
2-a, produced by applying MCS = 2 prior to any cluster extraction, solution P = {C2,C4,C5} is a
valid candidate as it satisfies all the constraints of Problem (2.3). If we use instead the complete
hierarchy in Figure 2-b and enforce MCS = 2 during cluster extraction, this is no longer a feasible
solution because by extracting C2, C4, and C5, cluster C3a would necessarily have to be extracted;
it cannot be extracted though, since it contains a single object, x5 (|C3a|= 1 < MCS).

It is worth noticing that there is an upper bound to the value of MCS above which no
feasible solution exists. In particular, if MCS is larger than the size of any of the child nodes
directly descendant from the root (C1), then only C1 would be a feasible solution, but this
“solution” is intentionally blocked in the optimization formulation and FOSC algorithm as it does
not represent any clustering of the data at all.

The way we adjust FOSC to incorporate MCS into the optimization process will be
explained in the sequel. We propose two variants of this technique. The first one, called Life-

timeMCS, uses the same optimization criterion as in the original FOSC publication (CAMPELLO
et al., 2013) — Stability (see Section 2.3.3) — the only difference is the use of MCS during

(rather than prior to) the optimization process. The second variant, called SparsityMCS, goes
further and also changes the nature of the optimization criterion originally used by FOSC. In
particular, it uses a quality measure based on the sparsity of the user-item interactions within
clusters, as a new domain-specific criterion that can be shown to satisfy the properties of locality
and additivity required by FOSC, while directly addressing the sparsity problem in RS during
the clustering extraction stage. Additionally, we propose a noise handling approach in order to
use the original FOSC formulation in RS, called LifetimeMCSGlobal.
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3.2.1 LifetimeMCS

LifetimeMCS stands for lifetime with minimum cluster size. This approach uses the
same lifetime-based Stability criterion proposed in the original FOSC publication (CAMPELLO
et al., 2013) (see Section 2.3.3), but modified so that the optimization criterion itself enforces
the constraint that a cluster must have at least MCS objects. Adding this constraint can be
accomplished by including a condition in the computation of the quality of a cluster Cn, S(Cn).
Specifically, for every cluster Cn with fewer than MCS objects, we set S(Cn) =−∞, otherwise
S(Cn) is calculated normally as previously shown in Equation (2.5). Notice that, in practice, this
has the same effect as including an additional explicit constraint into Problem (2.3), because a
cluster with S(Cn) =−∞ will not be selected when trying to maximize J.2 The modified cluster
quality measure can then be written as:

S(Cn) =

−∞, i f |Cn|< MCS

∑x∈Cn L(x,Cn), otherwise
(3.1)

where L(x,Cn) is the lifetime of object x as part of cluster Cn and |Cn| is the cardinality (number
of data objects) of this cluster. Recalling that (i) this equation will always be applied to a complete
(not simplified) clustering hierarchy, and (ii) the lifetime of any object in a complete clustering
hierarchy (such as the one in Figure 2-b) is the same, then Equation (3.1) can be simplified as:

S(Cn) =

−∞, i f |Cn|< MCS

|Cn| ·Li f etime(Cn), otherwise
(3.2)

where Li f etime(Cn) is the lifetime of cluster Cn. For instance, in the example of Figure 2-b,
cluster C4 exists between the scale values 2 (when it is born as a union of clusters C4a and C4b)
and 5 (when it merges with C5 giving rise to C3b), so Li f etime(C4) = 5−2 = 3. This cluster has
|C4|= 2 objects. If MCS ≤ 2, then S(C4) = 2*3 = 6, otherwise S(C4) =−∞.

This adjustment does not affect the locality and additivity properties of the objective
function required by FOSC because the additional condition, |Cn|< MCS in Equation (3.2), can
be checked independently for each cluster. It does not change the computational complexity of
FOSC either, which is linear with the number of candidate clusters in the clustering hierarchy, i.e.
O(k), provided that the clustering hierarchy and quality measure for each cluster, S(Cn), are given
as input. In AHC algorithms, such as Ward’s and other similar algorithms, the values S(Cn) can be
straightforwardly computed simultaneously to the construction of the clustering hierarchy itself;
all one needs is to keep track of the number of objects in each cluster and the values of the scale
where the cluster appears and disappears. This doesn’t change the computational complexity
of the clustering algorithm. Most AHCs can be implemented in O(N2

o log No) or O(N2
o ) time,

2 The same principle can be used to rule out the root C1 as a valid candidate and force a solution with at
least two clusters, by just setting S(C1) =−∞.
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where No is the number of data objects. These algorithms produce a complete hierarchy with
k = 2No −1 clusters, so FOSC runs in O(k)→ O(No) time. In our context, No = |U | (number of
users in the database).

3.2.2 SparsityMCS

SparsityMCS stands for sparsity with minimum cluster size. Like LifetimeMCS, it also
enforces MCS as part of the optimization process. The difference is the optimization criterion
itself: instead of using the lifetime of a cluster, we now aim to directly minimize the sparsity
of the within-cluster interactions. Consider a binary user-item matrix where each entry (u, i) is
set equal to 1 if user u has interacted with item i, or 0 otherwise. Let Inter(Cn) denote the total
number of interactions by users belonging to cluster Cn, and let Items(Cn) be the subset of all
items for which at least one user in Cn has had an interaction with. We aim to select clusters with
low sparsity of interactions, because sparsity is a major drawback in recommendation. Notice,
however, that Problem (2.3) is a maximization problem, so in order to minimize sparsity we
can equivalently maximize the density of within-cluster interactions. For a user-item matrix of
interactions and a given cluster Cn of users, we define the density of cluster Cn, density(Cn), as:

density(Cn) =
Inter(Cn)

|Cn| · Items(Cn)
(3.3)

This equation can be interpreted as the ratio between the total number of observed
interactions by the users in the cluster to the maximum number of possible interactions by those
same users with the same items. For the sake of illustration, let us consider the matrix in Figure
4, which contains only users of a given cluster Cn along with their interactions. In this example,
it follows that Inter(Cn) = 17 (the sum of non-zero entries in the table), Items(Cn) = 8, |Cn|= 5,
and, therefore, density(Cn) = 17/(5 ·8) = 17/40 = 0.425 (17 out of 40 elements in the table are
non-zero).

Figure 4 – Example of user-item interaction sub-matrix for users of a cluster Cn.

Density alone, however, does not take into account another relevant aspect in recommen-
dation, which is the representability of the group of users. For instance, if two groups of users
have similar density of interactions but one group is larger than the other, the larger group is
preferred as it has similar density yet more information about users. To account for both density
and representability, we can weight the density of a cluster by its cardinality, in the same way
that LifetimeMCS in Equation (2.5) weights the lifetime of a cluster by its number of objects.
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Like LifetimeMCS, we can also enforce the MCS constraint as part of objective function, thus
giving rise to the following cluster quality measure, referred to here as SparsityMCS:

S(Cn) =

−∞, i f |Cn|< MCS

|Cn| ·density(Cn), otherwise
(3.4)

The rationale behind this measure is to favor clusters that meet the MCS requirement while
being at the same time as dense and as large as possible. In our example, S(Cn) = 5 · (17/40) =
17/8 = 2.125 if MCS ≤ 5, or S(Cn) =−∞ otherwise. Although this measure is easy to interpret, it
is not as easy to understand whether or not it meets the requirements of the FOSC framework. In
the following, we will rewrite this measure in a fully equivalent way, whereby the corresponding
optimization criterion can be trivially shown to satisfy the assumptions of locality and additivity
required by FOSC.

First of all, condition |Cn| < MCS can be checked/enforced locally to each cluster and
does not violate the desired properties, then we will focus on the quality of those clusters that
satisfy this condition, as measured by S(Cn) = |Cn| ·density(Cn). We can rewrite S(Cn) in a fully
equivalent way that emphasizes the contribution of each data object individually to the density
of a cluster. To that end, let us define the density of an object (user) um that belongs to a cluster
(group of users) Cn, ds(um,Cn), as the fraction of items in Items(Cn) (i.e., within the collection of
items with interactions by users in Cn) for which user um has an interaction with. For instance, in
our example in Figure 4, it turns out that user u32 has interactions with 3 out of the Items(Cn) = 8
items in its group, therefore ds(u32,Cn) = 3/8. Similarly, ds(u56,Cn) = 2/8, ds(u67,Cn) = 4/8,
ds(u128,Cn) = 3/8, and ds(u235,Cn) = 5/8. We can then rewrite the weighted density of cluster
Cn, S(Cn) = |Cn| ·density(Cn), as the sum of the individual densities of its objects, whereby
SparsityMCS in Equation (3.4) can be rewritten as:

S(Cn) =

−∞, i f |Cn|< MCS

∑um∈Cn ds(um,Cn), otherwise
(3.5)

which, in our example, is S(Cn)= ds(u32,Cn)+ds(u56,Cn)+ds(u67,Cn)+ds(u128,Cn)+ds(u235,Cn)=

3/8+2/8+4/8+3/8+5/8 = 17/8 = 2.125 (if MCS ≤ 5, or S(Cn) =−∞ otherwise).

Two conclusions can be drawn:

∙ The measure in Equations (3.4) and (3.5) is structurally equivalent to the ones in Equations
(3.2) and (3.1), respectively, just replacing lifetime of an object/cluster with density of an
object/cluster; and

∙ They can be pre-computed locally and independently for each cluster in the clustering
hierarchy. Therefore, if we define an objective function given by the Overall (Sum of)
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S(Cn) values of the clusters to be selected by FOSC to be part of the extracted partition P,
i.e., J(P) = ∑Cn∈P S(Cn), this objective function is by definition additive and, thus, FOSC
can be applied (CAMPELLO et al., 2013).

Complexity: Computationally, we can calculate SparsityMCS efficiently by taking
advantage of the fact that, in practical applications of RS, the user-item matrix is very sparse.
We can keep this matrix in a suitable sparse matrix data structure. In particular, we assume a
data structure consisting of a list of |U | lists, one per user, each of which consists of a linked
collection of items for which the respective user has interacted with (as well as its size, accessible
in O(1)). Then, to compute the SparsityMCS measure for a given cluster Cn, we need the number
of users in this cluster, |Cn|, the total number of interactions in this cluster, Inter(Cn), and the
cardinality of the subset of items involved in those interactions, Items(Cn). Notice that, for a
parent cluster Cn in the clustering hierarchy, the first two terms, namely |Cn| and Inter(Cn), are
both given by the sum of the corresponding terms of this cluster’s children, i.e. |Cn|= |Cl

n|+ |Cr
n|

and Inter(Cn) = Inter(Cl
n) + Inter(Cr

n). Therefore, we can compute these terms in a single
bottom-up pass through the clustering hierarchy, just adding the individual figures from the
children to compute the aggregated tally for the corresponding parent. The complexity of this
phase is the same as FOSC, i.e., O(k)→ O(2|U |−1)→ O(|U |).

Term Items(Cn), however, does not hold this property, because there may be items shared
by the users in the children clusters. For this reason, Items(Cn) = Items(Cl

n ∪Cr
n), which is only

equal to Items(Cl
n)+ Items(Cr

n) if the two respective subsets of items are disjunct. Since this
condition cannot be verified beforehand, we need to explicitly determine the subsets of items for
the users in each cluster as the union of the subsets of items of its children. This can be achieved
efficiently as follows: starting from the individual lists of items for each user, we compute a
list of items involving the users of any parent cluster Cn as an union of the corresponding lists
previously computed for its children; term Items(Cn) = Items(Cl

n ∪Cr
n) is simply the cardinality

of the resulting list. Once the union list for a parent cluster is computed, the lists in the children
can be discarded to free memory. This approach is particularly efficient in real application
scenarios where interactions are very sparse.

In terms of asymptotic bounds, the (unrealistic) worst-case scenario corresponds to a full
user-item matrix, where every user has interacted with every item. In this case, for each cluster
in the cluster tree, we need to traverse two lists with |I| items in the children to compute their
union, which will also have |I| elements. This takes O(|I|) time per cluster. Since the cluster tree
has 2|U |−1 clusters, the overall time complexity is O(|U | · |I|), i.e., it is linear with the size of
the user-item matrix. This is, however, a conservative upper-bound, because the user-item matrix
tends to be very sparse in practical applications of RS, so the lists of items per user and their
unions in the corresponding clusters tend to be much smaller than |I|, except in the upper levels
of the tree (where the number of clusters and lists to be merged is smaller though).
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3.2.3 Outliers Handling Alternative

Both methods proposed before are based on the premise that all clusters need to have at
least MCS users in order to be applied to a recommender and this is enforced at the optimization
criterion. Although the restriction −∞, i f |Cn| < MCS in both equations (3.2) and (3.4) can
be removed, this approach might be desirable because stable clusters with a little amount
of users might indicate outliers, i.e. users that may impact negatively on the quality of the
recommendations. By allowing such small clusters, is possible to isolate and treat them in a
special way, preventing the impact of outliers at recommendation step. However, allowing such
small clusters to be present in the final extraction presents some problems: (i) these groups might
be too small, providing little information for the recommender to be applied, and (ii) as stated
before, there is no meaning to group together every noise cluster since they may represent very
different users. These problems might be solved by using the information of the outlier user’s
closest noise-free cluster. However, this is undesirable because a recommender model would be
needed for every single user labeled as noise leading to a overhead on the recommendation step.

One approach that solves these problems is to use global information to recommend
to these outlier users, i.e. for these users the recommendation is accomplished in the exact
same way as it would be if used the entire database, although for the users in larger groups the
recommendation would be local and presumably improved. The MCS ensuring can be done after

the extraction step and prior to the recommendation, simply filtering the users in groups with
less than MCS users and for every user in such groups recommend using the entire database.

It is worth to notice that removing the restriction −∞, i f |Cn| < MCS has no meaning
when applied to SparsityMCS (3.4), as the extraction will lead to a set of many clusters with
100% density given that, for a single user, the density as calculated in (3.3) will be maximal.
Therefore, no information is left for the recommender and such clusters, besides their small
length, have no room for recommendation. Thus, this outliers handling alternative approach will
be applied only for lifetimeMCS (3.2) and will be called LifetimeMCSGlobal. Notice that a MCS

parameter is still needed in order to filter the users that will use the global recommendation.

3.2.4 Parameter Setting

Notice that all three approaches, LifetimeMCS, SparsityMCS and LifetimeMCSGlobal,
incorporate a Minimum Cluster Size parameter, MCS. Preliminary experiments have shown that
this parameter is not critical as small changes in its value have limited impact over the final
recommendation. Basically, MCS only needs to be big enough in order to ensure that each
extracted cluster has enough users (and, accordingly, interactions) for the application of the
recommender system of choice — for instance, a minimum number of users for the suitable
computation of neighborhood in neighborhood-based recommender algorithms. It is worth
remarking that, even though clustering is an unsupervised task, one can perform model selection
to choose the value of MCS that results in the best recommendation result according to a given
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recommender algorithm and (supervised) recommendation evaluation measure of choice. In
the pre-processing phase, the clustering hierarchy would not need to be recomputed as it is not
affected by MCS. Only FOSC would need to be rerun for different values of MCS.

3.3 Final Remarks
In this chapter were presented the proposed techniques, starting with a general scheme

which helps to understand the link between the pre-processing proposed and the recommendation
step. Then we proposed two novel formulations to handle the quality of the extracted groups,
focusing on aspects important to RS, such as minimum information and sparsity reduction.
Beside that a noise handling approach was proposed and explained, which may help to reduce
the impact of outliers in the recommendation step. Finally, we showed that the parameter
asked by all the proposed methods, MCS, is robust and small changes do not affect the final
recommendations. Therefore the same value might be used in many different databases, as we
did on experimentation phase that follows in the next chapter.
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CHAPTER

4
EXPERIMENTS AND RESULTS

In this chapter are presented the experiments conducted in order to evaluate the impact
of our cluster extraction techniques, also discussing the obtained results.

4.1 Experimental Evaluation

To evaluate the impact of our proposed techniques for cluster extraction from hierarchies,
we provided the obtained groups of users to three well-known recommender algorithms: User-
KNN, BPR-MF and Most Popular (MP), with their default parameters suggested by the original
authors. The quality of the recommendations obtained are measured in different clustering
pre-processing scenarios:

∙ No split: As a baseline, we apply the recommenders without any clustering pre-processing
at all, i.e., recommendation is performed using the complete user-item matrix as it is;

∙ K-Means: As another competitor, users are clustered using the classic K-Means algorithm,
which has been previously applied in the context of recommendation — e.g. see (ZAHRA
et al., 2015; VLACHOS et al., 2014). Recommenders are then applied separately to each
group of users;

∙ K-Medoids (K-Med): Users are clustered using K-Medoids, instead of K-Means, as an
additional competitor. This algorithm has also been previously applied in the context of
recommendation — e.g. (COSTA; MANZATO; CAMPELLO, 2016);

∙ Our Proposal: Users are clustered using the techniques introduced in this paper, Life-
timeMCS (LT), SparsityMCS (Spar) and LifetimeMCSGlobal (LTG), applied to a clus-
tering hierarchy obtained by the Ward’s AHC method. Recommenders are then applied
separately to each resulting group of users.
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4.2 Databases

The experiments were performed using nine datasets from different domains: music,
movies, jokes and books, varying in size as well as in their configurations of users, items and
interactions. Each dataset is described below and summarized in Table 1.

∙ BookCrossing (BX)1, from Ziegler et al. (ZIEGLER et al., 2005) and reduced by main-
taining only the items and users with at least 20 interactions as in (KUMAR et al., 2014),
the final version consists of 45,074 ratings given by 3217 users to 2032 books;

∙ FilmTrust (FT), from Guo et al. (GUO; ZHANG; YORKE-SMITH, 2013), consists of
35,497 ratings provided by 1,508 users to 2,071 movies;

∙ Frappe2 is an mobile app recommender database provided by Baltrunas et al. (BAL-
TRUNAS KAREN CHURCH, 2015), consisting of 96,203 ratings for 4082 apps given by
957 users;

∙ MovieLens100k (ML)3, from Harper and Konstan (HARPER; KONSTAN, 2015), consists
of 100,000 ratings provided by 943 users to 1682 movies, each user rated at least 20
movies;

∙ Hetrec-lastFM (LFM)4, from Cantador et al. (CANTADOR; BRUSILOVSKY; KUFLIK,
2011), consists of 92,834 user-listened-to-artists relations involving a set of 1892 users
and 17,632 artists;

∙ Restaurant (R)5 provided by Vargas-Govea et al. (VARGAS-GOVEA; GONZÁLEZ-
SERNA; PONCE-MEDELLIN, 2011) presents 1161 ratings for 130 restaurants given by
138 users;

∙ Steam Purchases (Steam)6, where only the purchase information was used, has 12,393
users, 5155 games and 129,511 purchases.

∙ Yahoo! Music (YMus) and Yahoo! Movies (YMov), both from Yahoo! Webscope7, consist
of 365,704 interactions of 15,400 users to 1000 musics and 169,767 interactions provided
by 4385 users to 4339 movies, respectively;

1 http://www2.informatik.uni-freiburg.de/ cziegler/BX/
2 http://baltrunas.info/research-menu/frappe
3 https://grouplens.org/datasets/movielens/100k/
4 http://www.lastfm.com
5 https://www.kaggle.com/uciml/restaurant-data-with-consumer-ratings/version/1#_¯_
6 https://www.kaggle.com/tamber/steam-video-games/data
7 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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Table 1 – Databases

Database Alias Users Items Interactions Sparsity (%)
BookCrossing BX 3217 2032 45074 99.31
FilmTrust FT 1508 2071 35497 98.86
Frappe Frappe 957 4082 96203 97.54
Hetrec-lastFM LFM 1892 17632 92834 99.72
MovieLens-100k ML 943 1682 100000 93.70
Restaurant R 138 130 1161 93.53
SteamPurchases Steam 12393 5155 129511 99.80
Yahoo!Movies YMov 4385 4339 169767 99.11
Yahoo!Music YMus 15400 1000 365704 97.63

4.3 Methodology

We used the parameters suggested by the original authors when applying the recom-
mender algorithms. Specifically, for User-KNN we set the number of neighbors to 30, and for
BPR-MF we set the number of factors to 10. We used Case Recommender 0.0.20 (COSTA;
MANZATO, 2016) for the User-KNN and Most Popular algorithms; MyMediaLite 3.11 (GANT-
NER et al., 2011) was used for BPR-MF. For the MCS clustering extraction parameter, we used
MCS = 50 for all experiments because, as discussed in Section 3.2.4, this parameter has little
impact over the final recommendations.

For clustering algorithms, K-Medoids requires a (dis)similarity matrix between users. We
used Cosine similarity, which is well-known to be more suitable than Euclidean distance in the
RS domain. We have also provided the same (Cosine) similarity matrix to Ward’s AHC method.
As for the number of clusters explicitly required as input by K-Medoids and K-Means, we varied
this parameter as {3,5,7,10}. Similar values have been successfully used in the literature; for
instance, in (COSTA; MANZATO; CAMPELLO, 2016) the number of clusters was set to 3,
while the authors in (BILGE; POLAT, 2013) used the same range we use. Both K-Medoids and
K-Means require multiple runs from different random initializations, we did run them 5 times for
each configuration and present the mean value. K-Medoids and Ward’s AHC were implemented
using SciPy (0.19.0)8 whereas for K-Means we used Scikit-learn (0.19.0)9, both libraries for
Python 3.6.

In order to evaluate the results, we adopted a 5-fold cross-validation methodology that
consists of spliting the databases in 5 disjoint parts of equal size (KOHAVI, 1995). One part
is used as test and the others are used as training set. The process is repeated for each part,
generating 5 different training-test sets. To evaluate the outcomes of the algorithms, we evaluate
the results for each set and take the mean value. In the present work we measure the quality of
recommendations by the Mean Average Precision-at-N (MAP@N) (AGGARWAL, 2016), using
N = {1,3,5,10}.

In order to assess statistical significance between the results we applied a modified

8 https://docs.scipy.org/doc/
9 http://scikit-learn.org/stable/
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Friedman-test and the pot-hoc procedures both proposed by Demšar (DEMŠAR, 2006), which al-
lows a comparison between many different algorithms in different scenarios, here with confidence
level of 95%.

4.4 Results
For the sake of clarity, we discuss the results corresponding to the different recommender

algorithms in separate subsections, each one by the lens of one particular RS, considering all
databases. Tables of results contain: (a) a column indicating the database used; (b) a column
indicating the pre-processing strategy applied, where our proposed methods are highlighted in
bold; (c) a column, #Clu, which indicates the number of clusters obtained in the pre-processing
phase and subsequently used to build separate recommenders10; (d) columns MAP@N, N =

1,3,5,10, containing the cross-validated mean of MAP@N. Values highlighted in bold are the
highest values for a given measure in a given database. For K-Medoids and K-Means, the values
displayed are the means of 5 runs from random initializations of prototypes.

4.4.1 Neighborhood-based Recommender

For the User-KNN algorithm, Table 2 shows that at least one of our proposed methods
improved on the baseline in 7 databases, and outperformed the other methods in 4 of them. In 2
databases, namely BX and R, no clustering technique could improve on the baseline.

4.4.2 Latent Factor Based Recommender

For the BPR-MF algorithm, the general picture is similar. Table 3 shows that at least
one of our proposed methods improved on the baseline in 6 databases, and outperformed the
other methods in 4 of them. Once again, in 3 databases, namely ML, R and YM, no clustering
technique could improve on the baseline. It is worth noticing that, even for these datasets, the
proposed methods have still provided competitive results overall. One case that is worth noticing
is dataset Steam, where SparsityMCS improved the quality of the recommendations significantly
further than its competitors.

4.4.3 Most Popular Recommender

The most popular recommender is a non-personalized algorithm, i.e. it computes the
same recommendations for all users within the group. Clustering prior to recommendation has
improved the results in all datasets, as it can be seen in Table 4. At least one of our proposed
methods has provided the best result in 7 out of 9 datasets.
10 Notice that the proposed clustering extraction techniques may find different amount of clusters for

each fold used during training; therefore, for LifetimeMCS, SparsityMCS and LifetimeMCSGlobal,
#Clu presents the mean value found for all folds.
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Table 2 – MAP@N of User-KNN

Database Method #Clu MAP@1 MAP@3 MAP@5 MAP@10

BX

Baseline 1 0.0817 0.1059 0.1121 0.1158
K-Means 3 0.0799 0.1043 0.1106 0.1143
K-Med 3 0.0770 0.1002 0.1062 0.1100
LT 2 0.0785 0.1025 0.1086 0.1122
Spar 3.4 0.0763 0.0999 0.1060 0.1097
LTG 3 0.0806 0.1043 0.1103 0.1139

FT

Baseline 1 0.4264 0.5024 0.5135 0.5036
K-Means 3 0.5074 0.5870 0.5901 0.5710
K-Med 5 0.4689 0.5493 0.5570 0.5428
LT 3.2 0.4733 0.5547 0.5582 0.5459
Spar 11 0.4946 0.5704 0.5743 0.5606
LTG 4.2 0.4747 0.5562 0.5604 0.5486

Frappe

Baseline 1 0.1739 0.2451 0.2614 0.2622
K-Means 10 0.2316 0.2876 0.2950 0.2891
K-Med 10 0.2173 0.2708 0.2779 0.2736
LT 3.6 0.2353 0.2851 0.2923 0.2871
Spar 5.4 0.2613 0.3145 0.3199 0.3127
LTG 4 0.2300 0.2902 0.2991 0.2951

LFM

Baseline 1 0.3419 0.4263 0.4305 0.4092
K-Means 3 0.3411 0.4259 0.4306 0.4105
K-Med 3 0.3196 0.4018 0.4077 0.3887
LT 2 0.3432 0.4322 0.4362 0.4120
Spar 18.4 0.3254 0.4102 0.4157 0.3939
LTG 2 0.3432 0.4322 0.4362 0.4120

ML

Baseline 1 0.4359 0.5337 0.5340 0.4982
K-Means 7 0.4628 0.5627 0.5584 0.5200
K-Med 3 0.4614 0.5638 0.5603 0.5224
LT 3 0.4611 0.5628 0.5609 0.5213
Spar 9.4 0.4711 0.5672 0.5644 0.5248
LTG 3 0.4611 0.5628 0.5609 0.5213

R

Baseline 1 0.2216 0.3238 0.3474 0.3525
K-Means 7 0.1842 0.2741 0.2988 0.3066
K-Med 3 0.1785 0.2704 0.2939 0.3056
LT 2 0.2067 0.2985 0.3222 0.3331
Spar 2 0.2067 0.2985 0.3222 0.3331
LTG 0.6 0.2104 0.3144 0.3354 0.3422

Steam

Baseline 1 0.2749 0.3249 0.3286 0.3244
K-Means 10 0.2826 0.3200 0.3221 0.3173
K-Med 3 0.1317 0.1870 0.2017 0.2154
LT 2 0.2965 0.3345 0.3374 0.3316
Spar 43.6 0.3034 0.3373 0.3398 0.3338
LTG 2 0.2965 0.3345 0.3374 0.3316

YMov

Baseline 1 0.3165 0.3995 0.4058 0.3902
K-Means 10 0.3219 0.4053 0.4117 0.3953
K-Med 3 0.2958 0.3773 0.3846 0.3709
LT 2 0.3219 0.4053 0.4113 0.3955
Spar 37.4 0.2949 0.3760 0.3845 0.3726
LTG 2 0.3219 0.4053 0.4113 0.3955

YMus

Baseline 1 0.1220 0.1686 0.1822 0.1901
K-Means 5 0.1749 0.2404 0.2545 0.2561
K-Med 5 0.1696 0.2371 0.2526 0.2556
LT 5.6 0.1691 0.2331 0.2473 0.2502
Spar 162.6 0.1479 0.2109 0.2270 0.2326
LTG 5.6 0.1691 0.2331 0.2473 0.2502

4.5 Analysis and Discussion

Each recommender algorithm responded differently to the use of clustering pre-processing
and, in particular, to each of the cluster extraction methods proposed here.

For User-KNN, the improvement achieved in some datasets is possibly caused by a more
focused computation of neighborhood within each cluster. For datasets where no improvement
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Table 3 – MAP@N of BPR-MF

Database Method #Clu MAP@1 MAP@3 MAP@5 MAP@10

BX

Baseline 1 0.0134 0.0248 0.0289 0.0335
K-Means 10 0.0165 0.0265 0.0307 0.0352
K-Med 7 0.0166 0.0265 0.0308 0.0348
LT 2 0.0175 0.0295 0.0338 0.0381
Spar 3.4 0.0149 0.0266 0.0305 0.0351
LTG 3 0.0211 0.0327 0.0370 0.0413

FT

Baseline 1 0.4546 0.5422 0.5505 0.5338
K-Means 5 0.4792 0.5565 0.5607 0.5428
K-Med 3 0.4641 0.5438 0.5523 0.5378
LT 3.2 0.5029 0.5775 0.5811 0.5625
Spar 11 0.4764 0.5514 0.5575 0.5441
LTG 4.2 0.5010 0.5750 0.5789 0.5616

Frappe

Baseline 1 0.1868 0.2652 0.2792 0.2782
K-Means 10 0.2451 0.3236 0.3323 0.3245
K-Med 10 0.1801 0.2460 0.2566 0.2558
LT 3.6 0.2151 0.2869 0.2994 0.2960
Spar 5.4 0.1900 0.2586 0.2707 0.2706
LTG 4 0.2244 0.2964 0.3051 0.3012

LFM

Baseline 1 0.1691 0.2249 0.2352 0.2310
K-Means 5 0.2293 0.2907 0.2977 0.2881
K-Med 10 0.2352 0.3024 0.3107 0.3006
LT 2 0.2106 0.2683 0.2766 0.2702
Spar 18.4 0.2209 0.2892 0.2989 0.2914
LTG 2 0.2106 0.2683 0.2766 0.2702

ML

Baseline 1 0.4433 0.5397 0.5398 0.5042
K-Means 5 0.3927 0.5035 0.5079 0.4747
K-Med 3 0.4181 0.5178 0.5192 0.4865
LT 3 0.4359 0.5340 0.5334 0.4995
Spar 9.4 0.3617 0.4712 0.4780 0.4497
LTG 3 0.4359 0.5340 0.5334 0.4995

R

Baseline 1 0.1528 0.2284 0.2560 0.2626
K-Means 3 0.1449 0.2151 0.2350 0.2461
K-Med 10 0.1521 0.2274 0.2541 0.2650
LT 2 0.1303 0.2091 0.2368 0.2466
Spar 2 0.1303 0.2091 0.2368 0.2466
LTG 0.6 0.1407 0.2143 0.2495 0.2572

Steam

Baseline 1 0.0990 0.1432 0.1529 0.1592
K-Means 10 0.0992 0.1390 0.1500 0.1548
K-Med 10 0.1332 0.1728 0.1814 0.1843
LT 2 0.0866 0.1328 0.1430 0.1488
Spar 43.6 0.2217 0.2547 0.2605 0.2612
LTG 2 0.0866 0.1328 0.1430 0.1488

YMov

Baseline 1 0.2222 0.2904 0.3000 0.2918
K-Means 10 0.2360 0.3042 0.3127 0.3030
K-Med 10 0.2308 0.2992 0.3084 0.2995
LT 2 0.2305 0.3011 0.3091 0.3003
Spar 37.4 0.2282 0.3021 0.3121 0.3048
LTG 2 0.2305 0.3011 0.3091 0.3003

YMus

Baseline 1 0.1563 0.2297 0.2472 0.2518
K-Means 3 0.1551 0.2207 0.2363 0.2402
K-Med 3 0.1398 0.2048 0.2217 0.2274
LT 5.6 0.1573 0.2239 0.2400 0.2442
Spar 162.6 0.1280 0.1861 0.2022 0.2086
LTG 5.6 0.1573 0.2239 0.2400 0.2442

was observed, the benefits of clustering, such as sparsity reduction within each cluster, may have
been outweighed by the reduction in the number of users available to each recommender (applied
separately to each cluster). BPR-MF, in particular, adopts a global view of the data to optimize
matrix factorization, and is apparently the most affected by the reduction in users information
within each cluster. In spite of that, the algorithm still benefited from clustering in a number of
databases, possibly because the resulting clusters may characterize well defined hubs that favor
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Table 4 – MAP@N of Most Popular

Database Method #Clu MAP@1 MAP@3 MAP@5 MAP@10

BX

Baseline 1 0.0235 0.0345 0.0388 0.0433
K-Means 10 0.0241 0.0357 0.0403 0.0451
K-Med 3 0.0235 0.0346 0.0388 0.0435
LT 2 0.0291 0.0414 0.0451 0.0495
Spar 3.4 0.0289 0.0413 0.0453 0.0498
LTG 3 0.0322 0.0440 0.0482 0.0525

FT

Baseline 1 0.4930 0.5718 0.5755 0.5569
K-Means 5 0.4965 0.5723 0.5749 0.5558
K-Med 3 0.4916 0.5684 0.5731 0.5566
LT 3.2 0.5160 0.5900 0.5938 0.5751
Spar 11 0.5081 0.5797 0.5822 0.5659
LTG 4.2 0.5188 0.5914 0.5954 0.5778

Frappe

Baseline 1 0.2018 0.2825 0.2918 0.2918
K-Means 10 0.2604 0.3369 0.3446 0.3369
K-Med 10 0.2227 0.2893 0.2979 0.2934
LT 3.6 0.2402 0.3151 0.3265 0.3235
Spar 5.4 0.2296 0.3019 0.3119 0.3107
LTG 4 0.2523 0.3235 0.3316 0.3269

LFM

Baseline 1 0.1264 0.1681 0.1772 0.1764
K-Means 3 0.2313 0.2849 0.2901 0.2817
K-Med 10 0.2649 0.3292 0.3355 0.3220
LT 2 0.2181 0.2699 0.2767 0.2691
Spar 18.4 0.2711 0.3387 0.3466 0.3316
LTG 2 0.2181 0.2699 0.2767 0.2691

ML

Baseline 1 0.2710 0.3523 0.3709 0.3551
K-Means 10 0.3662 0.4512 0.4553 0.4292
K-Med 10 0.4151 0.5105 0.5100 0.4776
LT 3 0.4082 0.4974 0.4964 0.4639
Spar 9.4 0.4276 0.5212 0.5212 0.4878
LTG 3 0.4082 0.4974 0.4964 0.4639

R

Baseline 1 0.1116 0.1603 0.1699 0.1711
K-Means 7 0.1151 0.1741 0.1900 0.2012
K-Med 10 0.1464 0.2163 0.2403 0.2508
LT 2 0.1205 0.1687 0.1834 0.1901
Spar 2 0.1205 0.1687 0.1834 0.1901
LTG 0.6 0.0986 0.1508 0.1618 0.1659

Steam

Baseline 1 0.0985 0.1432 0.1539 0.1604
K-Means 10 0.1020 0.1415 0.1536 0.1588
K-Med 10 0.0622 0.0960 0.1093 0.1236
LT 2 0.0892 0.1375 0.1481 0.1543
Spar 43.6 0.2450 0.2833 0.2901 0.2878
LTG 2 0.0892 0.1375 0.1481 0.1543

YMov

Baseline 1 0.2218 0.2910 0.2978 0.2894
K-Means 10 0.2444 0.3134 0.3211 0.3102
K-Med 10 0.2448 0.3110 0.3183 0.3076
LT 2 0.2320 0.3047 0.3139 0.3046
Spar 37.4 0.2458 0.3180 0.3277 0.3187
LTG 2 0.2320 0.3047 0.3139 0.3046

YMus

Baseline 1 0.1207 0.1753 0.1936 0.2047
K-Means 3 0.1315 0.1902 0.2051 0.2116
K-Med 10 0.1300 0.1872 0.2024 0.2094
LT 5.6 0.1478 0.2109 0.2264 0.2328
Spar 162.6 0.1409 0.2032 0.2196 0.2261
LTG 5.6 0.1478 0.2109 0.2264 0.2328

better matrix factorization optimization.

Relatively speaking, the recommender that benefited the most from clustering was the
Most Popular algorithm. This is because clustering generates small groups of like-minded users,
indirectly resulting in personalized (rather than completely unpersonalized) recommendations.

The results obtained by the proposed methods improved the results of a recommender
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in most of the experiments. Also, in almost all datasets, our approach provided results that are
competitive or better than other clustering pre-processing techniques for at least one of the
recommender algorithms tested.

Figure 5 – This figure plots the average rank of each pre-processing methods and regards statistical
differences between them, if a pair of algorithms are joined by a line it means that there is no
statistical difference between them with 95% confidence. Each subfigure presents the results
for a different N in MAP@N, (a) MAP@1; (b) MAP@3; (c) MAP@5 and (d) MAP@10.

Regarding the statistical analysis, as can be seen by the post-hoc test held in Figure 5,
LifetimeMCSGlobal is the only approach that significantly improved the baselines. For top@1
recommendations, either LifetimeMCSGlobal or K-Means provided better overall results, as can
be seen in Figure 5 (a), although as recommendation lists become larger, the quality of K-Means
decreases and SparsityMCS increases. As the opposite, LifetimeMCS maintains its quality for
any recommendation list size.

It is worth mentioning that for this statistical analysis, only the best configurations
for K-Means and K-Medoids were provided, meaning that this discussion has meaning only
when considering that the best parameter was chosen for each dataset. In addition, unlike our
competitors, our approach automatically determines the number of clusters, which is a byproduct
of our cluster extraction procedure. In contrast, for the competitors, which take the number of
clusters as a parameter, the best choice was not universal across different databases or even for
different algorithms in the same database. For instance, for database LFM, K-Means produced
best results using K = 3 for User-KNN, K = 7 for BPRMF, and K = 10 for Most Popular.
Determining the best number of cluster as an input parameter imposes additional computational
load to the recommender phase.
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Even though LifetimeMCSGlobal has achieved better results when compared to Life-
timeMCS and SparsityMCS, there is no unique winner. On the one hand, LifetimeMCS is faster
(O(|U |)) than SparsityMCS (O(|U | · |I|) and it tends to be better at top@1 recommendations,
which is a desired feature in scenarios where it is expected that the user consumes only one
or two products, e.g. cars and houses sales. On the other hand, SparsityMCS provides better
recommendations at longer lists, being more suitable for other scenarios such as music recom-
mendation, where a user may be able listen to 10 or 20 new songs in a single day. Thus, both
approaches seem to perform quite similarly in terms of medium sized lists and since computing
the clustering hierarchy needs to be done only once and is computationally more demanding
than extracting clusters with these measures, the analyst can try both at the price of a relatively
small additional runtime.
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CHAPTER

5
FINAL REMARKS

In this chapter we address the final remarks, the main contributions and the publications
resulted of this work, in addition to some ideas for future works.

5.1 Work Overview

Clustering has shown to be an useful tool for data pre-processing prior to the application
of recommender systems. However, the clustering process is oftentimes bound to a specific
recommender algorithm and tackles the problem of data sparsity indirectly only. In this work,
three variants of an approach to automatically extract clusters from a hierarchy of candidates,
which are specifically focused on RS problems, have been proposed: two by selecting more
stable clusters (LifetimeMCS and LifetimeMCSGlobal) and another by directly minimizing data
sparsity within clusters (SparsityMCS). The proposed methods require only, but is not limited to,
a collection of user-item interactions and can be subsequently applied to different recommender
systems.

The obtained results were evaluated using three different recommender systems across
nine publicly known databases, and then compared with those provided by two other clustering-
based competitors and the classical approach, i.e. no clustering. The proposed methods improved
the results of a recommender in most of the experiments and, in almost all datasets, our approach
provided results that are competitive or better than the clustering competitors for at least one of the
recommender algorithms tested. Unlike our competitors, our approach automatically determines
the number of clusters, which is a byproduct of our cluster extraction procedure and also ensures
a minimal amount of information for the recommendation to be applied subsequently.

Given the results and statistical analysis, we validate our hypothesis, that the overall
quality of recommendations is improved when applied after a guided disjunction of the datasets.
Although the obtained results are not global, as can be noted by some individual results, they are
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better than competitors in most cases, with 95% confidence.

More than that, the study conducted helps to understand better the behavior of some
recommender techniques and the impact that different domains and database sizes has on final
recommendations.

5.2 Publications
The research conducted provided content for three publications, the first is a Poster

already accepted that will be presented at the 12th ACM Conference on Recommender Systems
(RecSys2018)1 in the first week of October, it presents a confidence-based technique to filter
interactions generating local recommendations from a global approach; the second one is also
accepted at RecSys2018, although it is a Demo presenting a framework that gathers many
recommender tools and algorithms; the last one was submitted and still being reviewed in the
ACM Transactions on Information Systems (ACM TOIS journal)2, it presents the techniques
described in this work, which are the final and main contributions of this research.

∙ Type: Conference Poster at RecSys2018.

Status: Accepted. To be presented in October.

Title: CoBaR: Confidence-Based Recommender.

Authors: de Aguiar Neto, Fernando S.; C. Fortes, Arthur; Manzato, Marcelo G.

Abstract: Neighborhood-based collaborative filtering algorithms usually adopt a fixed
neighborhood size for every user or item, although groups of users or items may have
different lengths depending on users’ preferences. In this paper, we propose an extension to
a non-personalized recommender based on confidence intervals and hierarchical clustering
to generate groups of users with optimal sizes. The evaluation shows that the proposed
technique outperformed the traditional recommender algorithms in four publicly available
datasets.

∙ Type: Conference Demo at RecSys2018.

Status: Accepted. To be presented in October.

Title: Case Recommender: A Flexible and Extensible Python Framework for Recom-
mender Systems.

Authors: C. Fortes, Arthur; Fressato, Eduardo; de Aguiar Neto, Fernando S.; Manzato,
Marcelo G.; Campello, Ricardo.

Abstract: This paper presents a polished open-source Python-based recommender frame-
work named Case Recommender, which provides a rich set of components from which

1 https://recsys.acm.org/recsys18/
2 https://tois.acm.org
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developers can construct and evaluate customized recommender systems. It implements
well-known and state-of-the-art algorithms in rating prediction and item recommendation
scenarios. The main advantage of the Case Recommender is the possibility to integrate
clustering and ensemble algorithms with recommendation engines, easing the development
of more accurate and efficient approaches.

∙ Type: Journal at TOIS.

Status: Submitted in 25 of July, 2018. Being reviewed.

Title: Pre-Processing Approaches for Collaborative Filtering Based on Hierarchical Clus-
tering.

Authors: de Aguiar Neto, Fernando S.; Fortes C., Arthur; Manzato, Marcelo G.; Campello,
Ricardo.

Abstract: Recommender Systems (RS) support users to find relevant content, such as
movies, books, songs, and other products based on their preferences. Such preferences are
gathered by analyzing past users’ interactions, however, data collected for this purpose are
typically prone to sparsity and high dimensionality. Clustering-based techniques have been
proposed to handle these problems effectively and efficiently by segmenting the data into
a number of similar groups based on predefined characteristics. Although these techniques
have gained increasing attention in the recommender systems community, they are usually
bound to a particular recommender system and/or require critical parameters, such as the
number of clusters. In this paper, we present three variants of a general-purpose method
to optimally extract users’ groups from a hierarchical clustering algorithm specifically
targeting RS problems. The proposed extraction methods do not require critical parameters
and can be applied prior to any recommendation system. Our experiments have shown
promising recommendation results in the context of nine well-known public datasets from
different domains.

5.3 Future Work
For future work, we aim to experiment the use of different types of information for both

cluster extraction and recommendation, e.g. using personal information to cluster users and
interaction information to compute recommendations. In addition, we plan to further investigate
the use of other hierarchical clustering algorithms with our extraction methods.

Another possible approach would be to apply semi-supervised active-clustering in order
to generate a flat partition extraction, active clustering permits a system to generate queries that
may be answered by each user in order to refine the clustering, RS provides a fertile ground for
such technique given that is expected that the user interacts with a little amount of items, active
clustering approach may select the interactions that better help the clustering task.
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