
ar
X

iv
:1

90
1.

08
24

6v
1

 [
cs

.C
C

]
 2

4
Ja

n
20

19

Reachability Problem in Non-uniform Cellular Automata

Sumit Adak

Department of Information Technology

Indian Institute of Engineering Science and Technology, Shibpur

Howrah-711103, India

maths.sumit@gmail.com

Sukanya Mukherjee

Department of Computer Science and Engineering

Institute of Engineering and Management, Kolkata

West Bengal 700091, India

sukanya.mukherjee@iemcal.com

Sukanta Das

Department of Information Technology

Indian Institute of Engineering Science and Technology, Shibpur

Howrah-711103, India

sukanta@it.iiests.ac.in

Abstract. This paper deals with the CREP (Configuration REachability Problem) for non-uniform

cellular automata (CAs). The cells of non-uniform CAs, we have considered here, can use different

Wolfram’s rules to generate their next states. We report an algorithm which decides whether or not a

configuration of a given (non-uniform) cellular automaton is reachable from another configuration.

A characterization tool, named Reachability tree, is used to develop theories and the decision algo-

rithm for the CREP. Though the worst case complexity of the algorithm is exponential in time and

space, but the average performance is very good.

Keywords: Non-uniform Cellular Automata (CAs), reachability tree, link, rule, rule min term

(RMT).

I. Introduction

Cellular automata (CAs) are discrete dynamical systems which produce complex global behaviour

using simple local computation [11, 16]. The Configuration REachability Problem (CREP) in CAs

Address for correspondence: maths.sumit@gmail.com

http://arxiv.org/abs/1901.08246v1

2 S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata

asks to decide whether a (destination) configuration D of a given cellular automaton (CA) is reach-

able from another (source) configuration S of the CA [3]. The CREP is undecidable for 1-d infinite

CAs [14], so researchers considered this problem for finite CAs [3, 14]. CREP is P-complete, NP-

complete and PSPACE-complete depending on the types of CAs [14]. It has also been shown that

CREP is NP-intermediate for the CAs with additive rules [3]. Wolfram’s rule 90, for example, is

an additive rule [9], and so to decide reachability of D of rule 90 CA with n cells from S, we need

superpolynomial time.

However, all the works on CREP consider the classical CAs, where the cells follow same next state

function (that is, rule) to generate their next states. In recent time, a new class of CAs, known as

non-uniform CAs, are under the focus of CAs research where the cells of a CA can follow different

next state functions [2,8,13]. Obviously, classical CAs are proper subset of these non-uniform CAs.

Primary focus of the non-uniform CA research was on the one-dimensional CAs, where the cells

follow Wolfram’s CA rules [2]. Researchers already studied the reachability problem [3, 14] for

finite classical CAs. However, for non-linear non-uniform CAs, there is no method to deal with the

reachability problem. In this work, we propose a method to deal with the reachability problem for

1-d finite non-uniform CAs.

We use here a characterization tool, named Reachability tree, to discover the properties of non-

uniform CAs. An algorithm to decide reachability of D from S of a given n-cell non-uniform CA is

reported. The algorithm can obviously deal with classical CAs as well. Worst case time complexity

of the algorithm, however, is exponential, because CREP is itself PSPACE-complete [3]. But, the

average case time requirement of the algorithm is polynomial.

To understand average case performance, we conduct an experimentation. And through experimen-

tation, we determine that the average case complexity of the algorithm is O(n3), where n is the size

of automaton.

Hereafter, by “CA”, we will mean “non-uniform” CA. We next proceed with some useful definitions

about CAs.

II. Definitions

The CAs, we consider here, consist of a finite number of cells which are organized as a 1-dimensional

lattice L. The cells can be in state 0 or state 1. A configuration or (global) state of the CA is a

mapping c: L 7→ {0, 1}. Let us consider that C is the collection of all possible configurations of an n-

cell CA (that is |C|=2n). Then, a CA is a functionF : C → C, which satisfies the following conditions:

y = F (x), x, y ∈ C, where x = (xi)0≤i≤n−1, y = (yi)0≤i≤n−1 and yi = fi(xi−1, xi, xi+1). The

fi : {0, 1}
3 7→ {0, 1} is a next state function for the cell i. In this work, we consider null boundary

condition where left and right neighbors of cell 0 and cell n − 1 are always in state 0. That is,

y0 = f0(0, x1, x2) and yn−1 = fi(xn−2, xn−1, 0).

The next state function fi can be expressed in tabular form (Table 1). Decimal equivalents of 8-next

states are conventionally called as “rule” (Ri) [15]. We name each of the 8 combinations of xi−1, xi

and xi+1 as Rule Min Term (RMT), which is generally presented in its decimal equivalent. The 001

of the first row of Table 1 is the RMT 1, next state against which is 0 for rule 9, 1 for rule 170. If r
is an RMT ofRi, we writeRi[r] to denote its next state. Hence, 9[1]=0, 170[1]=1 (see Table 1).

Now, we introduce a set Zi
8 that contains the valid RMTs ofRi. That is, Zi

8 = {k | RMT k ofRi is

valid}. Generally, |Zi
8| = 8. However, only four RMTs are valid for the first and last rules of a null

boundary CA, and Z0
8 = {0, 1, 2, 3} and Zn−1

8 = {0, 2, 4, 6}.

S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata 3

Table 1: Rules 9, 170, 195 and 80

Present state 111 110 101 100 011 010 001 000 Rule

(RMT) (7) (6) (5) (4) (3) (2) (1) (0)

(i) Next state 0 0 0 0 1 0 0 1 9

(ii) Next state 1 0 1 0 1 0 1 0 170

(iii) Next state 1 1 0 0 0 0 1 1 195

(iv) Next state 0 1 0 1 0 0 0 0 80

Traditionally, the cells of a CA follow same rule. Such a CA is uniform CA. In a non-uniform CA, the

cells may follow different rules. We, therefore, need a rule vectorR = 〈R0, R1, · · · ,Ri, · · · ,Rn−1〉
to define an n-cell non-uniform CA, where the cell i followsRi. The uniform CA, hence, is a special

case of non-uniform CA; whereR0 = R1 = · · · = Ri = · · · = Rn−1.

0 0 1 0

0 1 0 1

1 0 1 1 0 1 1 00 0 0 1

0 0 0 0

0 1 0 0

0 0 1 1

0 1 1 1

1 1 1 1

1 1 0 0 1 0 0 1 1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

Figure 1: State transition diagram of CA 〈9, 170, 195, 80〉

State Transition Diagram: The sequence of configurations or states of a CA generated (state tran-

sitions), during its evolution (with time), directs the CA behaviour. The state transition diagram of

an automaton shows the transition of states, and depicts the relations among states of the automaton.

As a proof of concept, Fig. 1 shows the state transition diagram of a 4-cell CA 〈9, 170, 195, 80〉. In

this work, however, we have used the terms “configuration” and “state of a CA” interchangeably.

Definition 1. A state c ∈ C of a CA is reachable if there exists at least one state x ∈ C so that

c = F (x). If no such x exists, c is non-reachable.

For example, state 0011 of Fig. 1 is non-reachable whereas state 1101 is reachable.

Definition 2. A state of a CA D is reachable from S, D,S ∈ C, if there exists a finite t ∈ N so

that D = F t(S). If no such t exists, then D is not reachable from S.

For example, state 1010 of Fig. 1 is reachable from the state 0100. However, 0100 is not reachable

from the state 1010. Please note here that “D is not reachable from S” does not necessarily imply

that “D is non-reachable”. D may be reachable from other configuration, but not from S.

4 S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata

RMT Sequence (RS): A CA state can also be viewed as a sequence of RMTs. For example, the

state 0101 in null boundary condition can be viewed as 〈1252〉, where 1, 2, 5 and 2 are the RMTs on

which the transition of first, second, third and fourth cells can be made. For an n-bit state, we get a

sequence of n RMTs. Obviously, two consecutive RMTs in an RS, ri and ri+1 are related, and ri+1

= 2ri or 2ri + 1 (mod 8) (Table 2).

Table 2: Relationship between ith and (i+ 1)th RMTs.

ith RMT 0 1 2 3 4 5 6 7

(i+ 1)th RMT 0, 1 2, 3 4, 5 6, 7 0, 1 2, 3 4, 5 6, 7

Definition 3. Two RMTs r and s (r 6= s) are said to be equivalent to each other if 2r ≡ 2s (mod 8).
[6]

Definition 4. Two RMTs r and s (r 6= s) are said to be sibling to each other if ⌊r/2⌋=⌊s/2⌋. [6]

Therefore, RMT 2 is equivalent to RMT 6, whereas RMTs 2 and 3 are sibling to each other.

Now to decide whether a configuration or a state D of a (non-uniform) CA reachable from another

configuration S, we next introduce a tool, named reachability tree.

III. Reachability Tree and Configuration Tracing

Reachability Tree [1, 7], a characterization tool for 1-dimensional CA, is a rooted and edge-labelled

binary tree that represents the reachable states of a CA. For an n-cell CA, there are n + 1 levels -

root at level 0, and leaves at level n. We represent a node of the tree by Ni.j , where i (0 ≤ i ≤ n) is

the level index, and j (0 ≤ j ≤ 2i − 1) is the node number at ith level. The numbering of nodes in

each level starts from left side. In the reachability tree, the nodes are the subset of RMTs of rules –

Ni.j ⊆ Zi
8.

The root is formed with the RMTs ofR0, the nodes of level (n−1) are formed with RMTs ofRn−1,

and the leaf nodes are empty. We represent an edge of the tree by Ei.j , where i (0 ≤ i ≤ n − 1)

is the level index, and j (0 ≤ j ≤ 2i+1 − 1) is the edge number at ith level. Here, we define the

level of an edge. An edge is said to be edge of ith level, if it connects the nodes of ith and (i+ 1)th

levels. So, we can write, Ei.2j = (Ni.j , Ni+1.2j , li.2j) and Ei.2j+1 = (Ni.j , Ni+1.2j+1, li.2j+1)
(0 ≤ i ≤ n− 1, 0 ≤ j ≤ 2i − 1), where li.2j ⊆ Ni.j and li.2j+1 ⊆ Ni.j are the labels of the edges,

and li.2j ∪ li.2j+1 = Ni.j . If li.k = ∅ for any k, the edge Ei.k (hence, Ni+1.k) does not exit. We

call such an edge as a non-reachable edge. However, for each r ∈ li.2j (resp. r ∈ li.2j+1), RMT r of

Ri is 0 (resp. 1) and we get two RMTs 2r (mod 8) and 2r + 1 (mod 8) ofRi+1 in Ni+1.2j (resp.

Ni+1.2j+1), and the edge is called 0-edge (resp. 1-edge). Following is the formal definition of the

reachability tree.

Definition 5. Reachability tree of an n-cell CA with rule vector 〈R0, R1, · · · , Ri, · · · , Rn−1〉
under null boundary condition is a rooted and edge-labelled binary tree with n + 1 levels, where

Ei.2j = (Ni.j , Ni+1.2j , li.2j) and Ei.2j+1 = (Ni.j , Ni+1.2j+1, li.2j+1) are the edges between nodes

Ni.j ⊆ Zi
8 and Ni+1.2j ⊆ Zi+1

8 with label li.2j ⊆ Ni.j , and between nodes Ni.j and Ni+1.2j+1 ⊆

S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata 5

Zi+1

8 with label li.2j+1 ⊆ Ni.j respectively (0 ≤ i ≤ n − 1, 0 ≤ j ≤ 2i − 1). Following are the

relations which exist in the tree:

1. [For root] N0.0 = Z0
8 = {0, 1, 2, 3}.

2. ∀r ∈ Ni.j , RMT r of Ri is in li.2j (resp. li.2j+1), if Ri[r] = 0 (resp. 1). That means,

li.2j ∪ li.2j+1 = Ni.j (0 ≤ i ≤ n− 1, 0 ≤ j ≤ 2i − 1).

3. ∀r ∈ li.j , RMTs 2r (mod 8) and 2r + 1 (mod 8) of Ri+1 are in Ni+1.j (0 ≤ i ≤ n − 3,

0 ≤ j ≤ 2i+1 − 1).

4. [For level n− 1] ∀r ∈ ln−2.j , RMT 2r (mod 8) ofRn−1 is in Ni+1.j (0 ≤ j ≤ 2n−1 − 1).

5. [For level n] Nn.j = ∅, for any j, 0 ≤ j ≤ 2n − 1.

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

02 02

E3.0 E3.1 E3.2
E3.3

46

E3.5E3.4

02 02 46

E3.6 E3.7 E3.8 E3.9 E3.10 E3.11 E3.12 E3.13 E3.14 E3.15

0145

N3.0 N3.1

E2.0 E2.1

2367

E2.2 E2.3

N3.2 N3.3

0145

N3.4 N3.5

E2.4 E2.5

2367

N3.6 N3.7

2345

N2.0 N2.1

E1.0 E1.1

0167

N2.2 N2.3

E1.2 E1.3

0123

N1.1N1.0

E0.0

E2.6 E2.7

0 2 0 2 4 6 4 6 4 6 4 60 2 0 2

1 2

2 4 3 5 0 6 1 7

4 5 0 1 2 3 6 7 4 5 0 1 2 3 6 7

E0.1

0 3

46 46

N0.0

Figure 2: Reachability tree of CA 〈9, 170, 195, 80〉

Fig. 2 is the reachability tree of the CA of Fig. 1. According to the null boundary condition, only

4 RMTs (0, 1, 2 and 3) of R0 are valid, and so the root is formed with these 4 RMTs. That is,

N0.0 = Z0
8 = {0, 1, 2, 3}. Similarly, Zn−1

8 = Z3
8 = {0, 2, 4, 6} and N3.j ⊆ Z3

8 for all j, 0 ≤ j ≤ 3.

However, the label of edge E0.1 is {0, 3}, as RMTs 0 and 3 of rule 9 are 1. We write RMTs of a

label on the edge. Note that, the label of E3.1 is empty, that is, l3.1 = ∅. This edge is non-reachable,

and it can not connect any node of next level. Fig. 2 uses dotted line for them. Since Zn
8 = ∅ for

an n-cell CA, the leaves are empty. The number of leaves (excluding dotted leaves) in Fig. 2 is 8,

which is the number of reachable states. We call edge Ei.j as 0-edge when j is even, and 1-edge

otherwise. We further call the edge Ei.j as an edge of level i. A sequence of edges from the root to a

leaf node represents a reachable state, when 0-edge and 1-edge are replaced by 0 and 1 respectively.

For example, 0000 is a reachable state in Fig. 2, but the state 0001 is non-reachable.

From the reachability tree, we can get the information about reachable and non-reachable states. A

sequence of edges 〈E0.j0 E1.j1 · · · Ei.ji Ei+1.ji+1
· · · En−1.jn−1

〉 from root to a leaf associates a

reachable state and at least one RS 〈r0r1 · · · riri+1 · · · rn−1〉, where ri ∈ li.ji and ri+1 ∈ li+1.ji+1

6 S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata

(0 ≤ i < n − 1, 0 ≤ ji ≤ 2i − 1, and ji+1 = 2ji or 2ji + 1). That is, the sequence of edges

represents at least two CA states. Note that if RMT ri is 0 (resp. 1) then Ei.ji is 0-edge (resp. 1-

edge). Therefore, the reachable state is the next (resp. present) state of the state (resp. predecessor),

represented as RS. Interestingly, there are 2n RSs in the tree, but number of reachable states may be

less than 2n. A sequence of edges may associate m-number of RSs (m ≥ 1), which implies, this

state is reachable from m-number of different states.

Obtaining only reachable or non-reachable states using reachability tree is not enough to make the

decision about reachability of one state from another. We need to find out the predecessor(s) of each

state in the reachability tree. Then only we can trace in the tree if a CA state D is reachable from

another state S. However, the tree guides us to find the predecessors of the CA states by establishing

relation among edges. To find the relations among the edges, we introduce the concept of “link” in

the next section.

III.1. Links

As we have discussed before, a CA state/configuration can be represented as a bit sequence, and as

an RMT sequence. Reachability tree uses both the representations - bit sequences to represent the

reachable states, and RMT sequences to represent their predecessors. Now, the predecessors, which

are also CA states, can be observed in the tree as bit sequence. Intuitively, the “links” link the states

represented as bit sequences to their predecessor.

The links are formed for each RMT r ∈ li.j , present on edge Ei.j (0 ≤ i ≤ n−1, 0 ≤ j ≤ 2i+1−1).

By the processing of reachability tree, we find the links among the edges for each individual RMT on

the tree. The links are formed depending on whether the RMTs are self replicating (defined below)

or not.

Definition 6. An RMT r = 4x+2y+z of a ruleRi is said to be self replicating ifRi[r] = y where

x, y, z ∈ {0, 1}.

For example, RMT 1 (001) and RMT 3 (011) of rule 9 is self replicating, whereas RMTs 4, 5, 6 and

7 of rule 195 are self replicating (see Table 1). If an RMT r ∈ li.j is not self replicating, then there

is a link from the edge Ei.j to Ei.k (j 6= k). Depending on the values of j and k, we can classify the

links in the following way: forward link (when j < k), backward link (when j > k) and self link

(when j = k). We represent this link as Ei.j(r) −→ Ei.k. The rules, followed to form links in a

reachability tree, are noted below:

R1) If RMT r ∈ l0.j is self replicating (j = 0 or 1), the edge E0.j is self linked for RMT r. Other-

wise, if j = 0, there is a forward link from E0.0 to E0.1 for RMT r; else, there is a backward link

from E0.1 to E0.0 for RMT r.

R2) If Ei−1.j is self linked for RMT r ∈ li−1.j , and if s is self replicating where s ∈ li.2j (resp.

s ∈ li.2j+1) is 2r or 2r + 1 (mod 8), then Ei.2j (resp. Ei.2j+1) is self linked. But if s is not self

replicating, then there is a forward link from Ei.2j to Ei.2j+1 (resp. backward link from Ei.2j+1 to

Ei.2j).

R3) If there is a link from Ei−1.j to Ei−1.k (j 6= k) for RMT r ∈ li−1.j , and s ∈ li.2j (resp.

s ∈ li.2j+1) is 2r or 2r + 1 (mod 8), then there is a link from Ei.2j (resp. Ei.2j+1) to Ei.2k while

s ∈ {0, 1, 4, 5} or to Ei.2k+1 while s ∈ {2, 3, 6, 7}. It is forward link if j < k, backward link if

j > k.

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

02 02

E3.0 E3.1 E3.2
E3.3

46

E3.5E3.4

02 02 46 46

E3.6 E3.7 E3.8 E3.9 E3.10 E3.11 E3.12 E3.13 E3.14 E3.15

0145

N3.0 N3.1

E2.0 E2.1

2367

E2.2 E2.3

N3.2 N3.3

0145

N3.4 N3.5

E2.4 E2.5

2367

N3.6 N3.7

2345

N2.0 N2.1

E1.0 E1.1

0167

N2.2 N2.3

E1.2

0123

N1.1N1.0

E0.0 E0.1

(0) 3(1)0(0) 2(1)1

(2) 5(2)4 (4) 1(4)0 (5) 3(5)2 (3) 7(3)6 (6) 5(6)4 (0) 1(0)0 (1) 3(1)2 (7) 7(7)6

(0) 7(3)1

E2.6 E2.7

N0.0

46

(1) 4(2)2 (1) 5(2)3 (0) 6(3)0

E1.3

(4) 2(5)0 (8) 2(9)0 (0) 2(1)0 (2) 6(3)4
(6) 6(7)4

(10)4 (11)6 (14)4 (15)6
(12)2 (13)0

Figure 3: Links among edges of reachability tree for CA 〈9, 170, 195, 80〉

8 S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata

Example III.1. Fig. 3 shows the links of edges caused by RMTs of the CA 〈9, 170, 195, 80〉. There

is a (forward) link from E0.0 to E0.1 for RMT 2, so we write the link within a bracket beside the

RMT 2. Now, we get a forward link from E1.1 to E1.2 for RMT 5. Now, we get E2.2(2)→E2.5, and

E3.5(4)→ E3.10. Therefore, for the RS 〈2524〉, we can get a sequence of links, hence a sequence

of edges 〈E0.1E1.2E2.5E3.10〉, which represents 1010. Note that the RS 〈2524〉 corresponds to the

state 1010. The sequence 〈E0.0E1.1E2.2E3.5〉 associates the state 0101, as well as the RS 〈2524〉.
The RS 〈2524〉, hence the state 1010, is the predecessor of the state 0101. See Fig. 1 for verification.

The links help us to trace state transitions in reachability tree by identifying the predecessor(s) of

each state. Through the links, we can identify the predecessor of predecessor of a state. If Ei.j is

linked with Ei.k for RMT r1 ∈ li.j , and Ei.k is linked with Ei.p (0 ≤ j < k < p ≤ 2i − 1 for

forward link, 2i − 1 ≥ j > k > p ≥ 0 for backward link) for RMT r2 ∈ li.k, we say there exists a

link (forward or backward) from Ei.j to Ei.p, where 1 ≤ i ≤ n− 1. Therefore, we get the following

property (transitivity property) of the links. We write Ei.j(r1)→ Ei.k , if there is a link from Ei.j to

Ei.k for RMT r1 ∈ li.j .

• If Ei.j(r1)→ Ei.k and Ei.k(r2)→ Ei.p, then

• Ei.j(r1)→ Ei.k(r2)→ Ei.p.

Now, we define length of the links. If from edge Ei.j1 to Ei.j2 , there are k number of RMTs (or k
number of edges), then we write: length(Ei.j1 , Ei.j2) = k. We write, length(Ei.j1 , Ei.j2) = ∞
if there is no link between Ei.j1 and Ei.j2 . In Fig. 3, following connection between E1.0 and E1.3

exists: E1.0(4)→ E1.2(6)→ E1.3. That is, length(E1.0, E1.3) = 2.

Lemma III.2. There exist only two links to Ei.j from any one or two edges for RMTs r and s
when 0 ≤ i < n − 1 and r and s are sibling to each other, and only one link when i = n − 1 in a

reachability tree (0 ≤ j ≤ 2i+1 − 1). [1]

Property 1. A link present at ith level triggers two links at level i+ 1, where 0 ≤ i ≤ n− 3, a link

of (n− 2)th level derives one link at (n− 1)th level.

This is obvious, because an RMT r at a node/label of level i contributes two RMTs - 2r (mod 8) and

2r+1 (mod 8) in node/label(s) of level i+1. Both the RMTs participate in links, depending upon

the link caused by RMT r. For example, the link E0.1(0)→ E0.0 triggers two links E1.2(0)→ E1.0

and E1.3(1) → E1.0. However, a link at level n − 2 triggers only one link at last level, as RMT

2r + 1 (mod 8) is invalid in that level.

Let us now define path between two edges of a level - Ei.j1 and Ei.jk . We say that there exists a path

between Ei.j1 and Ei.jk if Ei.j1 is linked to Ei.jk , that is, if length(Ei.j1 , Ei.jk) is finite. Otherwise,

there is no path between Ei.j1 and Ei.jk . If a path exists, we write it as the following: Ei.j1 (r1)→
Ei.j2 (r2)→ · · · → Ei.jk . Now, the question is, can we say that there exist a path between Ei+1.p

and Ei+1.q where p ∈ {2j1, 2j1+1} and q ∈ {2jk, 2jk+1}? No, not always. Following Property 1,

if a path is formed from Ei+1.p and Ei+1.q due to the path between Ei.j1 and Ei.jk , we say the path

between Ei+1.p and Ei+1.q is triggered by the path between Ei.j1 and Ei.jk . However, no path may

be triggered at level i + 1. Obviously, a path from En−1.j1 to En−1.jk is triggered by the paths

above.

Example III.3. In Fig. 3, following path is formed at level 0, which and triggers a path at level 3:

E0.1(0)→ E0.0, E1.2(0)→ E1.0, E2.5(0)→ E2.0, E3.10(0)→ E3.0.

Now, we explore the reachability tree to check that if there exists any path or not from destination

edge (D) to source edge (S) at leaf level.

S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata 9

IV. Reachability Analysis

To check whether a configuration D of an n-cell CA is reachable from another configuration S, we

rewrite the configurations as following: S = (si)0≤i≤n−1 and D = (di)0≤i≤n−1. The configura-

tions can also be identified in the reachability tree as sequences of edges. For ease of understanding,

let us rename the sequences of edges as (si)0≤i≤n−1 representing S, and as (di)0≤i≤n−1 represent-

ing D. Now, we search in the reachability tree for a path from di to si. If no path exists, we declare

that D is not reachable from S.

Theorem IV.1. For an n-cell CA, D is reachable from S, if and only if there exists a path from

dn−1 to sn−1.

Proof:

Let us consider, there is a path from dn−1 to sn−1 at leaf level of length m: En−1.j1(r1) → · · ·
→ En−1.jq (rq) → · · · → En−1.jm where dn−1 = En−1.j1 and sn−1 = En−1.jm . Now, we can

proof D is reachable from S. Hence, we can get a sequence of edges from root to En−1.k for

each k ∈ {j1, j2, · · · , jm} which represents a reachable state. Here, two reachable states which are

represented by edge sequences that end withEn−1.jp andEn−1.jp+1
respectively are two consecutive

states. Hence, we can get a sequence of consecutive states. Since there is a path, the sequence of

states forms a path involving the RMTs r1, r2, · · · , rm−1. Hence, D is reachable from S.

Now suppose, D is reachable from S. Obviously, there is a path from di to si, 0 ≤ i ≤ n. Hence

the proof. ⊓⊔

Example IV.2. Suppose, S = 0000 and D = 0101 for the CA 〈9, 170, 195, 80〉. Now, from Fig. 3,

we see that d3 = E3.5 and s3 = E3.0. From the linked tree, we can get the path - E3.5(4) →
E3.10(0)→ E3.0 (length(d3, s3) = 2). Therefore, D is reachable from S, and D = F 2(S) (check

it from Fig. 1).

For the same CA, if S = 0000 and D = 1101, then d3 = E3.13 and s3 = E3.0. From Fig. 3, we can

see that there is no path from d3 to s3. So, D is not reachable from S.

To decide the reachability, we first form the root of the reachability tree (usingR0), get edges from

the root, identify links between edges following rule R1 of link formation. Then, check if there exist

any path from d0 to s0. If it exists then we continue, otherwise conclude that D is not reachable

from S. If it exists then form the next level (using R1) and get the links, and again check whether

there exists any path from d1 to s1. If no path exists, then D is not reachable from S. Otherwise,

continue the same process. Finally, if there exist a path from dn−1 to sn−1, then declare that D is

reachable from S.

By definition, reachability tree grows exponentially, in general. In this particular problem, however,

we do not deal with all the edges. The edges, not in the path of di and si, are irrelevant to us. To

reduce the number of edges/nodes in the proposed decision procedure, we remove such irrelevant

edges.

Example IV.3. Let us consider the CA 〈9, 170, 195, 80〉 and S = 1010 and D = 0000. Fig. 4

explains that D is reachable from S. The paths of di and si are shown in the figure. The edge E1.3

is not in the path of d1 and s1, and so it is irrelevant in this particular case. Hence, E1.3 is removed,

and the corresponding sub tree is not further developed. Similarly, E2.1, E2.3, E2.4, E3.1, etc are

irrelevant, and hence removed. Obviously, we need not to deal with a good number of edges/nodes

here.

10 S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata

E0.0 E0.1

E1.0
E1.1

E1.3

E2.0
E2.2 E2.4

E3.0 E3.4
E3.10

0, 1, 2, 3

2, 3, 4, 5 0, 1, 6, 7

0, 1, 4, 5 2, 3, 6, 7 0, 1, 4, 5

0, 2 4, 6 0, 2

1, 2 0, 3

2, 4 3, 5 0, 6

4, 5 2, 3 0, 1

2 4 0, 2

S = 1010
D = 0000

d0

d1

d2

d3

s0

s1

s2

s3

E1.2

E2.1
E2.3 E2.5

E3.1 E3.5
E3.11

Figure 4: Unnecessary edges for a particular S and D can be removed

However, we can sometime decide the non-reachability of D from S without tracing path of di and

si, but by observing some conditions related to di and si. We next report these conditions.

Condition 1. For an n-cell CA, if the edge di is non-reachable where 0 ≤ i ≤ n − 1, then S to D
is not reachable.

Reason: From Theorem IV.1, we know that, D is reachable from S if there exist a path from dn−1

to sn−1. And from Property 1, we can say that the path at leaf level is triggered from the root. That

is, if there is a path from dn−1 to sn−1, then there are the paths from d0 to s0, d1 to s1, · · · , and

dn−2 to sn−2. If at any level, di is non-reachable, then there is no link from this edge. Hence, there

is no path from di+1 to si+1, · · · , and dn−1 to sn−1. Therefore, there is no path at leaf level and we

can conclude that S to D is non-reachable. �

Example IV.4. Suppose, S = 0000 and D = 1011 for the CA 〈9, 170, 195, 80〉. Now, from Fig. 3,

we get d0 = E0.1 and s0 = E0.0, and there is a path E0.1(0)→ E0.0. At the second level, d1 = E1.2

and s1 = E1.0 and there is also a path: E1.2(0)→ E1.0. Now, at the third level, d2 = E2.5 and s2 =

E2.0 and there is also a path: E2.5(0)→ E2.0. Now at the leaf level, d3 = E3.11 and s3 = E3.0, but

the edge d3 is non-reachable edge. So, there is no path from d3 to anywhere. Therefore, D is not

reachable from S (see Fig. 1).

Condition 2. For an n-cell CA, if the edge si is self linked for two sibling RMTs and di 6= si, then

S to D is not reachable (0 ≤ i ≤ n− 1).

Reason: From Theorem IV.1, we know that, D is reachable from S if there exists a path from dn−1

to sn−1, which immediately implies the paths from d0 to s0, d1 to s1, · · · , and dn−2 to sn−2. From

Lemma III.2, we get that there exist two links to Ei.j from any edges (except leaf level). If the edge

si is self linked for two RMTs, then no other edge can link to si. So, we can reach to si from only

the edge si and if di 6= si, there is no path from di to si. �

Example IV.5. Consider, S = 1111 and D = 0000 of the CA 〈9, 170, 195, 80〉. Now, from Fig. 3,

we get that d0 = E0.0 and s0 = E0.1 and there is path E0.0(2) → E1.0. Now, at the next level, d1 =

S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata 11

E1.0 and s1 = E1.3 and there is also have path: E1.0(4)→ E1.2(6)→ E1.3. At the next level, d2 =

E2.0 and s2 = E2.7 and there is no path from d2 to s2 (di 6= si). The edge s2 is self linked for RMTs

6 and 7 of rule 195. Hence, the edge is not reachable from any other edge.

V. Decision Algorithm

Now, we present an algorithm to decide whether S to D is reachable or not. The following algorithm

uses the theories framed in the earlier sections, to decide the same. However, the algorithm deals

only with the labels of edges. Moreover, the algorithm does not form the whole tree at a time, but it

deals with two sets of labels - {li.0, li.1, · · · li.2i−1} and {li+1.0, li+1.1, · · · li+1.2i+1−1}. We proceed

with only non-empty labels, l0, l1, · · · and l′0, l′1, · · · . Here, lj corresponds to the label of Ei.j

and l′k correspond to the label of Ei+1.ks (0 ≤ i ≤ n − 1). The input of the algorithm is the CA

(rule vector), S (Source) and D (Destination). The output is ‘Yes’ if D is reachable from S; ‘No’

otherwise.

Algorithm 1: Decide reachability of D from S

Input: 〈R0,R1, · · · ,Rn−1〉, S = (si)0≤i≤n−1 and D = (di)0≤i≤n−1

Output: Yes/No

Step 1: (a) Put each valid RMT r of R0 in l′0 (resp. l′1) ifR0[r] = 0 (resp. 1), and get links for

each RMT.

(b) Set s← s0 and d← d0
Step 2: Set Count← 1, i← 0 and goto Step 6

Step 3: If i ≥ n, report “Yes”, and exit.

Step 4: For label lk, 0 ≤ k ≤ Count− 1
Find l′2k and l′2k+1 so that, if r ∈ lk and s = 2r (mod 8) or 2r + 1 (mod 8), then

s ∈ l′2k (resp. l′2k+1) when Ri[s] = 0 (resp. Ri[s] = 1) and get the links for each RMT.

Step 5: Set s← 2 ∗ s+ si and d← 2 ∗ d+ di
Step 6: Verify the following.

(a) If l′d = ∅, report “No” and exit (Condition 1).

(b) If l′s is self linked for two RMTs, report “No” and exit (Condition 2).

Step 7: Search for paths from l′d to l′s. If no path exists, report “No” and exit.

Step 8: (a) Mark the labels (l′js) which are not in any path, computed in Step 7, as irrelevant.

(b) Count← 2 ∗ Count −# irrelevant labels.

Step 9: (a) Assign the elements of l′ to l without irrelevant labels, and accordingly update s and d.

(b) Set i← i+ 1, and goto Step 3.

Example V.1. Let us consider the CA 〈9, 170, 195, 80〉, S = 1010 and D = 0000 (Fig.4) as input

to Algorithm 1. Here l′0 = {1, 2}, l′1 = {0, 3}, s = 1 and d = 0. A path from l′0 to l′1 exists (Step

7). Since there is no irrelevant label, so Count = 2. Next, we get 4 labels (Fig. 3) l′0 = {2, 4},
l′1 = {3, 5}, l′2 = {0, 6} and l′3 = {1, 7} (Step 4). Now, s = 2 and d = 0. The conditions of Step 6

are not satisfied, so the algorithm searches for a path from l′0 to l′2. There exists a path involving l′0,

l′1 and l′2 (see Fig.4). Obviously l′3 is irrelevant in this case. Hence, Count = 3 (Step 8(b)). Now,

we assign the following: l0 ← l′0, l1 ← l′1, l2 ← l′2, and further we update s = 2 and d = 0 (Step

9(a)). As a next step, the algorithm finds l′0, l′1, · · · , l′5 (Step 4) and sets s = 5 and d = 0. There

12 S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata

exists a path involving l′0, l′2 and l′5. So, l′1, l′3 and l′4 are irrelevant in this case. Hence, Count = 3
(Step 8(b)). Now, we assign following: l0 ← l′0, l1 ← l′2, l2 ← l′5, and further we update s = 2 and

d = 0 (Step 9(a)). In this way, the algorithm proceeds, and finally reports “Yes”.

Correctness of Algorithm 1: The correctness of the algorithm is directly connected to the theorems,

lemmas and conditions reported before. The algorithm conceptually forms reachability tree for the

given CA and finds the links at each level. From the root to leaf, at any level, if the destination edge is

non-reachable or the source edge is self linked for two sibling RMTs, then according to Condition 1

or Condition 2, the algorithm terminates with output Non-reachable. At any level, if there does not

exist any path, then according to Property 1 and Theorem IV.1, the algorithm terminates with output

Non-reachable. Otherwise, it forms a new level and checks the paths. At leaf level, if there exists

any path, then according to Theorem IV.1, the algorithm terminates with output Reachable.

Theorem V.2. The upper bound running time of Algorithm 1 is proportional to the number of edges

explored by the algorithm.

Proof:

Algorithm 1 contains main loop enclosing Steps 4-9. Hence, the time complexity of the algorithm is

dependent on the time requirements of the steps. However, Step 4 finds the labels of edges of a level,

and Steps 5-9 work on those labels. That is, if k number of labels, hence edges, are explored at Step

4, then the other labels work only with them. Therefore, the upper bound of the time requirement

for single execution of Steps 4 to 9 is proportional to k. Now, before halting of the algorithm, it

repeatedly explores the edges in each run of the main loop. Hence, upper bound of the running time

is proportional to the total number of edges explored by the algorithm. ⊓⊔

Worst case analysis: The worst case in Algorithm 1 occurs if D is reachable from S and no labels

(hence, edges) can be removed. That is, the reachability tree contains all the possible leaves. In

that case, space requirement, which is determined by two arrays - li and l′i, is exponential. The time

requirement is then obviously exponential.

However, the algorithm performs well on an average. Because, in many cases, many edges are

removed, and before reaching to the leaf of the tree, non-reachability can be decided. A sample

result of another experimentation is shown Table 3, which speaks about the fact that in many cases,

we need not to deal with all the of a CA. The first rule vector of Table 3 says that if S = 10(0+1)n−2

and D = 11(0 + 1)n−2, and if first two rules of the CA are 8 and 58, then D is not reachable from

S for any value of n ≥ 2. Table 3 gives us an idea that reachability can be decided much before

than encountering the last rule. To understand the average performance of the algorithm, we have

arranged a detailed experimental study which is reported in the next section.

VI. Average Case Analysis

We find the upper bound of average running time of Algorithm 1 experimentally. Theorem V.2 points

out the fact that the running time of the algorithm is proportional to the number of edges explored

in corresponding reachability tree. By the proposed experimentation, we, therefore, find the average

number of edges explored by Algorithm 1 for a given CA size. We next proceed with experimental

setup.

S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata 13

Table 3: An experimental study

Rule Vector CA Size Source DestinationReachableDecision Remarks

S D or Not Level

〈8, 58, R2,R3, n ≥ 2 10 11 Not 1 satisfies

· · · , Rn−1〉 (0 + 1)n−2 (0 + 1)n−2 reachable Condition 1

〈10, 164, R2, R3, n ≥ 2 00 10 Not 1 satisfies

· · · , Rn−1〉 (0 + 1)n−2 (0 + 1)n−2 reachable Condition 2

〈7, 72, 254, R3, n ≥ 3 111 011 Not 2 no path

R4, · · · , Rn−1〉 (0 + 1)n−3 (0 + 1)n−3 reachable exists

〈15, 213, 5, 196, 124, n = 10 01001 11001 Reachable 9 satisfies

243, 218, 99, 184, 85〉 00101 11011 Theorem IV.1

VI.1. Experimental Setup

In this experiment, we use simple random sampling with replacement to calculate the population

mean (µ) [4,12]. In the estimation process, Xk denotes the mean of kth sample, and X̂k denotes the

kth estimate to the population mean (k ≥ 1). Let us consider that the sample size is m. So, Xk =
1

m

∑m

i=1
xi, where xi is an element of the population which is chosen randomly and uniformly.

In the experiment, we first find X1 which is considered as the first estimate X̂1 to population mean

(µ). Next we take the second sample of size m, and find X2. Then, we find the next estimate X̂2 to

µ in the following way. And, this process continues.

X̂1 = X1

X̂2 =
X1 +X2

2
=

1

2
X̂1 +

1

2
X2

X̂3 =
X1 +X2 +X3

3
=

2

3

(X1 +X2)

2
+

1

3
X3 =

2

3
X̂2 +

1

3
X3

. . .

X̂k =
k − 1

k
̂Xk−1 +

1

k
Xk

As the mean of all possible samples’ means is the population mean, the series (X̂k)k∈N approaches to

µ. For our study, population size is normally large. So, neither consideration of all possible samples

nor finding of µ is possible. We, therefore, declare X̂k as our final estimate to the population mean if

|̂Xk−
̂
Xk−1|
̂
Xk

< δ, where δ is a small threshold value and specifies the precision we desire to achieve.

We consider here δ = 0.01.

Now, fixing of the ‘m’ value is another important task of this calculation. Here, we use another

14 S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata

statistical method for choosing m. For calculating the sample size (m), we first take a random

sample of size n1. Then, we find another sample size n2 using the following equation [4].

n2 =
S2
1

Cµ2
1

(1 + 8C +
S2
1

n1µ2
1

+
2

n1

) (1)

where µ1 and S2
1 are the mean and variance of the first sample of size n1, and

C =
r2

t2
(2)

where t is the constant and r is the relative error. For our experimental setup, we consider t = 2 and

r = 0.05 [4].

As a next step, we randomly and uniformly take the second sample of size n2. Then, we find µ2 and

S2
2 as the mean and variance of the second sample. Using these parameters, we find another sample

size m0, which finally leads us to get the ‘m’:

m0 =
t2S2

2

r2µ2
2

(3)

Now, the desired sample size is calculated as following, where N is the population size.

m =
m0

1 + m0

N

(4)

VI.2. The Method of Experiment

Though Algorithm 1 is a decision algorithm, a slight modification in Algorithm 1 enables us to

get the total number of edges explored by it. To do that, we initialize a variable Total_count
(Total_count← 0) in the Step 2 of Algorithm 1, and rewrite the Step 8 as following:

Step 8:

(a) Mark the labels (l′js) which are not in any path, computed in Step 7, as irrelevant.

(b) Total_count← Total_count + 2*Count.

(c) Count← 2 ∗ Count −# irrelevant labels.

So, we just add an extra step (Step 8(b)) in Algorithm 1 to get the number (Total_count) of explored

edges. We use this modified algorithm in our experimentation. However, Algorithm 1 demands two

input parameters - one is a CA (that is, a rule vector) and the other is a pair of states (source and

destination). For the experiment, therefore, we need to find out sample size twice. One for the pairs

of states when a CA is given, and the other for the CAs of a given size. Let us consider that m′′ be

the number of CAs to be sampled for a given size, and m′ be the number of pairs to be sampled for

a given CA.

Example VI.1. This example illustrates, the calculation of m′. Let us consider the 20-cell CA 〈106,

110, 191, 148, 71, 118, 189, 147, 164, 141, 90, 183, 201, 73, 106, 103, 230, 207, 73, 36〉. To find

m′, we first randomly choose 500 (= n1) pairs of source and destination states. By Algorithm 1,

we can calculate µ1 = 359 (mean of explored edges), S2
1 = 11025. Using the values of mean and

variance, we find n2 = 138 (using Equation 1). For the sample size n2, we get the µ2 = 352 and

S2
2 = 9978. Now using Equation 3, we get the value of m0 = 129. Finally, we get the sample size

m′, which is also 129 (using Equation 4) where N = 220.

S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata 15

Now, using the value of m′ and m′′, we can get the average number of explored edges. For a given

CA size, we randomly and uniformly synthesize m′′ number of (non-uniform) CAs, and for each

CA we randomly and uniformly choose m′ number of source and destination pairs. However, for

each case, we use the modified Algorithm 1 to get total number of edges explored to decide the

reachability. For ease of reference, the method is summarized in Algorithm 2. This method takes

the CA size as input, and reports the average number of explored edges. We use this algorithm to

get our further results.

Algorithm 2: Average Number of Explored Edges

Input: CA Size (n)

Output: Average number of edges explored

Step 1: Set pre_avg_edges← 0 and k ← 1
Step 2: Set #explored_edges← 0 and i← 0
Step 3: If i ≥ m′′, then goto Step 9.

Step 4: (a) Choose an n-cell CA randomly

(b) Set j ← 0
Step 5: If j ≥ m′, then set i← i+ 1 and goto Step 3.

Step 6: Synthesize n-bit Source (S) and Destination (D) states randomly

Step 7: (a) With the help of the modified Algorithm 1, get the total number

of explored edges for this CA and (S,D). Suppose, the number is

Total_count.
(b) Set #explored_edges←#explored_edges + Total_count

Step 8: Set j ← j + 1 and goto Step 5.

Step 9: Set avg_edges← k−1
k

pre_avg_edges + 1
k
#explored_edges

m′∗m′′

Step 10: If
(avg_edges)−(pre_avg_edges)

avg_edges
< δ, then

report avg_edges and exit.

Step 11: Set pre_avg_edges← avg_edges, k ← k + 1 and goto Step 2.

VI.3. The Results

Using Algorithm 2, we have extensively experimented with various CA sizes to get the average

number of explored edges against a CA size. In Table 4, we report a sample experiment to show the

average number of explored edges with respect to the size of automaton. The table points out the

fact that with increase of CA size, explored number of edges also increases, but it is not exponential.

Table 4: Experimental results

CA size 10 20 30 40 50 60 70 80 90 100

Average number of

edges to be 50 344 1085 2428 4536 7612 11704 17012 23742 31923

explore

16 S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata

Therefore, we need another experiment for finding the rate of growth with respect to CA size. How-

ever, the worst case time complexity is exponential for this problem. Therefore, we can compare the

average number of explored edges (experimentally) with the worst case of reachability problem for

different size of automaton. In Figure 5, we plot the logarithm of number of edges explored against

the CA size. The worst case scenario is shown by the dotted line and experimental result is shown

by continuous curve in the figure. It is obvious from the graph that the edges explored on average is

much less than that on worst case.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

CA size

lo
g 2 (N

um
be

r o
f e

dg
es

 e
xp

lo
re

d)

Experimental Result
Worst Case

Figure 5: Average number of edges explored (experimentally) and worst case

VI.4. The Rate of Growth

Experimental results indicate that the rate of growth of average number of explored edges is not

exponential. In this sub-section, we find the rate of growth of explored edges to mathematically feel

the change in explored edges with respect to the size of automaton. To find the rate of growth, we

use the empirical curve bounding technique [10]. Assuming the explored edges (e) follows power

rule, that is, e ≈ kna [10], the coefficient ‘a’ can be found by taking empirical measurements of

explored edges {e1, e2} at some input CA size {n1, n2}, and calculating e2
e1
≈ (n2

n1
)a. So,

a ≈
log(e2/e1)

log(n2/n1)
(5)

Now, after taking the value of ‘e’ for different size of automaton, we can find rate of growth using

the Equation 5. In Table 5, we are showing the rate of growth with respect to CA size.

From the experimentation, we have also observed that the growth rate of explored edges always

lies under some upper bound. To represent this fact asymptotically, we are using the big-oh (O)

notation. From the definition of big-oh (O) notation, we can get that for a given function g(n),
T (n) = O(g(n)), if there exist two positive constant c and n0, such that 0 ≤ T (n) ≤ cg(n), for

all n ≥ n0 [5]. As the average number of edges, explored of the non-uniform CAs satisfies the

S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata 17

Table 5: Rate of growth with respect to CA size

CA size 10 20 30 40 50 60 70 80 90 100

Explored edges 50 344 1085 2428 4536 7612 11704 17012 23742 31923

Rate of growth (a) - 2.78 2.83 2.80 2.80 2.84 2.79 2.80 2.83 2.81

definition of big-oh, so we represent the rate of growth by big-oh notation. From Table 5, we can

show that, the value of ‘a’ is nearly 3 for all value of n (n is the size of automaton). So, we estimate

g(n) = n3. Hence, we can say, the average number of edges to be explore of these CAs as O(n3).
This is validated in Fig. 6.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10
x 10

5

CA size

N
u

m
b

e
r

o
f

e
d

g
e

s
 e

x
p

lo
re

d

Experimental Result

O(n3)

Figure 6: Upper bound of average number of edges explored

VII. Conclusion

This paper has presented an in-depth analysis on the non-uniform CAs for reachability problem.

The reachability tree has been utilized to develop theories for this class of CAs. We have introduced

here a technique to trace the state transition diagram in reachability tree. This technique has helped

us to design the decision algorithm for the reachability problem. The average case analysis of our

algorithm is done experimentally. The average case performance is O(n3) of our algorithm, where

the worst case time complexity is exponential.

18 S. Adak, S. Mukherjee, S. Das / Reachability Problem in Non-uniform Cellular Automata

References

[1] Adak, S., Naskar, N., Maji, P., Das, S.: On Synthesis of Non-uniform Cellular Automata Hav-

ing Only Point Attractors, Journal of Cellular Automata, Special issue on Cellular Automata

in Theoretical Computer Science, 12(1-2), 2016, 81–100.

[2] Chaudhuri, P. P., Chowdhury, D. R., Nandi, S., Chatterjee, S.: Additive Cellular Automata –

Theory and Applications, vol. 1, IEEE Computer Society Press, USA, ISBN 0-8186-7717-1,

1997.

[3] Clementi, A. E. F., Impagliazzo, R.: The Reachability Problem for Finite Cellular Automata.,

Inf. Process. Lett., 53(1), 1995, 27–31.

[4] Cochran, W. G.: Sampling Techniques, John Wiley, 1977, ISBN 0-471-16240-X.

[5] Cormen, T. H., Stein, C., Rivest, R. L., Leiserson, C. E.: Introduction to Algorithms, 2nd

edition, McGraw-Hill Higher Education, 2001, ISBN 0070131511.

[6] Das, S.: Theory and Applications of Nonlinear Cellular Automata In VLSI Design, Ph.D.

Thesis, Bengal Engineering and Science University, Shibpur, India, 2007.

[7] Das, S., Sikdar, B. K., Chaudhuri, P. P.: Characterization of Reachable/Nonreachable Cellu-

lar Automata States, Proceedings of 6th International Conference on Cellular Automata for

Research and Industry (ACRI), October 2004.

[8] Dennunzio, A., Formenti, E., Provillard, J.: Computational Complexity of Rule Distributions

of Non-uniform Cellular Automata, Proceedings of the 6th International Conference on Lan-

guage and Automata Theory and Applications, LATA’12, 2012, ISBN 978-3-642-28331-4.

[9] Martin, O., Odlyzko, A. M., Wolfram, S.: Algebraic properties of cellular automata, Commu-

nications in Mathematical Physics, 93(2), 1984, 219–258.

[10] McGeoch, C. C., Sanders, P., Fleischer, R., Cohen, P. R., Precup, D.: Using Finite Experiments

to Study Asymptotic Performance, Experimental Algorithmics, From Algorithm Design to

Robust and Efficient Software [Dagstuhl seminar, September 2000], 2000.

[11] von Neumann, J.: The theory of self-reproducing Automata, A. W. Burks ed., Univ. of Illinois

Press, Urbana and London, 1966.

[12] Sethi, B., Roy, S., Das, S.: Asynchronous cellular automata and pattern classification, Com-

plexity, 21(S1), 2016, 370–386.

[13] Sipper, M.: Co-evolving Non-Uniform Cellular Automata to Perform Computations, Physica

D, 92, 1996, 193–208.

[14] Sutner, K.: On the Computational Complexity of Finite Cellular Automata, J. Comput. Syst.

Sci., 50(1), 1995, 87.

[15] Wolfram, S.: Statistical Mechanics of Cellular Automata, Reviews of Modern Physics, 55(3),

1983, 601–644.

[16] Wolfram, S.: Universality and complexity in cellular automata, Physica D, 10, 1984, 1–35.

	I Introduction
	II Definitions
	III Reachability Tree and Configuration Tracing
	III.1 Links

	IV Reachability Analysis
	V Decision Algorithm
	VI Average Case Analysis
	VI.1 Experimental Setup
	VI.2 The Method of Experiment
	VI.3 The Results
	VI.4 The Rate of Growth

	VII Conclusion

