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ABSTRACT

Dynamic Regressor Selection (DRS) systems work by selecting the most competent
regressors from an ensemble to estimate the target value of a given test pattern. Hence,
the central issue in dynamic selection techniques is how to define the competence of the
regressors to select the most competent ones. This competence is usually quantified using
a single measure, such as the performance of the regressors in local regions of the feature
space around the test pattern, called the region of competence. However, to decide what is
the best measure to correctly calculate the level of competence is a hard task, because no
one is the best for any task. Works using ensemble of classifiers present a wide variety of
measures that are used to calculate the competence. Using ensemble of regressors, many
of these measures can not be used or adapted. Thus, in this work, we present a framework
for DRS, called Meta INtEgration (MINE), that aims at selecting and combining the most
competent regressors from a homogeneous ensemble during the evaluation of a given test
pattern. The proposed framework uses the combination of different measures extracted
from the region of competence, as a criterion for the selection and combination of the
regressors. Also, we have done a survey in the literature on some measures used with re-
gression problems to test the performance of the dynamic regression selection algorithms
found in the literature. The measures are extracted from region of competence and they
are aimed at capturing different behaviors of the regressors. Thus, for each test pattern,
only the most competent regressors are selected and combined. Using the MINE frame-
work, comprehensive experiments on 20 regression datasets show that MINE improves
the final estimate performance when compared to state-of-the-art techniques. Also, ex-
periments are performed on 15 real regression problems datasets using the state-of-the-art
dynamic regressor selection techniques by changing only the measure that computes the
competence. The results show that the measures have different performance throughout
the datasets and none of them are better in all situations.

Keywords: Regressors, Ensemble of Regressors, Measures, Combination, Dynamic Regres-
sor Selection.



RESUMO

Sistemas de seleção dinâmica de regressores (Dynamic Regressor Selection - DRS)
funcionam selecionando os regressores mais competentes de um ensemble com o objetivo
de estimar o valor de um dado padrão de teste. Assim, a questão central nas técnicas
de seleção dinâmica é como definir a competência dos regressores para selecionar os mais
competentes. Essa competência é geralmente quantificada usando uma única medida,
como o desempenho dos regressores em regiões locais do espaço de características em
torno do padrão de teste, chamado de região de competência. No entanto, decidir qual é
a melhor medida para calcular corretamente o nível de competência é uma tarefa difícil,
porque nenhuma delas é a melhor para qualquer tarefa. Trabalhos usando ensemble de
classificadores apresentam uma grande variedade de medidas que são usadas para calcu-
lar a competência. Usando ensemble de regressores, muitas dessas medidas não podem
ser usadas ou adaptadas. Assim, neste trabalho, apresentamos um framework para DRS,
chamado Meta INtEgration (MINE), que visa selecionar e combinar os regressores mais
competentes de um ensemble homogêneo durante a avaliação de um dado padrão de teste.
O framework proposto utiliza a combinação de diferentes medidas extraídas da região de
competência como critério para a seleção e combinação dos regressores. Além disso, fize-
mos um levantamento na literatura sobre algumas medidas utilizadas com problemas de
regressão para testar o desempenho dos algoritmos de seleção dinâmica de regressores
encontrados na literatura. As medidas são extraídas da região de competência e visam
capturar diferentes comportamentos dos regressores. Assim, para cada padrão de teste,
apenas os regressores mais competentes são selecionados e combinados. Usando o frame-
work MINE, experimentos foram realizados em 20 bases de dados de regressão mostrando
que o MINE melhora o desempenho da estimativa final quando comparado com as téc-
nicas da literatura. Também, experimentos foram realizados com 15 bases de dados de
problemas reais de regressão, usando técnicas de seleção dinâmica da literatura, alterando
apenas a medida que calcula a competência. Os resultados mostram que as medidas têm
desempenho diferente ao longo das bases de dados e nenhuma delas é melhor em todas as
situações.

Palavras-chaves: Regressores, Ensemble de Regresssores, Medidas, Combinação, Seleção
Dinâmica de Regressores.
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1 INTRODUCTION

In machine learning, techniques that use ensembles are those that generate differ-
ent models with some degree of diversity and combine the models to make a prediction.
Ensembles are used either in classification or regression problems. The advantage of en-
sembles concerning single models has been reported in terms of increased robustness
and accuracy for both classification (HO, 1998; DOMENICONI; YAN, 2004; SINGH; SINGH,
2005), and regression problems (DRUCKER, 1997; SHRESTHA; SOLOMATINE, 2006; ZHANG;

ZHANG; WANG, 2008).
Ensemble systems have three general phases (CRUZ; SABOURIN; CAVALCANTI, 2018):

(1) Generation, when a training set is used to generate an ensemble; (2) Selection, when
a subset from the ensemble is selected to perform the prediction; and (3) Combination
(Fusion), when the final prediction is the result of the combination of the models previous
selected. Figure 1 shows the general phases of ensemble systems: generation, selection and
combination.

Generation Selection Combination

Figure 1 – Ensemble systems general phases: generation, selection, and combination.

In the generation phase, a training set is used to create the ensemble. Ensemble is said
to be homogeneous when a single learning algorithm is used to train all models and when
more than one learning algorithm is used, the ensemble is said heterogeneous.

In the second phase, only a single model or a subset of the ensemble is selected.
Selection is optional and can be both static and dynamic. In the static approach, the
selection is performed before the evaluation of the test pattern, using information from
the training set (ORTIZ-BOYER; HERVáS-MARTíNEZ; GARCíA-PEDRAJAS, 2005) or the val-
idation set (PARTALAS et al., 2008). Then, the selected models are used to estimate the
target value of all test patterns. In the dynamic approach, a different subset is selected
for each new test pattern. In the dynamic selection techniques, each model is expected to
be specialized in a specific region of the feature space, which is known as region of compe-
tence. Thus, for each test pattern, the most competent models are selected in the region of
competence where the test pattern is located. Recent works show that dynamic selection
techniques perform better than static selection (KO; SABOURIN; BRITTO, 2008; BRITTO;

SABOURIN; OLIVEIRA, 2014; CRUZ; SABOURIN; CAVALCANTI, 2018; MENDES-MOREIRA et
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al., 2009). In this work, dynamic selection systems that generate models for regression
problems is called Dynamic Regression Selection (DRS) systems.

When the subset of the selected models from the ensemble contains more than one
model, they must be combined (fused). The combination can be done using a simple
technique such as mean or weighted mean. The weighted mean has better accuracy than
the mean (PERRONE; COOPER, 1993), and the weights can be defined statically or dy-
namically. Statically (constant weights), the weighted mean of the models uses the same
vector of weights for any test pattern, while in the dynamic form (nonconstant weights)
the weights are defined according to the performance of the models in the region of com-
petence.

1.1 STATEMENT OF THE PROBLEM

The rationale behind dynamic selection systems is that different models are competent
(or experts) in different local regions of the feature space, which means that no model is
competent to estimate all the test patterns, so, the idea is to select the most competent
models for each new test pattern.

The crucial issue in dynamic selection systems is to define which criterion is used to
measure the competence of the models. It is expected that the better the competence of
the selected models, the higher the accuracy of the whole system. A common alterna-
tive used to measure the competence is to calculate the cumulative error of the model
in the neighborhood of the test pattern (ROONEY et al., 2004; MENDES-MOREIRA et al.,
2009; WOODS; KEGELMEYER; BOWYER, 1997; GIACINTO; ROLI, 1999). However, the Dy-
namic Classifier Selection (DCS) (SANTANA et al., 2006; SANTOS; SABOURIN; MAUPIN,
2008) literature shows that using only the cumulative error in the region of competence is
not sufficient to correctly measure the competence of the classifiers. Recent classification
works (CRUZ et al., 2015; CRUZ; SABOURIN; CAVALCANTI, 2016; CRUZ; SABOURIN; CAVAL-

CANTI, 2017) use the composition of many measures to determine the competence of the
classifiers, selecting and combining them to predict a given test pattern. The literature for
classification problems, which discuss measures to evaluate the competence of classifiers,
is richer than regression problems. The problem is that the measures used for classification
are not directly transferable to regression problems and usually, only the error measure
is used in dynamic regressor selection.

In both Dynamic Classifier Selection (DCS) as in Dynamic Regressor Selection (DRS)
systems, the region of competence is used to find the most similar patterns according to
the test pattern 𝑥𝑞𝑢𝑒𝑟𝑦. Figure 2 shows an example of the region of competence calculated
using regression data. Some similarity measure, as Euclidian Distance, can be used to find
the most similar patterns from the training set or the validation set. In that figure, 𝑘 is
the size of the region of competence, and 𝑥𝑞𝑢𝑒𝑟𝑦 is the test pattern.
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Region of 
Competence

Figure 2 – Definition of the Region of Competence. Blue dots (∙) represent patterns from
the training set or validation set. The red dot (∙) represents the test pattern
𝑥𝑞𝑢𝑒𝑟𝑦. In this example, 𝐾 is the size of the region of competence.

In works with DRS (ROONEY et al., 2004; MENDES-MOREIRA et al., 2009), only one error
measure is used to estimate the competence of the regressors in the region of competence.
For example, both Root Sum Squared Error (RSSE) and Sum Squared Error (SSE) can
be used as measures of competence. For the selection of a single model, RSSE and SSE
have the same result, selecting the same model to predict the 𝑥𝑞𝑢𝑒𝑟𝑦 pattern. When more
than one model is selected, these measures have different performance in the combination,
because they are measures with different magnitudes.

Table 1 presents the results using RSSE and SSE as measures of competence. The
final result of the combination of the regressors 𝑓1, 𝑓2, and 𝑓3 was calculated through the
weighted mean using the RSSE and SSE as weights for the regressors (𝑓𝑛) prediction. It
is easy to see that there is a difference (0.064 vs 0.0103) between the weighted means.

Thus, some questions arise:

• Are there more measures of competence that can be used with regression problems?
Which ones?

• Is there any measure that is better than the others in all situations?

• Are the measures problem-dependent?

• If there are more measures, how to combine them to achieve better performance in
a dynamic regressor selection system?

Finally, it is necessary to carry out in the literature of regression problems a survey of
probable measures of competence that can be used in DRS. Also, evaluate the measures
individually, checking if any of them performs better than others in all situations and,
otherwise, find a way to combine them by increasing the whole performance of DRS
techniques.
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Table 1 – Weighted Mean of the regressors using Root Sum Squared Error and Sum
Squared Error. For each regressor 𝑓𝑛, the RSSE and SSE are calculated in the
region of competence around the test pattern 𝑥𝑞𝑢𝑒𝑟𝑦. 𝑓𝑛(𝑥𝑞𝑢𝑒𝑟𝑦) is the estimated
value for the test pattern.

Regressor 𝑓𝑛(𝑥𝑞𝑢𝑒𝑟𝑦) RSSE SSE 𝑓𝑛(𝑥𝑞𝑢𝑒𝑟𝑦)× RSSE 𝑓𝑛(𝑥𝑞𝑢𝑒𝑟𝑦)× SSE
𝑓1 0.1 0.1 0.01 0.01 0.001
𝑓2 0.12 0.2 0.04 0.024 0.0048
𝑓3 0.2 0.15 0.0225 0.03 0.0045

Weighted Mean 0.064 0.0103

1.2 OBJECTIVES

The objectives of this thesis are: (i) to develop a new technique that combines the
measures of competence enhancing dynamic selection and thereby increasing the whole
performance of the system; (ii) to survey in the literature some measures used with re-
gression problems that can be used to measure the competence of the regressors in DRS
algorithms.

To acomplish those objectives, in this thesis we propose the Meta INtEgration (MINE)
framework for DRS. It uses a combination of measures extracted from the region of com-
petence as a criterion to select and combine the regressors. MINE was designed to work
in the following scenarios: (i) select a single regressor, given the test pattern (MINE-
Selection (MINE-S)); (ii) all the ensemble regressors are combined through the weighted
mean (MINE-Weighting (MINE-W)); and (iii) a subset of the ensemble is dynamically
selected for each test pattern (MINE-Weighting with Selection (MINE-WS)). Our hy-
pothesis is that the DRS can benefit from the combination of several measures instead of
relying on a single one. Also, in order to expand the research with the use of homogeneous
ensembles, this thesis brings a robust study using homogeneous ensembles for DRS.

Also, we define eight measures to be extracted from the region of competence for each
test pattern and compare them individually with DRS algorithms find in the literature
(ROONEY et al., 2004; MENDES-MOREIRA et al., 2009). The hypothesis raised is whether
the DRS algorithms have different performance when the measure used to calculate the
competence of the regressors is modified. Another point is to verify if some measure
performs better than others in all situations.

1.3 CONTRIBUTIONS

This thesis has two contributions for dynamic regressor selection systems, they are:

• a framework for dynamic regressor selection, called MINE, that uses the combination
of the measures of competence as a criterion to select and combine the regressors
from an ensemble;
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• a study of a survey of measures of competence evaluated with state-of-the-art dy-
namic regression selection techniques;

These contributions generated the following submitted articles (Chapter 4 and 3):

• MOURA, T. J. M.; CAVALCANTI, G. D.; OLIVEIRA, L. S. MINE: A Framework
for Dynamic Regressor Selection. Submitted to Pattern Recognition, 2019.

• MOURA, T. J. M.; CAVALCANTI, G. D.; OLIVEIRA, L. S. Evaluating Compe-
tence Measures for Dynamic Regressor Selection, In proceedings of Interna-
tional Joint Conference on Neural Networks (IJCNN), 2019.

1.4 ORGANIZATION

This thesis is organized into five chapters. Figure 3 presents this thesis overview.
Boxes are chapters and arrows indicate the flow of the thesis. The thesis starts with
Chapter 1 (current chapter) presenting the introduction of the thesis. Chapter 2 presents
a background of Dynamic Regressor Selection (DRS) pointing the main works in the three
steps of the construction of DRS systems: (i) ensemble generation; (ii) selection; and (iii)
combination, for a better understanding of the following chapters.

Chapter 3
Evaluating Competence 
Measures for Dynamic 
Regressor Selection

Chapter 4
MINE: A Framework for 

Dynamic Regressor 
Selection

Chapter 1
Introduction

Chapter 2
Background

Chapter 5
General Conclusion

Figure 3 – Thesis overview. The boxes are chapters and the arrows are the flow of the
thesis.

Chapter 3 shows a study with the evaluation of eight measures used to calculate the
competence of the regressors from an ensemble. This chapter presents the definition of the
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eight measures to be extracted from the region of competence for each test pattern and
a comparative tests of DRS algorithms. The algorithms are evaluated using 15 regression
problems from different data repositories and they are compared against an individual
regressor and against the Mean and Median. Experiments were performed to validate the
hypothesis that DRS algorithms have a different performance when the measure used to
calculate the competence of the regressors is modified. The content of this chapter is going
to published in the proceedings of the International Joint Conference on Neural Networks
(IJCNN), this year.

In Chapter 4, MINE framework is introduced. The chapter begins with a brief in-
troduction, pointing to the central issue of the dynamic regressors selection that is the
choice of the measure of competence, followed by a detailed description of the framework,
with its steps and modules. MINE framework can operate in three different scenarios: (i)
the selection of a single regressor given a test pattern (MINE-Selection (MINE-S)); (ii) all
the regressors in the ensemble are weighted and combined (MINE-Weighting (MINE-W));
and, (iii) a subset the ensemble is dynamically selected per test pattern (MINE-Weighting
with Selection (MINE-WS)). Finally, a series of experiments that demonstrate that MINE
outperforms state-of-the-art DRS techniques and static techniques as Mean and Median.
The content of this chapter has been submitted to the Pattern Recognition journal.

In Chapter 5, the conclusion and future works are presented.
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2 BACKGROUND

Dynamic Regressor Selection (DRS) consists in selecting regressors from an ensemble
for each new test pattern. If only a single regressor is selected, its output is the prediction
of the test pattern, otherwise, the selected regressors are combined in order to predict the
test pattern. Thus, for each test pattern 𝑥𝑞𝑢𝑒𝑟𝑦 and an ensemble of regressors ℱ of size 𝑁 ,
a subset ℱ ′ of size 𝑀 ≤ 𝑁 is selected containing the most competent regressors.

The idea involved in the DRS techniques is that each regressor from the ensemble has
different performance in distinct regions of the feature space around the test pattern, called
the region of competence (MERZ, 1996; KUNCHEVA; RODRíGUEZ, 2007). No regressor is
competent to correctly predict all test patterns, so it is interesting to select the most
competent one or a subset with the most competent to predict each test pattern.

The crucial issue in DRS is how to measure the competence of the regressors from the
ensemble for each test pattern. In general, DRS systems use the error generated in the
region of competence, selecting the regressor(s) with the lowest error rate(s). These errors
generated in the region of competence also can be used in the weighted combination of the
regressors. The weights are inversely proportional to the error rates, that is, the smaller
the error of the regressor, the greater is its weight.

In general, DRS systems have three main steps (Figure 4):

1. Ensemble Generation, when the ensemble ℱ is generated.

2. Selection, when the most competent regressors from the ensemble are selected.

3. Combination (Fusion), when the selected regressors are combined using some crite-
rion.
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The next sections describe the steps shown in Figure 4, as well as some works from
the literature.

2.1 ENSEMBLE GENERATION

The first step of DRS systems is the generation of the ensemble. The goal of this step is
to generate the models 𝑓𝑛, ∀𝑛 ∈ {1, 2, ..., 𝑁} to compose the ensemble ℱ = {𝑓1, 𝑓2, ..., 𝑓𝑁}.

If the generation of the regressors is performed using the same learning algorithm, the
ensemble is said homogeneous, otherwise, is heterogeneous. Homogeneous ensembles are
more discussed in the literature (DIETTERICH, 1997; BROWN et al., 2005; ROONEY et al.,
2004), because it is more difficult to control the interaction between the different learning
processes. Figure 5 shows the process to generate a single regressor 𝑓𝑛.

Training Set
Learning Algorithm

Training

Parameter Set

Figure 5 – Generation process of a regressor 𝑓𝑛 (figure inspired by (MENDES-MOREIRA et
al., 2012)).

The training set is used to train the regressor 𝑓𝑛 and the parameters of the learning
algorithm can be manipulated to generate more diverse and accurate regressors.

This section presents the main methods for the ensemble generation step. With the
goal to generate diverse and accurate models, ensemble generation methods are classified
into two groups: (i) Data Manipulation; and (ii) Generation Process Manipulation. These
two groups are detailed in the next sections.

2.1.1 Data Manipulation

In this section, it is discussed methods of data manipulation in two different ways:
subsampling from the training set and manipulating the features.

2.1.1.1 Subsampling from the Training Set

This approach generates different subsamples of the training set and each subsample
is used to train a model. This approach assumes that learning algorithms are unstable,
that is, small changes in training data result in large changes in the results. Decision
trees and artificial neural networks are examples of unstable learning algorithms (ZHOU,
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2012), (BREIMAN, 1996b), (DIETTERICH, 1997). However, some sampling methods such as
Bagging and Boosting have been used successfully in algorithms considered stable, such
as Support Vector Machines (SVM) (KIM et al., 2002).

Bagging

The first method to be pointed out is Bagging (Bootstrap AGGegatING) (BREIMAN,
1996a). Bagging generates distinct datasets, using sampling with replacement, which
means that some instances are repeated in each dataset, and on average only 63% of
instances are unique. The outputs of the Bagging are 𝑁 training sets {𝒯1, 𝒯2, ..., 𝒯𝑁},
responsible for training each model 𝑓𝑛 ∈ ℱ . All sets 𝒯𝑛 have the same size as the original
training set 𝒯 . For more details about Bagging, see (BREIMAN, 1996a) and (DOMINGOS,
1997).

Boosting

Other important method using subsampling is Boosting. Freund and Schapire present
the algorithm AdaBoost (FREUND; SCHAPIRE, 1996), which is the most popular Boosting
algorithm. The main idea is the possibility of converting a weak model into a strong model,
that is, a model that can reach high accuracy. A weak model is one that achieves performs
slightly better than random prediction. In the Bagging, the training patterns are selected
randomly with replacement, but in AdaBoost the patterns have different probabilities to
be selected. Initially, the probabilities are the same, but during the iterations, the patterns
that are more difficult to classify are more likely to be selected.

AdaBoost was designed for classification problems and its first adaptation for regres-
sion problems was AdaBoost.R (FREUND; SCHAPIRE, 1997). This method assumes the
target values 𝑦 are just two possible labels 𝑦 = [0, 1], that is, it transforms the regres-
sion dataset into a classification problem (binary classification) as follows: (i) the range
of the target values 𝑦 is split into 𝑆 sub-ranges having the same size and lower limits
𝑙1 = 1/(𝑆 + 1), 𝑙2 = 2/(𝑆 + 1), ..., 𝑙𝑠 = 𝑆/(𝑆 + 1); (ii) each pattern 𝑖 from training set is
replaced by 𝑆 of its copies, where the target value of each copy is replaced with two new
variables. The first variable has the value 𝑙𝑗 and the second is a new target variable of the
binary classification problem, defined as 0 if 𝑦𝑖 < 𝑙𝑗 or 1, otherwise. Therefore, each new
instance 𝑗 associated with the original pattern 𝑖 represents the question “is 𝑦𝑖 < 𝑙𝑗?”. The
new dataset has 𝑁 × 𝑆 patterns (MENDES-MOREIRA et al., 2012).

In (AVNIMELECH; INTRATOR, 1999b) is proposed an adaptation of AdaBoost for re-
gression problems. In each iteration, the regression errors calculated by the models in the
previous iteration are considered Correct or Reject. Correct if the error is less than 0.5
and Reject, otherwise. So, the weights of the patterns are updated using the regression
error of the model. An improvement to this work, called AdaBoost.RT, is presented in
(SHRESTHA; SOLOMATINE, 2006). At each iteration, the error is calculated using a sub-
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set of the patterns. This subset contains the patterns with an error higher than a given
threshold.

Another variation of the AdaBoost algorithm is the AdaBoost.R2 (DRUCKER, 1997).
AdaBoost.R2 normalizes the error values, guaranteeing that the average error for all of
the patterns in the training set is in the interval [0, 1]. The interactions finish when the
average error is lower than 0.5. This method was tested by (BORRA; CIACCIO, 2002) with
different learning algorithms (DART (FRIEDMAN, 1996), PPR (FRIEDMAN; STUETZLE,
1981), and MARS (FRIEDMAN, 1991)).

Other works (ZEMEL; PITASSI, 2001; RÄTSCH; DEMIRIZ; BENNETT, 2002) based on
AdaBoost for regression problems present variations in the function that calculates the
weight of the patterns in each iteration.

In (CHANDRAHASAN et al., 2011) is presented a comparative study between Bagging
and Boosting for classification problems. The conclusions are: (i) no single algorithm
performed well for all problems used in the experiments. The algorithms depends more
on dataset than any other factors; and (ii) to be competitive and feasible, it is important
to consider the processing time. In their experiments, AdaBoost runs in a reasonable time
in all the three medical datasets used.

2.1.1.2 Manipulating the Features

In this approach, different training sets {𝒯1, 𝒯2, ..., 𝒯𝑁} are generated by changing
the representation of the patterns from the original training set 𝒯 . Each training set
𝒯𝑛, ∀𝑛 ∈ {1, 2, ..., 𝑁} is generated by replacing the original representation {(x𝑖, 𝑦)}, with
a new one {(x′

𝑖, 𝑦)}, where x𝑖 and x′
𝑖 are vectors of features, and 𝑦 is the target value. In

this approach, the new training sets are generated in two ways: (i) feature selection, that
is, x′

𝑖 ⊂ x𝑖; (ii) the new features are obtained by applying some transformation into the
original ones.

One of the most popular methods of feature selection is the Random Subspace (HO,
1998). In this method, the training sets are generated selecting randomly the features.
Originally, decision trees were used as learning algorithms and the ensemble was called
decision forest. For each test pattern, the final prediction is the combination of all the
trees from the ensemble.

Also, iterative search methods can be used to select the features. In (OPITZ, 1999) is
used a genetic algorithm to generate new subsets of features, starting with a randomly
selected subset. The proposal was evaluated on classification problems using neural net-
works. The criterion used to select the features is the minimization of the individual model
error and the maximization of ambiguity (KROGH; VEDELSBY, 1994). The ambiguity is
defined as: ∑︀𝑁

𝑖=1[𝛼𝑖 × (𝑓𝑖(𝑥𝑞𝑢𝑒𝑟𝑦) − 𝑓𝑒𝑛𝑠(𝑥𝑞𝑢𝑒𝑟𝑦))2], where 𝑁 is the size of the ensemble, 𝑓𝑖

is some regressor from the ensemble, 𝑓𝑒𝑛𝑠 is the final estimation of the ensemble, and 𝛼𝑖

is a weight.
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Feature selection can be used to generate ensembles using k-nearest-neighbors (WOODS;

KEGELMEYER; BOWYER, 1997) as learning algorithm. kNN is stable regarding the train-
ing set, but unstable regarding the set of features. Therefore, small changes in the training
set of the kNN, cause irrelevant changes in the final result, but to use different subsets of
the features to find the similar data, cause bigger changes in the final result. In (DOMENI-

CONI; YAN, 2004), feature selection is combined with adaptive sampling (THOMPSON;

SEBER, 1996) to reduce the risk of discarding some useful information. When the work
of Domeniconi et al. is compared to random feature selection, it reduces diversity among
the models and increases the accuracy of the ensemble.

In (RODRÍGUEZ; KUNCHEVA; ALONSO, 2006) is presented a method that combines se-
lection and transformation, called rotation forests. The original set of features is divided
into 𝑑 disjoint subsets and Principal Component Analysis (PCA) (JOLLIFFE, 2002) is ap-
plied to each subset. All principal components are kept in order to preserve the variability
information in the data. Thus, 𝑑 axis rotations occur to form the new features for training
a decision tree. The idea of the rotation approach is to establish simultaneously individual
accuracy and diversity among the trees from the ensemble. In (ZHANG; ZHANG; WANG,
2008) is applied rotation forest to regression problems.

2.1.2 Generation Process Manipulation

This section presents methods that manipulate the generation process of a model. This
can be performed in two ways: (i) manipulating the parameter sets; and (ii) manipulating
the learning algorithm.

2.1.2.1 Manipulating the Parameter Sets

There are many learning algorithms and each one is sensitive to changes in the input
parameters. These input parameters can be changed before training a new model and
thus generate more diverse and accurate ensembles. For example, neural networks can
use different initial weights to obtain different models. The models trained with different
sets of initial weights, generate different predictions for the same test pattern (KOLEN;

POLLACK, 1990).
In (ROSEN, 1996) is generated randomly the initial weights to train different models,

but the architecture of the neural network remains the same. In (PERRONE; COOPER,
1993) the initial weights are generated randomly but also the architecture of the neural
network is manipulated changing the number of hidden layers and neurons . In (YANKOV;

DECOSTE; KEOGH, 2006) is proposed a method which the ensemble is generated using 𝑘-
nearest-neighbors. The ensemble proposed by Yankov et al. have only two models: one of
them has a small number of nearest neighbors and the other has large nearest neighbors.
Using a small value for 𝑘, the model becomes unstable. With a bigger 𝑘 the estimation is
much smoother.
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The main goal of these techniques is to generate more diverse and accurate models,
but there is no guarantee that this will happen. Varying the parameters of a learning
algorithm can be useful when the training dataset is small.

2.1.2.2 Manipulating the Learning Algorithm

Another technique to generate the models is to change the internal characteristics of
the learning algorithms. The same dataset is used for training, but the trained models
have different results. The ensemble can be generated in two ways: (i) sequential; and
(ii) parallel. In the first way, the training of a model is influenced only by the previously
trained model. In the second way, the overall quality of the ensemble is taken into account
and information about the models is exchanged between the generation processes.

Sequential

The most common sequential approach is to check the ensemble error (e.g., (GRANITTO;

VERDES; CECCATTO, 2005) and (ISLAM; MURASE, 2003)). Granitto et al. presented SECA
(Stepwise Ensemble Construction Algorithm), an algorithm that trains the models via
Bagging. Each bootstrap sample is used to train a new neural network. SECA controls
the training time of the models by checking the overall ensemble error, thus the training
can stop early or later. Another method, called Cooperative Neural Network Ensembles
(CNNE)(ISLAM; MURASE, 2003), starts the ensemble with two neural networks and new
models are added trying to reduce the ensemble error. In addition, before adding new
neural networks, the technique manipulates the number of neurons, adding new neurons
to the network.

Parallel

In parallel techniques, the models are trained simultaneously, but the learning pro-
cesses are not independent. They interact to guarantee that the training of each model is
trying to accomplish objectives of the overall ensemble. The main difference between the
parallel approaches and the sequential ones is that the ensemble generation is performed
simultaneously taking into account (in each model of the ensemble) the behavior of the
other models in previous iterations.

Some parallel methods use evolutionary algorithms. ADDEMUP (Accurate anD Di-
verse Ensemble-Maker giving United Predictions) (OPITZ; SHAVLIK, 1996). ADDEMUP
generates new models from previous ones, using a fitness function that tries to weights
the accuracy of the model, and the diversity of it within the other ones in the ensemble,
according to the bias/variance decomposition (KROGH; VEDELSBY, 1994). As in AdaBoost
(Section 2.1.1.1), the training of new models is focused on misclassified examples. The
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process generates models in parallel and selects the best ones in each iteration of the
genetic algorithm, stopping until a criterion is reached.

The method Ensemble Learning via Negative Correlation (ELNC) (LIU; YAO, 1999)
also trains neural networks in parallel. However, it used the negative correlation term
(UEDA; NAKANO, 1996) as error function, instead of the bias/variance decomposition
(KROGH; VEDELSBY, 1994) used in ADDEMUP.

Random Forest (BREIMAN, 2001) is a method where trees are generated using Bagging
(Section 2.1.1.1), but during the training of each model, the nodes are created taking into
account a randomly selected feature subset. The subset used in one node is independent
of the subset used in the previous one. This method, based on the manipulation of the
learning algorithm, is a combination of bootstrap sampling and random feature selection.

2.2 SELECTION

Many methods presented in the ensemble generation step try to generate diverse and
accurate ensembles, however, this result is not guaranteed. Some of those methods use ran-
dom process (e.g. Bagging and AdaBoost) and this action cannot guarantee the diversity
among the generated models.

Ensemble Selection consists of selecting a subset of models ℱ ′ from an ensemble ℱ
previously generated, where ℱ ′ ⊆ ℱ . There are two selection approaches: (i) static; and
(ii) dynamic. In (KUNCHEVA; RODRíGUEZ, 2007), the definition of static selection for
classification problems is described as follows: the regions of competence of each classifier
are specified during the training phase. During the evaluation of a test pattern 𝑥𝑞𝑢𝑒𝑟𝑦,
the region around 𝑥𝑞𝑢𝑒𝑟𝑦 is first found, and the classifier responsible for this region is
called upon to label 𝑥𝑞𝑢𝑒𝑟𝑦 (AVNIMELECH; INTRATOR, 1999a; VERIKAS et al., 1999). In
recent works on dynamic classifier selection (OLIVEIRA; CAVALCANTI; SABOURIN, 2017;
CRUZ et al., 2015; CRUZ; SABOURIN; CAVALCANTI, 2016), the static selection definition
is presented as follows: given the initially generated ensemble ℱ , a subset is selected to
satisfy all the patterns in the test set. This last definition is confused with the definition
of ensemble pruning, and is the same one presented in the works of (ROONEY et al., 2004)
and (MENDES-MOREIRA et al., 2009). This last definition is used from here to onwards.

In dynamic selection, for each test pattern 𝑥𝑞𝑢𝑒𝑟𝑦, the selection of the models is per-
formed during the evaluation phase and the subset of the models ℱ ′ is combined to predict
the test pattern.

The next sections describe in details the two selection approaches and their main works
from the literature.
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2.2.1 Static Selection or Ensemble Pruning

The main goal of the static selection/pruning approach is to improve the predictive
ability or reduce computational costs. Even in methods that are designed to use all the
generated models, e.g Bagging (BREIMAN, 1996a), works as (ZHOU; WU; TANG, 2002;
HERNANDEZ-LOBATO; MARTINEZ-MUNOZ; SUAREZ, 2006) show that the addition of a
selection phase can reduce computational costs and improve the prediction accuracy.

Static selection methods can be classified as: (i) partitioning-based; and (ii) search-
based. Partitioning-based methods divide the initial ensemble ℱ into subensembles using
some partitioning criterion. Then, for each subensemble, one or more models are selected
using some selection criterion. Search-based methods search for a subset from the original
ensemble ℱ by iteratively adding or removing models from the subset according to a given
evaluation measure and search algorithm. The next sections show both static selection
methods.

2.2.1.1 Partitioning-Based Approaches

In this approach, it is believed that the ensemble ℱ contains many similar and re-
dundant models. The main idea of partitioning-based approaches is to divide the models
into subensembles using a partitioning criterion and to select representative models (one
or more) from each subensemble. In the partitioning-based approaches, the subensembles
are generated using clustering algorithms. The goal is to build a subensemble ℱ ′ with the
best models, which typically means that the best models are accurate and diverse. With
this, some diversity is guaranteed in ℱ ′.

In (LAZAREVIC; OBRADOVIC, 2001), k-means clustering (LLOYD, 1982) algorithm is
used to obtain clusters of similar models. The number of clusters is an input parameter
of this approach and is used the prediction vectors made by the models as partitioning
criterion. In (COELHO; ZUBEN, 2006) is presented the ARIA - Adaptive Radius Immune
Algorithm for clustering. This algorithm does not require the number of clusters to be
defined as an input parameter.

2.2.1.2 Search-Based Approaches

Simpler and more common than the previous one, this approach works like this: given
an initial ensemble ℱ , search-based approaches search for the best subensemble ℱ ′, using
some search algorithm for iteratively adding or removing models in ℱ ′. A simple, but
costly way, is to choose the best subensemble ℱ ′ using some criterion with a greedy
search in space 2𝑁 − 1, where 𝑁 is the size of the ensemble ℱ . This search is a NP
complete problem (TAMON; XIANG, 2000) and intractable for ensembles with 𝑁 > 30
(MARTíNEZ-MUñOZ; SUáREZ, 2006). This method may be useful for small ensembles.
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Another search-based approach is randomized algorithms. Randomized Algorithms
perform a heuristic search in the input space using stochastic methods, such as evolution-
ary algorithms. In (RUTA; GABRYS, 2001) is used three randomized algorithms to search for
the best subensemble: genetic algorithms (KUNCHEVA; JAIN, 2000), tabu search (GLOVER;

LAGUNA, 1998), and population-based incremental learning (BALUJA, 1994). The main
result of the experiments is that the three algorithms outperform the greedy search. These
results are performed using an ensemble ℱ with small size.

Some works use sequential search algorithms. Sequential algorithms generate an initial
solution (subensemble) and iteratively change by adding or removing models. Three types
of sequential search algorithms are used:

• Forward: In this approach, the ensemble is initialized with an empty set. Models
are appended to the ensemble in each iteration. This is referred to as Forward
Selection (PARTALAS et al., 2008).

• Backward: The search begins with the entire initial ensemble and models are elim-
inated in each iteration. This is referred to as Backward Elimination (PARTALAS et

al., 2008).

• Combined: Apply consecutive forward and backward steps (MOLINA; BELANCHE;

NEBOT, 2002).

The work (MARTíNEZ-MUñOZ; SUáREZ, 2007) shows a sequential forward search method
based on AdaBoost. In each iteration, this method selects one model from the ensemble
ℱ that minimizes the ensemble error. Although this method was originally proposed for
classification, it can be directly applied to regression using AdaBoost.R or AdaBoost.R2.

Combined methods are more difficult to implement because of mix both forward
and backward steps. Some examples of combined search methods for static selection are
(MENDES-MOREIRA. et al., 2006) and (MARGINEANTU; DIETTERICH, 1997).

In (MENDES-MOREIRA. et al., 2006) is presented an algorithm that starts by randomly
selecting a predefined number of 𝑀 models. In each iteration, one forward step and one
backward step are applied. The forward step selects a model from the initial ensemble
which improves the accuracy of the subensemble. In the second step, one model is removed
from the subensemble, leaving only the 𝑀 models with higher ensemble accuracy. The
process stops when the same model is selected in both steps.

In (MARGINEANTU; DIETTERICH, 1997) is shown another combined search algorithm
called Reduce-Error Pruning with Backfitting. Firstly, a subensemble of three models
ℱ ′ = {𝑓1, 𝑓2, 𝑓3} is created. In next iterations, model 𝑓1 is removed and other 𝑓4 is tested
together 𝑓2 and 𝑓3, with the goal to reduce the subensemble error. The process is repeated
for the models 𝑓2 and 𝑓3 and it continues until a predefined number of iterations is reached.
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2.2.2 Dynamic Selection

In Dynamic Selection, the selection of the models is done during the evaluation of
the test pattern 𝑥𝑞𝑢𝑒𝑟𝑦. For each pattern 𝑥𝑞𝑢𝑒𝑟𝑦, the region of competence is defined with
the most similar patterns and a subensemble ℱ ′ is selected to be combined in the final
prediction 𝑓𝑒𝑛𝑠(𝑥𝑞𝑢𝑒𝑟𝑦).

Some measure is used in the region of competence to select the models. The individ-
ual performance of each of the models is evaluated in the region of competence and the
𝑀 models with the best performance are selected. In (MERZ, 1996) is described as the
dynamic selection approach works for classification problems. Merz uses a performance
matrix to evaluate the models in the region of competence. In classification problems,
many measures were tested in the region of the competence (CRUZ; SABOURIN; CAVAL-

CANTI, 2017), but many of them cannot be used or adapted for regression problems. In
regression problems, the error measure can be, for instance, the squared error, the abso-
lute error, or another error measure. If at the end of the dynamic selection phase only one
model is selected, the prediction of 𝑥𝑞𝑢𝑒𝑟𝑦 is the prediction of the selected model. If more
than one model is selected, the models are combined to predict the pattern 𝑥𝑞𝑢𝑒𝑟𝑦.

Dynamic Selection consists of the following steps:

1. Given a test pattern 𝑥𝑞𝑢𝑒𝑟𝑦, find the region of competence with the 𝐾 most similar
patterns from the training set 𝒯 or from the validation set 𝒱 .

2. Select a subensemble ℱ ′ from the ensemble ℱ , where ℱ ′ ⊆ ℱ , according to each
individual performance of the models in the region of competence.

3. Obtain the prediction 𝑓𝑛(𝑥𝑞𝑢𝑒𝑟𝑦) for each selected model 𝑓𝑛 ∈ ℱ ′.

4. Obtain the ensemble prediction 𝑓𝑒𝑛𝑠(𝑥𝑞𝑢𝑒𝑟𝑦). If more than one model is selected, the
ensemble prediction is the result of the combination of the models in the subensemble
ℱ ′. Combination functions are explained in Section 2.3.

The standard method for obtaining similar data and find the region of competence in
dynamic systems is the well-known 𝑘-nearest-neighbors (𝑘nn) with the Euclidean distance
(WOODS; KEGELMEYER; BOWYER, 1997). The choice of neighborhood size 𝐾 can be deci-
sive for the performance of the system. In the work of (MENDES-MOREIRA et al., 2009), the
size of the neighborhood is tested with values in the set {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30}
and the conclusion is that the best value is problem-dependent.

In (ROONEY et al., 2004) is adapted the Dynamic Classifier Selection (DCS) tech-
niques proposed by (TSYMBAL; PUURONEN, 2000; TSYMBAL; PECHENIZKIY; CUNNING-

HAM, 2006) for regression problems by defining three dynamic regressor selection algo-
rithms: Dynamic Selection (DS), Dynamic Weighting (DW), and Dynamic Weighting with
Selection (DWS). The algorithms dynamically select the most competent regressors in the
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region of competence per test pattern. Such algorithms use the performance of the re-
gressors in the region of competence as a selection criterion; it means that the regressors
with the smallest cumulative error in the neighborhood are chosen to estimate the test
pattern. In (MENDES-MOREIRA et al., 2009) is also used the error similarly to (ROONEY

et al., 2004), however, in their work, the estimated errors are weighted by the distance
between the patterns in the region of competence and the test pattern.

All of the three algorithms use the concept of region of competence. Given a test
pattern 𝑥𝑞𝑢𝑒𝑟𝑦, its region of competence is a set Ψ composed of the 𝐾 nearest neighbours of
𝑥𝑞𝑢𝑒𝑟𝑦 in the validation or training set given by {𝑡1, 𝑡2, ..., 𝑡𝐾}. These three algorithms were
described by (MENDES-MOREIRA et al., 2009; MENDES-MOREIRA et al., 2015) as follows:

• Dynamic Selection (DS) - it selects the regressor with the lowest accumulated error
in the region of competence. The errors are weighted by the distance between the
neighborhood pattern and the test pattern. Only a single regressor is selected and
no combination is required. The estimation of the test pattern is the value returned
by the selected regressor.

• Dynamic Weighting (DW) - it combines all the regressors of the ensemble using the
weighted mean. For each test pattern 𝑥𝑞𝑢𝑒𝑟𝑦, its region of competence Ψ is calculated;
Ψ is composed of 𝐾 patterns. For each pattern in Ψ, a weight is calculated using
Equation 2.1.

𝑑𝑘 =
1

𝑑𝑖𝑠𝑡𝑘∑︀𝐾
𝑗=1( 1

𝑑𝑖𝑠𝑡𝑗
)

(2.1)

where 𝑑𝑖𝑠𝑡𝑘 is a distance measure between a pattern 𝑡𝑘 ∈ Ψ and the test pattern
𝑥𝑞𝑢𝑒𝑟𝑦.

The vector {𝑑1, 𝑑2, ..., 𝑑𝑘}, 𝑘 ∈ {1, 2, ..., 𝐾}, is used to calculate the weight 𝛼𝑖 of the
regressor 𝑓𝑖 using Equation 2.2:

𝛼𝑖 =

1√︁∑︀𝐾

𝑘=1(𝑑𝑘×𝑠𝑞𝑒𝑘,𝑖)

∑︀𝑁
𝑛=1

⎛⎝ 1√︁∑︀𝐾

𝑘=1(𝑑𝑘×𝑠𝑞𝑒𝑘,𝑛)

⎞⎠ (2.2)

where 𝑁 is the ensemble size, 𝑘 represents the index of the neighbor, and 𝑠𝑞𝑒𝑘,𝑖 is
the squared error of the regressor 𝑖 calculated using the pattern 𝑡𝑘 ∈ Ψ.

This is a combination technique with the weights dynamically calculated and not
constants. Some combination tecniques will be explained in details in Section 2.3.

• Dynamic Weighting with Selection (DWS) - it combines a subset of the regressors.
The regressors with the accumulated error in the upper half of the error interval
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𝐸𝑖 > (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)/2 are discarded, where 𝐸𝑚𝑎𝑥 is the largest accumulated error
of any regressor and 𝐸𝑚𝑖𝑛 is the lowest accumulated error of any regressor. The
measure to calculate the performance of the regressors from the ensemble is the
same than the DW algorithm and the remaining regressors are combined using the
same strategy of the DW.

After selecting the most competent models, the combination is executed. In the next
section, the main works for the combination of the regressors are presented.

2.3 COMBINATION

After the selection of the models, both in static or dynamic approaches, the next step
is the combination of the models in ℱ ′ to predict the test pattern 𝑥𝑞𝑢𝑒𝑟𝑦. In regression
problems, the combination is performed using a linear function as shown in Equation 2.3.

𝑓𝑒𝑛𝑠(𝑥𝑞𝑢𝑒𝑟𝑦) =
𝑀∑︁

𝑖=1
𝛼𝑖 × 𝑓𝑖(𝑥𝑞𝑢𝑒𝑟𝑦) (2.3)

where 𝛼𝑖 is the weight of the model 𝑓𝑖 and 𝑀 is the size of ℱ ′.
The combination functions can calculate the vector of weights {𝛼1, 𝛼2, ..., 𝛼𝑀} using

two approaches: (i) constant weights; (ii) nonconstant weights (MERZ, 1998). In the first
approach, the vector of weights is constant and remain the same for all test patterns. In
the second approach, the vector of weights varies according to the test pattern 𝑥𝑞𝑢𝑒𝑟𝑦.

In (PERRONE; COOPER, 1993) is defined two ways to combine the models from an
ensemble: Basic Ensemble Method (BEM), and Generalized Ensemble Method (GEM).
In the BEM, the combination of the models is performed using the mean among the
regressors, where all the regressors have the same importance, according the Equation
(2.4).

𝑓𝐵𝐸𝑀 = 1
𝑀

𝑀∑︁
𝑖=1

𝑓𝑖(𝑥𝑞𝑢𝑒𝑟𝑦) (2.4)

In the GEM, the models are combined using the weighted mean where the weights
are inversely proportional to the errors generated in the training set or the validation set,
and the sum of the weights must be equals to 1. These weights are constants; it means
that the weights do not change during the evaluation of test patterns.

Bragging (BUHLMANN, 2012) is a method to combine statically the models generated
via Bagging using a median, instead of the mean. All the weights are equals and constant.

Breiman presents the stacked regression (BREIMAN, 1996c) method based on the
stacked generalization framework (WOLPERT, 1992; ALDAVE; DUSSAULT, 2014) that was
first presented in the context of classification. Given a training set with 𝑇 examples, the
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goal is to obtain the vector of weights 𝛼 that minimize the error in the training set, using
Equation (2.5).

𝑇∑︁
𝑗=1

⎡⎣𝑓(𝑡𝑗) −
𝑀∑︁

𝑖=1
𝛼𝑖 × 𝑓𝑖(𝑡𝑗)

⎤⎦2

(2.5)

where 𝑀 is the ensemble size, 𝛼𝑖 is the weight of the model 𝑓𝑖 and 𝑓(𝑡𝑗) is the observed
value of the training pattern 𝑡𝑗.

Dynamic Weighting (DW) (ROONEY et al., 2004; MENDES-MOREIRA et al., 2009), as
mentioned in Section 2.2.2, calculates the vector of weights dynamically according to the
test pattern 𝑥𝑞𝑢𝑒𝑟𝑦. For each model, the weight is inversely proportional to the accumulated
error in the region of competence. Thus, for each test pattern, a different vector of weights
is used.

In (CARUANA et al., 2004) is presented a forward selection approach with a static
combination of the models. In this approach, models can be selected multiple times. The
combination is a weighted mean, but the models added to the ensemble multiple times
receive more weight.

The main disadvantage of using constant weights is that equal weights for the whole
test set, can, at least theoretically, be less adequate for some test patterns. This is the
main argument for using nonconstant weights (VERIKAS et al., 1999).

2.3.1 Other combination methods

One approach that can be explored and seems to be promising is to combine different
ensemble combination methods. The method wMetaComb (ROONEY; PATTERSON, 2007)
is a technique that fuses two combination techniques: Stacking (WOLPERT, 1992) and the
DWS algorithm (ROONEY et al., 2004; MENDES-MOREIRA et al., 2009). In the wMetaComb,
the estimated value of the test pattern is the weighted mean of the predictions of two
combination techniques. The weights to combine the techniques are calculated based on
the errors during the training phase.

Another method is the cocktail ensemble for regression (YU; ZHOU; TING, 2007). This
method combines different ensemble approaches using forward selection to choose the
one that most reduces the general error during combination. The method starts with the
ensemble that produces the lowest estimated error and continues adding new ensembles,
in order to reduce the error. The same ensemble can be selected more than once. In this
method, both combination methods with constant or non-constant weights can be used
to combine the models from an ensemble.
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2.4 FINAL REMARKS

Many studies present better results with the use of ensembles rather than individual
models (GARCÍA-PEDRAJAS; HERVÁS-MARTÍNEZ; ORTIZ-BOYER, 2005; MOURA; CAVAL-

CANTI; OLIVEIRA, 2019; CAVALCANTI et al., 2016). The disadvantage of using ensembles
lies in finding out which best techniques will be used to generate, select and combine the
models. The "No Free Lunch" theorem (WOLPERT, 1996; WOLPERT; MACREADY, 1997)
stipulates that a universal algorithm does not exist. So, we can say that there is no
algorithm, into these three steps, that is better than all others to all problems.

The techniques of ensembles generation have different characteristics, each of them
has a different way to construct the models. But, according to some studies (PRAMANIK

et al., 2010; CHANDRAHASAN et al., 2011), none of them is better than the others for all
the problems. The performance of the techniques depends much more on the dataset than
any other factor.

As pointed out, dynamic selection has better results than static selection. In classifi-
cation, much work of dynamic selection was produced (CRUZ; SABOURIN; CAVALCANTI,
2016; CRUZ et al., 2015; CRUZ; SABOURIN; CAVALCANTI, 2017; OLIVEIRA; CAVALCANTI;

SABOURIN, 2017), but in regression, the work of (MENDES-MOREIRA et al., 2009) is the
main reference.

Finally, as commented previously in Section 2.3, in general, the weighted combination
of the models is better than using a simple mean.
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ABSTRACT

Dynamic regressor selection (DRS) systems work by selecting the most competent
regressors from an ensemble to estimate the target value of a given test pattern. This
competence is usually quantified using the performance of the regressors in local regions
of the feature space around the test pattern. However, choosing the best measure to
calculate the level of competence correctly is not straightforward. The literature of dy-
namic classifier selection presents a wide variety of competence measures, which cannot
be used or adapted for DRS. In this paper, we review eight measures used with regression
problems, and adapt them to test the performance of the DRS algorithms found in the
literature. Such measures are extracted from a local region of the feature space around
the test pattern, called region of competence, therefore competence measures. To better
compare the competence measures, we perform a set of comprehensive experiments on 15
regression datasets. Three DRS systems were compared against individual regressor and
static systems that use the Mean and the Median to combine the outputs of the regressors
from the ensemble. The DRS systems were assessed varying the competence measures.
Our results show that DRS systems outperform individual regressors and static systems
but the choice of the competence measure is problem-dependent.

3.1 INTRODUCTION

Model selection systems consist of two main phases (CRUZ; SABOURIN; CAVALCANTI,
2018): Generation and Selection. In the first phase, a training set is used to generate the
ensemble. The ensemble is said homogeneous when a single learning algorithm is used
to train the models. Otherwise, it is called heterogeneous. In the second phase, a model
or a subset of models are selected to evaluate the test pattern. Such a selection can be
done according to two distinct approaches: static and dynamic. In the static approach,
selection occurs using the performance of the models in the training set (ORTIZ-BOYER;

HERVáS-MARTíNEZ; GARCíA-PEDRAJAS, 2005) or using a separated validation set after
the training stage (PARTALAS et al., 2008). In the static selection, the models are used
to evaluate all test patterns. In the dynamic approach, a different model or subset of
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models from the ensemble are selected for each new test pattern. In dynamic selection
techniques, each model is an expert in a specific local region of the feature space, which
is known as region of competence. So, for each test pattern, the most competent models
are selected for the region of competence where the test pattern is located. The region
of competence contains the patterns from the training set or the validation set which are
neighbors of the test pattern, also known as the neighborhood of the test pattern. The
standard method for defining the region of competence is the k-nearest neighbors (𝑘NN)
algorithm with Euclidean distance (WOODS; KEGELMEYER; BOWYER, 1997). Dynamic
selection is a growing research area in machine learning, and recent works have shown that
dynamic selection techniques are more efficient than static selection for both classification
and regression problems (BRITTO; SABOURIN; OLIVEIRA, 2014; MENDES-MOREIRA et al.,
2012).

The central issue in dynamic selection is to define the criterion to measure the com-
petence of each model in the ensemble, i.e., the competence measure. In general, the
accuracy of the models in the region of competence is used as a criterion for determining
the competence. Some works of dynamic classifier selection (DCS) (SANTANA et al., 2006),
(SANTOS; SABOURIN; MAUPIN, 2008) use other measures, beyond accuracy, to calculate the
competence. Recent works on DCS (CRUZ et al., 2015), (CRUZ; SABOURIN; CAVALCANTI,
2016), (CRUZ; SABOURIN; CAVALCANTI, 2017) use the composition of many measures to
determine the competence of the classifiers, selecting and combining them to predict the
class of the test pattern.

Many of the measures used in DCS cannot be directly used for regression. So, dynamic
regressor selection (DRS) literature methods commonly use the error of the predictions
in the region of competence as a criterion to dynamically select the best regressors, e.g.,
Rooney et al. (ROONEY et al., 2004) and Moreira et al. (MENDES-MOREIRA et al., 2009).
Rooney et al. adapted the DCS technique proposed by Tsymbal et al. (TSYMBAL; PU-

URONEN, 2000), (TSYMBAL; PECHENIZKIY; CUNNINGHAM, 2006) for regression problems
by defining three DRS algorithms: Dynamic Selection (DS), Dynamic Weighting (DW),
and Dynamic Weighting with Selection (DWS). The algorithms dynamically select the
most competent regressors in the region of competence per test pattern. Such algorithms
use the performance of the regressors in the region of competence as a selection criterion;
it means that the regressors with the smallest cumulative error in the neighborhood are
chosen to estimate the test pattern. Moreira et al. (MENDES-MOREIRA et al., 2009) also
use the error similarly to Rooney et al., however, in their work, the estimated errors are
weighted by the distance between the patterns in the region of competence and the test
pattern.

Having in mind that literature uses the prediction error in the region of competence
as a criterion to select the best regressors, we assume that DRS algorithms can benefit
from different criteria to select the best regressors per query pattern. So, we perform an
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Figure 6 – Overview of the Dynamic Regressor Selection architecture. 𝒯 and 𝒳 are the
training and testing sets respectively. ℱ is the ensemble of regressors generated
in the Generation Phase, 𝑥𝑗 is a test pattern and 𝑓𝑒𝑛𝑠(𝑥𝑗) is the result of the
test pattern estimate.

empirical evaluation of eight measures that can employed as a criterion to measure the
competence (competence measures) of the regressors for DRS.

To the best of our knowledge, seven of these measures are adapted for the first time
to this task, and they capture different information, such as weighted error, variance, and
similarity. These eight competence measures are evaluated using 15 regression problems
from different data repositories and three literature algorithms: DS, DW, and DWS.

The contributions of this work are: i) Evaluation of eight competence measures that
are used as a criterion to select the best regressors per query pattern. Seven of these eight
measures are evaluated for the first time in this task; ii) Comparative study using three
dynamic selection algorithms (DS, DW, and DWS) and all the competence measures; iii)
Comparison between dynamic systems and individual regressor; iv) Comparison between
dynamic and static systems that use the Mean and the Median to combine the outputs
of the regressors from the ensemble.

This paper is organized as follows. Section 3.2 presents the dynamic regressors selection
algorithms. Section 3.3 describes the eight measures. The experimental results are shown
in Section 3.4 and the final remarks are presented in Section 3.5.

3.2 DRS ALGORITHMS

A general overview of the DRS architecture is depicted in Figure 6. The architecture
is divided into two phases: Generation and Dynamic. They are described in the following
subsections.
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3.2.1 Generation Phase

This phase generates an ensemble ℱ = {𝑓1, 𝑓2, ..., 𝑓𝑁} using the training set 𝒯 , where
𝑁 is the number of regressors. The ensemble can be homogeneous or heterogeneous. The
former uses different sets to train each regressor 𝑓𝑛, ∀𝑛 ∈ {1, 2, ..., 𝑁}. These different
sets are commonly generated using Bagging (BREIMAN, 1996a), Boosting (SHRESTHA;

SOLOMATINE, 2006), or Random Subspace (HO, 1998). Heterogeneous ensembles, on the
other hand, are generated using different learning algorithms for training the regressors.

3.2.2 Dynamic Phase

The Dynamic phase selects a subset of the regressors per test pattern 𝑥𝑗 ∈ 𝒳 and it
can work in three different ways: (I) select only one regressor from the ensemble ℱ ; (II)
weighted combination of all the regressors and; (III) select a subset of the regressors and
combine them. The result of this phase is the ensemble prediction 𝑓𝑒𝑛𝑠(𝑥𝑗).

Any of the three algorithms proposed in (ROONEY et al., 2004) for the Dynamic phase
can be used in the architecture depicted in Figure 6. All of them use the concept of region
of competence. Given a test pattern 𝑥𝑗, its region of competence is a set Ψ composed of
the 𝐾 nearest neighbours of 𝑥𝑗 in the validation or training set given by {𝑡1, 𝑡2, ..., 𝑡𝐾}.
These three algorithms were described by Moreira et al. (MENDES-MOREIRA et al., 2009;
MENDES-MOREIRA et al., 2015) as follows:

• Dynamic Selection (DS) - it selects the regressor with the lowest accumulated error
in the region of competence. The errors are weighted by the distance between the
neighborhood pattern and the test pattern. Only a single regressor is selected and
no combination is required. The estimation of the test pattern is the value returned
by the selected regressor.

• Dynamic Weighting (DW) - it combines all the regressors of the ensemble using the
weighted mean. For each test pattern 𝑥𝑗, its region of competence Ψ is calculated;
Ψ is composed of 𝐾 patterns. For each pattern in Ψ, a weight is calculated using
Equation 3.1:

𝑑𝑘 =
1

𝑑𝑖𝑠𝑡𝑘∑︀𝐾
𝑗=1( 1

𝑑𝑖𝑠𝑡𝑗
)

(3.1)

where 𝑑𝑖𝑠𝑡𝑘 is a distance measure between a pattern 𝑡𝑘 ∈ Ψ and the test pattern 𝑥𝑗.
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The vector {𝑑1, 𝑑2, ..., 𝑑𝑘}, 𝑘 ∈ {1, 2, ..., 𝐾}, is used to calculate the weight 𝛼𝑖 of the
regressor 𝑓𝑖 using Equation 3.2:

𝛼𝑖 =

1√︁∑︀𝐾

𝑘=1(𝑑𝑘×𝑠𝑞𝑒𝑘,𝑖)

∑︀𝑁
𝑛=1

⎛⎝ 1√︁∑︀𝐾

𝑘=1(𝑑𝑘×𝑠𝑞𝑒𝑘,𝑛)

⎞⎠ (3.2)

where 𝑁 is the ensemble size, 𝑘 represents the index of the neighbor, and 𝑠𝑞𝑒𝑘,𝑖 is
the squared error of the regressor 𝑖 calculated using the pattern 𝑡𝑘 ∈ Ψ.

• Dynamic Weighting with Selection (DWS) - it combines a subset of the regressors.
The regressors with the accumulated error in the upper half of the error interval
𝐸𝑖 > (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)/2 are discarded, where 𝐸𝑚𝑎𝑥 is the largest accumulated error
of any regressor and 𝐸𝑚𝑖𝑛 is the lowest accumulated error of any regressor. The
measure to calculate the performance of the regressors from the ensemble is the
same than the DW algorithm and the remaining regressors are combined using the
same strategy of the DW.

In (MENDES-MOREIRA et al., 2009), the authors use the Root Sum Squared Error as a
competence measure to select a regressor from the ensemble for the three aforementioned
algorithms. In Section 3.3, this competence measure is defined as 𝑚7. In spite of the
good results reported in (MENDES-MOREIRA et al., 2009), we show that other competence
measures perform better and should not be neglected. To the best of our knowledge, this
is the first work that analyzes other competence measures for DRS algorithms.

3.3 COMPETENCE MEASURES

Table 2 shows a summary of all competence measures used in this work. These mea-
sures correspond to different criteria to measure the behavior of each regressor from the
ensemble ℱ . Each measure expresses one of the following information: (i) the error cal-
culated in the region of competence; (ii) the variance of the estimated values in the
neighborhood; or (iii) the similarity between the observed and the estimated values of the
test pattern 𝑥𝑗.

Some competence measures are calculated using the distances between the test pattern
and the nearest neighbors. However, instead of using the distance, we use the inverse of
the normalized distance (𝑑𝑘) in the interval [0,1]. So, smaller the distance greater the
value of 𝑑𝑘, according to Equation 3.1.

The measures described below are extracted using the region of competence {𝑡1, 𝑡2, ..., 𝑡𝐾}
of the test pattern 𝑥𝑗. In the next equations, 𝑓(𝑡𝑘) stands for the observed value of the
neighborhood pattern and 𝑓𝑛(𝑡𝑘) is the estimated value of the pattern 𝑡𝑘 given by the
regressor 𝑓𝑛.
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Table 2 – Summary of the Competence Measures.

Measure Acronym Equation

Variance 𝑚1 𝑉 𝑎𝑟(𝑓𝑛(𝑡1), 𝑓𝑛(𝑡2), ..., 𝑓𝑛(𝑡𝐾))

Sum Absolute Error 𝑚2
∑︀𝐾

𝑘=1

⃒⃒⃒
𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘)

⃒⃒⃒
× 𝑑𝑘

Sum Squared Error 𝑚3
∑︀𝐾

𝑘=1(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘

Minimum Squared Error 𝑚4 min1≤𝑘≤𝐾{(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘}

Maximum Squared Error 𝑚5 max1≤𝑘≤𝐾{(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘}

Neighbor’s Similarity 𝑚6
∑︀𝐾

𝑘=1(𝑓(𝑡𝑘) − 𝑓𝑛(𝑥𝑗))2 × 𝑑𝑘

Root Sum Squared Error 𝑚7
∑︀𝐾

𝑘=1

√︁
(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘

Closest Squared Error 𝑚8 (𝑓(𝑡1) − 𝑓𝑛(𝑡1))2

• 𝑚1 - Variance: the variance of the neighbors estimated values. The variance is
calculated for each regressor using the estimated values of the patterns in the region
of competence, according to Equation 3.3:

𝑚1 = 𝑉 𝑎𝑟(𝑓𝑛(𝑡1), 𝑓𝑛(𝑡2), ..., 𝑓𝑛(𝑡𝐾)) (3.3)

This competence measure is inspired in the work of Tresp et al. (TRESP; TANIGUCHI,
1995), whose variance of the estimated values is used as weight in the static combi-
nation of artificial neural networks.

• 𝑚2 - Sum Absolute Error : the sum of the absolute errors is calculated in the region
of competence, weighted by 𝑑𝑘, according to Equation 3.4:

𝑚2 =
𝐾∑︁

𝑘=1

⃒⃒⃒
𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘)

⃒⃒⃒
× 𝑑𝑘 (3.4)

• 𝑚3 - Sum Squared Error : the sum of the squared errors is calculated using the
inverse of the distances 𝑑𝑘 as weights, according to Equation 3.5:

𝑚3 =
𝐾∑︁

𝑘=1
(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘 (3.5)

• 𝑚4 - Minimum Squared Error : the minimum value of squared errors is calculated
using the inverse of the distances 𝑑𝑘 as weights. The measure 𝑚4 is computed using
Equation 3.6:

𝑚4 = min
1≤𝑘≤𝐾

{(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘} (3.6)
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• 𝑚5 - Maximum Squared Error : the maximum value of squared errors is calculated
using the inverse of the distances 𝑑𝑘 as weights. The measure 𝑚5 is computed using
Equation 3.7:

𝑚5 = max
1≤𝑘≤𝐾

{(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘} (3.7)

Considering that 𝑚4 and 𝑚5 define an interval, these measures present mean and
variance, it means that, the interval contains information about implicit measures
of dispersion (error variance) and centrality (error mean) of the squared error in the
region of competence.

• 𝑚6 - Neighbor’s Similarity: the sum of the differences between the estimated values
of the test pattern from test set 𝒳 and the observed value of each neighborhood
pattern, weighted by the inverse of the distance. The measure 𝑚6 is computed using
Equation 3.8:

𝑚6 =
𝐾∑︁

𝑘=1
(𝑓(𝑡𝑘) − 𝑓𝑛(𝑥𝑗))2 × 𝑑𝑘 (3.8)

where 𝑓𝑛(𝑥𝑗) is the estimated value by the regressor 𝑓𝑛 for 𝑥𝑗.

The goal of the competence measure 𝑚6 is to find the degree of similarity between
the estimation of the pattern 𝑥𝑗 and the observed values of the nearest neighbors.
This is the only measure that uses in its calculation the estimated value for the test
pattern (𝑓𝑛(𝑥𝑗)). So far as we know, this measure is unprecedented and is defined
by the authors of this work.

• 𝑚7 - Root Sum Squared Error : the root sum squared errors in region of competence,
weighted by 𝑑𝑘. The measure 𝑚7 is computed using Equation 3.9:

𝑚7 =
𝐾∑︁

𝑘=1

√︁
(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘 (3.9)

The root squared error is more stable and less sensitivity to the difference between
the maximum and the minimum errors, while the squared error is very sensitive to
extreme error values. The measures 𝑚3 and 𝑚7 present different points of view from
the error calculated in the region of competence. These two measures produce the
same result when a single regressor is chosen to estimate a test pattern, but different
results in the combination of the regressors.

• 𝑚8 - Closest Squared Error : the error obtained by the regressor only on the nearest
neighbor. The measure 𝑚8 is computed using Equation 3.10:

𝑚8 = (𝑓(𝑡1) − 𝑓𝑛(𝑡1))2 (3.10)
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Table 3 – Datasets used in the experiments.

Dataset Instances Features Source
Airfoil Self Noise 1503 5 UCI
Bank32NH 8192 32 Delve
Bank8FM 8192 8 Delve
Breast Cancer 194 32 Torgo
CCPP 9568 4 UCI
Concrete 1030 8 UCI
Delta Ailerons 7129 6 Torgo
Delta Elevators 9517 6 Torgo
Housing 506 13 UCI
Kinematics 8192 8 Delve
Machine 209 6 Torgo
Puma32H 8192 32 Delve
Puma8NH 8192 8 Delve
Stock 950 9 Torgo
Triazines 186 60 Torgo

3.4 EXPERIMENTS

3.4.1 Datasets

To show the performance of the DRS algorithms, a total of 15 regression datasets were
used in the comparative study. The main features of each dataset are shown in Table 3.
These are public datasets, which are available in the following repositories: personal page
of Prof. Luís Torgo1, UCI machine learning repository2, and Delve repository3.

3.4.2 Experimental Protocol

For each dataset, all data attributes are normalized into the interval [0,1], and the
experiments were conducted using 30 replications. For each replication, the data is ran-
domly split into ten parts of approximately the same size. Then, a 10-fold cross-validation
is carried out using 90% of the folds as the training set (𝒯 ) and 10% as the testing set
(𝒳 ).

In the experiments, homogeneous ensembles of size 𝑁 = 100 were generated using
Bagging (BREIMAN, 1996a). Bagging generates different datasets, using sampling with
replacement. Each generated dataset has the same size of the training set. Using re-
placement, some instances will be repeated in each dataset, and on average only 63% of
instances will be unique. The learning algorithm CART (BREIMAN et al., 1984) was used
with default settings found in MATLAB without any specific adjustment.
1 http://www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html
2 http://http://archive.ics.uci.edu/ml/
3 http://www.cs.toronto.edu/∼delve/
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In (MENDES-MOREIRA et al., 2009), experiments were performed varying the size of the
region of competence 𝐾 in the set {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30}. They concluded
that the appropriate size for the neighborhood is problem-dependent, so they fixed the
size of the region of competence with 𝐾 = 10. Analyzing works of classification (CRUZ et

al., 2015; CRUZ; SABOURIN; CAVALCANTI, 2016), time-series forecasting (SERGIO; LIMA;

LUDERMIR, 2016), and regression (ROONEY et al., 2004), it can be verified that the size of
the region of competence is fixed for better validation and comparison of the results. So,
all the experiments in these sections use 𝐾 = 10 as the size of the region of competence.

For each test set, the Mean Squared Error - 𝑀𝑆𝐸 is computed. The result shows the
arithmetic mean of the 𝑀𝑆𝐸 calculated for the 10 test sets used in the cross-validation.
A single individual regressor was trained with the entire training set without the use
of Bagging. The performance of this regressor is compared with the dynamic selection
algorithm (DS), as will be presented in Section 3.4.3.

3.4.3 DS Results

This section presents the results of the experiments performed using the DS algorithm.
The experiments aim to compare the results obtained by the DS using each competence
measure described in Section 3.3. Table 4 shows the arithmetic mean of the results calcu-
lated over 30 replications for each dataset. Individual Regressor represents a single model
trained using the whole training set 𝒯 , as explained in Section 3.4.2.

According to Table 4, the DS algorithm was better in 11 out of 15 and the individual
regressor was better in only 4 out of 15 datasets. So, DRS is a good way to predict new test
patterns, instead of a single regressor. Second, measure 𝑚6 achieved the best performance.
As pointed out earlier, only this measure uses the estimated value of the test pattern in its
calculation. With the use of an ensemble with many regressors, this competence measure
is interesting when a single regressor is selected from the ensemble.

Figure 7(a) shows the difference of the errors calculated in Table 4 between measures
𝑚7 and the best measure (𝑚*) for each dataset. The difference of the errors in the datasets
Bank8FM, Concrete, Housing, and Puma32H are zero or close to zero. We conclude that
𝑚7 measure is not better in any dataset when DS algorithm is used.

3.4.4 DW and DWS Results

Tables 5 and 6 show the results to DW and DWS algorithms, respectively. Both
algorithms combine the regressors from the ensemble. DW combine all the regressors
using weighted mean and DWS selects and combine a subset of them.

Analyzing the results in Table 5, DW algorithm achieved better performance when
compared with Mean and Median. Mean reached better performance in 3 out of 15
datasets, and Median has only one tie at dataset CCPP. Among the eight competence
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Table 4 – Mean and standard deviation of the results of the 𝑀𝑆𝐸 over 30 replications
obtained for the DS algorithm and Individual Regressor. The best results are
in bold. Line “Win/Tie/Loss” shows the total of the results. Error values are
in the scale 10−4.

DS

Dataset Individual
Regressor 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8

Airfoil Self Noise 6.17(0.25) 10.47(0.36) 4.58(0.21) 4.66(0.18) 7.34(0.40) 4.70(0.22) 6.65(0.10) 4.66(0.18) 5.99(0.34)
Bank32NH 20.35(0.36) 21.16(0.37) 21.21(0.42) 21.14(0.34) 21.13(0.39) 21.14(0.38) 19.51(0.06) 21.14(0.34) 21.14(0.32)
Bank8FM 2.69(0.04) 3.05(0.06) 3.02(0.06) 3.01(0.05) 3.02(0.05) 3.01(0.05) 7.30(0.04) 3.01(0.05) 3.02(0.05)
Breast Cancer 122.17(7.29) 107.29(9.19) 128.44(9.23) 128.53(10.81) 129.84(9.34) 128.00(9.71) 68.36(1.13) 128.53(10.81) 126.62(10.12)
CCPP 3.04(0.06) 3.32(0.06) 3.30(0.06) 3.28(0.08) 3.75(0.08) 3.27(0.08) 2.30(0.01) 3.28(0.08) 3.69(0.07)
Concrete 6.26(0.27) 10.30(0.67) 6.23(0.40) 6.23(0.40) 8.60(0.58) 6.21(0.48) 9.74(0.23) 6.23(0.40) 7.65(0.47)
Delta Ailerons 2.27(0.05) 2.15(0.04) 2.53(0.05) 2.53(0.05) 2.53(0.06) 2.53(0.06) 1.57(0.01) 2.53(0.05) 2.52(0.05)
Delta Elevators 4.50(0.05) 4.25(0.05) 5.14(0.08) 5.13(0.07) 5.01(0.08) 5.10(0.07) 3.04(0.01) 5.13(0.07) 5.06(0.08)
Housing 9.73(0.95) 13.61(1.67) 9.95(1.22) 9.71(1.48) 11.10(1.34) 9.99(1.43) 10.49(0.55) 9.71(1.48) 10.84(1.36)
Kinematics 20.52(0.40) 19.94(0.37) 21.04(0.37) 21.01(0.36) 23.84(0.35) 20.96(0.36) 6.41(0.03) 21.01(0.36) 23.88(0.36)
Machine 3.65(1.05) 8.31(0.84) 4.15(1.53) 4.04(1.25) 5.11(1.89) 3.87(0.94) 4.35(0.68) 4.04(1.25) 4.23(1.40)
Puma32H 3.54(0.03) 3.91(0.05) 3.86(0.06) 3.86(0.05) 3.91(0.06) 3.87(0.05) 8.98(0.05) 3.86(0.05) 3.89(0.05)
Puma8NH 30.01(0.35) 31.13(0.46) 32.39(0.40) 32.40(0.39) 32.38(0.42) 32.36(0.52) 22.94(0.09) 32.40(0.39) 32.51(0.53)
Stock 1.48(0.14) 1.76(0.17) 1.41(0.16) 1.38(0.17) 1.89(0.21) 1.38(0.15) 0.73(0.01) 1.38(0.17) 1.76(0.18)
Triazines 32.85(3.39) 37.61(3.15) 36.94(4.84) 37.71(4.71) 39.56(4.30) 36.94(4.35) 32.92(0.95) 37.71(4.71) 38.60(5.21)
Win/Tie/Loss 4/0/11 0/0/15 1/0/14 0/1/14 0/0/14 1/0/14 8/0/7 1/0/14 0/0/15

Table 5 – Mean and standard deviation of the results of the 𝑀𝑆𝐸 over 30 replications
obtained for the DW algorithm, Mean and Median. The best results are in bold.
Line “Win/Tie/Loss” shows the total of the results. Error values are in the scale
10−4.

DW
Dataset Mean Median 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8
Airfoil Self Noise 2.84(0.06) 3.12(0.08) 3.96(0.17) 2.46(0.07) 2.31(0.08) 2.92(0.09) 2.27(0.09) 3.12(0.06) 2.50(0.07) 4.15(0.25)
Bank32NH 10.81(0.06) 11.26(0.08) 10.94(0.07) 10.87(0.06) 11.39(0.09) 11.15(0.07) 11.54(0.10) 13.34(0.05) 10.88(0.06) 15.35(0.18)
Bank8FM 1.52(0.01) 1.59(0.01) 1.52(0.01) 1.52(0.01) 1.55(0.01) 1.57(0.01) 1.56(0.01) 1.62(0.01) 1.52(0.01) 2.18(0.03)
Breast Cancer 72.58(1.82) 79.52(2.97) 71.99(1.88) 72.82(2.06) 74.26(2.59) 73.89(2.48) 74.73(2.71) 70.82(1.69) 72.84(2.01) 91.01(5.65)
CCPP 1.92(0.01) 1.85(0.01) 1.96(0.01) 1.85(0.02) 1.85(0.02) 1.98(0.02) 1.85(0.02) 1.87(0.01) 1.85(0.02) 2.62(0.04)
Concrete 3.91(0.13) 3.96(0.15) 4.19(0.13) 3.48(0.15) 3.44(0.17) 3.82(0.13) 3.44(0.17) 3.97(0.14) 3.48(0.14) 5.11(0.31)
Delta Ailerons 1.43(0.01) 1.48(0.01) 1.42(0.01) 1.45(0.01) 1.49(0.02) 1.45(0.01) 1.49(0.02) 1.43(0.01) 1.45(0.01) 1.58(0.02)
Delta Elevators 2.92(0.01) 3.02(0.01) 2.89(0.01) 2.96(0.01) 3.02(0.02) 2.93(0.01) 3.03(0.01) 2.89(0.01) 2.95(0.01) 3.18(0.02)
Housing 5.48(0.28) 5.48(0.55) 5.81(0.33) 5.21(0.31) 5.17(0.36) 5.51(0.26) 5.20(0.38) 6.01(0.30) 5.20(0.31) 6.98(0.71)
Kinematics 9.89(0.05) 9.46(0.06) 9.65(0.05) 9.42(0.05) 9.21(0.07) 10.33(0.06) 9.27(0.07) 6.79(0.02) 9.41(0.05) 15.32(0.19)
Machine 2.73(0.70) 2.86(0.98) 5.04(0.88) 2.53(0.80) 2.69(0.83) 2.88(0.64) 2.78(0.84) 3.26(0.81) 2.54(0.81) 3.42(0.98)
Puma32H 1.94(0.01) 1.98(0.01) 1.94(0.01) 1.95(0.01) 1.98(0.01) 2.04(0.01) 2.01(0.01) 2.05(0.01) 1.95(0.01) 3.04(0.04)
Puma8NH 17.96(0.06) 18.78(0.08) 17.97(0.06) 18.04(0.07) 18.36(0.10) 18.30(0.08) 18.48(0.11) 18.28(0.06) 18.05(0.07) 23.76(0.29)
Stock 0.87(0.04) 0.87(0.06) 0.95(0.08) 0.78(0.05) 0.75(0.05) 0.86(0.04) 0.74(0.05) 0.62(0.03) 0.77(0.05) 1.05(0.08)
Triazines 23.59(1.35) 25.40(2.08) 26.97(1.51) 23.91(1.53) 24.69(1.77) 24.12(1.45) 25.04(1.79) 25.97(1.26) 23.96(1.53) 29.89(3.04)
Win/Tie/Loss 3/2/10 0/1/14 1/3/11 1/2/12 1/2/12 0/0/15 1/2/12 3/1/11 0/2/13 0/0/15

Table 6 – Mean and standard deviation of the results of the 𝑀𝑆𝐸 over 30 replications
obtained for the DWS algorithm, Mean and Median. The best results are in
bold. Line “Win/Tie/Loss” shows the total of the results. Error values are in
the scale 10−4.

DWS
Dataset Mean Median 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8
Airfoil Self Noise 2.84(0.06) 3.12(0.08) 4.98(0.16) 2.25(0.08) 2.29(0.09) 2.92(0.09) 2.25(0.09) 4.01(0.08) 2.29(0.08) 4.15(0.25)
Bank32NH 10.81(0.06) 11.26(0.08) 11.06(0.08) 10.93(0.06) 11.41(0.09) 11.15(0.07) 11.55(0.10) 13.98(0.05) 10.95(0.06) 15.35(0.18)
Bank8FM 1.52(0.01) 1.59(0.01) 1.64(0.02) 1.54(0.01) 1.55(0.01) 1.57(0.01) 1.56(0.01) 3.03(0.03) 1.54(0.01) 2.18(0.03)
Breast Cancer 72.58(1.82) 79.52(2.97) 72.91(2.33) 74.37(2.67) 74.58(2.67) 73.89(2.48) 75.29(2.78) 70.26(1.51) 75.26(2.52) 91.01(5.65)
CCPP 1.92(0.01) 1.85(0.01) 2.08(0.01) 1.83(0.02) 1.84(0.02) 1.98(0.02) 1.85(0.02) 1.99(0.01) 1.83(0.02) 2.62(0.04)
Concrete 3.91(0.13) 3.96(0.15) 5.23(0.21) 3.43(0.15) 3.43(0.17) 3.82(0.13) 3.44(0.17) 5.33(0.15) 3.43(0.14) 5.11(0.31)
Delta Ailerons 1.43(0.01) 1.48(0.01) 1.43(0.01) 1.50(0.02) 1.50(0.02) 1.45(0.01) 1.50(0.02) 1.46(0.01) 1.51(0.02) 1.58(0.02)
Delta Elevators 2.92(0.01) 3.02(0.01) 2.89(0.01) 3.06(0.02) 3.04(0.02) 2.93(0.01) 3.04(0.02) 2.91(0.01) 3.09(0.02) 3.18(0.02)
Housing 5.48(0.28) 5.48(0.55) 7.42(0.43) 5.20(0.31) 5.17(0.37) 5.51(0.26) 5.20(0.38) 7.06(0.55) 5.21(0.32) 6.98(0.71)
Kinematics 9.89(0.05) 9.46(0.06) 9.75(0.06) 9.05(0.06) 9.16(0.07) 10.33(0.06) 9.23(0.07) 6.50(0.02) 9.01(0.07) 15.32(0.19)
Machine 2.73(0.70) 2.86(0.98) 6.15(0.78) 2.89(0.93) 2.69(0.85) 2.88(0.64) 2.78(0.85) 3.69(0.84) 2.97(0.96) 3.42(0.98)
Puma32H 1.94(0.01) 1.98(0.01) 2.04(0.01) 1.97(0.01) 1.99(0.01) 2.04(0.01) 2.01(0.01) 3.94(0.04) 1.98(0.01) 3.04(0.04)
Puma8NH 17.96(0.06) 18.78(0.08) 19.27(0.15) 18.37(0.09) 18.42(0.10) 18.30(0.08) 18.53(0.11) 19.70(0.07) 18.45(0.11) 23.76(0.29)
Stock 0.87(0.04) 0.87(0.06) 0.97(0.08) 0.75(0.05) 0.74(0.05) 0.86(0.04) 0.74(0.05) 0.63(0.02) 0.74(0.05) 1.05(0.08)
Triazines 23.59(1.35) 25.40(2.08) 27.50(1.58) 25.26(1.96) 24.99(1.84) 24.12(1.45) 25.30(1.83) 28.45(1.13) 25.53(1.96) 29.89(3.04)
Win/Tie/Loss 5/1/19 0/0/15 1/1/13 1/2/12 2/1/12 0/0/15 0/1/14 3/0/12 0/2/13 0/0/15
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measures tested, six of them emerge with better results in DW, that is, none of them has
superior performance for all datasets.

Figure 7(b) shows the difference of the errors calculated in Table 5 between 𝑚7 and the
best measure (𝑚*) for each dataset. Using the measures as weights for the combination of
the regressors from the ensemble, as is done in DW algorithm, we conclude that 𝑚7 is not
better in any database when used with the DW algorithm. For the datasets Bank8FM,
CCPP, and Puma32H, the difference of the errors are zero or close to zero.

In Table 6, the DWS algorithm has better performance when compared with Mean
and Median. Mean has better performance in 5 out of 15 datasets, and Median does not
perform better in any dataset. Among the eight competence measures tested, six of them
emerge with better results in DWS, that is, none of them has superior performance for
all datasets.

Figure 7(c) shows the difference of the errors calculated in Table 6 between 𝑚7 and the
best measure. (𝑚*) for each dataset. The same behavior observed with DW algorithm can
be noticed here. 𝑚7 is not better in any dataset and for the datasets Bank8FM, CCPP,
Concrete, and Puma32H, the difference of the errors are zero or close to zero.

The experimental results show that 𝑚7 proposed as competence measure in (MENDES-

MOREIRA et al., 2009) performs better in some datasets, but for others, there are compe-
tence measures that bring better overall performance for DRS systems.



45

(a) DS algorithm

(b) DW algorithm

(c) DWS algorithm

Figure 7 – Comparison between measure 𝑚7 and the best measure for each dataset. The
bars present the difference of the errors between 𝑚7 and 𝑚*, where 𝑚* is the
lowest error rate among the other measures.
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3.5 CONCLUSION

Differently from the literature on DCS, where several competence measures have been
proposed and assessed during the last decade (BRITTO; SABOURIN; OLIVEIRA, 2014; CRUZ;

SABOURIN; CAVALCANTI, 2018), the number of works dealing with DRS is quite limited.
The central issue in DRS, i.e., defining competence measures to help selecting the best
regressor or ensemble of regressors, has been neglected in most of the works. To fill this
gap, in this work we review eight competence measures, which were assessed using three
different DRS systems and 15 datasets.

As presented in Section 3.4, DRS techniques perform better when compared to a single
individual regressor or to classic statistical techniques such as Mean and Median. Another
situation is that the reduction in the variance achieved by weighted average can explain
why DW and DWS are better than DS (TSYMBAL; PECHENIZKIY; CUNNINGHAM, 2006).

It is possible to conclude that the competence measure used to select the regres-
sors is problem-dependent. As previously mentioned, the literature techniques presented
by (MENDES-MOREIRA et al., 2009), Section 3.2, use 𝑚7 to select and combine the regres-
sors, but our experiments pointed out that it does not have the best performance in all
situations.

For future works, we can test a solution to select, for each regression problem, the best
measure to be used in DRS techniques. Another solution is to combine the measures to
select the most competent regressor or to use this combination as weighting to fuse the
regressors from the ensemble.



47

4 MINE: A FRAMEWORK FOR DYNAMIC REGRESSOR SELECTION
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ABSTRACT

Dynamic Regressor Selection (DRS) techniques aim to select the most competent re-
gressors from an ensemble and combine them to estimate the target value of a given
test pattern. For each test pattern, only the most competent regressors are selected and
combined. Hence, the central issue in dynamic selection techniques is how to define the
competence of the regressors to select the most competent ones. This competence usu-
ally is defined using a single measure, such as the performance of the regressor in the
local region of the feature space around the test pattern, called the region of competence.
However, no single measure is the best for any task. In this work, we present a frame-
work for DRS, called Meta INtEgration (MINE), that aims at selecting and combining
the most competent regressors from a homogeneous ensemble during the evaluation of a
given test pattern. The proposed framework uses the combination of different measures
extracted from the region of competence, as a criterion for the selection and combination
of the regressors. Comprehensive experiments on 20 regression datasets show that MINE
improves the final estimate performance when compared to state-of-the-art techniques.

4.1 INTRODUCTION

Ensemble learning refers to techniques that generate different models, with some de-
gree of diversity, which are combined to make a prediction, either in classification or
regression problems. The advantage of ensembles concerning single models has been re-
ported in terms of increased robustness and accuracy for both classification (HO, 1998;
DOMENICONI; YAN, 2004; SINGH; SINGH, 2005), and regression problems (DRUCKER, 1997;
SHRESTHA; SOLOMATINE, 2006; ZHANG; ZHANG; WANG, 2008).

Ensemble-based systems contain three main modules (CRUZ; SABOURIN; CAVALCANTI,
2018): (1) Generation, (2) Selection, and (3) Combination. In the generation module, a
training set is used to create the ensemble. The ensemble is said homogeneous when a
single learning algorithm is used to train all the models; otherwise, it is called hetero-
geneous. In the second module, only one model or a subset of the ensemble is selected.
Finally, when a subset of the ensemble is selected, the models are combined to estimate
the target value of a given test pattern. Over the last two decades, researchers have been
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dedicating efforts to improve the quality of the ensemble (SHRESTHA; SOLOMATINE, 2006;
RODRÍGUEZ; KUNCHEVA; ALONSO, 2006), and also searching for alternatives to better se-
lect and combine the models (GIACINTO; ROLI, 1999; GIACINTO; ROLI, 2001; PERRONE;

COOPER, 1993).
Regarding the selection module, it can be either static or dynamic. In the static

approach, the selection is performed before the evaluation of the test pattern using
the information extracted from the training (ORTIZ-BOYER; HERVáS-MARTíNEZ; GARCíA-

PEDRAJAS, 2005) or validation set (PARTALAS et al., 2008). So, the selected models are
used to estimate the target value of all test patterns. In the dynamic approach, a different
subset of the ensemble is selected for each new test pattern. In dynamic selection tech-
niques, each model is expected to be an expert in a specific local region of the feature
space that is known as region of competence. So, for each test pattern, the most competent
models are selected in the region of competence where the test pattern is located. Re-
cent works have shown that dynamic selection techniques outperform static selection (KO;

SABOURIN; BRITTO, 2008; BRITTO; SABOURIN; OLIVEIRA, 2014; CRUZ; SABOURIN; CAV-

ALCANTI, 2018).
When the selected subset of the ensemble contains more than one model, they should

be combined. The combination can be performed using a simple rule such as the mean
or the weighted mean. In general, the weighted mean presents better precision than the
mean (PERRONE; COOPER, 1993), and its weight can be defined statically or dynamically.
The former uses the same weight vector for any test pattern, while in the latter, the weights
are defined according to the performance of the models in the region of the feature space
where the test pattern is located (MENDES-MOREIRA et al., 2012).

The crucial issue in dynamic selection systems is to define the criterion to measure
the competence of the models. It is expected that the better the competence of the
dynamically selected models, the higher the precision of the whole system. An usual
manner to measure the competence consists in calculating the accumulated error of a given
model in the neighborhood of the test pattern (ROONEY et al., 2004; MENDES-MOREIRA et

al., 2009). However, the literature on dynamic classifier selection (DCS) shows that using
only the accumulated error in the region of competence is not enough to correctly calculate
the competence of the classifiers (CRUZ et al., 2015; CRUZ; SABOURIN; CAVALCANTI, 2016;
CRUZ; SABOURIN; CAVALCANTI, 2017).

Besides, a preliminary study in the DRS literature compares eight measures of compe-
tence and concludes that none of them has superior performance for different tasks (MOURA;

CAVALCANTI; OLIVEIRA, 2019). In other words, selecting one different measure per task
or combining all the measures may increase in the precision of DRS systems. With that
in mind, in this work we hypothesize that the DRS can benefit from the combination of
several measures instead of relying on a single one.

To validate such a hypothesis, in this work, we introduce the Meta INtEgration
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(MINE) framework for DRS. It uses a combination of measures extracted from the region
of competence as a criterion to select and combine the regressors. Since the competence
measures used in the context of classification are not suitable for regression, we survey
different measures found in the literature of regression, time-series, and forecasting prob-
lems.

The contribution of this work is two-fold. Firstly, we proposed a DRS framework
that can operate in three different scenarios: (i) the selection of a single regressor given
a test pattern (MINE-Selection (MINE-S)); (ii) all the regressors in the ensemble are
weighted and combined (MINE-Weighting (MINE-W)); and, (iii) a subset the ensemble
is dynamically selected per test pattern (MINE-Weighting with Selection (MINE-WS)).
Secondly, we present a robust study that constructs homogeneous ensembles where the
base learning algorithm is selected per regression problem.

To evaluate the performance of the MINE framework and show the relevance of the
measures adopted with homogeneous ensembles, we carried out a set of extensive experi-
ments on 20 regression problems. We compare the MINE framework against state-of-the-
art DRS techniques, and individual regressor trained with the whole training set. Our
experimental results show that the adopted measures are useful for the DRS with ho-
mogeneous ensembles and validate our hypothesis that better results are achieved when
using multiple measures.

This paper is organized as follows: Section 4.2 presents the related works. Section
4.3 describes the proposed framework for DRS. Section 4.4 shows the methodology and
experiments used to evaluate the proposed framework. Section 4.5 presents the conclusions
about the research.

4.2 RELATED WORKS

This section reviews the literature about selection and combination of regressors. Table
7 presents the related works focusing on three aspects: i) selection strategy that indicates
whether the technique is static or dynamic; ii) ensemble type that indicates whether the
ensemble is homogeneous or heterogeneous; and iii) selection criterion that indicates what
is the measure used as the criterion to define the competence of the regressors from the
ensemble. The value “error” in the column “Selection Criterion” indicates that an error
measure is used as a criterion to select the regressors.

Table 7 – Related Works

Method Static/Dynamic Ensemble Type Selection Criterion
Perrone et al. (PERRONE; COOPER, 1993) Static homogeneous error
Partalas et al. (PARTALAS et al., 2008) Static homogeneous error
Rooney et al. (ROONEY et al., 2004) Dynamic homogeneous error
Moreira et al. (MENDES-MOREIRA et al., 2009) Dynamic heterogeneous error
Rooney et al. (ROONEY; PATTERSON, 2007) Dynamic homogeneous error
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Perrone et al. (PERRONE; COOPER, 1993) defined two ways to combine the models
from an ensemble: Basic Ensemble Method (BEM), and Generalized Ensemble Method
(GEM). In the BEM, the combination of the models is performed using the mean among
the regressors, where all the regressors have the same importance. In the GEM, the models
are combined using the weighted mean where the weights are inversely proportional to
the errors generated in the training set or the validation set. These weights are constants;
it means that the weights do not change during the evaluation of query patterns.

Partalas et al. (PARTALAS et al., 2008) presented an algorithm to select the best subset
of regressors from an ensemble. Their algorithm uses greedy search (forward selection, and
backward elimination) to select the best subset of the regressors based on the performance
in a validation set. The selection is static, and once the subset of the ensemble is defined,
it will be the same for all test patterns.

Rooney et al. (ROONEY et al., 2004) proposed three DRS algorithms that use as selec-
tion criterion the accumulated error in the region of competence. Two different learning
algorithms were used: linear regression and 5-NN (5 nearest neighbors). For each learning
algorithm, they generated homogeneous ensembles using Random Subspace (HO, 1998).
Later, Moreira et al. (MENDES-MOREIRA et al., 2009) used these three DRS algorithms
with the difference that the errors are weighted by the distance between the test pattern
and its neighbors. This work is the latest on dynamic selection and combination of regres-
sors and it uses the DRS algorithms with homogeneous ensembles. The three algorithms
are described by Moreira et al. (MENDES-MOREIRA et al., 2009; MENDES-MOREIRA et al.,
2015) as follows:

• Dynamic Selection (DS) - it selects the regressor with the lowest accumulated error
in the region of competence. The errors are weighted by the distance between the
neighborhood patterns and the test pattern. Only a single regressor is selected and
no combination is needed. The estimation of the test pattern is the value returned
by the selected regressor.

• Dynamic Weighting (DW) - it combines all the regressors of the ensemble using the
weighted mean. For each test pattern 𝑥𝑗, its region of competence Ψ is calculated;
Ψ is composed of 𝐾 patterns. For each pattern in Ψ, a weight is calculated using
Equation 4.1:

𝑑𝑘 =
1

𝑑𝑖𝑠𝑡𝑘∑︀𝐾
𝑗=1( 1

𝑑𝑖𝑠𝑡𝑗
)

(4.1)

where 𝑑𝑖𝑠𝑡𝑘 is the distance between a pattern 𝑡𝑘 ∈ Ψ and the test pattern 𝑥𝑗.
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The vector {𝑑1, 𝑑2, ..., 𝑑𝐾} is used to calculate the weight 𝛼𝑖 of the regressor 𝑓𝑖, using
Equation 4.2:

𝛼𝑖 =

1√︁∑︀𝐾

𝑘=1(𝑑𝑘×𝑠𝑞𝑒𝑘,𝑖)

∑︀𝑁
𝑛=1

⎛⎝ 1√︁∑︀𝐾

𝑘=1(𝑑𝑘×𝑠𝑞𝑒𝑘,𝑛)

⎞⎠ (4.2)

where 𝑁 is the ensemble size, 𝑘 represents the index of the neighbor, and 𝑠𝑞𝑒𝑘,𝑖 is
the squared error of the regressor 𝑖 calculated using the pattern 𝑡𝑘 ∈ Ψ.

• Dynamic Weighting with Selection (DWS) - it combines a subset of the regressors.
The regressors with the accumulated error in the upper half of the error interval
𝐸𝑖 > (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)/2 are discarded, where 𝐸𝑚𝑎𝑥 is the largest accumulated error
of any regressor and 𝐸𝑚𝑖𝑛 is the lowest accumulated error of any regressor. The
measure to calculate the performance of the regressors from the ensemble is the
same than the DW algorithm and the remaining regressors are combined using the
same strategy of the DW.

Finally, wMetaComb (ROONEY; PATTERSON, 2007) is a technique for regression prob-
lems that fuses two combination techniques: Stacking (WOLPERT, 1992) and the DWS
algorithm. In the wMetaComb, the estimated value of the test pattern is the weighted
mean of the predictions of two combination techniques. The weights to combine the tech-
niques are calculated based on the errors during the training phase.

It is important to notice that the technical literature uses only the error either as a
selection criterion or as the measure to calculate the weights for the combination of the
regressors. In the static selection, the error is calculated using the training set or the
validation set. In the dynamic selection, the error calculated in the region of competence
is used as a selection criterion. The proposed framework presents an approach that uses
not only the error but the composition of other measures as a criterion for the DRS. In
addition, the new framework is not limited to the use of a specific learning algorithm for
the generation of homogeneous ensembles, but it chooses a suitable one for each regression
problem.

4.3 MINE FRAMEWORK

The Meta INtEgration (MINE) framework architecture (Figure 8) is divided into four
phases: Learning Algorithm Selection, Generation, Optimization, and Generalization. In
the first phase, the best learning algorithm is selected for the task under analysis and a
homogeneous ensemble using this learning algorithm is generated in the second phase.
After, some competence measures are extracted and the Optimization phase calculates a
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weight for each measure; the more important the measure, the higher the weight. The last
phase selects a subset of the ensemble to predict the value of the query pattern. These
four phases are detailed in the following sections.

𝓣'

Optimization

Extraction of 
Measures

𝓥

𝓣

𝓧

Extraction of 
Measures

Homogeneous
Ensemble 
Generation

Generation Phase

Optimization Phase Generalization Phase

Dynamic Selection

Selection

Combination

Learning Algorithm 2

Learning Algorithm M

...
Training of 
Regressors

Selection the 
Base Learning 

Algorithm

Learning Algorithm 
Selection PhaseLearning Algorithm 1

𝓣 𝓥∪

𝓣'

Figure 8 – Architecture of MINE framework. 𝒯 , 𝒱 , and 𝒳 are the sets of Training, Val-
idation, and Test respectively. 𝒯 ′ is the training set used to train the ho-
mogeneous ensemble. ℱ ′ = {𝑓1, 𝑓2, ..., 𝑓𝑀} and ℱ = {𝑓1, 𝑓2, ..., 𝑓𝑁} are the
regressors generated in the Learning Algorithm Selection Phase and Genera-
tion Phase, respectively. 𝒲 = {𝑤1, 𝑤2, ..., 𝑤𝑃 } is the vector of weight resulting
from the Optimization Phase. 𝑥𝑗 is a pattern from test set 𝒳 and 𝑓𝑒𝑛𝑠(𝑥𝑗) is
the ensemble estimative for the pattern 𝑥𝑗.

4.3.1 Learning Algorithm Selection

This phase aims at selecting the learning algorithm (among 𝑀) given the training set
𝒯 , and the validation set 𝒱 . So, 𝑀 regressors ℱ ′ = {𝑓1, 𝑓2, ..., 𝑓𝑀} are trained, each one
using a distinct learning algorithm (Training of Regressors module). After, the perfor-
mance of the 𝑀 regressors is evaluated using the validation set 𝒱 , and the base learning
algorithm that minimizes the MSE on 𝒱 is selected (Selection the Base Learning Algo-
rithm module). This learning algorithm is used to generate the homogeneous ensemble
for the task under analysis in the next phase.
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4.3.2 Generation

This phase generates a homogeneous ensemble ℱ containing 𝑁 regressors. The learning
algorithm selected in previous phase is employed to train all the regressors using distinct
sets generated with the Bagging (Bootstrap AGGegatING) algorithm (BREIMAN, 1996a).

4.3.3 Optimization

Dynamic regressor selection systems use the error of the predictions in the region of
competence as a criterion to dynamically select the best regressors. Moura et al. (MOURA;

CAVALCANTI; OLIVEIRA, 2019) evaluated eight different measures and showed that none of
them is the ideal choice when used isolated and also that the best measure depends on the
task. As stated before, we advocate that the combination of different measures is a better
alternative than using only one. So, this phase aims at generating a vector of weights 𝒲 =
{𝑤1, 𝑤2, ..., 𝑤𝑃 } that gives different importance for each measure 𝑚𝑖, 𝑖 = {1, 2, . . . , 𝑃}, and
it is composed of two modules: Extraction of Measures, and Optimization. In the next
section, eight measures are defined, so, 𝑃 = 8.

4.3.3.1 Extraction of Measures

A total of eight measures {𝑚1, 𝑚2, . . . , 𝑚8} is extracted from the region of competence
and they correspond to different criteria to analyze the behavior of each regressor. Mea-
sure 𝑚1 captures the diversity among the regressors 𝑓𝑛 ∈ ℱ using the variance of their
estimations. On the other hand, 𝑚2, 𝑚3, and 𝑚7 capture different points of view of the
prediction error. The dispersion and centrality of the error in the region of competence
are calculated using 𝑚4 and 𝑚5 respectively. The similarity between the estimation of a
pattern and the observed values of its nearest neighbors is calculated using measure 𝑚6.
And finally, 𝑚8 measures the error of the nearest neighbor.

In the next equations, 𝑓(𝑡𝑘) refers to the observed value of the neighborhood pattern
𝑡𝑘, 𝑓𝑛(𝑡𝑘) is the estimated value of the pattern 𝑡𝑘 given by the regressor 𝑓𝑛, and 𝑑𝑘 is the
inverse of the normalized distance in the interval [0; 1]. So, the smaller the distance the
greater the value of 𝑑𝑘, according to

𝑑𝑘 =
1

𝑑𝑖𝑠𝑡𝑘∑︀𝐾
𝑗=1( 1

𝑑𝑖𝑠𝑡𝑗
)

(4.3)

where {𝑑𝑖𝑠𝑡1, 𝑑𝑖𝑠𝑡2, ..., 𝑑𝑖𝑠𝑡𝐾} is a vector where each element is a distance measure between
the neighbor pattern from the training set 𝒯 ′ and the training pattern 𝑡𝑖, and 𝐾 is
the neighborhood size. The measures are extracted from the region of competence Ψ =
{𝑡1, 𝑡2, ..., 𝑡𝐾} for each pattern 𝑡𝑖, where 𝑡𝑘 is a pattern from the same training set 𝒯 ′,
∀𝑘 ∈ {1, 2, ..., 𝐾}. The eight measures calculated for each regressor 𝑓𝑛 are described
below.
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• 𝑚1 - Variance: the variance of the neighbors estimated values. The variance is
calculated for each regressor using the estimated values for the patterns in the
region of competence, according to Equation 4.4:

𝑚1,𝑛 = 𝑉 𝑎𝑟(𝑓𝑛(𝑡1), 𝑓𝑛(𝑡2), ..., 𝑓𝑛(𝑡𝐾)) (4.4)

This measure is inspired in the work of Tresp et al. (TRESP; TANIGUCHI, 1995),
whose variance of the estimated values is used as weight in the static combination
of artificial neural networks.

• 𝑚2 - Sum Absolute Error : the sum of the absolute errors is calculated in the region
of competence, weighted by 𝑑𝑘, according to Equation 4.5:

𝑚2,𝑛 =
𝐾∑︁

𝑘=1

⃒⃒⃒
𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘)

⃒⃒⃒
× 𝑑𝑘 (4.5)

• 𝑚3 - Sum Squared Error : the sum of the squared errors is calculated using the
inverse of the distances 𝑑𝑘 as weights, according to Equation 4.6:

𝑚3,𝑛 =
𝐾∑︁

𝑘=1
(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘 (4.6)

• 𝑚4 - Minimum Squared Error : the minimum value of squared errors is calculated
using the inverse of the distances 𝑑𝑘 as weights. The measure 𝑚4 is computed using
Equation 4.7:

𝑚4,𝑛 = min
1≤𝑘≤𝐾

{(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘} (4.7)

• 𝑚5 - Maximum Squared Error : the maximum value of squared errors is calculated
using the inverse of the distances 𝑑𝑘 as weights. The measure 𝑚5 is computed using
Equation 4.8:

𝑚5,𝑛 = max
1≤𝑘≤𝐾

{(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘} (4.8)

Considering that 𝑚4 and 𝑚5 define an interval, these measures present mean and
variance, it means that, the interval contains information about implicit measures
of dispersion (error variance) and centrality (error mean) of the squared error in the
region of competence.

• 𝑚6 - Neighbor’s Similarity: the sum of the differences between the estimated value
of the validation pattern from validation set 𝒯 ′ and the observed values of each
neighborhood pattern, weighted by the inverse of the distance. The measure 𝑚6 is
computed using Equation 4.9:

𝑚6,𝑛 =
𝐾∑︁

𝑘=1
(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑖))2 × 𝑑𝑘 (4.9)
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where 𝑓𝑛(𝑡𝑖) is the estimated value of the regressor 𝑓𝑛 for 𝑡𝑖. 𝑡𝑖 is the pattern being
tested in the leave-one-out process.

The goal of the measure 𝑚6 is to find the degree of similarity between the estimation
of the pattern 𝑡𝑖 ∈ 𝒯 ′ and the observed values of the nearest neighbors {𝑡1, 𝑡2, ..., 𝑡𝐾}.
This is the only measure that uses the estimated value for the test pattern (𝑓𝑛(𝑡𝑖)).
So far as we know, this measure is unprecedented and is defined by the authors of
this work.

• 𝑚7 - Root Sum Squared Error : the root of sum squared errors in the region of
competence, with the errors weighted by 𝑑𝑘. The measure 𝑚7 is computed using
Equation 4.10:

𝑚7,𝑛 =

⎯⎸⎸⎷ 𝐾∑︁
𝑘=1

(𝑓(𝑡𝑘) − 𝑓𝑛(𝑡𝑘))2 × 𝑑𝑘 (4.10)

Root squared error is more stable and less sensitivity to the difference between
the maximum and the minimum errors, while squared error is very sensitive to
extreme error values. The measures 𝑚3 and 𝑚7 present different points of view from
the error calculated in the region of competence. These two measures have a high
correlation, but using them together allows a better balance in the weights of the
combination (ADHIKARI, 2015). Also, 𝑚3 and 𝑚7 produce the same result when
a single regressor is chosen to estimate a test pattern, but different results in the
combination of the regressors (MOURA; CAVALCANTI; OLIVEIRA, 2019).

• 𝑚8 - Closest Squared Error : the error obtained by the regressor only on the nearest
neighbor. The measure 𝑚8 is computed using Equation 4.11:

𝑚8,𝑛 = (𝑓(𝑡1) − 𝑓𝑛(𝑡1))2 (4.11)

For each pair (pattern 𝑡𝑖 ∈ 𝒯 ′, regressor 𝑓𝑛), the eight measures are extracted from the
region of competence of the pattern 𝑡𝑖 and produces a vector 𝑀𝑖,𝑛 = {𝑚1,𝑛, 𝑚2,𝑛, ..., 𝑚8,𝑛}
where each element is the value of one measure.

4.3.3.2 Optimization

This module uses a Genetic Algorithm (GA) (EIBEN; SMITH, 2003) to obtain one
weight per measure using the vectors 𝑀𝑖,𝑛 described in the last section. Algorithm 1
shows the pseudo-code of the optimization process whose output is the vector 𝒲 =
{𝑤1, 𝑤2, ..., 𝑤𝑃 } that minimizes the Mean Squared Error (𝑀𝑆𝐸) of the training set 𝒯 ′.
The mutation, crossover, and elitism parameters are discussed in Section 4.4.2.
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Algorithm 1 Optimization Process
Input: Ensemble ℱ ; Training set 𝒯 ′; Neighborhood size 𝐾; Population size 𝐿
Output: 𝒲𝑏𝑒𝑠𝑡: Best Individual

1: 𝑃𝑜𝑝 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐿);
2: repeat
3: 𝑀𝑆𝐸𝑃 𝑜𝑝 = ∅; {set with the MSE of all individuals}
4: for each individual {𝑤1, 𝑤2, ..., 𝑤𝑃 } in 𝑃𝑜𝑝 do
5: 𝑆𝐸 = 0
6: for each pattern 𝑡𝑖 in 𝒯 ′ do
7: 𝒯 ′ = 𝒯 ′ - 𝑡𝑖 {Leave-one-out}
8: Find the region of competence Ψ of 𝑡𝑖 using 𝒯 ′

9: for each 𝑓𝑛 in ℱ do
10: Calculate the measures {𝑚1,𝑛, 𝑚2,𝑛, ..., 𝑚𝑃,𝑛} using Ψ
11: 𝛼𝑛 = ∑︀𝑃

𝑝=1 𝑤𝑝 × 𝑚𝑝,𝑛

12: end for
13: 𝑓𝑒𝑛𝑠(𝑡𝑖) = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(ℱ , 𝒜, 𝑡𝑖)
14: 𝑆𝐸 = 𝑆𝐸 + (𝑓(𝑡𝑖) − 𝑓𝑒𝑛𝑠(𝑡𝑖))2

15: end for
16: 𝑀𝑆𝐸 = 𝑆𝐸/|𝒯 ′|
17: 𝑀𝑆𝐸𝑃 𝑜𝑝 = 𝑀𝑆𝐸𝑃 𝑜𝑝 ∪ 𝑀𝑆𝐸
18: end for
19: 𝐵𝑒𝑠𝑡𝐼𝑛𝑑𝑠 = 𝑆𝑎𝑣𝑒𝐵𝑒𝑠𝑡𝐼𝑛𝑑𝑠𝐸𝑙𝑖𝑡𝑖𝑠𝑚(𝑀𝑆𝐸𝑃 𝑜𝑝, 𝑃𝑜𝑝)
20: 𝑃𝑜𝑝 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔() ∪ 𝐵𝑒𝑠𝑡𝐼𝑛𝑑𝑠
21: until 𝑀𝑆𝐸 = 0 or reach maximum iteration
22: 𝒲𝑏𝑒𝑠𝑡 = 𝐵𝑒𝑠𝑡𝐼𝑛𝑑(𝑀𝑆𝐸𝑃 𝑜𝑝, 𝑃𝑜𝑝)
23: return 𝒲𝑏𝑒𝑠𝑡

In line 1, the initial population is generated. The population is composed of 𝐿 individ-
uals, and each is a vector of weights 𝒲 whose size is given by the number of measures. In
this way, each individual is represented by a set of 𝑃 genes and each gene is a real value
𝑤𝑝 ∈ 𝐼𝑅, ∀𝑝 ∈ {1, 2, ..., 𝑃}.

For each pattern 𝑡𝑖 ∈ 𝒯 ′, the region of competence Ψ is defined (line 8) and the
measures are extracted for each regressor 𝑓𝑛 ∈ ℱ (lines 9 and 10). Line 11 shows the
weighted combination of the measures to compute a new vector 𝒜 = {𝛼1, 𝛼2, ..., 𝛼𝑁},
where 𝑁 is the number of regressors from the ensemble.

Dynamic Selection uses the vector 𝒜 to estimate the value 𝑓𝑒𝑛𝑠(𝑡𝑖) for the pattern
𝑡𝑖 (line 13) and the squared error is computed in line 14. The estimated value 𝑓𝑒𝑛𝑠(𝑡𝑖)
can be the result of one the following DRS techniques: (i) MINE-S - dynamic selection
of a single regressor from the ensemble; (ii) MINE-W - combination of all the regressors
from the ensemble; or (iii) MINE-WS - dynamic selection and combination of a subset of
regressors from the ensemble. These DRS techniques are explained in Section 4.3.4. The
framework works for each DRS technique separately. In other words, the optimization
process is technique-dependent.

The 𝑀𝑆𝐸 is computed in line 16, and this is the fitness function (Eq. 4.12) of the
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optimization procedure.

𝑓𝑖𝑡(𝑖𝑛𝑑) = 1
|𝒯 ′|

|𝒯 ′|∑︁
𝑖=1

(𝑓(𝑡𝑖) − 𝑓𝑒𝑛𝑠(𝑡𝑖))2 (4.12)

where 𝑖𝑛𝑑 is an individual that belongs to 𝑃𝑜𝑝, 𝑡𝑖 is a pattern from the training set 𝒯 ′,
𝑓(𝑡𝑖) is the observed value of the pattern 𝑡𝑖, and |𝒯 ′| is the number of instances in the
training set 𝒯 ′.

The 𝑀𝑆𝐸 of all individuals are stored into the set 𝑀𝑆𝐸𝑃 𝑜𝑝, and after finishing all
the individuals, the best ones (lower 𝑀𝑆𝐸), are selected (line 19) to compose the new
offspring (line 20). At the end of the algorithm, the best individual (lowest 𝑀𝑆𝐸) is
selected and stored into 𝒲𝑏𝑒𝑠𝑡 (line 22).

4.3.4 Generalization

In this phase, the estimated value 𝑓𝑒𝑛𝑠(𝑥𝑗) is calculated for each test pattern 𝑥𝑗.
This phase consists of two modules: Extraction of Measures and Dynamic Selection. The
Extraction of Measures module receives as input the ensemble ℱ , the test set 𝒳 and
the training set 𝒯 ′. This module works similarly as described in Section 4.3.3.1, where
for each test pattern 𝑥𝑗 ∈ 𝒳 , the region of competence is defined using 𝒯 ′ and the
measures are extracted for each regressor 𝑓𝑛 ∈ ℱ . The Dynamic Selection module receives
as input the measures extracted in the previous module, the ensemble ℱ , the test set 𝒳 ,
and the weights 𝒲 calculated in the Optimization Phase. This module is responsible
for calculating the competence of the regressors using as criterion the combination of
the measures. After the combination of the measures, 𝑓𝑒𝑛𝑠(𝑥𝑗) is computed as the final
estimation for test pattern 𝑥𝑗.

The Dynamic Selection module contains two submodules: Selection and Combination.
The first one is responsible to select one or more regressors from the ensemble per test pat-
tern. If more than one regressor is selected, the Combination submodule is performed. The
Combination submodule can also combine all the regressors directly, without executing
the Selection submodule.

In this work, three ways of using the MINE framework are proposed: (i) MINE-S -
dynamic selection of a single regressor from the ensemble; (ii) MINE-W - combination
of all the regressors from the ensemble; and (iii) MINE-WS - dynamic selection and
combination of a subset of regressors from the ensemble.

4.3.4.1 Dynamic Selection

This module aims at selecting the best regressor(s) per test pattern 𝑥𝑗 from the ensem-
ble of regressors ℱ given the vector of weights 𝒲 calculated in the Optimization Phase. If
more than one regressor are selected, they should be combined to produce the estimated
value of the test pattern.
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The selection process is based on the competence of each regressor 𝑓𝑛 in the estimation
of the value of 𝑥𝑗. The competence of 𝑓𝑛 is calculated using 𝛼𝑛 (Eq.4.13) that multiplies
each measure 𝑚𝑝,𝑛 by its respective weight 𝑤𝑝 ∈ 𝒲 . It is important to remember that
each vector of measures 𝑀𝑗,𝑛 = {𝑚1,𝑛, 𝑚2,𝑛, ..., 𝑚𝑃,𝑛} is calculated using the regressor 𝑓𝑛

and the region of competence of the test pattern 𝑥𝑗; so, this vector is regressor-dependent.

𝛼𝑛 =
𝑃∑︁

𝑝=1
𝑤𝑝 × 𝑚𝑝,𝑛 (4.13)

where 𝑚𝑝,𝑛 is the measure 𝑝 calculated for the regressor 𝑓𝑛 in the region of competence,
𝑤𝑝 is the weight of the measure 𝑝 in the vector 𝒲 , and 𝛼𝑛 is the result of the measures
combination for each regressor 𝑓𝑛 from the ensemble ℱ .

After the evaluation of the competence of each regressor, we have a vector 𝒜, which is
used to select and combine the regressors. Depending on how the regressors are selected
using 𝒜, we propose three techniques of DRS using the MINE framework: MINE-S, MINE-
W, and MINE-WS that are described below. These variations are similar to the ones
in (MENDES-MOREIRA et al., 2009), but they use a different measure to calculate the
weights to combine the regressors.

Using the MINE framework, one of the three proposed techniques can be used during
the execution of the Optimization and Generalization phases. In addition to the proposed
techniques, MINE framework can be modified to meet another strategy not foreseen in
this work.

MINE-S

Some measures (𝑚𝑝,𝑛) capture different points of view of the error calculated in the
region of competence per regressor 𝑓𝑛. So, it is correct to say that the lower the weighted
sum of these measures given by 𝛼𝑛, the more competent is the regressor 𝑓𝑛. Thus, MINE-
Selection selects the regressor that obtains the lowest value of 𝛼𝑛 ∈ 𝒜, for each test
pattern 𝑥𝑗 ∈ 𝒳 . The regressor index is selected using Equation 4.14:

𝑖𝑛𝑑𝑒𝑥 = argmin
1≤𝑛≤𝑁

({𝛼1, 𝛼2, ..., 𝛼𝑁}) (4.14)

and the estimated value for the test pattern is calculated using Equation 4.15:

𝑓𝑒𝑛𝑠(𝑥𝑗) = 𝑓𝑖𝑛𝑑𝑒𝑥(𝑥𝑗) (4.15)

where 𝑓𝑖𝑛𝑑𝑒𝑥(𝑥𝑗) is the estimated value for the test pattern 𝑥𝑗. Algorithm 2 presents the
pseudo-code of the MINE-S.

MINE-W

MINE-Weighting combines all the regressors from the ensemble ℱ using the vector
𝒜 = {𝛼1, 𝛼2, ..., 𝛼𝑁}. For each test pattern, the estimated value is the weighted mean of
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the regressors estimates. The values 𝛼𝑛 ∈ 𝒜 are normalized using Equation 4.16:

𝛼̃𝑛 =
1

𝛼𝑛∑︀𝑁
𝑛=1

1
𝛼𝑛

. (4.16)

So, the estimated value for the test pattern 𝑥𝑗 is computed using Equation 4.17:

𝑓𝑒𝑛𝑠(𝑥𝑗) =
𝑁∑︁

𝑛=1
𝛼̃𝑛 × 𝑓𝑛(𝑥𝑗). (4.17)

Algorithm 3 presents the pseudo-code of the MINE-W.

Algorithm 2 Selecting using MINE-S
Input: Ensemble ℱ ; Training set 𝒯 ′; Test set 𝒳 ; Vector of Weights 𝒲 ; Neighborhood

size 𝐾
Output: 𝑀𝑆𝐸: Mean Squared Error

1: 𝑆𝐸 = 0
2: for each test pattern 𝑥𝑗 in 𝒳 do
3: Find the region of competence Ψ of 𝑥𝑗 using 𝒯 ′

4: for each 𝑓𝑛 in ℱ do
5: Calculate the measures {𝑚1,𝑛, 𝑚2,𝑛, ..., 𝑚𝑃,𝑛} using Ψ
6: 𝛼𝑛 = ∑︀𝑃

𝑝=1 𝑤𝑝 × 𝑚𝑝,𝑛

7: end for
8: 𝑖𝑛𝑑𝑒𝑥 = argmin

1≤𝑛≤𝑁
({𝛼1, 𝛼2, ..., 𝛼𝑁})

9: 𝑓𝑒𝑛𝑠(𝑥𝑗) = 𝑓𝑖𝑛𝑑𝑒𝑥(𝑥𝑗)
10: 𝑆𝐸 = 𝑆𝐸 + (𝑓(𝑥𝑗) − 𝑓𝑒𝑛𝑠(𝑥𝑗))2

11: end for
12: 𝑀𝑆𝐸 = 𝑆𝐸/|𝒳 |
13: return 𝑀𝑆𝐸
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Algorithm 3 Combining all the regressors using MINE-W
Input: Ensemble ℱ ; Training set 𝒯 ′; Test set 𝒳 ; Vector of Weights 𝒲 ; Neighborhood

size 𝐾
Output: 𝑀𝑆𝐸: Mean Squared Error

1: 𝑆𝐸 = 0
2: 𝒜 = ∅
3: for each test pattern 𝑥𝑗 in 𝒳 do
4: Find the region of competence Ψ of 𝑥𝑗 using 𝒯 ′

5: for each 𝑓𝑛 in ℱ do
6: Calculate the measures {𝑚1,𝑛, 𝑚2,𝑛, ..., 𝑚𝑃,𝑛} using Ψ
7: 𝛼𝑛 = ∑︀𝑃

𝑝=1 𝑤𝑝 × 𝑚𝑝,𝑛

8: 𝒜 = 𝒜 ∪ 𝛼𝑛

9: end for
10: for each 𝛼𝑛 in 𝒜 do
11: 𝛼̃𝑛 = (1/𝛼𝑛)/(∑︀𝑁

𝑛=1(1/𝛼𝑛))
12: end for
13: 𝑓𝑒𝑛𝑠(𝑥𝑗) = ∑︀𝑁

𝑛=1 𝛼̃𝑛 × 𝑓𝑛(𝑥𝑗)
14: 𝑆𝐸 = 𝑆𝐸 + (𝑓(𝑥𝑗) − 𝑓𝑒𝑛𝑠(𝑥𝑗))2

15: end for
16: 𝑀𝑆𝐸 = 𝑆𝐸/|𝒳 |
17: return 𝑀𝑆𝐸

MINE-WS

In MINE-Weighting with Selection, for each test pattern, the regressors with 𝛼𝑛 >

(𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)/2 are removed from the ensemble, i.e., the values of 𝒜 in the upper half
of the difference between the largest and lowest values are discarded. For the remaining
regressors, they are combined using Equations 4.16 and 4.17. Algorithm 4 presents the
pseudo-code of the MINE-WS.
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Algorithm 4 Selecting and Combining the regressors using MINE-WS
Input: Ensemble ℱ ; Training set 𝒯 ′; Test set 𝒳 ; Vector of Weights 𝒲 ; Neighborhood

size 𝐾
Output: 𝑀𝑆𝐸: Mean Squared Error

1: 𝑆𝐸 = 0
2: 𝒜 = ∅
3: for each test pattern 𝑥𝑗 in 𝒳 do
4: Find the region of competence Ψ of 𝑥𝑗 using 𝒯 ′

5: for each 𝑓𝑛 in ℱ do
6: Calculate the measures {𝑚1,𝑛, 𝑚2,𝑛, ..., 𝑚𝑃,𝑛} using Ψ
7: 𝛼𝑛 = ∑︀𝑃

𝑝=1 𝑤𝑝 × 𝑚𝑝,𝑛

8: 𝒜 = 𝒜 ∪ 𝛼𝑛

9: end for
10: ℱ̃ = ℱ
11: 𝒜 = 𝒜
12: for each 𝑓𝑛 in ℱ do
13: if 𝛼𝑛 > (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)/2 then {Selecting}
14: ℱ̃ = ℱ̃ − 𝑓𝑛

15: 𝒜 = 𝒜 − 𝛼𝑛

16: end if
17: end for
18: 𝑁 = 𝑠𝑖𝑧𝑒(ℱ̃)
19: for each 𝛼𝑛 in 𝒜 do {Combining}
20: 𝛼̃𝑛 = (1/𝛼𝑛)/(∑︀𝑁

𝑛=1(1/𝛼𝑛))
21: end for
22: 𝑓𝑒𝑛𝑠(𝑥𝑗) = ∑︀𝑁

𝑛=1 𝛼̃𝑛 × 𝑓𝑛(𝑥𝑗) {𝑓𝑛 ∈ ℱ̃}
23: 𝑆𝐸 = 𝑆𝐸 + (𝑓(𝑥𝑗) − 𝑓𝑒𝑛𝑠(𝑥𝑗))2

24: end for
25: 𝑀𝑆𝐸 = 𝑆𝐸/|𝒳 |
26: return 𝑀𝑆𝐸

4.4 EXPERIMENTS

The experiments were performed using a total of 20 regression datasets. Table 8 shows
the main features of the datasets including the sources that are: the personal page of Prof.
Luís Torgo1, UCI Repository2, and Delve Repository3. To facilitate the implementation
of the framework, we used datasets with only numeric (integer or real) attributes, except
for the Abalone dataset, in which the categorical attribute sex was converted to binary
using two bits.

In Section 4.4.1 the entire experimental protocol is described. Section 4.4.2 presents
the parameters of the genetic algorithm used in the optimization module (Section 4.3.3).
In Section 4.4.3, the experiments present the results of the Learning Algorithm Selection
1 http://www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html
2 http://http://archive.ics.uci.edu/ml/
3 http://www.cs.toronto.edu/∼delve/
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Table 8 – Datasets characteristics.

Dataset Instances Features Source
Abalone 4177 8 UCI
Airfoil Self Noise 1503 5 UCI
Bank32NH 8192 32 Delve
Bank8FM 8192 8 Delve
Breast Cancer 194 32 Torgo
CCPP (TüFEKCI, 2014) 9568 4 UCI
Comp Act 8192 22 Delve
Comp Act Small 8192 8 Delve
Concrete (YEH, 1998) 1030 9 UCI
Delta Ailerons 7129 6 Torgo
Delta Elevators 9517 6 Torgo
Housing 506 13 UCI
Kinematics 8192 8 Delve
Machine 209 6 Torgo
Puma32H 8192 32 Delve
Puma8NH 8192 8 Delve
Stock 950 9 Torgo
Triazines (HIRST; KING; STERNBERG, 1995),(1994) 186 60 Torgo
Wine Q. Red (CORTEZ et al., 2009) 1599 12 UCI
Wine Q. White (CORTEZ et al., 2009) 4898 12 UCI

Phase, where the regressors are tested using a validation set. In this phase, for each
dataset, the best learning algorithm is chosen. Also, the experiments present the results of
MINE-S compared against the DS algorithm (Section 4.4.4). In Section 4.4.5, the results of
MINE-W and MINE-WS are compared against DW and DWS algorithms respectively. In
Section 4.4.6, the results of MINE techniques are compared against Individual Regressor,
Mean, and Median. Section 4.4.7 analyzes the importance of each measure extracted from
the region of competence per dataset.

4.4.1 Experimental Protocol

For each dataset, all data attributes were normalized into the interval [0,1]. The exper-
iments were conducted using 20 replications, and for each replication, the configurations
used are described in the next subsections.

4.4.1.1 Ensemble Generation

In the first phase (Learning Algorithm Selection Phase), a set of regressors with size
𝑀 = 10 is generated. All the regressores are generated using the whole training set 𝒯 .
Ten learning algorithms were used in this phase: CART (BREIMAN et al., 1984), LINEAR,
feedforward neural network with one hidden layer (FANN-1) with 10 neurons, a feedfor-
ward neural network with two hidden layers (FANN-2), with 5 and 10 neurons in each of
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the layers, Support Vector Regression (SVR) with RBF kernel, SVR with Linear kernel,
SVR with polynomial order 3 kernel, RBF network with 10 neurons, 3-nearest neighbor
(3-NN) and 5-nearest neighbor (5-NN). The learning algorithms were used with default
settings found in MATLAB4 without any specific adjustment.

In the second phase (Generation Phase), homogeneous ensembles with different sizes
𝑁 = {5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100} are generated using Bagging, a sampling
with replacement, as in Bootstrap AGGregatING (BREIMAN, 1996a). Bagging generates
distinct datasets, using sampling with replacement. The outputs of the Bagging are 𝑁

training sets {𝒯 ′
1 , 𝒯 ′

2 , ..., 𝒯 ′
𝑁}, and each is used to train one regressor 𝑓𝑖 ∈ ℱ . All sets 𝒯 ′

𝑖

have the same size as the original training set 𝒯 ′.

4.4.1.2 Framework Validation

For each replication in the Learning Algorithm Selection Phase, a 10-fold cross-validation
is carried out using 70% of the folds for the training set (𝒯 ) and 20% for the validation
set (𝒱). From the Generation Phase onwards, a 10-fold cross-validation is carried out, and
each replication uses 90% of the folds for training (𝒯 ′) and 10% for testing set (𝒳 ). The
result of each replication is the arithmetic mean of the 𝑀𝑆𝐸 calculated for the 10 testing
sets used in the cross-validation.

4.4.1.3 Region of Competence

In (MENDES-MOREIRA et al., 2009), experiments were performed varying the size of the
region of competence 𝐾 in the set {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30}. They concluded
that the appropriate size for the neighborhood is problem-dependent, so they fixed the
size of the region of competence with 𝐾 = 10. Analyzing works of classification (CRUZ et

al., 2015; CRUZ; SABOURIN; CAVALCANTI, 2016), time-series forecasting (SERGIO; LIMA;

LUDERMIR, 2016), and regression (ROONEY et al., 2004), it can be verified that the size of
the region of competence is fixed for better validation and comparison of the results. The
main objective is to compare and validate state-of-the-art techniques against the proposed
techniques regardless the size of the region of competence. Thus, according to (MENDES-

MOREIRA et al., 2009), we fixed the size of the region of competence to 𝐾 = 10 for all the
experiments using DRS techniques.

4.4.1.4 State-of-the-art techniques

The algorithms DS, DW, and DWS use only one error measure as a criterion to select
the most competent regressor (MENDES-MOREIRA et al., 2009). For these techniques, we
used the same experimental protocol of the MINE framework: the same data sets, learning
4 https://www.mathworks.com/products/matlab.html
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algorithms to generate the ensemble and the size of the region of competence was fixed
to K = 10.

For each regressor used in comparison, a 10-fold cross-validation is carried out using
90% of the folds for the training set (𝒯 ′) and 10% for testing set (𝒳 ). For the state-of-
the-art techniques, the result for each replication is the arithmetic mean of the 𝑀𝑆𝐸

calculated for the 10 testing sets used in the cross-validation.

4.4.1.5 Hypothesis Tests

Non-parametric hypothesis tests were performed for pairwise comparison between the
results obtained using the proposed techniques against the results obtained using state-
of-the-art DRS techniques, and against the results obtained using classical combination
techniques. Wilcoxon signed rank tests were used to compare two paired samples from
the same population, each pair being independent, randomly selected, as suggested in
(DEMŠAR, 2006). The null hypothesis 𝐻0 indicates whether the two methods have the same
performance and the alternative hypothesis 𝐻1 verifies whether the proposed techniques
performs better (lowest error). A significance level of 5% was adopted for left-tailed. Values
marked with ∙ indicate that the null hypothesis must be rejected and there is evidence
that the alternative hypothesis is correct (𝑝𝑉 𝑎𝑙𝑢𝑒 ≤ 0.05). In other words, the proposed
technique achieves superior performance compared to the other techniques.

4.4.2 Genetic Algorithm Configurations

This section presents the parameters of the genetic algorithm used in the optimization
module and all of them were defined empirically. For all replications, the genetic algorithm
was configured as follows:

• Population Size: 80.

• Fitness Limit: 0.

• Crossover fraction: 0.8.

• Mutation Function: Gaussian with 0 mean and standard deviation 1.0.

• Maximum Generations: 100 × 8 genes = 800.

• Stall Generations Limit: 40.

• Elitism: Best 8 individuals move on to the next generation.

• Initial Population: 71 individuals randomly generated with the values of the genes
in the interval [0,1], and nine individuals initialized according to Matrix 4.18. The
first line of the matrix shows the first chromosome initialized with 1 for all genes.
The other chromosomes of the matrix have 1 in only one gene.
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𝑓𝑖𝑟𝑠𝑡𝑃𝑜𝑝 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.18)

The following sections present the results of the experiments.

4.4.3 Learning Algorithm Selection Phase results

This section presents the Learning Algorithm Selection Phase results. For each dataset,
a set of regressors was generated with the size 𝑀 = 10. The used learning algorithms are
described in the previous section. Table 9 shows the performance of the regressors in the
validation set 𝒱 . The results were calculated using 20 replications. The best results are in
bold.

Table 9 – Mean and standard deviation of the results calculated in 20 replications, ob-
tained for each regressor used to compare. For each dataset, the best result is
in bold. Error values are in the scale 10−4.

Dataset CART LINEAR FANN-1 FANN-2 SVR
(RBF)

SVR
(Linear)

SVR
(POLY 3) RBF 3-NN 5-NN

Abalone 97.8 (1.3) 62.9 (0.3) 58.5 (1.5) 57.2 (0.6) 64.3 (0.1) 64.9 (0.2) 60.0 (0.5) 62.0 (0.5) 72.6 (0.9) 66.6 (0.6)
Airfoil Self Noise 70.1 (2.5) 164.6 (0.5) 59.2 (7.6) 37.3 (5.5) 112.0 (0.9) 169.4 (0.5) 105.3 (1.4) 123.4 (3.0) 70.2 (2.8) 98.9 (2.6)
Bank32NH 202.1 (3.0) 103.9 (0.1) 100.8 (1.1) 102.0 (1.3) 135.7 (0.4) 115.3 (0.1) 272.8 (3.2) 171.0 (1.3) 233.8 (1.4) 215.6 (1.2)
Bank8FM 27.4 (0.4) 23.4 (0.0) 13.3 (0.1) 13.0 (0.1) 17.6 (0.1) 23.8 (0.0) 16.6 (0.2) 34.8 (1.3) 159.0 (1.6) 159.5 (1.2)
Breast Cancer 1202.0 (75.0) 808.2 (44.2) 1023.6 (79.8) 953.2 (76.1) 761.1 (20.0) 754.1 (33.7) 3127.3 (444.4) 751.5 (22.7) 872.6 (34.9) 765.4 (30.4)
CCPP 32.7 (0.6) 36.5 (0.0) 29.5 (0.2) 29.3 (0.3) 30.6 (0.0) 36.7 (0.0) 30.8 (0.0) 31.6 (0.1) 26.6 (0.3) 25.8 (0.2)
Comp Act 12.3 (0.1) 95.9 (1.0) 6.4 (0.4) 6.5 (0.4) 11.0 (0.1) 156.4 (3.3) 7.2 (0.4) 42.6 (2.8) 9.0 (0.5) 9.4 (0.5)
Comp Act Small 16.2 (0.3) 99.9 (0.7) 9.6 (0.2) 10.0 (0.4) 12.7 (0.1) 153.3 (3.5) 10.1 (0.5) 25.7 (1.0) 11.1 (0.2) 10.5 (0.2)
Concrete 77.5 (4.5) 17.08 (0.12) 5.91 (0.29) 6.43 (0.29) 9.62 (0.10) 18.23 (0.26) 7.27 (0.20) 10.05 (0.37) 13.68 (0.38) 13.81 (0.32)
Delta Ailerons 22.8 (0.4) 16.0 (0.0) 15.3 (1.0) 15.3 (0.2) 15.8 (0.0) 16.4 (0.0) 15.1 (0.0) 16.2 (0.1) 18.4 (0.2) 16.8 (0.1)
Delta Elevators 45.6 (0.5) 28.8 (0.0) 28.0 (0.1) 28.0 (0.2) 28.2 (0.2) 28.9 (0.0) 28.3 (0.0) 29.3 (0.2) 36.4 (0.2) 32.9 (0.2)
Housing 106.8 (11.0) 119.0 (3.2) 87.7 (10.4) 92.8 (12.7) 95.1 (2.3) 127.8 (2.0) 65.1 (8.4) 104.6 (6.1) 114.4 (9.3) 129.2 (7.1)
Kinematics 216.1 (3.2) 203.0 (0.1) 44.9 (1.0) 40.4 (1.2) 48.9 (0.2) 207.8 (0.2) 103.4 (0.6) 161.2 (2.2) 83.9 (0.8) 74.0 (0.6)
Machine 49.3 (16.0) 40.7 (6.6) 73.8 (30.0) 75.9 (34.3) 76.8 (3.6) 47.1 (2.1) 54.3 (19.0) 30.8 (10.1) 53.0 (9.1) 61.5 (6.5)
Puma32H 36.1 (0.4) 230.9 (0.3) 13.2 (0.7) 14.8 (4.2) 212.2 (0.6) 235.3 (0.3) 190.4 (2.7) 275.8 (0.7) 285.3 (2.0) 257.6 (1.5)
Puma8NH 302.1 (3.2) 337.8 (0.2) 170.7 (0.6) 171.3 (0.6) 181.7 (0.6) 351.2 (0.5) 181.0 (0.5) 318.4 (1.5) 283.3 (2.5) 255.2 (2.2)
Stock 17.3 (1.3) 70.4 (0.4) 11.5 (0.8) 12.4 (0.9) 13.5 (0.2) 73.2 (0.9) 12.4 (0.2) 35.6 (3.0) 6.6 (0.3) 7.8 (0.3)
Triazines 219.1 (20.4) 298.2 (29.8) 346.8 (44.9) 316.4 (34.1) 215.8 (7.5) 243.7 (14.7) 440.3 (56.8) 250.4 (6.3) 225.2 (12.7) 228.1 (12.4)
Wine Q. Red 240.0 (8.6) 170.4 (0.7) 174.9 (3.0) 175.6 (5.0) 166.1 (1.0) 173.0 (0.8) 173.0 (3.0) 168.3 (1.2) 197.5 (3.9) 189.1 (2.5)
Wine Q. White 190.3 (3.4) 158.2 (0.4) 144.6 (2.1) 146.5 (2.4) 146.8 (0.3) 159.1 (0.2) 147.3 (2.6) 155.8 (00.7) 148.3 (2.1) 144.7 (1.4)

According to the literature, we observe in Table 9 that no learning algorithm is better
than the others for all situations. The best learning algorithm is problem dependent. For
each dataset in the next experiments, the best-performing learning algorithm is used to
generate the homogeneous regressor ensemble.
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The worst-performing regressors were those trained with the following learning algo-
rithms: CART, LINEAR, and SVR with Linear kernel. These regressors did not perform
as the best one in any dataset, so these algorithms are not selected for any dataset in the
next phases.

4.4.4 MINE-S results

This section presents the results of the experiments performed using the MINE-S tech-
nique that selects the most suitable regressor per test pattern. Table 10 compares MINE-S
with DS for different ensemble sizes 𝑁 = {5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The
results are the 𝑀𝑆𝐸 arithmetic mean and the standard deviation of the 20 replications
for each dataset.

According to Table 10, MINE-S has better results for any ensemble size when com-
pared to the DS technique. For MINE-S and DS, increasing the size of the ensemble does
not guarantee better results. In some datasets, the error increases when the size of the
ensemble increases. A possible explanation to this fact is that selecting a suitable regressor
among too many is a difficult task.

4.4.5 MINE-W and MINE-WS results

This section presents the results of the experiments performed using MINE-W and
MINE-WS techniques, Tables 11 and 12, respectively. The results show the arithmetic
mean and the standard deviation of the 𝑀𝑆𝐸 computed for the 20 replications using
different sizes of the ensemble 𝑁 = {5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

According to Table 11, MINE-W performs better than DW for any ensemble size, and
an increase in the ensemble size leaded to a decrease in the error rates MINE-W obtained
superior performance on average in 13 out of 20 datasets, and reached smaller error rates
when compared with MINE-S.

According to Table 12, MINE-WS performs better than DWS for any ensemble size.
Similarly to MINE-W, in MINE-WS, increasing the ensemble size leaded to a decrease
of the error rates. MINE-WS obtained superior performance on average in 11 out of 20
datasets. Also, MINE-WS reached smaller error rates when compared with MINE-S, but
worse results when compared to MINE-W. The reduction in the variance achieved by
weighted average of all regressors can explain why using all of them is better than the
selection of a subset of the regressors or just one of them.
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4.4.6 Comparing MINE with static techniques

This section compares the three MINE techniques against Individual Regressor, and
the combination of the regressors using Mean and Median as the combination rule (Ta-
ble 13). The “Individual Regressor” column shows the results per dataset when only one
regressor is applied. Each dataset is trained using the best performing regressor as listed
in Table 9. For the sake of simplicity, the size of the ensemble was defined as 90 given
that this value reached competitive precision as reported in Tables 11 and 12.

Table 13 – Mean and standard deviation of the results calculated in 20 replications. For
each dataset, the best result is in bold. The values are in the scale 10−4.
Ensemble Size = 90.

Dataset Individual
Regressor Mean Median MINE-S MINE-W MINE-WS

Abalone 56.58(0.68) 54.51(0.19) 54.46(0.17) 59.53(1.04) 54.50(0.18) 55.13(0.61)
Airfoil Self Noise 32.00(4.54) 21.48(0.43) 20.89(0.42) 10.75(0.66) 11.69(0.31) 11.92(0.48)
Bank32NH 98.04(0.96) 88.79(0.29) 89.15(0.25) 110.80(3.31) 88.78(0.33) 89.94(0.57)
Bank8FM 12.79(0.08) 12.27(0.02) 12.32(0.02) 13.45(0.25) 12.23(0.03) 12.36(0.16)
Breast Cancer 730.74(9.40) 715.72(6.52) 716.95(7.10) 711.42(17.19) 718.09(8.42) 718.71(10.24)
CCPP 24.46(0.15) 23.37(0.12) 23.42(0.12) 26.35(0.99) 22.95(0.12) 23.02(0.18)
Comp Act 6.03(0.16) 5.37(0.02) 5.38(0.02) 5.80(0.30) 5.26(0.02) 5.20(0.03)
Comp Act Small 9.28(0.20) 8.42(0.02) 8.45(0.02) 7.89(0.11) 8.08(0.03) 7.87(0.09)
Concrete 52.83(2.70) 39.36(0.89) 38.08(0.76) 34.89(3.71) 30.69(1.21) 30.88(1.13)
Delta Ailerons 15.05(0.02) 15.03(0.02) 15.03(0.02) 14.62(0.06) 15.00(0.02) 15.02(0.03)
Delta Elevators 27.76(0.10) 27.32(0.03) 27.35(0.03) 28.27(0.17) 27.32(0.03) 27.41(0.17)
Housing 55.79(4.32) 51.75(2.62) 51.01(2.25) 51.86(8.07) 47.08(2.80) 45.28(3.46)
Kinematics 39.61(1.03) 33.01(0.10) 33.04(0.12) 28.35(0.25) 29.86(0.10) 27.68(0.15)
Machine 82.03(5.37) 78.79(6.21) 81.56(5.44) 48.81(10.34) 70.13(6.39) 56.24(10.73)
Puma32H 12.29(0.43) 10.71(0.03) 10.64(0.02) 12.89(0.23) 10.65(0.03) 10.69(0.03)
Puma8NH 169.48(0.64) 166.93(0.16) 166.95(0.17) 173.22(0.85) 167.00(0.16) 167.02(0.15)
Stock 5.52(0.22) 5.26(0.14) 5.23(0.16) 5.88(0.24) 4.85(0.16) 4.74(0.17)
Triazines 211.96(4.99) 206.27(4.89) 209.16(5.19) 210.19(12.61) 206.04(5.00) 210.11(7.24)
Wine Q. Red 164.81(0.55) 164.30(0.59) 164.67(0.62) 164.70(1.39) 163.91(0.65) 163.73(0.69)
Wine Q. White 143.12(3.19) 133.35(0.39) 133.56(0.34) 138.09(2.41) 130.68(0.42) 130.11(0.76)

The “Individual Regressor” did not obtain the best performance in any of the used
datasets. In contrast, the MINE techniques achieved the best results in 17 out of 20
datasets; a special highlight to MINE-WS that obtained similar performance when com-
pared with MINE-W, however, it uses only a subset of the ensemble while MINE-W uses
the whole ensemble.

In Appendix 6 the MINE techniques are compared among them. Also, the MINE-S is
individually compared to the Individual Regressor and the MINE-W is compared to the
Mean and Median. The same hypothesis tests configurations presented in Section 4.4.1
were performed in the comparisons and added into the tables of Appendix 6.

4.4.7 Evaluating the Measures

As explained in the previous sections, all the eight measures presented in Section 4.3.3.1
were combined using a vector of weights 𝒲 calculated in the Optimization Phase of the
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MINE framework. For each test pattern, the combination of the measures generates a
new vector of weights 𝒜 that was used to select the most competent regressor in MINE-S,
to select and combine the regressors in MINE-WS, and to combine all the regressors in
MINE-W.

Figures 9, 10, and 11 show the arithmetic mean of the weights over 20 replications per
datasets for the MINE-S, MINE-W, and MINE-WS, respectively. These tables also show
the mean of the weights per measure (these values are at the bottom of each figure).

Figure 9 – Mean of the weights of the measures calculated for MINE-S.

Figure 10 – Mean of the weights of the measures calculated for MINE-W.
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Figure 11 – Mean of the weights of the measures calculated for MINE-WS.

We can observe that the weights of the measures vary depending on the technique
under analysis. In MINE-S, the range of the weights is wider than in MINE-W and MINE-
WS. For instance, in MINE-W, some weights are zero or close to it. This means that this
measure has little or no influence in the decision process, observe 𝑚6, for instance. MINE-
WS uses more measures, on average, when compared with MINE-W, but the values of
the weights are not as high as in MINE-S.

This analysis shows that the importance of the measures varies from dataset to dataset
and also from technique to technique indicating that their combination is more advanta-
geous than using only one.

Table 14 – Mean and standard deviation of the results calculated in 20 replications for
the individual measures applied to DS compared against MINE-S. For each
dataset, the best result is in bold. Line “Win/Tie/Loss” shows the total of the
results. The values are in the scale 10−4.

Ensemble Size = 90

Dataset DS
(𝑚1)

DS
(𝑚2)

DS
(𝑚3)

DS
(𝑚4)

DS
(𝑚5)

DS
(𝑚6)

DS
(𝑚7)

DS
(𝑚8)

MINE-S

Abalone 61.09(2.18) 65.12(2.51) 65.49(3.46) 58.76(1.13) 67.43(7.83) 59.40(0.31) 65.49(3.46) 68.24(5.20) 59.53(1.04)
Airfoil Self Noise 99.75(3.94) 10.93(0.89) 11.55(1.66) 34.17(2.19) 11.68(1.73) 58.43(1.16) 11.55(1.66) 17.36(1.11) 10.75(0.66)
Bank32NH 115.17(2.90) 119.37(5.11) 120.10(5.14) 110.32(2.93) 118.93(3.50) 161.83(1.16) 120.10(5.14) 115.47(2.08) 110.80(3.31)
Bank8FM 15.08(0.45) 13.91(0.34) 13.81(0.34) 13.31(0.16) 13.64(0.22) 20.08(0.40) 13.81(0.34) 14.41(0.33) 13.45(0.25)
Breast Cancer 765.38(12.95) 728.61(12.79) 713.54(12.46) 741.22(16.63) 748.31(12.13) 684.88(9.57) 713.54(12.46) 774.26(23.38) 711.42(17.19)
CCPP 28.20(0.27) 27.59(0.33) 28.01(0.50) 30.60(0.52) 28.52(0.47) 22.99(0.11) 28.01(0.50) 30.21(0.42) 26.35(0.99)
Comp Act 7.04(0.43) 5.86(0.32) 5.91(0.40) 6.69(0.58) 6.01(0.32) 6.95(0.28) 5.91(0.40) 6.29(0.25) 5.80(0.30)
Comp Act Small 10.40(1.41) 8.95(1.36) 8.74(1.26) 9.92(0.85) 8.80(0.94) 9.05(0.13) 8.74(1.26) 9.64(1.64) 7.89(0.11)
Concrete 78.17(3.74) 35.60(3.48) 36.01(4.85) 60.77(7.63) 38.48(13.35) 83.61(1.74) 36.01(4.85) 46.49(12.05) 34.89(3.71)
Delta Ailerons 15.48(0.07) 14.76(0.06) 14.59(0.04) 15.20(0.07) 14.69(0.07) 14.94(0.03) 14.59(0.04) 15.10(0.07) 14.62(0.06)
Delta Elevators 28.78(2.13) 31.60(5.30) 30.61(2.43) 28.53(0.55) 30.44(1.84) 28.71(0.07) 30.61(2.43) 31.30(2.22) 28.27(0.17)
Housing 118.23(8.19) 55.58(4.98) 55.15(6.52) 76.81(9.12) 55.48(4.88) 87.51(3.34) 55.15(6.52) 53.76(6.07) 51.86(8.07)
Kinematics 47.29(0.64) 28.92(0.22) 28.45(0.22) 38.66(0.39) 29.44(0.37) 49.32(0.35) 28.45(0.22) 35.96(0.39) 28.35(0.25)
Machine 139.30(6.66) 46.94(10.58) 46.85(10.82) 87.37(12.22) 48.43(10.37) 53.03(9.34) 46.85(10.82) 54.60(10.11) 48.81(10.34)
Puma32H 15.26(0.18) 13.24(0.17) 13.22(0.17) 13.51(0.13) 13.23(0.14) 27.24(0.23) 13.22(0.17) 13.86(0.16) 12.89(0.23)
Puma8NH 177.19(1.04) 179.43(1.06) 179.45(1.22) 173.67(0.80) 182.07(1.06) 191.49(0.81) 179.45(1.22) 184.57(1.24) 173.22(0.85)
Stock 12.13(0.67) 5.85(0.29) 5.85(0.34) 7.93(0.60) 5.78(0.28) 7.22(0.12) 5.85(0.34) 6.18(0.29) 5.88(0.24)
Triazines 224.83(7.45) 210.51(8.11) 201.72(7.83) 216.85(8.56) 210.57(10.13) 210.25(5.23) 201.72(7.83) 208.02(9.27) 210.19(12.61)
Wine Q. Red 170.56(1.52) 165.72(1.03) 164.14(1.07) 171.32(1.86) 168.27(1.54) 170.22(0.82) 164.14(1.07) 170.03(1.23) 164.70(1.39)
Wine Q. White 150.38(1.96) 148.97(8.65) 149.48(8.00) 148.13(3.08) 147.72(5.95) 141.29(0.60) 149.48(8.00) 151.43(5.73) 138.09(2.41)
Win/Tie/Loss 0/0/20 0/0/20 0/4/16 3/0/17 1/0/19 2/0/18 0/4/16 0/0/20 10/0/10
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Table 15 – Mean and standard deviation of the results calculated in 20 replications for
the individual measures applied to DW compared against MINE-W. For each
dataset, the best result is in bold. Line “Win/Tie/Loss” shows the total of the
results. The values are in the scale 10−4.

Ensemble Size = 90

Dataset DW
(𝑚1)

DW
(𝑚2)

DW
(𝑚3)

DW
(𝑚4)

DW
(𝑚5)

DW
(𝑚6)

DW
(𝑚7)

DW
(𝑚8)

MINE-W

Abalone 54.68(0.24) 54.50(0.19) 54.54(0.19) 56.79(0.94) 54.62(0.17) 54.31(0.14) 54.50(0.18) 58.71(2.31) 54.50(0.18)
Airfoil Self Noise 42.71(3.10) 17.05(0.37) 14.54(0.35) 26.97(1.16) 13.52(0.34) 22.17(0.42) 17.34(0.36) 15.00(0.64) 11.69(0.31)
Bank32NH 89.18(0.27) 88.70(0.29) 88.66(0.28) 99.37(1.71) 88.74(0.29) 92.12(0.31) 88.69(0.29) 98.88(1.26) 88.78(0.33)
Bank8FM 12.27(0.02) 12.24(0.02) 12.22(0.02) 12.79(0.09) 12.21(0.03) 12.32(0.03) 12.24(0.02) 12.80(0.09) 12.23(0.03)
Breast Cancer 728.31(9.38) 714.75(6.50) 714.05(6.59) 730.41(10.28) 716.52(6.58) 713.02(6.43) 714.82(6.55) 720.89(10.33) 718.09(8.42)
CCPP 23.41(0.10) 22.95(0.12) 22.98(0.15) 26.46(0.35) 23.14(0.19) 23.04(0.11) 23.09(0.13) 27.18(0.43) 22.95(0.12)
Comp Act 5.37(0.02) 5.31(0.02) 5.28(0.02) 6.09(0.49) 5.30(0.02) 5.33(0.02) 5.31(0.02) 5.79(0.13) 5.26(0.02)
Comp Act Small 8.49(0.02) 8.27(0.03) 8.17(0.04) 9.01(0.37) 8.18(0.04) 8.29(0.02) 8.28(0.03) 9.07(1.42) 8.08(0.03)
Concrete 40.70(0.81) 33.55(0.94) 31.50(0.95) 52.01(10.76) 30.84(1.07) 37.33(0.71) 34.13(0.91) 38.00(3.28) 30.69(1.21)
Delta Ailerons 15.04(0.02) 15.02(0.02) 15.00(0.02) 15.10(0.06) 15.00(0.02) 15.01(0.02) 15.02(0.02) 15.09(0.03) 15.00(0.02)
Delta Elevators 27.35(0.02) 27.31(0.03) 27.31(0.03) 27.93(0.33) 27.33(0.03) 27.30(0.03) 27.31(0.03) 28.34(0.72) 27.32(0.03)
Housing 57.71(2.91) 49.83(2.74) 49.38(3.19) 63.64(5.13) 49.17(3.42) 49.81(2.22) 49.79(2.85) 50.53(3.57) 47.08(2.80)
Kinematics 33.30(0.11) 31.59(0.09) 30.50(0.09) 35.13(0.33) 30.54(0.09) 32.56(0.10) 31.64(0.09) 32.84(0.24) 29.86(0.10)
Machine 93.93(6.24) 68.09(7.37) 58.23(9.04) 85.20(8.43) 55.41(10.02) 72.22(6.36) 66.70(7.63) 56.76(9.95) 70.13(6.39)
Puma32H 10.72(0.03) 10.67(0.02) 10.65(0.02) 12.13(0.08) 10.66(0.03) 10.80(0.03) 10.67(0.03) 12.02(0.11) 10.65(0.03)
Puma8NH 166.99(0.16) 166.95(0.17) 166.98(0.17) 170.58(0.63) 167.08(0.17) 167.01(0.16) 166.94(0.16) 170.63(0.70) 167.00(0.16)
Stock 6.10(0.19) 4.95(0.15) 4.80(0.16) 5.17(0.16) 4.76(0.15) 5.43(0.13) 4.97(0.15) 5.95(0.28) 4.85(0.16)
Triazines 210.81(3.95) 205.93(5.09) 204.50(5.24) 210.12(6.41) 203.45(5.28) 206.36(4.85) 205.23(5.05) 206.82(6.92) 206.04(5.00)
Wine Q. Red 164.79(0.61) 163.96(0.62) 163.67(0.65) 167.97(1.24) 163.48(0.65) 164.07(0.64) 163.97(0.61) 166.12(0.64) 163.91(0.65)
Wine Q. White 135.57(0.45) 132.19(0.47) 131.39(0.53) 140.40(1.51) 131.23(0.55) 131.19(0.28) 132.27(0.46) 140.03(4.23) 130.68(0.42)
Win/Tie/Loss 0/0/20 0/1/19 1/2/17 0/0/20 5/1/14 3/0/17 1/0/19 0/0/20 7/3/10

Tables 14, 15, and 16 present the results of the DS, DW, and DWS techniques when
performed varying each of the measures of competence studied in this work. The tables
compare the results with the MINE-S, MINE-W and MINE-WS, respectively. In the tables
is possible to notice that the techniques MINE-S, MINE-W and MINE-WS have better
performance when compared to the techniques of the literature.

In addition, we can observe that MINE techniques present better results for most
datasets when compared individually with each of the measures of competence.

Table 16 – Mean and standard deviation of the results calculated in 20 replications for
the individual measures applied to DWS compared against MINE-WS. For
each dataset, the best result is in bold. Line “Win/Tie/Loss” shows the total
of the results. The values are in the scale 10−4.

Ensemble Size = 90

Dataset DWS
(𝑚1)

DWS
(𝑚2)

DWS
(𝑚3)

DWS
(𝑚4)

DWS
(𝑚5)

DWS
(𝑚6)

DWS
(𝑚7)

DWS
(𝑚8)

MINE-WS

Abalone 54.92(0.27) 54.87(0.30) 56.33(0.98) 56.80(0.94) 56.28(0.46) 54.80(0.17) 54.78(0.47) 59.81(2.28) 55.13(0.61)
Airfoil Self Noise 55.05(3.30) 13.13(0.47) 13.97(0.34) 26.97(1.16) 13.04(0.34) 27.55(0.77) 13.17(0.45) 14.90(0.64) 11.92(0.48)
Bank32NH 91.18(0.35) 92.30(1.32) 91.22(0.74) 99.37(1.71) 89.78(0.63) 96.61(0.44) 93.06(1.73) 99.33(1.28) 89.94(0.57)
Bank8FM 12.35(0.07) 12.25(0.03) 12.43(0.16) 12.79(0.09) 12.37(0.05) 13.11(0.14) 12.27(0.07) 12.96(0.10) 12.36(0.16)
Breast Cancer 730.65(8.95) 714.75(6.50) 714.84(8.21) 731.28(10.38) 720.38(9.91) 714.94(7.95) 714.82(6.55) 741.95(16.70) 718.71(10.24)
CCPP 23.83(0.10) 23.67(0.24) 23.82(0.23) 26.46(0.35) 24.06(0.22) 22.92(0.10) 23.84(0.29) 27.53(0.41) 23.02(0.18)
Comp Act 5.57(0.08) 5.37(0.07) 5.24(0.06) 6.10(0.49) 5.25(0.03) 5.60(0.16) 5.35(0.04) 5.75(0.13) 5.20(0.03)
Comp Act Small 8.71(0.04) 8.21(0.11) 7.89(0.05) 9.01(0.37) 7.92(0.06) 8.28(0.06) 8.23(0.05) 8.93(1.42) 7.87(0.09)
Concrete 47.90(1.43) 31.17(1.26) 30.45(1.02) 52.01(10.76) 30.58(1.09) 44.69(1.04) 31.11(1.38) 37.89(3.28) 30.88(1.13)
Delta Ailerons 15.05(0.04) 15.02(0.02) 14.99(0.02) 15.10(0.05) 15.00(0.03) 15.04(0.04) 15.02(0.02) 15.12(0.04) 15.02(0.03)
Delta Elevators 27.41(0.04) 27.37(0.05) 27.72(0.50) 27.95(0.32) 27.72(0.11) 27.36(0.04) 27.51(0.53) 28.76(0.73) 27.41(0.17)
Housing 68.25(4.29) 50.60(3.50) 46.36(3.56) 63.67(5.15) 46.50(3.69) 56.61(3.06) 49.98(3.21) 48.06(3.92) 45.28(3.46)
Kinematics 36.48(0.30) 30.36(0.14) 27.63(0.14) 35.13(0.33) 28.44(0.13) 34.47(0.21) 30.67(0.12) 32.47(0.24) 27.68(0.15)
Machine 123.87(6.46) 52.10(10.17) 54.95(9.36) 85.13(8.43) 53.18(9.87) 62.17(9.12) 52.34(9.91) 56.09(10.16) 56.24(10.73)
Puma32H 10.73(0.03) 10.83(0.05) 11.01(0.04) 12.13(0.08) 10.73(0.03) 11.09(0.10) 10.78(0.04) 12.04(0.11) 10.69(0.03)
Puma8NH 168.84(0.42) 166.96(0.17) 167.99(0.36) 170.59(0.63) 169.68(0.74) 168.29(0.31) 166.95(0.17) 173.02(0.91) 167.02(0.15)
Stock 7.62(0.28) 4.82(0.18) 4.75(0.16) 5.17(0.16) 4.72(0.16) 5.76(0.13) 4.84(0.16) 5.95(0.28) 4.74(0.17)
Triazines 212.01(3.86) 207.88(5.72) 203.60(7.52) 210.13(6.43) 205.04(7.53) 206.76(5.05) 206.68(5.82) 205.79(7.27) 210.11(7.24)
Wine Q. Red 166.45(0.73) 163.62(0.71) 164.22(0.82) 168.27(1.20) 164.73(0.96) 164.77(0.82) 163.58(0.74) 166.93(1.13) 163.73(0.69)
Wine Q. White 136.16(0.47) 132.76(0.88) 131.02(0.76) 140.45(1.51) 130.88(0.83) 130.82(0.45) 133.19(1.13) 139.66(4.17) 130.11(0.76)
Win/Tie/Loss 0/0/20 3/0/17 4/0/16 0/0/20 2/0/18 2/0/18 3/0/17 0/0/20 6/0/14



74

4.5 CONCLUSION

This paper proposed the MINE framework for dynamic regressor selection that aims to
select and combine the best regressors per query pattern from a homogeneous ensemble.
MINE uses information extracted from the region of competence as a criterion to select the
competent regressors. Instead of using only one measure from the region of competence,
knowing that no single measure is the best for any task, the proposal combines a set of
measures to better select the competent regressors.

Three algorithms were presented, and their difference resides in how many regres-
sors are selected from the ensemble. MINE-S selects only the most competent regressor
while MINE-W combines all the regressors. MINE-WS, in turn, selects a subset of the
regressors. Experiments showed that the MINE techniques presented in this work perform
better compared to state-of-the-art DRS techniques, and classical combination techniques,
such as Mean and Median. Among the MINE family, a highlight to MINE-W because it
performed similarly to MINE-WS but required fewer regressors in the combination phase.

The results showed that the combination of multiple measures extracted from the
region of competence generates more accurate results than using only a single measure.
We also observed that some measures received zero-weight for some datasets. In other
words, the set of measures is problem-dependent and can be selected instead of using all
of them. The proposed framework is modular and can be evaluated using more significant
set measures. Also, as presented in (MENDES-MOREIRA et al., 2009; MENDES-MOREIRA et

al., 2015), the size of the region of competence is problem-dependent and for better error
rates a study must be done to find the ideal neighborhood size for each dataset.

For future work, we intend to evaluate different optimization algorithms in the Opti-
mization Phase, such as PSO (Particle Swarm Optimization) (EIBEN; SMITH, 2003), and
Differential Evolution (EIBEN; SMITH, 2003). We also intend to analyze some parameters
of the framework, such as the size of the region of competence.
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5 CONCLUSION

This thesis brought contributions to Dynamic Regressor Selection (DRS). First we have
identified and adapted some measures that can be used to measure the competence of the
regressors in the region of competence and the experiments show that the performance of
these measures is problem-dependent. Then, we proposed the MINE (Meta INtEgration),
a framework that combines the measures previously identified for the selection and fusion
of the regressors from an initially generated homogeneous ensemble. The framework can
operate in three different scenarios and the proposed framework improves the estimation
performance when compared against DRS techniques and well-known static techniques.

We did a survey of eight measures found in works of regression problems and adapted
them to the measurement of the competence of the regressors. To the best of our knowl-
edge, seven of these measures are adapted for the first time to this task, and they capture
different information, such as weighted error, variance, and similarity among the regres-
sors. These eight competence measures are evaluated using 15 regression problems from
different data repositories and three literature algorithms: DS, DW, and DWS. It is pos-
sible to conclude that the competence measure used to select the regressors is problem-
dependent. DRS techniques perform better when compared to a single individual regressor
or to classic statistical techniques such as Mean and Median. Another situation is that
the reduction in the variance achieved by weighted mean can explain why DW and DWS
are better than DS (TSYMBAL; PECHENIZKIY; CUNNINGHAM, 2006).

We proposed the MINE framework for dynamic regressor selection (DRS). MINE aims
to select and combine the best regressors per query pattern from a homogeneous ensem-
ble. The framework uses the combination of a set of measures extracted from the region
of competence as a criterion to select the competent regressors. Three algorithms were
presented, and their difference resides in how many regressors are selected from the en-
semble. The algorithms are: (i) MINE-Selection (MINE-S): selects a single regressor given
a test pattern; (ii) MINE-Weighting (MINE-W): all ensemble regressors are combined by
the weighted mean; and, (iii) MINE-Weighting with Selection (MINE-WS): a subset of
the ensemble is dynamically selected per test pattern. Also, this chapter presents a robust
study of homogeneous ensembles used with these three algorithms. Experiments shown
that the MINE techniques perform better compared to state-of-the-art DRS techniques,
and classical combination techniques, such as Mean and Median. Among the MINE fam-
ily, a highlight to MINE-W because it performed similarly to MINE-WS but required
fewer regressors in the combination phase. The results have shown that the combination
of multiple measures extracted from the region of competence generates more accurate
results than using only a single measure. We also observed that the set of measures is
problem-dependent and can be selected instead of using all of them.
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Overall, this thesis presented a study with eight measures to compute the behavior of
the regressors in the region of competence, comparing them with DRS techniques found
in the literature. Also, it was presented a new framework to DRS that use a combination
of some measures, instead of, the state-of-the-art DRS techniques that use only a single
measure. Besides that, the framework can be used in three different scenarios, selecting
just one regressor, combining all of them, or selecting and combining a subset of regressors
from the original ensemble.

5.1 FUTURE WORKS

The findings of this thesis suggest the following points for future works:

• A new solution to select, for each regression problem, the best measure to be used.
In MINE framework, the combination of the measures has shown significant im-
provement in the performance when compared to DRS techniques. Despite this, it
can be seen in the experiments at the end of Chapter 4 that the combination of
the measures is not the best solution for the majority of the datasets. To select
dynamically the measures, for each regression problem, can present better results.

• Evaluate different optimization algorithms in the Optimization Phase of the MINE.
There are many optimization algorithms in machine learning literature and only
Genetic Algorithm (GA) were used in this thesis. In addition, little tuning work
was done at GA. It is understood that in the MINE optimization phase, other
optimization algorithms can be used as PSO (Particle Swarm Optimization) (EIBEN;

SMITH, 2003), and Differential Evolution (EIBEN; SMITH, 2003), with their adjusted
parameters, in an attempt to improve the performance of the MINE.

• Analyze the region of competence. As presented in (MENDES-MOREIRA et al., 2009;
MENDES-MOREIRA et al., 2015), the size of the region of competence is problem-
dependent and for better error rates a study must be done to find the ideal neigh-
borhood size for each problem.

• Work with heterogeneous ensembles. This thesis presented a robust study with ho-
mogeneous ensembles. A study with heterogeneous ensembles is necessary. Hetero-
geneous ensembles are composed by trained regressors with different learning algo-
rithms and because of this, they can present greater diversity than homogeneous
ensembles.

• Adapt the framework to address time series problems. Time series can be classified
as a regression problems. The measures used in the MINE can be used to verify the
behavior of the regressors trained with data representing time series.
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6 APPENDIX

6.1 COMPARING MINE TECHNIQUES

According to (MENDES-MOREIRA et al., 2009), combine more than one model is better
than the selection of just one. This can be explained by the reduction in the variance
achieved by averaging of the predictions of the regressors for the test pattern.

So, looking the results, we find the same conclusion as (MENDES-MOREIRA et al., 2009),
by combining more than one regressor from the ensemble (MINE-W or MINE-WS) using
weighted mean, we achieve better error rates than the MINE-S. We can see this by looking
at the results of Tables 10, 11, and 12.

Table 17 presents the error rates of the proposed techniques when using the ensemble
size 𝑁 = 90. It is possible to see that MINE-W performs better in 9 out of 20 datasets
and MINE-WS performs better in 7 out of 20 datasets.

Table 17 – Mean and standard deviation of the results calculated in 20 replications. For
each dataset, the best result is in bold. Line “Win/Tie/Loss” shows the total of
the results. The values marked with a ∙ indicate that the null hypothesis must
be rejected (𝑝𝑉 𝑎𝑙𝑢𝑒 ≤ 0.05), in other words, the result of MINE-W achieves
superior performance. The values are in the scale 10−4.

Ensemble Size = 90
Dataset MINE-S MINE-W MINE-WS
Abalone 59.53(1.04)∙ 54.50(0.18) 55.13(0.61)∙
Airfoil Self Noise 10.75(0.66) 11.69(0.31) 11.92(0.48)∙
Bank32NH 110.80(3.31)∙ 88.78(0.33) 89.94(0.57)∙
Bank8FM 13.45(0.25)∙ 12.23(0.03) 12.36(0.16)∙
Breast Cancer 711.42(17.19) 718.09(8.42) 718.71(10.24)
CCPP 26.35(0.99)∙ 22.95(0.12) 23.02(0.18)
Comp Act 5.80(0.30)∙ 5.26(0.02) 5.20(0.03)
Comp Act Small 7.89(0.11) 8.08(0.03) 7.87(0.09)
Concrete 34.89(3.71)∙ 30.69(1.21) 30.88(1.13)
Delta Ailerons 14.62(0.06) 15.00(0.02) 15.02(0.03)∙
Delta Elevators 28.27(0.17)∙ 27.32(0.03) 27.41(0.17)∙
Housing 51.86(8.07)∙ 47.08(2.80) 45.28(3.46)
Kinematics 28.35(0.25) 29.86(0.10) 27.68(0.15)
Machine 48.81(10.34) 70.13(6.39) 56.24(10.73)
Puma32H 12.89(0.23)∙ 10.65(0.03) 10.69(0.03)∙
Puma8NH 173.22(0.85)∙ 167.00(0.16) 167.02(0.15)
Stock 5.88(0.24)∙ 4.85(0.16) 4.74(0.17)
Triazines 210.19(12.61) 206.04(5.00) 210.11(7.24)∙
Wine Q. Red 164.70(1.39)∙ 163.91(0.65) 163.73(0.69)
Wine Q. White 138.09(2.41)∙ 130.68(0.42) 130.11(0.76)
Win/Tie/Loss 4/0/16 9/0/11 7/0/13

According to Table 17, when comparing MINE-W against MINE-S, we can observe
that MINE-W performs better in 14 out of 20 datasets and has a significant difference
in 13 out of 20 datasets. When compared against MINE-WS, MINE-W has superior
performance in 12 out of 20 datasets and significant difference in 8 out of 20 datasets.
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6.2 COMPARING WITH STATIC TECHNIQUES

In this section the MINE techniques are compared individually with static techniques.
For each dataset, a single regressor was trained using the whole training set, called "Indi-
vidual Regressor".

Table 18 presents the comparison of the results between the Individual Regressor and
the MINE-S technique. It can be verified that MINE-S has a better error rate in 12 out
of 20 datasets and the hypothesis tests present a significant difference in 10 out of 20
datasets.

Table 18 – Mean and standard deviation of the results calculated in 20 replications. For
each dataset, the best result is in bold. Line “Win/Tie/Loss” shows the total
of the results compared between Individual Regressor and MINE-S. The values
marked with a ∙ indicate that the null hypothesis must be rejected (𝑝𝑉 𝑎𝑙𝑢𝑒 ≤
0.05), in other words, the result of MINE-S achieves superior performance.
The values are in the scale 10−4.

Ensemble Size = 90
Dataset Individual Regressor MINE-S
Abalone 56.58(0.68) 59.53(1.04)
Airfoil Self Noise 32.00(4.54)∙ 10.75(0.66)
Bank32NH 98.04(0.96) 110.80(3.31)
Bank8FM 12.79(0.08) 13.45(0.25)
Breast Cancer 730.74(9.40)∙ 711.42(17.19)
CCPP 24.46(0.15) 26.35(0.99)
Comp Act 6.03(0.16)∙ 5.80(0.30)
Comp Act Small 9.28(0.20)∙ 7.89(0.11)
Concrete 52.83(2.70)∙ 34.89(3.71)
Delta Ailerons 15.05(0.02)∙ 14.62(0.06)
Delta Elevators 27.76(0.10) 28.27(0.17)
Housing 55.79(4.32)∙ 51.86(8.07)
Kinematics 39.61(1.03)∙ 28.35(0.25)
Machine 82.03(5.37)∙ 48.81(10.34)
Puma32H 12.29(0.43) 12.89(0.23)
Puma8NH 169.48(0.64) 173.22(0.85)
Stock 5.52(0.22) 5.88(0.24)
Triazines 211.96(4.99) 210.19(12.61)
Wine Q. Red 164.81(0.55) 164.70(1.39)
Wine Q. White 143.12(3.19)∙ 138.09(2.41)
Win/Tie/Loss 8/0/12 12/0/8

Table 19 presents the results compared among Mean, Median, and MINE-W. MINE-
W has better result in 15 out of 20 datasets. Comparing only with the Mean, MINE-W
has better results in 16 out of 20 datasets and MINE-W has a significant difference (∙) in
14 out of 20 datasets. When compared to the Median, the results are better in 16 out of
20 datasets and significant difference in 16 out of 20 datasets.

The results of this section show that the proposed techniques are better than static
ones. Using DRS in homogeneous ensembles presents satisfactory results and better error
rates.
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Table 19 – Mean and standard deviation of the results calculated in 20 replications. For
each dataset, the best result is in bold. Line “Win/Tie/Loss” shows the total of
the results. The values marked with a ∙ indicate that the null hypothesis must
be rejected (𝑝𝑉 𝑎𝑙𝑢𝑒 ≤ 0.05), in other words, the result of MINE-W achieves
superior performance. The values are in the scale 10−4.

Ensemble Size = 90
Dataset Mean Median MINE-W
Abalone 54.51(0.19) 54.46(0.17) 54.50(0.18)
Airfoil Self Noise 21.48(0.43)∙ 20.89(0.42)∙ 11.69(0.31)
Bank32NH 88.79(0.29) 89.15(0.25)∙ 88.78(0.33)
Bank8FM 12.27(0.02)∙ 12.32(0.02)∙ 12.23(0.03)
Breast Cancer 715.72(6.52) 716.95(7.10) 718.09(8.42)
CCPP 23.37(0.12)∙ 23.42(0.12)∙ 22.95(0.12)
Comp Act 5.37(0.02)∙ 5.38(0.02)∙ 5.26(0.02)
Comp Act Small 8.42(0.02)∙ 8.45(0.02)∙ 8.08(0.03)
Concrete 39.36(0.89)∙ 38.08(0.76)∙ 30.69(1.21)
Delta Ailerons 15.03(0.02)∙ 15.03(0.02)∙ 15.00(0.02)
Delta Elevators 27.32(0.03) 27.35(0.03)∙ 27.32(0.03)
Housing 51.75(2.62)∙ 51.01(2.25)∙ 47.08(2.80)
Kinematics 33.01(0.10)∙ 33.04(0.12)∙ 29.86(0.10)
Machine 78.79(6.21)∙ 81.56(5.44)∙ 70.13(6.39)
Puma32H 10.71(0.03)∙ 10.64(0.02) 10.65(0.03)
Puma8NH 166.93(0.16) 166.95(0.17) 167.00(0.16)
Stock 5.26(0.14)∙ 5.23(0.16)∙ 4.85(0.16)
Triazines 206.27(4.89) 209.16(5.19)∙ 206.04(5.00)
Wine Q. Red 164.30(0.59)∙ 164.67(0.62)∙ 163.91(0.65)
Wine Q. White 133.35(0.39)∙ 133.56(0.34)∙ 130.68(0.42)
Win/Tie/Loss 2/1/17 2/0/18 15/1/4
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