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Abstract

As we rely more and more on machine learning models for real-life decision-making, being
able to understand and trust the predictions becomes ever more important. Local explainer
models have recently been introduced to explain the predictions of complex machine learning
models at the instance level. In this paper, we propose Local Rule-based Model Interpretabil-
ity with k-optimal Associations (LoRMIkA), a novel model-agnostic approach that obtains
k-optimal association rules from a neighbourhood of the instance to be explained. Com-
pared with other rule-based approaches in the literature, we argue that the most predictive
rules are not necessarily the rules that provide the best explanations. Consequently, the
LoRMIkA framework provides a flexible way to obtain predictive and interesting rules. It
uses an efficient search algorithm guaranteed to find the k-optimal rules with respect to
objectives such as confidence, lift, leverage, coverage, and support. It also provides multiple
rules which explain the decision and counterfactual rules, which give indications for poten-
tial changes to obtain different outputs for given instances. We compare our approach to
other state-of-the-art approaches in local model interpretability on three different datasets
and achieve competitive results in terms of local accuracy and interpretability.
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1. Introduction

Explainability of machine learning models is becoming ever more important [23]. For
example, the European General Data Protection Regulation from 2018 contains a right to
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explanation concept for any decision provided by predictive models. Traditionally, explain-
ability can be achieved by machine learning models that are considered interpretable, such as
classic linear regression, logistic regression, or decision trees [33]. Also newer developments
in this area of globally interpretable models are present, e.g. Proença and van Leeuwen [30]
introduced an approach to formalize multi-class classification problems based on a prob-
abilistic rule list and the minimum description length principle. However, recently local
model-agnostic interpretability methods have been introduced that offer explanations for
predictions of any (black-box) model. These methods typically use simpler models fitted lo-
cally in the neighbourhood of an instance to the output of a more complex black-box model,
assuming that the behaviour of the instance to be explained is similar to the behaviour of
its neighbourhood. In this way, they are able to provide local explanations for a particular
instance that can be more accurate and relevant for the instance under consideration as
opposed to global explanations [6, 3] that do not change across the dataset.

The first work in this line that paved the way for others was the work of Ribeiro et al. [34]
that introduced Local Interpretable Model-agnostic Explanations (LIME). Here, instances
are randomly perturbed around the instance to be explained and a linear model is fitted to
the data in the selected neighbourhood of the considered instance. However, LIME has vari-
ous limitations. For instance, it does not perform well when the features have a higher degree
of interaction and non-linear relationships with the target variable. Consequently, Lundberg
and Lee [24] introduced SHapley Additive exPlanation (SHAP) that overcomes many of the
shortcomings of LIME by providing consistent additive explanations based on game theory.
Both LIME and SHAP are feature-importance based explanations that show the features
which have the most positive or negative impact on the prediction of the global model for a
particular instance.

In recent years, deep learning methods have proven extremely successful, in particular
in application areas where there are many highly dependent features like images, text, or
speech. Here, considering the importance of features, i.e., pixels of an image or the words
in a sentence, can often not be considered interpretable. Researchers in these areas are
addressing this issue mainly in two different ways. The first way is to use sample-based
explanation methods that explain how the model parameters are actually derived based on
the training data. For example, Koh and Liang [19] considered influence functions to capture
the core idea of the model in consideration. Yeh et al. [42] proposed a method to provide
explanations for the prediction of a deep neural network for a given test instance, based on
the representer theorem, which uses so-called representer values that measure the weighted
importance of each training instance towards the learned parameters of the model. In their
work, those authors discussed that the pre-activation prediction values can be decomposed
into a linear combination of training point activations, with the weights corresponding to
the representer values. The representer instances can be selected based on the magnitude
of the representer values, which enables the understanding of the model prediction of the
decomposition by identifying its representer instances in the training set. Khanna et al. [18]
use Sequential Bayesian Quadrature (SBQ) for efficient selection of instances and for feature
embedding for each data point using Fisher kernels. Arik and Pfister [2] apply an attention-
based mechanism to identify the training set instances that relate to the prediction of the
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given test instance. The second main avenue for explainers in deep learning are concept-
based explanations. For example, Been et al. [5] proposed Concept Activation Vectors
(CAV) to interpret the internal state of the neural networks. The CAVs in this approach are
considered to be human-friendly explanatory concepts. Further, Zhang et al. [46] considered
multiple Gaussian models to represent the distribution of data where each Gaussian model
reflects some local characteristics related to the dataset.

However, especially outside of the field of deep learning, recently many researchers have
shifted from linear models as explainers to rule-based explanations [30, 28], as they arguably
provide more precise explanations to the end users [35] and are more interpretable [21] com-
pared with others. Puri et al. [31] introduced a global rule-based explainer. Lakkaraju
et al. [22] proposed a model-agnostic framework called Model Understanding through Sub-
space Explanations (MUSE), which explains the global model predictions by considering
the different subgroups of the instances which are characterized by features of user interest.
Ribeiro et al. [35] proposed Anchor-LIME, which is a local-explainable model. It selects a
neighbourhood with the help of a bandit algorithm [17] and extracts rules afterwards from
the neighbourhood while finding subsets of features that retain the same prediction when
held constant, even though all other features are changed. The rules obtained from that
algorithm are called anchors by those authors. A limitation of Anchor-LIME is that it
does not provide counterfactual rules which are often important to invert a decision. LOcal
Rule-based Explanations (LORE) was introduced by Guidotti et al. [13]. In this algorithm
a decision tree is built in the neighbourhood of an instance to be explained, to acquire a
single rule for the decision and a set of counterfactual rules for the inverse decision.

In this paper, we propose a flexible framework for Local Rule-based Model Interpretabil-
ity with k-optimal Associations (LoRMIkA) to explain the predictions produced for tabular
classification datasets. Here, k is a user-defined parameter of the maximum number of
(non-redundant) class association rules to be extracted.

In accordance with other local-interpretability frameworks [34, 35, 13], the key assump-
tion of LoRMIkA is that the behaviour of the instance to be explained is similar to the
behaviour of the instances in its neighbourhood. To explain the instances in the neighbour-
hood, we first select the most similar instances to the instance to be explained from the
training data set, and we generate synthetic instances within the neighbourhood. After,
we generate the predictions for all the instances (i.e., both selected instances and generated
instances) in the neighbourhood using the global machine learning model to identify the
logics and the behaviour of the global model when providing predictions. Here, we assume
that the logic used to generate these predictions is similar to the prediction of the instance
to be explained. Then we mine a total number of “k” optimal class association rules [41]
between all the instances in the neighbourhood and their predictions using the OPUS search
algorithm [38] with respect to measures popular in the association rule mining community
as described in Section 2.

LoRMIkA leverages decades of research in association rule mining, and is therewith
able to overcome a number of drawbacks of the existing algorithms. We argue that class
association rules are better suited to provide explanations than, for instance, linear models
or decision trees, as they are local models both with respect to features and instances.
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Furthermore, we consider one of the main limitations of current state-of-the-art rule-based
local model-agnostic explainers to be that these algorithms consider only the most predictive
rules. We argue that the most predictive rules are not necessarily the rules that explain
the best. There can be interesting rules which are very useful explainers though they are
not highly predictive. The state-of-the-art algorithms do not consider such rules as the
explanations of a prediction. We provide a detailed explanation of rules that predict vs
rules that explain in Section 2.2.3. LoRMIkA uses an efficient search algorithm to find
the k-optimal rules from a neighbourhood and is therewith able to produce model-agnostic
explanations for a given black-box algorithm. LoRMIkA tackles redundancy of features in
rules and is able to generate simple rules. Furthermore, we are able to search for the “k”
number of best rules with respect to confidence, lift, leverage, coverage and support, which
are the measures developed by the association rule mining community [12] to measure if
rules are predictive and/or interesting.

The state-of-the-art algorithms currently produce two types of rules which 1) explain
the prediction towards the decision and 2) explain with counterfactual rules how to reverse
the current decision of the global model. LoRMIkA generates two additional types of rules
(four types of rules in total) that provide additional information and explanations for the
prediction provided by the global model. Section 3.7 explains the different types of rules in
detail and illustrates and demonstrates how they can be used for explanations.

We have tested and compared LoRMIkA with other state-of-the-art approaches on four
different tabular classification datasets and conducted both qualitative and quantitative
experiments to assess both interpretability and local accuracy, with competitive results.

In summary, the contributions of this paper are as follows.

• We propose a novel approach based on class association rules to generate local rule-
based explanations for the predictions of black-box machine learning models for clas-
sification problems.

• Our approach produces four types of rules which explain the prediction, namely: condi-
tions that positively support the decision of the prediction, conditions that negatively
support the decision prediction, conditions to increase the probability towards the
decision, conditions that potentially reverse the decision.

• In our approach, rules can be searched for different optimization goals (i.e., coverage,
lift, confidence etc.) to generate both predictive and/or interesting rules based on the
user preference.

The remainder of this paper is structured as follows. Section 2 revisits the most impor-
tant results from the association rule mining community with respect to local explainers.
Section 3 presents our approach. Section 4 discusses the experimental setup and results,
and Section 5 concludes the paper.
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2. Association Rule Mining

In this section, we revisit the major relevant findings in association rule mining research
with respect to association rules being local models, predictive versus explanatory rules, and
efficient ways for finding rules.

2.1. Notations and Definitions

Association rule mining is a rule-based machine learning approach to find interesting
combinations of input and output variables of frequent patterns, correlations, associations,
or causal structures in large databases. It was firstly introduced by Agrawal et al. [1]. In
the following, we define the concepts used in our work.

Definition 1. Class Association Rule: A class association rule is a rule of the form r =
p→ q. The antecedent or left-hand side (LHS) of a rule, p, is a boolean condition on feature
values. The consequent or right-hand side (RHS) of a rule, q, is the target class of the
decision variable.

Definition 2. Support: The proportion of instances that match p from the total amount of
instances in the dataset.

Support(p) =
|instance ∈ Dataset, such that instance fulfills p|

Total number of instances in the dataset
(1)

Support(p→ q) = Support(p ∧ q) (2)

Definition 3. Coverage: The support of the antecedent of an association rule.

Coverage(p→ q) = Support(p) (3)

Definition 4. Confidence (i.e., Strength or Precision): The percentage of instances in the
dataset which contain the consequent and antecedent together over the number of instances
which only contain the antecedent.

Confidence(p→ q) =
Support(p→ q)

Support(p)
(4)

Definition 5. Lift: Measures how often feature values in q appear in instances that contain
p, while controlling for the frequency for target value q. This is a measure for how surprising
or interesting a rule is, i.e., how much it differs from a random association, in the sense
that it represents a non-trivial correlation between antecedent and consequent [39]. A lift
equal to one implies that no associations can be found. A lift between zero and one means a
negative association and a lift greater one means positive association.

Lift(p→ q) =
Support(p→ q)

Support(p)× Support(q)
(5)
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Definition 6. Leverage: Calculates the observed frequency of p and q appearing together
minus the frequency that would be expected if p and q were statistically independent. Lever-
age can vary between [−1, 1]. When the leverage is equal to zero, no associations can be
found. When it is positive/negative, a positive/negative relationship of the antecedent and
consequent can be determined.

Leverage(p→ q) = Support(p→ q)− (Support(p)× Support(q)) (6)

2.2. Advantages of using association rules as local explainers

In this section we discuss the advantages of considering association rules as local explain-
ers over other interpretable models such as decision trees or linear models.

2.2.1. Rules versus feature importance of linear models

The prediction of a linear model provides the target as a weighted sum of the feature
inputs, and therewith can represent only linear relationships rather than non-linear rela-
tionships. Another drawback of linear models is that if there are input variables that are
highly correlated, the estimated coefficients of the model can be high for either of the corre-
lated features, which does not affect the predictive abilities of the model but leads to poor
explanations.

2.2.2. Association rules are local models

A typical machine learning algorithm for prediction will have to produce a single global
model that is often the result of some form of model selection. In this process, interesting
findings of the dataset that may contain useful explanations may get lost and not be con-
sidered, as usually there will be not one single valid model, but different potentially equally
valid ones. Webb [40] discussed the characteristics of association rules being local models,
as they consider only certain features and only certain values of these features, thus only
considering a subspace of the feature space. Association rule mining aims to discover all
such local models. For example, if there are two equally predictive rules, we aim to find both
of these rules which help users when making decisions. Also, the globally optimal model
may not be the optimal solution for a locally defined region in the subspace. Association
rule mining can find the optimal models in any specified region, which will be more efficient
than a global model [40, 25].

2.2.3. Rules that predict vs rules that explain

Predictability of a rule can be measured using the confidence of the rule and the inter-
estingness of a rule can be measured by the lift or the leverage. Furthermore, when the
value of the confidence is high, the rule is said to be a predictive rule and when the value
of the lift or the leverage is high, the rule is said to be an interesting rule. Novak et al. [27]
discuss the differences between interpretability and predictability, by showing that the most
predictive rules and the rules that explain best on a given dataset will be usually different.
Using the example of a C4.5 decision tree for a predictive algorithm, they illustrate that
redundant rules will be ignored, while in descriptive algorithms, redundant rules should be
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considered. On the other hand, highly predictive rules may result from spurious correlations
in the training data, if they represent only a small number of examples. Such rules will be
filtered out by an adequate descriptive algorithm accordingly, while a predictive algorithm
may be forced to take such rules into account for the sake of completeness of the predic-
tions. Thus, though rules may not be predictive, they may still be of interest to understand
a dataset, and on the other hand, even if rules are highly predictive they may not be useful
for explanations.

2.2.4. Mining interesting rules efficiently

The traditional approach for association rule mining is the Apriori approach [1] whose
fundamental step is to find the itemsets that occur most often, the so-called frequent item-
sets. To select frequent itemsets, a minimum support needs to be given as a parameter.

Association rules are then determined within these frequent itemsets. The frequent item-
set association paradigm has a number of drawbacks, such as its inability to uncover higher
order associations, as these are comparatively infrequent. This is known as the so-called
vodka and caviar problem [7]. Another limitation of the approach is that minimum support
is not a reasonable threshold to regulate the number of associations, as it is impossible to se-
lect the number of associations in advance. So it boils down to a trial and error process, and
therewith the minimum support constraint is not a faithful parameter to acquire interesting
association rules [40].

Webb [38] presents the Optimized Pruning for Unordered Search (OPUS) algorithm, that
overcomes many of the shortcomings of other association rule mining techniques. It employs
a statistically sound process of selecting the top k interesting rules, i.e the rules with the
highest support, coverage, confidence, leverage, or lift. Furthermore, it rigorously controls
the generation of spurious rules [40] and has the ability to enable filter modes to adjust
the length of the rules to be discovered according to input parameters. When generating
interesting rules (rules with a non-trivial correlation between antecedent and consequent),
to overcome false positives OPUS uses a Fisher’s exact hypothesis test [39].

3. Our Approach

The main goal of our approach LoRMIkA is to explain an instance locally, with k-optimal
class association rules.

3.1. Formal definition

In local model-agnostic interpretability, we retain the global model as a black box and
explain the decision (or prediction) provided by the global model for each individual in-
stance [14]. Let f be a given global black-box model, x be an instance to be explained, and
let y be the prediction provided by the global model for x, i.e., f(x) = y. The aim is then
to provide an explanation e for the prediction y. Therefore, we use a local explainer model
e where e = ξ(f, x), which mimics the behaviour of f for x using a process ξ(., .). The local
interpretability model considers the neighbourhood of the instance x in the global model f
to provide the explanation e ∈ E that belongs to a human-interpretable domain E. In our
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Figure 1: An overview diagram of LoRMIkA to generate local rule-based explanations for the global model
predictions.

case of rule-based explanations, E is a domain of rules, i.e., an explanation e = {r1, r2, ...}
provides a set of class association rules r which explain the prediction y from f for the
instance x.

3.2. Overview of the procedure

Broadly, we first generate a neighbourhood that has similar behaviour to the instance to
be explained. For that, first, we preprocess the input data (i.e., training data and instances
to be explained). Then, we select the neighbourhood of the instance to be explained with
the help of a distance measure. Then, we generate new instances in the neighbourhood
with mutation and crossover/interpolation techniques. After that, we generate global model
predictions for the whole set of instances in the neighbourhood (i.e., generated and selected
training instances) to learn the behaviour of the global model. Finally, we perform asso-
ciation rule mining using the OPUS search [38] algorithm with k-optimal [40] associations
for the combined set of instances and their global model predictions to produce class asso-
ciation rules as the explanations of the prediction. The resulting rules are then categorized
into four categories based on the feature values and the predicted value of the global model
of the instance to be explained. An overview diagram of LoRMIkA is shown in Figure 1.
Our approach is furthermore summarized in Algorithm 1 and the most important parts are
discussed in the following.
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Figure 2: An approach to determine instances in the neighbourhood

3.3. Preprocessing the input data

This step corresponds to the PreProcessingInputData(Trx, Ie) function in Algorithm 1.
We preprocess the training data by applying Z-score normalisation for each numerical feature
and one-hot encoding for each categorical feature, since the distribution of each studied
feature varies in range. Note that depending on the distribution of the features, other
normalisation methods such as min-max scaling may yield better results, however Z-score
normalisation is arguably a good default choice for the generic case.

3.4. Determine the instances in the neighbourhood

In this step, we find the training set instances which are in the neighbourhood of the in-
stance to be explained since we assume that the behaviour and the properties of the instances
in the neighbourhood are resembling the instance to be explained. The process of instance
selection within the given neighbourhood is outlined in Algorithm 2 and Figure 2. There
are many ways for selection, e.g., Yu et al. [45] use the Kullback-Leibler (KL) divergence.
The process in our approach is similar to the approach proposed by Yu et al. [44] when
grouping users according to their similarities in social behaviour. A detailed explanation of
the instance selection process is provided in the following.

First, the distance between each pre-processed instance in the training set (background
set) and the instance that needs to be explained is calculated. We use Euclidean distance
as the distance measure to calculate the distance between each pre-processed instance in
the training set and the instance that needs to be explained, as it is preferrable to other
measures in the interpretability context [34, 13]. Similarly, Ribeiro et al. [34] used other
distance measures such as cosine distance for text, and L2 distance for images. As we
use the features directly as concepts for explanations, we effectively limit our approach to
situations where single features can provide meaningful explanations.
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Algorithm 1: Explain Black-box

Input : Trx − Training instances without target
Try − Target of training instances
Ie − Instances need to be explained
M −Global black-box model
Fc − Categorical features
Fn − Numerical features
NGenInst −#new instances to be generated

Output: Rule-based explanations

1 Trpx, I
′
e ← PreProcessingInputData(Trx, Ie)

2 for ie ∈ I ′e do
3 SelecInst← SelectInstFrmNeighbourhood(Trpx, ie, T rx)
4 GenInst← GenInstFrmNeighbourhood(SelecInst, Fc, Fn, NGenInst, ie)
5 CombInst← SelecInst ∪GenInst
6 Pred← GetPredictFrmGlobalModel(CombInst,M)
7 GenRules← MOGenRules(CombInst, Pred)
8 return GenRules

9 end

We then convert the distance to an exponential similarity score to make the distance more
linear and to compare the similarity of the instances in the training set with the explained
instance. The similarity is defined as follows:

K(x, x′) = exp

(
− x− x′2

2w2

)
. (7)

In Equation 7, K(x, x′) is the similarity between two instances x and x′, and w is the
kernel width (see also Algorithm 2), a tuning parameter. When w is high, K(x, x′) will be
close to 1 for any x, x′. When w is low, K(x, x′) will be close to 0. Following Ribeiro et al.
[34], we set w to 0.75 times the number of features.

After that, we group the similarity scores according to the target class and we sort them
in descending order. Then we select the instances with top L (i.e., minimum number of
neighbours from each class) similarities in each class. From the selected top L instances over
all the target classes, the similarity score of the instance with the lowest similarity is used as
the threshold to select the minimum number of most similar instances. This threshold value
is Sct (i.e., cut point of the similarity score) in Algorithm 2. Further, considering the whole
training set we select all the instances whose similarity score is more than Sct for further
processing.

In order to overcome the class imbalance problem, we check whether the number of
instances from each class is less than or equal to M (i.e., the maximum number of neighbours
from each class). Then, we sample M number of instances from the classes where the number
of instances is greater than M, to select as a set of neighbours of the instance to be explained.
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Algorithm 2: SelectInstFrmNeighbourhood(Trpx, ie, T rx)

Input: Trpx − Pre-processed data
Input: ie − Instance to be explained
Input: Trx − Training instances before pre processed
Output: Instances in the neighbourhood of the selected instance that need to be

explained.

1 L← Minimum number of neighbours from each class
2 M ← Maximum number of neighbours from each class
3 w ← Kernel width of the similarity score
4 DistTrSet← GetEuclideanDistance(Trpx, ie)
5 SimTrSet← CnvrToSimilarityScore(DistTrSet, w)
6 SimTrSetGroupScores← GroupByClzSimilarityScore(SimTrSet)
7 SimTrSetGroupDesOrder ← OrderByClzSimilarityScore(SimTrSetGroupScores)
8 MinClzSimScoreLst← []
9 for eclzsim ∈ SimTrSetGroupDesOrder do

10 MinClzSimScore← SelectMinSimScoreTopL(eclzsim)
11 MinClzSimScoreLst.insert(MinClzSimScore)

12 end
13 Sct ← min(MinClzSimScoreLst) /* Cut point of the similarity score */

14 InstGreaterSct← GetInstGreaterSct(Sct, SimTrSet, T rx)
15 InstGreaterSctGroupLst← GroupByClz(InstGreaterSct)
16 SelectInst← []
17 for eInstGtrSctGrp ∈ InstGreaterSctGroupLst do
18 if eInstGtrSctGrp.size() > M then
19 SelectInst.insert(eInstGtrSctGrp.choice(InstM))
20 else
21 SelectInst.insert(eInstGtrSctGrp)
22 end

23 end
24 return SelectInst
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Further, the instances of the classes where the number of instances is less than or equal to
M are also considered as the neighbours of the instance to be explained. The output of
Algorithm 2 (i.e., SelectInst) contains the most similar instances of the training set to the
instance to be explained.

3.5. Instance Generation

The amount of instances chosen from the original training set may not be enough to
adequately characterise the neighbourhood of the instance in consideration. Therefore in
our approach, we generate new instances using the neighbourhood instances of the training
set based on crossover (i.e., interpolation) and mutation techniques, while ensuring that
the majority of the new instances are inside the neighbourhood. The instance generation
procedure is outlined in Algorithm 3. For the instance generation we perform the following
steps.

After determining the instances in the neighbourhood, in this step we use the output of
Algorithm 2 to generate more instances within the selected neighbourhood. We generate
50% of the total instances using the crossover technique defined in Equation 8. It ensures
that all the generated instances are within the neighbourhood.

Icrossover = x+ (y − x) ∗ α (8)

Here, x and y are randomly selected instances from the training set in the neighbourhood
of the instance to be explained, and α is a randomly generated number between 0 and 1.

Afterwards, we generate values for the categorical features for the newly generated in-
stances. Here, we assume that the generated instance behaves similar to the instance to be
explained if the generated instance values are similar to the values of the most similar parent
instance to the instance to be explained. Having that assumption, we select the most similar
parent instance (i.e., x or y ) to the instance to be explained. The categorical values for the
newly generated instance are equal to the categorical values of the most similar instance.

Then, we use a mutation technique from Storn and Price [37], defined in Equation 9, to
generate the rest of the newly generated instances.

Imutation = x+ (y − z) ∗ σ (9)

Here, x, y, and z are three different instances of the neighbourhood of the instance to
be explained, and σ is a randomly generated number between 0.5 and 1. Similarly, when
setting the values for the categorical features of the newly generated instances, we select the
most similar instance from x, y, and z to the instance to be explained and we set the values
of the most similar instance to the newly generated instance.

3.6. Generate global model predictions

This step corresponds to GetPredictFrmGlobalModel(ComnInst,M) in Algorithm 1.
The assumption behind the generation of global model predictions is that the logic to pro-
duce the global model prediction of the instance to be explained is similar to the logics of
producing the global model predictions of its neighbourhood instances. Here, we obtain the

12



Algorithm 3: GenInstFrmNeighbourhood(SelecInst, Fc, Fn, NGenInst, ie)

Input: SelecInst−Output of the Algorithm 2 : neighbours in the training set
Fc − Categorical Features
Fn − Numerical Features
ie − Instance to be explained

Output: GenInst−Generated instances

1 α← uniform(0, 1)
2 σ ← uniform(0.5, 1)
3 x, y ← RandomSelecTwoInst(SelecInst)
4 Icrossover ← x+ (y − x) ∗ α
5 x, y, z ← RandomSelecThreeInst(SelecInst)
6 Imutation ← x+ (y − z) ∗ σ
/* Get closest neighbours to the explained instance in each Icrossover

and Imutation case */

7 closeInstcrossover ← GetClosestInstance(ie, [x, y])
8 closeInstmutation ← GetClosestInstance(ie, [x, y, z])
9 foreach fc ∈ Fc do

10 Icrossover(fc)← closeInstcrossover(fc)
11 Imutation(fc)← closeInstmutation(fc)

12 end
13

14 return Icrossover, Imutation

global model predictions of the newly generated instances and the neighbours taken from
the training set (i.e., SelecInst ∪ GenInst) to obtain the global model behaviour for this
combined dataset. The intuition in this step is to generate a new training dataset in the
neighbourhood of the instance to be explained to fit the local explainer (i.e., association
rule mining algorithm) in the locally defined neighbourhood of the instance to be explained.
This newly generated training set has the global model predictions as the target values.

3.7. Generate class association rule-based explanations

This step relates to the MOGenRules(CombInst, Pred) function in Algorithm 1. We
generate k optimal class association rules using the OPUS search algorithm [40] with regards
to different objectives such as support, coverage, confidence, lift and leverage. Here, k is the
maximum number of rules to be generated for each objective. In our approach (LoRMIkA)
we provide both predictive rules (i.e., rules with high confidence) and interesting rules (i.e.,
rules with high lift). An implementation of OPUS search to generate association rules is
available in the BigML platform [9].

The reason for using the OPUS algorithm for rule extraction rather than algorithms like
CPAR [43], RIPPER [8], FOIL [32], or RCAR [3] is that those algorithms focus on finding
minimal rule sets which lead to accurate predictions (i.e., high confidence). As discussed in
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Figure 3: Diagram that illustrates the four types of rules generated by LoRMIKA.

Section 2.2.3 the main drawback of focusing on the most predictive rules is the inability to
uncover higher-order associations, which are relatively infrequent. The OPUS algorithm is
a statistically sound algorithm which captures infrequent higher order associations (inter-
esting rules) while ignoring false positives. As stated before, we argue that the explanations
provided by the local explainers should provide good explanations and not necessarily good
predictions.

The inputs to the association rule generating OPUS algorithm are the instances in the
neighbourhood of the instance that needs to be explained. Both instances that were selected
from the training set and newly generated instances are considered. LoRMIkA provides
flexibility to search for the k-optimal rules with the highest support, coverage, confidence,
lift, or leverage. This optimisation criterion is a parameter of the method, and thus this
choice can be made by the user, and both predictive and interesting rules can be generated.
Also, as there is in general the risk of over-estimating the confidence when the coverage is
low, the OPUS algorithm uses an m-estimate [11] to adjust the values of confidence and lift.
This feature helps to avoid overfitting by discovering spurious highly predictive rules.

We classify the set of rules obtained from the OPUS algorithm into four categories with
regards to a contingency table of the LHS and RHS of the association rules. The LHS of
the rule is true if the antecedent of the rule agrees with the feature values of the instance
to be explained. The RHS of the rule is true if the consequent of the rule agrees with the
prediction provided by the global model of the instance to be explained.

Let us consider an example in a cancer risk prediction scenario, where for a patient x
the global model predicts this patient as a positive case (y = 1), i.e., the patient is at risk
of developing a cancer. To explain this prediction LoRMIkA produces four types of rules as
follows (also see Figure 3).

1. Current Supporting rules (<+
cα ): The rules that support the prediction of the global

model.
Definition: if LHS = true, then RHS = true.
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Interpretation: Conditions of x that support and explain why the patient is predicted as
a risk case (y = 1) by the global model.
Benefits : Observing the current supporting rules, the doctors can identify the conditions
that lead to classify this patient as at risk by the global model. These rules indicate the
features that this patient has that lead to a positive classification.
Approaches : Anchor, LORE and LoRMIkA provide current supporting rules.

2. Current Contradicting Rules (<−cβ ): The rules that contradict the prediction of the
global model.
Definition: if LHS = true, then RHS = false.
Interpretation: Conditions of x that contradict the current prediction (y = 1) and would
support its prediction as being negative (y = 0). These rules contradict the current
prediction (y = 1).
Benefits : Observing the current contradicting rules indicates doctors the features that
the current patient has that would lead to a negative prediction, i.e., that contradict the
current prediction. In our example, these factors contribute to a prediction of not being
at risk of cancer, and therewith are factors that the doctors should try not to change.
Approaches : Only LoRMIkA provides current contradicting rules.

3. Hypothetically Supporting Rules (<+
hα) : The rules that would increase the proba-

bility of the prediction of the global model.
Definition: if LHS = false, then RHS = true.
Interpretation: Determine the conditions that are currently not satisfied by x (they are
hypothetical) that would further support the current prediction of x being a risk case.
Benefits : If features of the patient changed towards the conditions in the rules, this would
further increase the risk of x to be positive. Thus, changes along the lines of these rules
should be avoided in our example.
Approaches : Only LoRMIkA provides hypothetically supporting rules.

4. Hypothetically Contradicting Rules (Counterfactual Rules, <−hβ ): The rules
that may invert the prediction of the global model.
Definition: if LHS = false, then RHS = false.
Interpretation: The conditions that are currently not satisfied by the features of x (they
are hypothetical) that would contradict the current prediction of x as positive, i.e. they
would contribute towards inverting the prediction to being negative (y = 0, not being at
risk).
Benefits : The counterfactual rules can help doctors to understand in which ways the
characteristics of the patient needed to change to make the patient more likely to be
classified as a negative patient.
Approaches : LORE and LoRMIkA provide hypothetically contradicting rules.

With these four kinds of rules, our approach is able to provide a complete picture of
rules that explain the local neighbourhood of an instance and give the practitioner all the
information for informed decision making.

A Python implementation of LoRMIKA is available from GitHub1. It can be used

1https://github.com/DiliSR/LoRMIkA
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together with an implementation of the OPUS class association rule mining algorithm, such
as the one from BigML [9].

4. Experiments

In this section, we compare LoRMIkA with other state-of-the-art rule-based algorithms
in both qualitative and quantitative aspects.

4.1. Overview of the datasets

We use the evaluation framework from Guidotti et al. [13] for our experiments, which
employs three real-world classification datasets Adult [36], COMPAS [16], German [15]. Fur-
thermore, we use the Covertype [10] dataset to evaluate our method on larger datasets. The
datasets have both categorical and continuous features. Continuous features are discretized
in our approach. In the Adult, COMPAS, and German datasets, each instance of a dataset
represents a record that belongs to an individual. In the Covertype dataset, each instance
represents a 30m× 30m patch of forest that is classified as one of seven cover types.

The Adult dataset from the UCI Machine Learning Repository contains data about
income levels in relation to demographic features. It contains 48,842 instances in total. The
income, which is the target column of the dataset divides the whole dataset into two classes:
“≤ 50K” and “≥ 50K”.

The COMPAS dataset from ProPublica includes the features used by the COMPAS
algorithm to assess a criminal defendant’s likelihood to re-offend (Low, Medium and High).
This dataset consists of over 10,000 instances and we have divided it into the two classes
“Medium-Low” and “High” risk.

The German dataset from the UCI Machine Learning Repository contains 1,000 in-
stances and classifies persons as “good” or “bad” creditors.

The Covertype dataset from the UCI Machine Learning Repository contains 581,012
instances. It is a multi-class classification dataset with seven classes. As multi-class classifi-
cation is not the main focus of our paper, we convert it into a binary classification problem
as follows. We consider the class which has the highest number of instances to be one class
(“type = 2”) and merge all the other classes into the second class (“type = 1”), making it
a one-vs-all classification.

4.2. Generate global model predictions

To generate predictions from global models, we perform the following steps. First, we
select a set of machine learning models as global models to make predictions in our exper-
iments. For the experiments, we consider five algorithms as the global black-box models.
They are support vector machine (SVM), random forest (RF), logistic regression (LR), de-
cision trees (DT) and multi-layer neural networks with ‘LBFGS’ solver (NN). We use these
models in their implementations from the scikit-learn library [29], with their default parame-
ters. The only parameter that we change from the default parameters is in the RF algorithm,
where we set the number of trees to 100, to keep the hyper-parameters of the global models
of our experimental setup consistent with the experimental setup of LORE [13]. Some of
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these models, for instance DT, can be considered interpretable globally. However, we argue
that it is still worthwhile to generate local explanations, as they are targetted at the par-
ticular instance and can therewith be more relevant. We do not consider the SVM model
for the Covertype dataset in our experiments, as it is computationally too expensive and we
did not obtain results after 10 days of running time.

After preprocessing the datasets we impute missing values in both continuous and cat-
egorical variables of the dataset using mean and mode imputation, respectively. Moreover,
we discretise continuous attributes into three sub-ranges, where the size of the sub-ranges is
chosen for them to contain an approximately equal number of instances. Finally, to select
the training set and testing set each dataset is randomly split using a 4:1 ratio.

4.3. Select rule-based model agnostic explainers for baseline comparison

For the baseline comparison, we use Anchor [35] and LORE [13] as two state-of-the-art
local rule-based model-agnostic explainers.

Anchor. The main goal of Anchor is to provide if-then rules, which are called anchors. It
provides rules with high confidence, where it guarantees that changing the values of the
features which are not included in the rule will not affect the final prediction of the global
model. Also, Anchor selects the rules with a minimum confidence of 95%. If multiple rules
are generated with the same confidence, then it selects the rule with the highest coverage
from those. As the output, Anchor provides a single current supporting rule which explains
the prediction of the global model (i.e., <+

cα).

LORE. First, LORE generates new instances in the neighbourhood of the instance to be
explained using a genetic algorithm. To learn the behaviour and the properties of the global
model, it obtains the global model predictions of the generated instances. Finally, LORE
obtains rule-based explanations after building a decision tree on the generated instances. As
the output, LORE provides a single current supporting rule which explains the prediction
of the global model (i.e., <+

cα) and rules which potentially help to invert the global model
predictions which are called counterfactual rules (i.e., <−hβ).

4.4. Parameter setup in LoRMIkA

In preliminary experiments, we determined that the parameters of our method are fairly
robust, and consequently we use a common set of parameters in all three datasets as follows.
From Algorithm 2, L = 40, w = 0.75 ×

√
no. of features. We choose the target proportion

of minority class instances to the majority class instance as 1:5. All runs are executed 10
times and averages are reported here, for the stability of the results.

4.5. Qualitative analysis

In this section, we illustrate with an example the performance of Anchor, LORE, and
LoRMIkA. We consider a prediction for an instance of the COMPAS dataset. We use
the random forest classifier that classifies the instance in consideration as having a 65%
probability for the prisoner of having a “High” level of likelihood to re-offend. The feature
values of the instance are as follows:
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Prediction = High (65% probability)

age = 27 age cat = 25 - 45 sex = Male
race = African-American priors count = 4 days b screening arrest = 1

c charge degree = F is recid = 1 is violet recid = 1
two year recid = 1 length of stay = 50

In the following, we discuss the possibilities of releasing the prisoner and its implications,
using the local explainer models.

What are the current conditions that support the prediction as having a High chance to
re-offend?. This question can be answered using the current supporting rules (<+

cα). The
current supporting rules of LoRMIkA are as follows.

<+
cα LoRMIkA = {(26 ≤ age ≤ 29.250 &

is violent recid = 1) target⇒ High}

<+
cα LoRMIkA

Support = 0.226 Coverage = 0.24 Confidence = 0.93 Lift= 1.22

The instance is being predicted as a prisoner with “High” likelihood to re-offend since
the age is greater than or equal to 26 and less than or equal to 29.25, and this prisoner
is a violent recidivist. Anchor and LORE produce the following rules to explain the same
instance:

<+
cα Anchor = {(length of stay > 8.00 & two year recid = 1 & race = African− American &

is recid = 1 & c charge degree = F & sex = Male &

days b screening arrest ≤ 1.00 & 25 < age ≤ 31 & 2 < priors count ≤ 5 &
(10)

is violent recid = 1) target⇒ High}

<+
cα LORE = {(age ≤ 27) target⇒ High}

LoRMIkA’s current supporting rule shares some similarity with Anchor and LORE.
We find that (<+

cα LoRMIkA) indicates that the prisoner has a high likelihood to re-offend if
26 ≤ age ≤ 29.250. The supporting rules of LORE (<+

cα LORE) indicate age ≤ 27, and
Anchor (<+

cα Anchor) indicates 25 < age ≤ 31.
However, we argue that LoRMIkA’s current supporting rule in this example is easier to

understand and more informative than the rules provided by Anchor and LORE. Following
Nauck [26], rules with a fewer number of conditions can be considered more interpretable
than rules with a higher number of conditions. LORE (<+

cα LORE) produces a single condition
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with the “age” feature. Though we can consider this as highly interpretable, it seems not
enough to decide whether the prisoner is a “High” level risk case to re-offend. The current
supporting rule of LoRMIkA (<+

cα LoRMIkA) with two conditions is also brief and intuitive to
understand, but it also can be considered highly related and relevant to the prediction in this
question, as the other condition of <+

cα LoRMIkA is is violent recid = 1. Anchor (<+
cα Anchor)

on the other hand provides a rather verbose rule with 11 conditions, which includes the
conditions from the LoRMIkA rule, but points narrowly to the outcome of the particular
decision, and seems harder to interpret due to its complexity.

What are the current conditions that contradict the prediction as having a High chance to
re-offend?. As an answer to this question, we use the current contradicting rules (<−cβ).
Below, we present the generated current contradicting rule of LoRMIkA. To the best of our
knowledge, LoRMIkA is the only algorithm that provides current contradicting rules for the
prediction.

<−cβ LoRMIkA = {(priors count < 5) target⇒Medium low}

<−cβ LoRMIkA

Support = 0.18 Coverage = 0.331 Confidence = 0.546 Lift= 2.31

The rule can be used by decision-makers as suggestion which features should maintain
their values to achieve a prediction of Medium Low likelihood to re-offend in the future. In
our example, the rule suggests that if this prisoner will re-offend at least one more time he
will lose the only protective factor which potentially supports a prediction of low likelihood
to re-offend. The actual characteristic of this prisoner is {priors count = 4)}, so this can be
interpreted in a way that this prisoner is at a tipping point of being a regular and frequent
offender.

We note that the rule has a high lift (2.31), but fairly low confidence (0.546) which
determines that this rule is not highly predictive, but can be seen as highly interesting.
Anchor and LORE do not consider priors count of the prisoner for their current supporting
rules, so that this information is also implicitly there in those algorithms, but our algorithm
is able to make it explicit.

What are the hypothetical conditions that support the prediction as having a High chance
to re-offend?. Below, we present the generated hypothetical supporting rule of LoRMIkA
(<+

hα). To the best of our knowledge, LoRMIkA is the only algorithm that provides hypo-
thetical supporting rules for a prediction.

<+
hα LoRMIkA = {(priors count > 6 & ) target⇒ High}

<+
hα LoRMIkA

Support = 0.332 Coverage = 0.33 Confidence = 0.98 Lift= 1.29
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The rule is in line with the current contradicting rule, emphasizing that a further increase
of priors count would very negatively affect predicted risks for this prisoner in particular.

What are the hypothetical conditions that could potentially invert the prediction as having a
high chance to re-offend to medium low chance to re-offend?. As a solution for this question,
we use the hypothetical contradicting rules (<−hβ), which are often also called counterfactuals.
Below, we present the generated hypothetically contradicting rules of LoRMIkA and LORE.

<−hβ LoRMIkA = {(age > 29 & priors count < 4) target⇒Medium Low}

<−hβ LoRMIkA

Support = 0.098 Coverage = 0.11 Confidence = 0.87 Lift= 3.7

<−hβ LORE = {(days b screening arrest > 0 & age > 28) target⇒Medium Low}

If this prisoner was older than 29 and priors count was less than 4, this person would be
identified as a prisoner with “Medium Low” likelihood to re-offend by the algorithm, accord-
ing to LoRMIkA. The actual characteristics of this prisoner are {age = 27, priors count =
4}. Though priors count in practice cannot be reduced and therewith the rule is not ac-
tionable, together with the other rules from above, the explanations suggest a prisoner at a
tipping point, in terms of age and prior offences. The explanations suggest that if decision-
makers can achieve that this prisoner will not re-offend in the next 2 years (approx.), the
predicted risk will be lower afterwards. LoRMIkA’s hypothetically contradicting rule shares
some similarity with LORE, in terms of the age.

4.6. Quantitative analysis

In this section we present a quantitative analysis of the efficiency, stability, and inter-
pretability of the rules produced by the different methods.

4.6.1. Analysis of the efficiency of the rules produced by LoRMIkA compared with the rules
of the other state-of-the-art algorithms

Following the key assumption of the local interpretability theory [34, 35, 13], we investi-
gate whether the rule-based explanation produced for a particular instance is homogeneous
across its neighbourhood using the association rule mining measures (i.e., coverage, confi-
dence, and lift).

The accuracy and the efficiency of the local rule-based model-agnostic explainers pre-
sented here is based on 1) the coverage that measures the fraction of instances in the neigh-
bourhood which satisfy the LHS of the rule, 2) the confidence (i.e., precision, strength)
which measures the percentage of the instances which satisfy the RHS of the rule, out of
the instances selected for the coverage and 3) the lift which measures the interestingness of
the rule.

Moreover, we compute the average time taken to generate a single explanation for a
prediction produced by each global machine learning model.
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Table 1: Coverage level of explainers
Dataset COMPAS Adult German Covertype

Black-box Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA
SVM 0.24 +−0.10 0.50 +−0.12 0.65 +−0.13 0.09 +−0.09 0.50 +−0.10 0.73 +−0.12 0.27 +−0.13 0.55 +−0.09 0.37 +−0.03 - - -
DT 0.05 +−0.05 0.51 +−0.13 0.79 +−0.12 0.07 +−0.09 0.49 +−0.11 0.83 +−0.05 0.03 +−0.03 0.50 +−0.12 0.60 +−0.15 0.00 +−0.00 0.30 +−0.18 0.92 +−0.14
LR 0.18 +−0.13 0.52 +−0.14 0.88 +−0.05 0.10 +−0.10 0.49 +−0.11 0.88 +−0.03 0.06 +−0.07 0.51 +−0.10 0.77 +−0.14 0.00 +−0.00 0.41 +−0.04 0.96 +−0.09
NN 0.09 +−0.08 0.50 +−0.13 0.84 +−0.08 0.05 +−0.06 0.49 +−0.10 0.86 +−0.03 0.03 +−0.04 0.51 +−0.10 0.68 +−0.17 0.00 +−0.00 0.67 +−0.41 0.96 +−0.09
RF 0.08 +−0.07 0.49 +−0.11 0.82 +−0.11 0.09 +−0.11 0.49 +−0.10 0.83 +−0.05 0.19 +−0.17 0.51 +−0.10 0.70 +−0.08 0.00 +−0.00 0.36 +−0.13 0.97 +−0.09

Table 2: Confidence of explainers
Dataset COMPAS Adult German Covertype

Black-box Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA
SVM 0.99 +−0.01 0.98 +−0.14 0.99 +−0.01 0.98 +−0.02 0.98 +−0.05 1.00 +−0.00 0.98 +−0.01 0.99 +−0.00 0.99 +−0.00 - - -
DT 0.98 +−0.02 0.97 +−0.08 0.91 +−0.03 0.97 +−0.02 0.98 +−0.05 0.96 +−0.01 0.98 +−0.02 0.98 +−0.06 0.84 +−0.04 0.88 +−0.08 0.68 +−0.41 0.80 +−0.05
LR 0.97 +−0.02 0.97 +−0.09 1.00 +−0.00 0.97 +−0.01 0.98 +−0.04 1.00 +−0.00 0.98 +−0.01 0.98 +−0.06 0.99 +−0.01 0.97 +−0.01 0.93 +−0.13 0.97 +−0.01
NN 0.98 +−0.02 0.97 +−0.08 0.99 +−0.01 0.97 +−0.01 0.98 +−0.05 1.00 +−0.00 0.98 +−0.02 0.98 +−0.06 1.00 +−0.00 0.96 +−0.02 0.67 +−0.40 0.88 +−0.03
RF 0.97 +−0.02 0.98 +−0.05 0.98 +−0.01 0.97 +−0.01 0.98 +−0.05 0.99 +−0.01 0.97 +−0.01 0.98 +−0.05 0.97 +−0.01 0.93 +−0.06 0.80 +−0.30 0.95 +−0.02

Coverage. Table 1 shows the mean values for the coverage of the rules generated as the expla-
nations of LoRMIkA, Anchor, and LORE for the COMPAS, Adult, German and Covertype
datasets. The best values across the local explainers are indicated with a boldface font.
When comparing the mean coverages of the rules over all the global models, LoRMIkA out-
performs LORE and Anchor across all datasets and models, except one case, namely for the
SVM model in the German dataset, where LORE performs better. We argue that this is
the case due to the flexibility of LoRMIkA to search and obtain k-optimal rules with high
coverage. As coverage measures how representative a rule is for a given dataset, our results
show that LoRMIkA achieves the most representative rules.

Confidence. Table 2 shows the mean values for the confidence of the rules generated as the
explanations of LoRMIkA, Anchor and LORE for COMPAS, Adult and German datasets.
We see that LoRMIkA outperforms LORE and Anchor in most instances. In particular,
it outperforms the comparison methods in all instances but the DT instances across all
datasets, the NN in the Covertype dataset and the RF instance in the German dataset.
Our results show that LORE and Anchor provide rule-based explanations with competitive
mean confidence values since their main focus is to find the rules with the highest confidence.
However, LoRMIkA is able to achieve the highest mean confidence in most cases.

Lift. Table 3 shows the rate of interestingness which is calculated from the lift as an abso-
lute difference from 1 (as a lift of 1 shows there is no association between antecedent and

Table 3: Rate of Interestingness

Dataset COMPAS Adult German Covertype

Black-box Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA
SVM 0.01 +−0.01 0.83 +−0.32 3.11 +−0.18 0.02 +−0.02 0.84 +−0.29 2.61 +−0.94 0.02 +−0.01 0.90 +−0.09 1.90 +−0.17 - - -
DT 0.02 +−0.02 0.82 +−0.34 1.25 +−0.17 0.03 +−0.02 0.81 +−0.34 1.85 +−0.61 0.02 +−0.02 0.82 +−0.35 0.99 +−0.19 1.00 +−0.00 0.50 +−0.84 1.58 +−0.20
LR 0.03 +−0.02 0.81 +−0.33 3.33 +−0.49 0.03 +−0.01 0.82 +−0.34 5.14 +−0.98 0.02 +−0.01 0.83 +−0.30 3.16 +−0.58 1.00 +−0.00 0.98 +−0.02 2.05 +−0.12
NN 0.02 +−0.02 0.82 +−0.33 2.87 +−0.44 0.03 +−0.01 0.83 +−0.33 5.22 +−1.24 0.02 +−0.02 0.88 +−0.29 2.43 +−0.29 1.00 +−0.00 0.48 +−0.84 1.90 +−0.39
RF 0.03 +−0.02 0.81 +−0.34 2.05 +−0.31 0.03 +−0.01 0.82 +−0.35 3.19 +−1.20 0.03 +−0.01 0.83 +−0.33 2.17 +−0.66 1.00 +−0.00 0.78 +−0.59 2.02 +−0.40
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Table 4: Run-time of explainers

Covertype Dataset
Black-box Anchor LORE LoRMIkA

DT 41.28s 22.60s 38.31s
LR 2.19s 7.42s 38.15s
NN 20.48s 20.13s 38.29s
RF 24.81s 289.41s 38.27s

consequent).
We note that the lift for Anchor is identical to its confidence, as it defines the neigh-

bourhood in a way that it only contains positive instances. This way, the global model
predictions of the instances in the neighbourhood are equal to the global model prediction
of the instance to be explained. Per the definition of lift in Definition 5 the Support(q) is
equal to 1. Therewith, in Anchor the lift is equal to the confidence according to Definition 4.
Thus, lift for Anchor is by definition between 0 and 1, as well as the rate of interestingness.

We can see from the table that LoRMIkA outperforms LORE and Anchor in all instances
but one, which is the SVM in the German dataset for LORE. This again shows the flexibility
of our algorithm LoRMIkA that makes it possible to obtain interesting rules with high lift
and does not limit us to rules with the highest predictive power.

Computational Time. The experiments are run on an Intel(R) i7 processor (3.2 GHz), with
a single thread per core, and 64GB of main memory. Table 4 shows the average running time
over 50 instances measured in seconds, to produce explanations of the predictions generated
by each global model for the Covertype dataset. From the table, we can see that Anchor
runs fastest as an explainer for the LR and RF global models, whereas LORE runs the
fastest for DT and NN. LoRMIkA has a very consistent running time around 38s across all
the models.

Overall, our analysis shows that in most cases the efficiency of the rule-based explana-
tions of LoRMIkA is superior to the LORE and Anchor baselines with respect to coverage,
confidence, and rate of interestingness of the rules when explaining the predictions of the
global models of COMPAS, Adult, German and Covertype datasets. With regards to the
computational time, Anchor and LORE can be both considerably faster and considerably
slower than LoRMIkA, while the latter one has a quite constant computation time.

4.6.2. Analysis of the stability of the rules produced by LoRMIkA compared with the rules of
the other state-of-the-art algorithms

We evaluate the stability of the local rule-based model-agnostic explainers by calculating
the similarity of the resulting rules over independent runs, using the Jaccard coefficient as
defined in Equation 11.

J(X, Y ) = |X ∩ Y |/|X ∪ Y | (11)

22



Table 5: Jaccard measure of stability in explainers
Dataset COMPAS Adult German Covertype

Black-box Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA
SVM 0.85 +−0.18 0.50 +−0.12 1.00 +−0.00 0.73 +−0.25 0.91 +−0.11 1.00 +−0.00 0.74 +−0.26 0.93 +−0.08 1.00 +−0.00 0.27 +−0.13 0.55 +−0.09 1.00 +−0.00
DT 0.78 +−0.19 0.74 +−0.26 1.00 +−0.00 0.75 +−0.20 0.79 +−0.24 1.00 +−0.00 0.74 +−0.69 0.79 +−0.24 1.00 +−0.00 0.63 +−0.22 0.74 +−0.21 1.00 +−0.00
LR 0.80 +−0.18 0.52 +−0.14 1.00 +−0.00 0.73 +−0.26 0.82 +−0.20 1.00 +−0.00 0.74 +−0.26 0.82 +−0.21 1.00 +−0.00 0.84 +−0.16 0.76 +−0.21 1.00 +−0.00
NN 0.74 +−0.24 0.83 +−0.19 1.00 +−0.00 0.74 +−0.22 0.78 +−0.25 1.00 +−0.00 0.68 +−0.26 1.00 +−0.00 1.00 +−0.00 0.66 +−0.23 0.76 +−0.19 1.00 +−0.00
RF 0.79 +−0.23 0.49 +−0.11 1.00 +−0.00 0.74 +−0.23 0.82 +−0.20 1.00 +−0.00 0.75 +−0.22 0.75 +−0.20 1.00 +−0.00 0.65 +−0.21 0.67 +−0.26 1.00 +−0.00

Here, X and Y are two given sets of features that are included in the rules from two runs.
The Jaccard coefficient calculates the similarity [20] by comparing the common and distinct
features in the two sets. The output ranges from 0 to 1, and the higher the coefficient
the higher the similarity of rules over the two runs. In particular, we randomly select 50
instances and evaluate the stability of the generated explanations over 10 independent runs.

Table 5 indicates the mean and the standard deviation of the Jaccard coefficient. When
measuring the Jaccard coefficient, we consider rules generated for highest confidence and
rules which support the current prediction (i.e., <+

cα). LoRMIkA produces the rules with
the highest stability compared with LORE and Anchor with a Jaccard coefficient of 1.00 in
all occasions, indicating the high stability of the method. We argue that this high stability
is due to the robust nature of our approach when selecting the neighbourhood as explained
in Section 3.

4.6.3. Quantitative analysis of interpretability

As the interpretability of a given method is inherently difficult to measure, as a proxy
we use the simplicity of the generated explanations [4]. We measure the total amount of
features used in the antecedent of the given rule of the local rule-based explainers.

Table 6: Number of features in the explanation
Dataset COMPAS Adult German Covertype

Black-box Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA Anchor LORE LoRMIkA
SVM 1.71 +−0.25 1.36 +−0.29 1.03 +−0.19 2.61 +−0.31 1.24 +−0.25 1.00 +−0.00 2.87 +−0.37 1.10 +−0.10 1.00 +−0.00 - - -
DT 4.77 +−0.47 1.84 +−0.59 1.25 +−0.44 4.23 +−0.58 2.30 +−0.61 1.26 +−0.45 4.27 +−1.05 2.44 +−0.90 1.21 +−0.42 28.50 +−8.28 4.77 +−0.77 2.25 +−1.29
LR 2.08 +−0.31 1.28 +−0.30 1.40 +−0.50 2.73 +−0.52 1.90 +−0.47 1.41 +−0.50 2.80 +−0.45 1.85 +−0.46 1.20 +−0.42 3.21 +−0.64 4.11 +−0.74 6.46 +−3.59
NN 3.99 +−0.47 1.32 +−0.29 1.38 +−0.53 3.70 +−0.39 1.98 +−0.49 1.46 +−0.57 4.03 +−0.67 1.00 +−0.00 1.27 +−0.45 10.00 +−3.68 6.13 +−0.96 5.48 +−3.78
RF 4.20 +−0.34 1.61 +−0.43 1.37 +−0.50 3.46 +−0.45 2.04 +−0.47 1.28 +−0.44 3.10 +−0.60 2.50 +−0.91 1.07 +−0.28 15.39 +−4.36 3.60 +−0.80 8.77 +−7.46

Table 6 indicates the mean values of the number of features used in a single rule to
explain each instance using Anchor, LORE, and LoRMIkA. LoRMIkA outperforms LORE
and Anchor across all datasets and models, except five cases, namely for the LR and NN
models in the COMPAS dataset and the NN model in the German dataset, and LR and RF
in the Covertype dataset where LORE performs better except LR in the Covertype dataset.
This indicates that LoRMIkA is able to obtain more concise rules than Anchor and rules of
comparable complexity to LORE.

5. Conclusions

We have presented Local Rule-based Model Interpretability with k-optimal Associations
(LoRMIkA), a model-agnostic framework for local explainability of classification algorithms.
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It employs association rule mining techniques in a local neighbourhood to explain a particular
instance and is therewith able to extract models that are local both with respect to features
and instances. It uses the efficient OPUS search algorithm to extract top k-optimal rules with
respect to measures such as support, coverage, confidence, lift, and leverage. This makes
the framework flexible and allows us to extract simple rules that are not only predictive but
also interesting and better suited to provide explanations. The experiments performed have
shown that LoRMIkA is competitive and able to outperform state-of-the-art local explainers
both in quantitative and qualitative aspects. Moreover, in contrast to state-of-the-art local
explainers, it is able to provide multiple rules which explain the prediction in various aspects.
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