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Abstract

In this paper, we study the learning rate of generalized Bayes estimators in

a general setting where the hypothesis class can be uncountable and have an

irregular shape, the loss function can have heavy tails, and the optimal hypothesis

may not be unique. We prove that under the multi-scale Bernstein’s condition,

the generalized posterior distribution concentrates around the set of optimal

hypotheses and the generalized Bayes estimator can achieve fast learning rate.

Our results are applied to show that the standard Bayesian linear regression is

robust to heavy-tailed distributions.

Keywords: Bayesian learning, posterior concentration, fast rate, heavy-tailed

loss, Bernstein condition

1. Introduction

There has been a growing interest in posterior concentration rates of Bayesian

inference over the last decade. Posterior concentration allows us to uncover

frequentist properties of Bayesian methods and implies that most of the posterior

mass will be close to the truth in the frequentist sense. Studying such properties

enables designs of appropriate priors for Bayesian inference in various contexts

[1, 2, 3].
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Similar approaches have also been proposed in statistical learning theory.

In such settings, one considers models of predictors defined relative to some

loss functions and proves frequentist convergence bounds of generalized Bayes

predictors constructed with respect to a posterior randomization measure. The

most notable work on this direction is the framework of “safe Bayesian,” where

the formulation for generalized Bayesian posterior can be tuned by an optimal

learning rate [4]. Instead of choosing priors, within such a framework, one can

construct more flexible estimators over a wide range of hypothesis spaces, losses,

and model misspecifications.

From another perspective, the topic of fast learning rate in statistical learning

has become a subject of growing interest in recent works. The pursuit of a “fast

rate” regime has led to many conditions in learning theory under which fast rates

are possible such as low noise assumption [5, 6], stochastic mixability condition

[7], Bernstein’s condition [8], v-central condition [9], and multi-scale Bernstein’s

condition [10]. Traditionally, most works in this direction have primarily focused

on bounded losses, and deviations from this expected behavior are worrisome,

especially when the loss of the learning problem of interest is unbounded and/or

has heavy tails.

Recently, it has been shown that it is possible to generalize conditions for fast

learning rates with unbounded and heavy-tailed losses. The fast learning rate

for sub-gaussian and sub-exponential losses are done in the context of density

estimation [11, 12] and for general losses [13], of which proofs of fast rates

heavily employ the Bernstein’s condition and the central condition. In [14], the

authors provide an exponential concentration of the median-of-means estimator

under heavy-tailed distributions to approximate minimization of smooth and

strongly convex losses. Similarly, the paper [15] proposes studying the “opti-

mistic rate" under the small-ball condition for learning with heavy-tailed convex

losses. Another effort to resolve this issue was shown in [10] with their newly

proposed multi-scale Bernstein’s condition, which enables learning with heavy

tails when the loss function is non-convex and the optimal hypothesis is not

unique. Their analyses recover fast learning rates for empirical risk minimization
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(ERM) estimators under bounded losses, but, more significantly, also hold for

heavy-tailed losses.

The vast majority of the recent works in obtaining fast learning rates have

taken place in the frequentist approach, whereas applications to generalized

Bayesian estimators are unknown. In [16], the authors take a further step to show

that fast learnings in the generalized Bayesian setting are, indeed, attainable.

However, the major drawbacks are that the optimal learning rate β must be

known in advance and that the hypothesis class is finite. The “safe Bayesian”

methods [4] provide a framework to analyze a special form of generalized Bayes

estimators employing the central condition, which cannot be applied to losses

with polynomial tails [9]. As a result, the feasibility of fast learning rates for

heavy-tailed distributions under Bayesian frameworks remains unknown.

Building upon the multi-scale Bernstein’s condition, we analyze fast con-

centration rates of generalized Bayes estimators in a general framework where

the hypothesis class can be infinite/uncountable and have an irregular shape,

the loss function can have heavy tails, and the optimal hypothesis may not be

unique. Our results demonstrate that learning rates faster than O(n−1/2) can

be obtained. Moreover, depending on the regularity of the risk function and

the complexity of the hypothesis class, the learning rate can be arbitrarily close

to the optimal rate O(n−1). We apply our results to show that the standard

Bayesian linear regression is robust to heavy-tailed distributions. Specifically,

Bayesian linear regression with the regular square loss can achieve fast rate

learning when the errors follow t-distributions.

Related work. Bayesian framework has been applied extensively to a wide variety

of research areas including ecology [17], evolutionary biology [18], epidemiology

[19, 20], and economics [21]. However, theoretical properties of Bayesian methods

have not been studied extensively as its frequentist counterparts, especially for

heavy-tailed losses. In particular, several frequentist approaches have been shown

to perform well with heavy-tailed losses including ERM [10, 22], median-of-means

estimator [14, 23], k-mean clustering [10, 24], support vector machines [25], Least
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Squares Estimator [26]. Recently, much effort have been devoted to study the

asymptotic theory of Bayesian inference [1, 4, 27, 28, 29, 30]. However, the lack

of results for heavy-tailed losses has hindered the applicability of the Bayesian

inference to such a scenario. This is a major disadvantage compared to other

frequentist methods. Therefore, it is essential to establish a theoretical guarantee

for Bayesian methods with heavy-tailed losses. In this paper, we will bridge this

gap for the Bayesian framework.

2. Mathematical framework

Let (X , ζ) be a measurable space and Z = (X,Y ) be a random variable

taking values in Z = X × Y with a probability distribution P where Y ⊂ R.

We assume that the hypothesis class H is a bounded subset of the space of

square-integrable functions L2(X , ζ) with the convex hull H.

For a prior distribution µ on H and a set D of n independent and identically

distributed samples {Z1, Z2, . . . , Zn} of Z, the posterior randomization measure

given the data over the hypothesis space H has a density

pD(h) ∝
n∏
i=1

Q(Zi | h) = exp

{
−

n∑
i=1

`(Zi, h)

}

with respect to µ, where
∏n
i=1Q(Zi | h) is called generalized likelihood function

and ` : Z ×H → R is a function defined by `(Z, h) = − logQ(Z | h), hereafter

referred to as the loss function.

In the standard Bayesian setting, Q(Z | h) = P (Z | h) where P (Z | h) is

the regular density function and the posterior randomization measure is just

the posterior distribution. When Q(Z | h) 6= P (Z | h), this setting becomes

the quasi-Bayesian approach. For various problems of Bayesian learning using

mean-field variational inference, the generalized likelihood function belongs to a

family of functions that can reasonably approximate the likelihood function. In

the “safe Bayesian” framework [4], Q(Z | h) = [P (Z | h)]η where η is a tuned

parameter obtained by minimizing a cumulative log-loss. It is worth noticing
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that there is a connection between Bayesian setting and PAC-Bayes which has

been discussed elsewhere [see e.g. 31, and the references therein].

For a given set of samples D, the generalized Bayes estimator is defined as

ĥ =

∫
H
pD(h)hdµ.

Predictions with generalized Bayes estimator are obtained by taking the average

of the prediction of the hypotheses in h. The estimator, thus, does not necessarily

belong to H and is an improper estimator. This type of estimator has appeared

in various contexts in machine learning. For example, as noted in [32], the

safe Bayesian algorithm can be regarded as just running the standard Hedge-

algorithm [33] and then making a Cesaro-averaged prediction of the previous

Hedge predictions. Similarly, the Weighted Average algorithm [34, 35] makes

prediction based on the weighted average predictions of all the hypotheses in

the hypothesis space with the weight function

w(h) = exp

(
−c1

n∑
i=1

|h(Xi)− Yi|c2
)

and thus fits into this framework.

We define the risk function as R(h) = EZ∼P [`(Z, h)] and the set of hypotheses

whose risks are less than or equal to a threshold value γ as Hγ = {h ∈ H :

R(h) ≤ γ}. For convenience, we assume that

inf
h∈H

R(h) = inf{γ : µ(Hγ) > 0} := γ∗. (1)

Here, γ∗ can be considered as “optimal risk".

We note that this assumption can be relaxed because the set {h ∈ H : R(h) <

γ∗} has measure 0. The rationale is that a single best hypothesis is meaningless

in the Bayesian setting when H is uncountable. Hence, we should compare the

generalized Bayes estimator to a set of good hypotheses that has a positive

measure, as suggested in [36, 35]. The measure of such a set of “good hypotheses”

plays a central role in our analyses and directly influences the concentration

rates.
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In this paper, we are interested in the concentration of the posterior around the

set of optimal hypotheses Hγ∗ and the convergence properties of the generalized

Bayes estimator ĥ. Our mathematical framework is designed to analyze the

problem of Bayesian learning for unbounded and/or heavy tail losses. We recall

that a random variable S is said to have a heavy right tail distribution if

lim
s→∞

eλsP[S > s] =∞

for all λ > 0 and the definition is similar for a heavy left tail distribution.

Learning with a heavy-tailed loss means that `(Z, h) has a heavy tail distribution

from some or all hypotheses h ∈ H. To enable analyses of fast concentration

rates, we impose the following regularity conditions:

Assumption 1 (Regularity condition for risk function). The risk function R is

convex and Lipschitz on H.

We observe that although the risk function R is convex on the convex hull

H, it may still have multiple global minimizers on H because we do not put any

additional assumption on the geometry of H. Figure 1 gives an example where

this scenario happens. In this example, the convex function f(x, y) = x2 + y2

achieves the global minimum at two different points (−1, 0) and (1, 0).

Assumption 2 (Multi-scale Bernstein’s condition). There exist a finite partition

of H = ∪i∈IHi, positive constants B = {Bi}i∈I , constants α = {αi}i∈I in (0, 1],

and a finite set H∗ = {h∗i }i∈I ⊂ Hγ∗ such that

E[`(Z, h)− `(Z, h∗i )]2 ≤ Bi[R(h)− γ∗]αi

for all i ∈ I and h ∈ Hi.

The multi-scale Bernstein’s condition is a generalization of the classical

Bernstein’s condition introduced in [10] to analyze fast convergence rates of

the empirical risk minimizer estimator in unbounded losses settings. If a loss

function satisfies the Bernstein’s condition, then it also satisfies the multi-scale

Bernstein’s condition. However, while the Bernstein’s condition forces the risk
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Figure 1: An example where a convex function f(x, y) = x2 + y2 has two global minimizers

(blue dots) on a non-convex set H. The heat map represents the value of f(x, y) on H.

function to have a unique minimizer [9], the multi-scale Bernstein’s condition

does not have this restriction. Note that this condition implies that Hγ∗ is not

empty.

Assumption 3 (Regularity condition for prior). There exist C1(µ) > 0, C2(µ) >

0, and κ > 0 such that

µ(B(h∗, ε)) ≥ C1 exp(−C2ε
−κ)

for all h∗ ∈ Hγ∗ . Here, B(h∗, ε) is the ball in L2(X , ζ) with the center h∗ and

the radius ε.

Assumption 3 belongs to a class of regularity assumption called prior mass

assumption and requires that the prior measures put a sufficient amount of mass

near Hγ∗ . Such an assumption is standard in the analysis of the convergence

rate of posterior measures and can be verified for a broad class of probability

distributions [37]. For example, this condition holds for the uniform distribu-

tion and the truncated normal distribution on any compact finite-dimensional

manifold.
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We also need to impose some conditions on the complexity of the hypothesis

space. For convenience, let G denote the set of all functions g : Z → R such that

g(Z) = `(Z, h) for some h ∈ H. For ε > 0, let N (ε,G, L2(P )) be the covering

number of (G, L2(P )); that is, N (ε, ,G, L2(P )) is the minimal number of balls of

radius ε needed to cover G. We define the universal metric entropy of G by

H(ε,G) = sup
Q

logN (ε,G, L2(Q)),

where the supremum is taken over the set of all probability measures Q con-

centrated on some finite subset of Z. We make the following two assumptions

regarding the complexity of G.

Assumption 4 (Finite covering number). There exist C1 ≥ 1 and K1 ≥ 1 such

that

logN (ε,G, L2(P )) ≤ C1 log(K1/ε) ∀ε ∈ (0,K1].

Assumption 5 (Universal entropy bounds). There exist C2 ≥ 1 and K2 ≥ 1

such that

H(ε,G) ≤ C2 log(K2/ε) ∀ε ∈ (0,K2].

Denote C = max{C1, C2}. From now on, we will use C as the common constant

for both Assumptions 4 and 5.

Finally, we need a way to control the heavy tails of the loss functions. We

employ the integrability condition of the envelope function, which has been

studied previously in [10, 13].

Assumption 6 (Integrability of the envelope function). There exist W > 0 and

r ≥ 4C such that (
E sup
g∈G
|g|r
)1/r

≤ W.
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For convenience, we denote the losses `(Z, h) by `(h), and define the empirical

loss:

`D(h) =
1

n

n∑
i=1

`(Zi, h).

For each hypothesis h0 ∈ H, we define a ball B(h0, ε) of radius ε > 0 such that

B(h0, ε) =
{
h ∈ H :

{
E[`(h)− `(h0)]2

}1/2 ≤ ε} .
It is worth noticing that if a hypothesis belongs to a ball B(h∗, ε) for some

h∗ ∈ Hγ∗ , then its risk is bounded by γ∗ + ε. To be specific,⋃
h∗∈Hγ∗

B(h∗, ε) ⊂ Hγ∗+ε.

3. Fast concentration rates

In this section, we prove that generalized Bayes estimators achieve fast rate

learning under the Assumptions introduced in the previous section. Our proof

contains two main steps:

Step 1:. We prove that the posterior distribution concentrates around the set of

optimal hypotheses Hγ∗ exponentially fast as n goes to infinity. In other words,

we prove that the posterior distribution of the hypotheses which are far away

from Hγ∗ converges to 0 exponentially fast. The main technique of this step is

proving that the difference in the empirical loss between a hypothesis which is

close to Hγ∗ and a hypothesis which is far away from Hγ∗ is sufficiently large.

Step 2:. We bound the convergence rate of the generalized Bayes estimator to

the optimal risk γ∗. To do so, we show that the generalized Bayes estimator is

very close to the average of all hypotheses near Hγ∗ . This is due to the fact that

the posterior distribution of the hypotheses far away from Hγ∗ is small, which

was proved in Step 1. Therefore, the risk of the generalized Bayes estimator is

close to the average risk of all hypotheses near Hγ∗ , which is also close to γ∗.
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In the rest of the paper, for some β > 0, let ε = n−β and Hε denote the finite

set containing H∗ such that ⋃
h∈Hε

B(h, ε) = H

and that |Hε| ≤ (K/ε)
C
+ |H∗|, where H∗ is defined in Assumption 2. Note that

Assumption 4 guarantees the existence of Hε. We now provide the details for

the proof of these two steps.

3.1. Posterior concentration

Theorem 1 (Posterior concentration). Assume that Assumptions 1 – 6 hold.

Let β be a positive number such that

β < max

{
1− 2

√
C/r

2−mini∈I αi
,

1

1 + κ

}
.

Then, for any δ ∈ (0, 1), there exist Cr,β , C ′r,β > 0 and Nδ,r,B,α,κ > 0 such that

for n ≥ Nδ,r,B,α,κ and ε = n−β, we have:

sup
h∈H\Hγ∗+Cδ,r,βε

pD(h) ≤
1

C1
exp

−1

2

Cr,β +

(
C ′r,β
δ

)1/[2
√
Cr]
n1−β


with probability at least 1− δ.

The detailed proof of this theorem is provided in the Appendix. Here, we

want to give some insights about the proof’s arguments. Let us consider the

simplest case when H is finite and the optimal hypothesis h∗ is unique. In this

setting, for any other hypothesis h ∈ H, by the strong law of large numbers, we

have

`D(h)− `D(h∗) ≈ R(h)−R(h∗)

as the sample size n goes to infinity. Informally, this implies that pD(h)/pD(h∗)→

0. Since H is finite and
∑
h∈H pD(h) = 1, we deduce that the distribution con-

centrates around Hγ∗ = {h∗}.

In the case when H is infinite, comparing between two hypotheses becomes

less meaningful. To extend the result, we need to provide a uniform bound on
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`D(h) − `D(h′) for all h ∈ U1 and h′ ∈ U2, where U2 is a neighborhood of h∗

and U1 is a set that covers most of the outside of U2. This estimate is obtained

by a combination of the following two Lemmas, of which the optimal hypothesis

h∗ acts as an intermediary for comparisons.

Lemma 1. Assume that Assumptions 1, 2, 4, 5, and 6 hold. For any β <

1− 2
√
C/r, there exists Cr,β , C ′r,β > 0 and such that for all n ∈ N and δ ∈ (0, 1),

we have:

|`D(h)− `D(h0)| ≤

Cr,β +

(
C ′r,β
δ

)1/[2
√
Cr]
 ε, ∀h0 ∈ Hε, h ∈ B(h0, ε)

with probability at least 1− δ.

Lemma 2. Assume that Assumptions 1, 2, 4, and 6 hold. For any a > 0,

δ ∈ (0, 1), and a positive number β statisfying

β < (1− 2
√
C/r)/(2− αi) ∀i ∈ I,

there exists Na,δ,r,B,α > 0 such that for n ≥ Na,δ,r,B,α, we have

∀h ∈ Hε \ Hγ∗+aε,∃h∗ ∈ H∗ : `D(h)− `D(h∗) >
aε

4

with probability at least 1− δ. Here, I and H∗ are defined in Assumption 2.

Lemma 1 is a consequence of Lemma 3.5 in [10] and Lemma 2 is Theorem

3.2 in [10]. Lemma 2 ensures that a hypothesis that has small empirical loss

will also have small risk. This result provides an alternative to concentration

bound, which may not exist. It is similar to the techniques of using one-sided

inequalities for learning without concentration bound, established in [38].

Finally, when the optimal hypothesis is not unique, we need to utilize the

multi-scale Bernstein’s condition to partition the hypothesis spaces into regions

where local behavior of the empirical loss function can be controlled, and combine

the estimates in later steps. We note that the feasibility of this approach comes

from the fact that the multi-scale Bernstein’s condition is a local condition.

From now on, to ease the notation, we denote

Cδ,r,β =
1

2

Cr,β +

(
C ′r,β
δ

)1/[2
√
Cr]
 .
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3.2. Learning rates

Theorem 2 (Learning rate). Assume that Assumptions 1 – 6 hold. Let β be a

positive number satisfying

β < max

{
1− 2

√
C/r

2−mini∈I αi
,

1

1 + κ

}
.

Then, for any δ ∈ (0, 1), there exists Nδ,r,β,µ,κ > 0 such that

P
(
ĥn ∈ Hγ∗+2Cδ,r,βε

)
≥ 1− δ,

for all n ≥ Nδ,r,β,µ,κ and ε = n−β.

Proof. We define

M = sup
h∈H
‖h‖2 <∞, and ν =

∫
Hγ∗+Cδ,r,βε

pD(h)dµ ≤ 1.

Note that M is finite because H is a bounded subset of L2(X , ζ). On the other

hand, by Theorem 1, with probability at least 1− δ:

1− ν =

∫
H\Hγ∗+Cδ,r,βε

pD(h)dµ ≤
exp {−Cδ,r,βnε}

C1
.

Hence, when n is sufficient large, we have ν > 0 with probability at least 1− δ.

By Assumption 1, R is convex and Lipchitz in H. Therefore,∫
H
hpD(h)dµ and

∫
Hγ∗+Cδ,r,βε

h
pD(h)

ν
dµ

belong to H and there exists a Lipchitz constant L such that

∣∣∣∣∣R
(∫
H
hpD(h)dµ

)
−R

(∫
Hγ∗+Cδ,r,βε

h
pD(h)

ν
dµ

)∣∣∣∣∣
≤ L

∥∥∥∥∥
∫
H
hpD(h)dµ−

∫
Hγ∗+Cδ,r,βε

h
pD(h)

ν
dµ

∥∥∥∥∥
2

.

We deduce that

R(ĥn) = R

(∫
H
hpD(h)dµ

)
≤ R

(∫
Hγ∗+Cδ,r,βε

h
pD(h)

ν
dµ

)

+ L

∥∥∥∥∥
∫
H\Hγ∗+Cδ,r,βε

hpD(h)dµ

∥∥∥∥∥
2

+
1− ν
ν

L

∥∥∥∥∥
∫
Hγ∗+Cδ,r,βε

hpD(h)dµ

∥∥∥∥∥
2

.
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We have

R

(∫
Hγ∗+Cδ,r,βε

h
pD(h)

ν
dµ

)
≤
∫
Hγ∗+Cδ,r,βε

R(h)
pD(h)

ν
dµ

≤
∫
Hγ∗+Cδ,r,βε

(γ∗ + Cδ,r,βε)
pD(h)

ν
dµ = γ∗ + Cδ,r,βε.

Moreover,∥∥∥∥∥
∫
H\Hγ∗+Cδ,r,βε

hpD(h)dµ

∥∥∥∥∥
2

≤
∫
H\Hγ∗+Cδ,r,βε

‖h‖2pD(h)dµ ≤M(1− ν).

and ∥∥∥∥∥
∫
Hγ∗+Cδ,r,βε

hpD(h)dµ

∥∥∥∥∥
2

≤
∫
Hγ∗+Cδ,r,βε

‖h‖2pD(h)dµ ≤Mν.

We conclude that with probability at least 1− δ,

R(ĥn) ≤ γ∗ + Cδ,r,βε+ 2LM(1− ν) ≤ γ∗ + Cδ,r,βε+ 2LM
exp {−Cδ,r,βnε}

C1
.

Hence, when n is sufficiently large, we have

R(ĥ) ≤ γ∗ + 2Cδ,r,βε

with probability at least 1− δ, which completes the proof for the theorem.

The result of Theorem 2 implies

Corollary 1. For all δ ∈ (0, 1), R(ĥn) = γ∗ +O(n−β) with probability at least

1− δ, where

β < max

{
1− 2

√
C/r

2−mini∈I αi
,

1

1 + κ

}
.

When r is sufficiently large, mini∈I αi = 1, and κ is sufficiently small, we achieve

convergence rates arbitrarily close to O(n−1).

Hence, fast learning rates for generalized Bayesian estimators are available

within our framework. In general, the order of convergence depends on the

regularity of the loss function (via the multi-scale Bernstein’s order) and the

balance between the complexity of the hypothesis class and the thickness of the

tail of the loss’s distribution.
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4. Robustness of Bayesian linear regression

In this section, we will apply our results to show that Bayesian linear regression

is robust to heavy-tailed distributions. To be specific, we consider the following

standard linear regression setting:

Yi = Xiu0 + εi, i = 1, 2, . . . , n

where Yi ∈ R, Xi ∈ X ∈ Rd, u0 ∈ Rd, and εi are i.i.d random variables which

follow a t-distribution with degree of freedom k.

We will prove that even if we do not know that εi is heavy-tailed and just

assume that εi follows a standard normal distribution, the Bayesian linear

regression still achieves fast rate learning. Given a proper prior πu for u, the

posterior distribution of u has the following form:

pD(u | {Yi}ni=1) ∝ πu exp

{
n∑
i=1

− (Yi −Xiu)
2

2

}
, (2)

which corresponds to our setting with the loss function `(Y,X, u) = (Y −Xu)2.

Theorem 3. Assume that ‖u0‖2 ≤Mu, X is bounded in ‖.‖2 by MX , k > 4d,

and πu is regular (Assumption 3). Let β be a positive number satisfying

β < min{1− 2
√
d/k, 1/(1 + κ)}.

The Bayesian linear regression estimator

û =

∫
u · pD(u | {Yi}ni=1)du

achieves learning rate n−β.

The proof of this theorem is in the Appendix. We observe that when k > 16d,

Theorem 3 implies the Bayesian linear regression estimator achieves fast learning

rate. It is worth noticing that most of the common priors on a bounded set of

Rd (for example, uniform distribution) satisfy the regularity condition for prior

(Assumption 3) with any κ > 0.
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Simulations. To illustrate the result, we use the R-platform to simulate data

from the following model:

Yi = 1 +X
(1)
i +X

(2)
i + εi, i = 1, 2, . . . , n

where {X(1)
i }, {X

(2)
i } are i.i.d. random variables that follow a truncated stan-

dard normal distribution (the truncation value is 1), and εi are i.i.d random

variables which follow a t-distribution with degree of freedom k = 5, 10, 20.

For each degree of freedom, we vary the sample size from 10 to 10240 (n =

10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240), and for each sample size, we

simulate 100 data sets. We analyze each data set using the standard linear

regression (ERM) and the Bayesian linear regression (2) with a uniform prior on

the ball which is centered at 0 and has radius 10. We explore the generalized

posterior distribution of the coefficients using the Metropolis algorithm imple-

mented in the R function MCMCmetrop1R from the package MCMCpack [39]. We

discard the first 20000 iterations of the Markov chain Monte Carlo and use the

next 100000 iterations to approximate the Bayesian linear regression estimator.

Then, we apply Monte Carlo method to approximate the risk of the estimators

and fit a linear regression between the risk (in log-scale) and the sample size (in

log-scale) to approximate the rate of convergence of the ERM and the Bayesian

linear regression (e.g. Figure 2). We summarize the result of our simulations

in Table 1. The result confirms that Bayesian linear regression is robust to

heavy-tailed noises. We note that the empirical convergence rate of the Bayesian

linear regression (as well as the ERM, which has been investigated in [10]) is

faster than its theoretical bound in Theorem 3.

Degree of freedom ERM Bayesian

5 -0.984 -0.951

10 -1.001 -0.966

20 -1.046 -0.996

Table 1: The approximated rate of convergence of the two estimators with k = 5, 10, 20.
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Figure 2: A linear regression between the risk (in log-scale) of the Bayesian linear regression

and the sample size (in log-scale) when the errors follow the t-distribution with 5 degrees of

freedom. The slope of the fitted line approximates the rate of convergence of the estimator.

5. Discussions and Conclusions

The result of this paper indicates that learning with Bayesian estimators and

heavy-tailed losses can obtain convergence rates up to an essential order

O
(
n−(1−2

√
C/r)/(2−min{α})

)
where α is the multi-scale Bernstein’s order and r is the degree of integrability of

the loss. This result is consistent with previous works using a frequentist approach

[10]. We note that for bounded and strongly convex losses, our assumptions can

be validated with α = 1, I = 1, and r =∞ and this reduces to the convergence

rate O(1/n).

There are several avenues for improvement. Firstly, in this work, we consider

a setting where the generalized likelihood function has the form
∏n
i=1Q(Zi | h).

In some scenarios, for example, when data are dependent, this setting may not

hold. It would be interesting to see if concentration and learning rates retain in

those cases. Secondly, although our framework (which relies on the multi-scale
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Bernstein’s condition) allows us to analyze the convergence of generalized Bayes

estimators in more general settings than previous approaches, our result requires

high-order moments of the loss to guarantee convergence. Recently, there has

been a growing interest in fast learning rate for convex losses using the small-ball

condition [15], which requires only low-order moments. We would like to extend

the result in this paper to study and adapt this condition to the case when the

optimal hypothesis is non-unique.

Finally, the simulations confirm the robustness of Bayesian linear regression

to heavy-tailed noises. This is an assurance for end-users that Bayesian linear

regression is not vulnerable to the violation of the assumption of normal errors. In

particular, no special treatment is needed when the errors follow a t-distribution

and the Bayesian estimates converge to the true values at the same rate as their

frequentist counterparts. It is worth noticing that the simulations indicate that

the convergence rate is O(1/n), which means that our theoretical upper bounds

may not be optimal. An interesting direction for future research is to derive

sharper upper bounds and/or lower bounds.
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Appendix A. Detailed proofs

Proof of Theorem 1. We denote

rn(h) = exp{−`D(h)}.

Then, the posterior can be calculated by the following formula:

pD(h) =

[
rn(h)

‖rn(h)‖n

]n
,

where

‖rn(h)‖n =

(∫
H
|rn(h)|ndµ

)1/n

.

For any i ∈ I, we apply Lemma 2 with a = 12Cδ,r,β to obtain

`D(h)− `D(h∗i ) > 3Cδ,r,βε, ∀h ∈ (Hi \ Hγ∗+12Cδ,r,βε) ∩Hε

with probability 1− δ.

By Lemma 1, we derive that

`D(h)− `D(h′) > Cδ,r,βε, ∀h ∈ Hi \ Hγ∗+12Cδ,r,βε, h
′ ∈ B(h∗i , ε)

with probability 1− 3δ.

Hence,

rn(h) ≤ e−Cδ,r,βεrn(h′), ∀h ∈ Hi \ Hγ∗+12Cδ,r,βε, h
′ ∈ B(h∗i , ε)

with probability at least 1− 3δ.

Therefore,

sup
h∈Hi\Hγ∗+12Cδ,r,βε

rn(h) ≤ e−Cδ,r,βε inf
h′∈B(h∗i ,ε)

rn(h
′).

with probability at least 1− 3δ.

We have

‖rn‖n =

(∫
H
|rn(h)|ndµ

)1/n

≥

(∫
B(h∗i ,ε)

|rn(h)|ndµ

)1/n

= inf
h′∈B(h∗i ,ε)

rn(h
′)µ(B(h∗i , ε))1/n,

with probability at least 1− 3δ.
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Consequently, when n is sufficient large,

sup
h∈Hi\Hγ∗+12Cδ,r,βε

pD(h) = sup
h∈Hi\Hγ∗+12Cδ,r,βε

(
rn(h)

‖rn‖n

)n
≤ e−2Cδ,r,βnε

µ(B(h∗i , ε))

≤ 1

C1
exp(−n2Cδ,r,βε+ C2ε

−κ) ≤ 1

C1
exp(−nCδ,r,βε),

with probability at least 1− 3δ.

Under Assumption 2, I is finite and H =
⋃
i∈I Hi. Therefore, the proof is

completed by taking a union bound over I.

Proof of Theorem 3. Let u0 be the true value of u. We will verify Assumptions

1, 2, 4, and 6. Instead of checking Assumption 5, we will prove Lemma 1 directly.

Assumption 1: The risk function R(u) = E[(Y −Xu)2] is convex and Lipschitz

in u. Indeed,

R

(
u1 + u2

2

)
= E

[(
Y −X

u1 + u2
2

)2
]

≤ 1

2
(E[(Y −Xu1)

2] + E[(Y −Xu2)
2])

=
1

2
(R(u1) +R(u2)),

and

|R(u1)−R(u2)| = |E[(Y −Xu1)
2 − (Y −Xu2)

2]|

≤MX‖u2 − u1‖2[2E|Y −Xu0|+ 4MXMu]

≤MX‖u2 − u1‖2{2[E(Y −Xu0)
2]1/2 + 4MXMu}

=MX

(
2k1/2

(k − 2)1/2
+ 4MXMu

)
‖u2 − u1‖2.

Assumption 2: We first note that u0 is the only optimal hypothesis. Indeed,

R(u)−R(u0) = E[X(u− u0)(2Y −X(u+ u0))]

= E[E[X(u− u0)(2Y −X(u+ u0)) | X]

= E[X(u− u0)(2E[Y | X]−X(u+ u0))]

= E([X(u− u0)]2).
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inf
u6=u0

R(u)−R(u0)
‖u− u0‖22

= inf
‖z‖2=1

E([Xz]2).

Since E([Xz]2) > 0 for all ‖z‖2 = 1 then inf‖z‖2=1 E([Xz]2) ≥ D > 0.

Therefore, u0 is the only optimal hypothesis and R(u)−R(u0) ≥ D‖u− u0‖2.

Note that we have proved E{[(Y −Xu1)
2 − (Y −Xu2)

2]2} ≤ C0‖u1 − u2‖2. We

conclude that the multi-scale Bernstein condition is satisfied with α = 1.

Assumption 4:

[dP (u1, u2)]
2 = E{[(Y −Xu1)

2 − (Y −Xu2)
2]2}

= E{[X(u1 − u2)]2[2Y −X(u1 + u2)]
2}

≤MX‖u1 − u2‖22E{[2Y −X(u1 + u2)]
2}

≤MX‖u1 − u2‖22{8E[(Y −Xu0)
2] + 32M2

XM
2
u}

=MX

[
8

k

k − 2
+ 32M2

XM
2
u

]
||u1 − u2||2 = C0‖u1 − u2‖2.

Therefore, Assumption 4 holds with C1 = d and K1 =Mu.

Assumption 6:

E[sup
u
(Y −Xu)r] ≤ E[sup

u
(|Y −Xu0|+ 2MuMX)r]

= E[(|Y −Xu0|+ 2MuMX)r] ≤W

when r < k. Then Assumption 6 is satisfied with any r ∈ [4d, k).

Lemma 1: Note that

[dP (u1, u2)]
2

‖u1 − u2‖22
= E

{[
X

u1 − u2
‖u1 − u2‖2

]2
[2Y −X(u1 + u2)]

2

}
> 0

for all u1, u2. Since u1, u2 are bounded, we have

[dP (u1, u2)]
2

‖u1 − u2‖22
≥ D > 0.
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Therefore,

|`D(u1)− `D(u2)|

=

∣∣∣∣∣ 1n
n∑
i=1

(Yi −Xiu1)
2 − (Yi −Xiu2)

2

∣∣∣∣∣
≤ 1

n

n∑
i=1

2(|Yi −Xiu0|+MXMu)MX‖u1 − u2‖2

≤ 1

n

n∑
i=1

2(|Yi −Xiu0|+MXMu)MX
dP (u1, u2)

D
.

So,

sup
u1∈H,u2∈B(u1,ε)

|`D(u1)− `D(u2)| ≤
1

n

n∑
i=1

2(|Yi −Xiu0|+MXMu)MX
ε

D
.

Note that, for all M > 0,

Pr

(
1

n

n∑
i=1

|Yi −Xiu0| ≥M

)
≤ E|Y1 −X1u0|

M
≤ [E(Y1 −X1u0)

2]1/2

M
≤ k1/2

M(k − 2)1/2
.

Hence, we can choose Mδ such that

sup
u1∈H,u2∈B(u1,ε)

|`D(u1)− `D(u2)| ≤
2(Mδ +MXMu)MX

D
ε

with probability at least 1− δ.
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