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Abstract

Electric vehicles are the key to facilitating the transition to low-carbon ‘green’

transport. However, there are concerns with their range and the location of

the charging stations which delay a full-fledged adoption of their use. Hence,

the electric charging infrastructure in a given region is critical to mitigating

those concerns. In this study, an interval type-2 fuzzy set based multi-criteria

decision-making method is introduced for selecting the best location for electric

charging stations. This method is improved by Simulated Annealing obtain-

ing the best configuration of the parameters of the interval type-2 membership

functions along with two different aggregation operators; linguistic weighted

sum and average. The proposed overall reusable multi-stage solution approach

is applied to a real-world public transport problem of the municipal bus com-

pany in Istanbul. The results indicate that the approach indeed improves the

model, capturing the associated uncertainties embedded in the interval type-2

membership functions better, leading to a more effective fuzzy system. The
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experts confirm those observations and that Simulated Annealing improved in-

terval type-2 fuzzy method achieves more reliable results for selecting the best

sites for the electric bus charging stations.

Keywords: Facility location, site selection, interval type-2 fuzzy sets,

multi-criteria decision-making, simulated annealing.

1. Introduction

Electric vehicles are gaining more and more attention from the governments

and general public across the world. This is mainly due to the growing sus-

tainability concerns. With the improvements in the battery technology, electric

vehicles have become a promising solution to addressing some of the vital en-

vironmental challenges, such as fossil resource depletion [1]. Many public bus

operators have already started to replace the conventional buses running on

fossil fuels with electric buses to encourage environmentally friendly transport

modes contributing to the sustainable urban development. However, that tran-

sition to electric buses requires making some infrastructural investments, such

as, building electric charging stations, and determining the optimal locations

for those stations [2].

Despite the decrease in the battery costs in recent years, the battery is still

one of the most expensive and restricting components of electric vehicles. Many

electric vehicles have a limited driving range with full charge when compared to

the internal combustion engine-powered vehicles with full tank [3]. Recharging

a battery is a time-consuming activity in electric bus operations. There are

alternative solutions to this issue, such as battery swapping [4] and dynamic

wireless recharging [5]. However, there is still the issue of where to deploy

electric charging stations, especially when there is an existing infrastructure as

in the case of public transport.In this study, we address the issue of determining

the optimal location for electric charging stations as a decision-making problem

for the public bus operators.
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1.1. Approaches to Location Selection Problems

There are various previous studies tackling the problem of optimal location

selection for the electric charging stations, and applying exact and inexact solu-

tion methods, including the mixed-integer nonlinear programming and Benders-

and-Price algorithm [3], Trip Success Ratio approach [2], bi-level programming

model approach [6], genetic algorithm [7], and more. Although type-2 fuzzy

sets have been applied to a range of location selection problems from ambu-

lance location selection [8] to underground storage site selection [9], there are a

few studies relevant to the electric charging stations.

Multi-Criteria Decision-Making (MCDM) methods have been proposed for

different electric charging location selection problems, many of which focus

mainly on certain regions in China. Guo and Zhao [1] applied a fuzzy TOPSIS

method for site selection with 3 main criteria and 11 sub-criteria as decision fac-

tors to choose one of the 4 alternative locations in Beijing, China. Wu et al. [10]

utilized a Preference Ranking Organization Method for Enrichment Evaluations

combined with the cloud model and Analytic Network Process in Beijing, China.

Zhao and Li [7] employed fuzzy Grey relation analysis VIseKriterijumska Op-

timizacija I Kompromisno Resenje (VIKOR) method to determine the optimal

electric charging station location in Tianjin, China. Xu et al. [11] used an inter-

val type-2 fuzzy method to determine the optimal location for electric charging

stations for a state company in Tianfu New District, China. They ensured the

rationality of their findings through the entropy weight method - a rough con-

sensus reaching process. Interval type-2 fuzzy is applied to model the human

language for the EVCS site selection problem to capture the vagueness and

uncertainty in decision-makers’ preferences. Wu et al. [12] proposed a Fuzzy

VIKOR with 5 main criteria and 16 sub-criteria for 6 alternative locations in

Beijing, China. Cui et al [13] proposed a Pythagorean fuzzy VIKOR method

to site selection problem for electric vehicle charging stations with a practical

example in Shanghai, China. Interval type-2 fuzzy ELECTRE method was ap-

plied to the allocation problem of the electric charging station [14]. Karasan et

al. [15] used an integrated MCDM methodology with intuitionistic fuzzy sets on
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the electric charging station selection problem.

To the best of authors’ knowledge, this is one of the first studies applying

interval type-2 fuzzy sets improved by a local search metaheuristic to the electric

charging station selection problem. The proposed approach is employed to solve

a particular public transport real-world problem instance from Turkey.

1.2. The motivation for using Interval Type-2 Fuzzy Sets

Due to the uncertain nature of the decision making process based on various

criteria and their variability for electric charging location selection, fuzzy sets

have been used as a crucial part of the solution methods. Zadeh [16] proposed

type-2 fuzzy sets that have additional degrees of freedom to model the problems

in which type-1 fuzzy sets are not capable of handling adequately.

The scientific literature shows that type-2 fuzzy sets have more advantages

over the type-1 fuzzy sets. Firstly, numerical and linguistic uncertainties can

be handled effectively, since the membership functions themselves are defined

as fuzzy sets. Secondly, wider coverage of uncertainties is provided by type-2

fuzzy sets with fuzzy membership functions while reducing the number of rules

used [17]. Finally, the extra dimension is likely to enhance the performance of a

type-2 fuzzy logic system while a type-1 fuzzy logic system cannot provide the

same result under the same conditions [18].

Nevertheless, type-reduction and defuzzification processes in the applications

of type-2 fuzzy logic systems often require additional time. Because of the

computational complexity of those processes, the majority of the researchers and

practitioners have focused on interval type-2 fuzzy models [19] with manageable

run-time complexities that are considered practical [20, 21]. [20] defines the

foot print of uncertainty (FOU) as “the union of the primary membership”.

In general, there is no restriction on the shape of FOUs for the type-2 sets.

This could lead to the loss of the semantic relationship between the type-2

fuzzy set and the concept that it models [22]. However, the values of secondary

memberships are restricted to either zero or one in the interval type-2 fuzzy sets,

enabling parameterization of the primary membership functions (and so FOUs),
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and resolution of the semantic issues [23]. Larger FOUs in the applications of

interval type-2 fuzzy sets are not preferable as they represent higher level of

uncertainty characterized by the problem [24]. Then again, expanding FOUs

to some extent could have a positive effect on capturing the uncertainty [25].

Therefore, in this study, we have used a local search metaheuristic searching for

the best primary membership functions with reasonable FOUs for the location

selection problem of electric charging stations. Additionally, Dalterio et al. [22]

highlighted that the semantic relationship can be lost easily in a fuzzy rule-based

system. Hence, the proposed overall method using interval type-2 trapezoidal

fuzzy sets applies computing with words approach investigating two aggregation

approaches based on linguistic weighted sum and average keeping the semantic

relation with the concept.

1.3. Improving the Performance of Fuzzy Systems

In this study, simulated annealing (SA) [26] as a local search metaheuris-

tic [27] is presented to optimise and find the best parameter settings for the

fuzzy interval type-2 membership functions. There are previous studies that

investigate the influence of parameter settings of fuzzy systems on their perfor-

mance. The majority of that work focuses on parameter tuning, i.e. finding the

best initial parameter settings for fuzzy logic controllers as the application area.

In 1993, Metvally and Malik [28] observed that parameter tuning is an es-

sential process and has the potential to improve the performance of fuzzy logic

control and so they proposed a technique to cope with system imprecision, sys-

tem ill-definition, and uncertainty to achieve the desired system response.

Different granular approaches which divide the design of the global controller

into several individual simpler controllers are used on the generalized type-

2 fuzzy systems [29], interval type-2 fuzzy sets [30], type-2 fuzzy logic [31],

comparative studies of type-1 fuzzy logic systems, interval type-2 fuzzy logic

systems and generalized type-2 fuzzy logic systems [32, 33]. Melin et al. [34]

pointed out the uncertainty in fuzzy logic controllers and fuzzy edge detectors

and improved to model general type-2 fuzzy logic system based on shadowed
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type-2 fuzzy membership functions for the control problems.

The majority of the previous approaches were applied to control problems

where there is a high level of uncertainty. It has been observed that the proposed

algorithm improving the logic controllers results in better performance. In this

study, we investigate parameters of interval type-2 fuzzy sets rather than the

parameters related to the application (e.g., logic controllers).

1.4. The motivation for using Simulated Annealing

Finding the best metaheuristic approach for solving a problem itself is a

challenging task since this requires even further experimentation with different

metaheuristics and parameter tuning of those metaheuristics. So, we referred to

the scientific literature. The previous work [35, 36] shows that SA is an easy-to-

implement approach with fewer parameters to tune as compared to some other

metaheuristics, but more importantly, it is an extremely effective metaheuris-

tic capable of escaping from local optima. [36] tested SA as a general-purpose

search method across nine different problem domains and reported the success

of SA when compared to a variety of other metaheuristics. Hence, we pre-

ferred SA for improving the interval type-2 membership functions. Then the

electrical charging station selection problem is solved using the best parametric

configuration obtained from SA.

1.5. Objectives of the Study

The majority of the previous work on location selection for the charging

stations involving the use of MCDM methods are applied to specific problems

from China. Moreover, they all address the relevant problems for the electric

“vehicles” not “buses” for public transport, which differ based on a different

set of criteria and geographical constraints. In this study, we introduce a novel

multi-stage approach based on interval type-2 fuzzy sets improved by SA for

determining the best location for the electric charging stations for electric buses,

which will be purchased by IETT, the municipal public transport operator of

Istanbul in Turkey. The main objectives of this study are to:
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• find the best location for the electric charging stations for electric buses

using interval type-2 fuzzy sets,

• investigate uncertainty in ‘computing with words’ using two different ag-

gregation approaches namely linguistic weighted sum and average, and

• find out the best configuration for the fuzzy sets for the importance of

criteria using SA to cope with the ambiguity on subjective judgements.

The problem of finding the best location for the electric charging stations for

electric buses is formulated as a multi-criteria decision-making problem consid-

ering that there are many decision factors/criteria involved. Uncertainty plays

an important role in this decision-making problem since criteria are far from be-

ing certain and involve decision makers subjective judgments. Hence, we have

tested interval type-2 fuzzy sets to evaluate alternative garages based on two

different aggregation operators; linguistic weighted sum and average. Besides,

the membership functions are improved and configured to handle uncertainty

within the fuzzy sets using a well-known metaheuristic - Simulated Annealing

(SA). Using the best configuration obtained by SA for the membership func-

tions, the approach based on the interval type-2 fuzzy sets is applied to the

real-world problem, and performances of the two aggregation methods are com-

pared. The overall approach is sufficiently general and reusable, that is, it can

be applied to any multi-criteria decision making problem.

The rest of the paper is structured as follows. Section 2 introduces the real-

world problem including its description and the decision criteria. In Section 3,

the overall approach is described focusing on each algorithmic component. Sec-

tion 4 discusses the results from the computational experiments, summarising

the parameter tuning results for SA and illustrating the performance of SA im-

proved approach based on the interval type-2 fuzzy sets as compared to the

approach which does not utilise SA. Finally, Section 6 concludes the study and

presents some potential future research directions.
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2. Problem Description

Istanbul, with a population reaching 15 million, is the economic, cultural,

and tourism capital of Turkey. Istanbul has a well-integrated public transit

system, comprising of public buses, metro, light rail, street tramway, ferry,

and bus rapid transit (BRT). IETT is the municipal public transport company

operating 2,236 public and 510 BRT buses. BRT has 52-kilometers length,

extending over one of the most crowded road corridor (D-100) of Istanbul. It

has 45 stations and daily serves over 900,000 passengers. Figure 1 shows the

outline of BRT line, as completed phase by phase from 2007 to 2012. BRT

passenger revenues comprise 56 % of IETT’s total revenues. Besides its financial

importance, BRT is important to provide an integrated, safe and fast transport

option for people and reputationally crucial for IETT.

Figure 1: Istanbul bus rapid transit (BRT) [37].

The bus fleet is composed mainly of diesel (79%) and CNG (21%) buses.

Due to IETT’s strategy to become a leader in sustainable bus operations in

Turkey, it plans to renew its bus fleet, gradually replacing diesel buses with

electric buses. Initially, 10 electric buses are planned to be added to the fleet.

Those electric buses will be mainly used in BRT operations, not excluding the

possibility of using them in regular bus services.
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Selecting the most appropriate bus garages for placing the electric charging

stations for the electric buses involves multiple criteria and it is a challenging

task. In the following sections, we present the criteria considered in our approach

for tackling this problem along with the bus garages based on real-world data.

2.1. Criteria for Decision Making

We identified 5 main criteria grouping 14 qualitative sub-criteria for this

decision-making problem, drawn from both extant literature and expert opinion

from IETT. Some of the criteria are specifically identified for this problem which

are referred to as context-specific criteria: closeness to BRT and Interchange

Stations, closeness to bus routes, availability of garage space, maintenance ca-

pability, and revenue potential. The distinguishing feature of the problem in

this study is that it deals with a public bus operator’s future electric bus and

charging station investment for its BRT operations. We also identified 5 out

of 14 IETT garages for locating electric charging stations. These alternatives

will be assessed based on their performance regarding the decision criteria by 4

decision-makers. Those decision-makers are the senior managers of IETT having

a decision-making power regarding the electric bus purchase. Their positions are

the following: Deputy General Manager responsible for technical issues, Head of

Technology Development Department, Head of Maintenance Department, bus

operations expert in Fleet Operations Department.

The main criteria and sub-criteria can be briefly summarized as follows:

Economy: Economic evaluations are important in electric charging station

investments. The cost and revenue of investments are key determinants of eco-

nomic performance. Therefore, the investment payback period and revenue

potential are considered as the economic decision criteria.

(C1) Investment payback period: This entity refers to the total investment

cost divided by annual returns. Returns from electric charging stations can

be calculated by savings gained through using electricity rather than petrol or

diesel expenses as well as passenger revenues using those electric vehicles. Using

the investment pay-off period assesses of gains from electric charging stations
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viable [10].

(C2) Revenue potential (Closeness to dense passenger area): The number of

users benefiting from electric buses provides ticket revenues for the bus operator.

If an electric charging station is closer to the denser passenger areas where ticket

revenues are likely to be more, then the revenue potential would increase.

Energy: Access to energy sources is critical for electric charging stations.

Therefore; closeness to a power grid, reliability of electricity power, distance

from heavy electricity consumption and availability of renewable energy re-

sources are important to ensure a seamless electricity feed to the charging sta-

tions. While selecting a location, those factors would play a crucial role.

(C3) Closeness to power grid: The electric charging station should be sufficiently

close to the power grid so to ensure adequate energy input.

(C4) Reliability of electricity power: Electricity coming from the energy grid

should be reliable and stable to ensure the secure operation of the distribution

network.

(C5) Distance from heavy electricity consumption: A large number of charging

users harms power stability and quality [12], therefore, electric charging stations

should be away from heavy load-lines.

(C6) Availability of renewable energy resources: To ensure a sustainable energy

input, the availability of renewable energy resources, such as solar panels, wind

turbines or biofuel is important.

Service Area: The features of the service area where electric charging stations

are located influence the effectiveness of the electric charging scheme.

(C7) Closeness to BRT or Interchange Stations: Since electric buses are planned

by IETT to be used in BRT services, the closeness of electric charging stations

to BRT stations is also important.

(C8) Traffic congestion: Traffic congestion makes electric vehicles consume more

electric, therefore, the service area where there is low traffic congestion is pre-

ferred [1, 7, 11].

(C9) Closeness to bus routes: Besides BRT service, the electric buses can also

be deployed in regular bus services, therefore, it is preferable to have electric
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charging stations to the bus routes to decrease the deadheading kilometer.

(C10) Topographical properties (high slope): Higher slope makes electric vehi-

cles consume more electricity, therefore, the areas where there is the low slope

are more appropriate for locating electric charging stations [10].

Garage Capacity: Having adequate garage capacity is important to be able

to host electric buses and charging stations. Besides enough garage space, ex-

pandability of the garage area in case of future fleet expansions and having

sufficient maintenance capability are other factors enabling the introduction of

the electric charging stations.

(C11) Availability of garage space: The garage must have enough space to put

electric charging stations.

(C12) Expandability: In case of future expansions, the garage must have the

flexibility for area expansions.

(C13) Maintenance capability: Electric charging stations require planned and

unplanned maintenance, therefore, having a maintenance capability in terms

of financial, human, and technical know-how resources is crucial to ensure the

functioning of electric charging stations [1, 10].

Safety: Protection of electric charging stations against acts of vandalism, theft,

or other attacks is important.

(C14) Security infrastructure: Having a security infrastructure (security staff,

CCTV cameras, etc.) is desirable to ensure a safe environment for electric

charging stations.

2.2. Alternative Options

We have five alternative garages to consider to place the electric charging

stations for the electric buses based on the real-world data obtained from IETT

as illustrated in Figure 2. Table 1 summarises the relevant features of those

garages [37]. The detailed description of each garage is given below.

• Ikitelli: The largest garage in IETT is Ikitelli garage, located in the west-

ern part of Istanbul on a large area (196,322 m2). It hosts training facilities
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Table 1: List of alternative garages with parking and maintenance functionality. Distance:

the distance between the alternative garage to BRT line (km)

Alternatives Starting Date Area (m2) Distance (km)

Ikitelli 1986 196,322 20

Edirnekapi 1999 60 0.5

Hasanpasa 1984 33,862 1

Anadolu 1986 60 11.3

Kagthane 1995 60,004 5.8

and a bus fleet control center. In terms of enough space, it is the most

appropriate location for putting electric charging stations.

• Kagithane: Kagithane Garaji is located in the European part of Istanbul

in a moderately large area. It mainly hosts CNG powered buses and has

a CNG filling station. It also hosts a bus fleet control center. However, it

does not have enough space for electric buses or electric charging stations.

• Edirnekapi: Edirnekapi garage is located in the European part of Istanbul

and very close to the BRT route. It mainly hosts BRT buses and a BRT

fleet control center. It also has enough space to locate electric buses and

electric charging stations.

• Anadolu: Anadolu garage is located in the Asian part of Istanbul. It is far

from the BRT line and mainly serves the bus services in the Asian part.

• Hasanpasa: Hasanpasa garage is located at the Asian end of the BRT

route and hosts BRT buses. The main disadvantage of this garage is that

it has the smallest garage area among all other garages. Figure 2 depicts

all facilities for BRT buses.

3. Preliminaries

This section introduces the fundamentals of the techniques used in this work

including Interval Type-2 fuzzy sets, fuzzy aggregation methods, and simulated
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Figure 2: Five bus garages operated by IETT.

annealing metaheuristic.

3.1. Interval Type-2 Fuzzy Sets

For type-2 fuzzy systems, a membership function (the degree of membership)

denoted as µÃ(x, u) characterised as fuzzy set Ã where x ∈ X in Ã and u ∈

[0, 1] [38]. It is also shown as:

Ã = {(x, u), µÃ(x, u))| ∀x ∈ X,∀u ∈ [0, 1]} (1)

where 0 ≤ µÃ(x, u) ≤ 1. When all µÃ(x, u) = 1 for ∀x ∈ X and u ∈ [0, 1], then

Ã is named as an interval type-2 fuzzy set [20]. It is denoted as:

Ã =

∫
x∈X

∫
u∈[0,1]

1/(x, u) ∈ [0, 1] (2)

where
∫ ∫

denotes union over all admissible x and u. For discrete universes of discourse,

is replaced by
∑

.

Although membership functions may have different shapes such as triangular,

trapezoidal, Gaussian, etc., in this study, the trapezoidal interval type-2 fuzzy sets

(IT2FSs) are used, where a membership function in the form of a trapezoid is denoted

as Ãi, shown as an example as follows [39]:

Ãi = (ÃU
i , Ã

L
i ) =((au

i1, a
u
i2, a

u
i3, a

u
i4;h1(ÃU

i ), h2(ÃU
i )),

(al
i1, a

l
i2, a

l
i3, a

l
i4;h1(ÃL

i ), h2(ÃL
i ))

(3)
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where AU
i and AL

i are type-1 fuzzy sets, au
i1, a

u
i2, a

u
i3, a

u
i4; al

i1, a
l
i2, a

l
i3 and al

i4 are the

reference points of the interval type-2 fuzzy set Ãi, Hj(Ã
U
i ) denotes the membership

value of the element aU
i(j+1) in the upper trapezoidal membership function Ãu

i , 1 ≤ j ≤

2, Hj(Ã
L
i ) denotes the membership value of the element aL

i(j+1) in the lower trapezoidal

membership function ÃL
i , 1 ≤ j ≤ 2. In Figure 3, the trapezoidal membership function

for the linguistic term ‘Medium’ is demonstrated as an example.

Figure 3: Illustration of IT2FSs

3.2. Fuzzy aggregation methods

The algebraic operations used in this study are addition and multiplication [40].

The addition of two fuzzy trapezoid membership functions Ã1 and Ã2 can be computed

as in Equation 4.

Ã1 ⊕ Ã2 = (ÃU
1 , ÃL

1 )⊕ (ÃU
2 , ÃL

2 )

= ((au
11 + au

21, a
u
12 + au

22, a
u
13 + au

23, a
u
14 + au

24;

min(h1(ÃU
1 ), h1(ÃU

2 )),

min(h2(ÃU
1 ), h2(ÃU

1 ))),

(al
11 + al

21, a
l
12 + al

22, a
l
13 + al

23, a
l
14 + al

24;

min(h1(ÃL
1 ), h1(ÃL

2 )), (h2(ÃL
1 ), h2(ÃL

2 )))

(4)
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The multiplication of Ã1 and Ã2 can be computed as in Equation 5.

Ã1 ⊗ Ã2 = (ÃU
1 , ÃL

1 )⊗ (ÃU
2 , ÃL

2 )

= ((au
11 × au

21, a
u
12 × au

22, a
u
13 × au

23, a
u
14 × au

24;

min(h1(ÃU
1 ), h1(ÃU

2 )),

min(h2(ÃU
1 ), h2(ÃU

2 ))),

(al
11 × al

21, a
l
12 × al

22, a
l
13 × al

23, a
l
14 × al

24;

min(h1(ÃL
1 ), h1(ÃL

2 )), (h2(ÃL
1 ), h2(ÃL

2 ))).

(5)

3.2.1. The linguistic weighted sum (LWS)

In general, it has been known that linguistic values can be decomposed into the

weighted sum of the linguistic values on distinct space [41]. For instance, suppose that

each sub-criterion is multiplied by its main criterion and it is done for all sub-criteria.

In general, the score is defined as the weighted sum of the values obtained by each

sub-criterion.

3.2.2. The linguistic weighted average (LWA)

Wu and Mendel [42] proposed the linguistic weighted average approach that can

be used in distributed and hierarchical decision-making applications. The linguistic

weighted average for interval type-2 fuzzy sets is explained as an extension of the fuzzy

weighted average for type-1 fuzzy sets [43]. For each alternative a and main criterion

c pair, the LWA Ỹac is computed as follows:

Ỹac =

∑mc
n=1 X̃acnW̃cn∑mc

n=1 W̃cn

(6)

where X̃acn is the linguistic assessment of sub-criterion n which is associated with the

main criterion c for alternative a where W̃cn is the weight for sub-criterion n. mc is

the number of each sub-criterion for each main criterion c [43].

3.3. Simulated Annealing (SA)

Simulated Annealing is a well-known iterative metaheuristic inspired by the anneal-

ing process in the metallurgical industry [44, 45]. In order to achieve an approximate

(near-optimal) solution for computationally difficult optimisation problems, SA algo-

rithm as a single point search method has been generally preferred by researches as well
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as practitioners. A recent study shows that a tuned SA can be very effective to solve

even an unseen problem [36]. SA starting form an initial candidate solution attempts

to improve it in time by making changes to that solution at each iteration. The main

feature of SA is that worsening solutions can be accepted by some probability which

dynamically changes in time based on temperature and the change in the quality of

the solution. Hence, while searching for the best solution to a problem instance, the

quality of each candidate solution needs to be evaluated and this is achieved by using

an objective function.

The pseudo-code of the SA approach used in this study is provided in Algorithm 1.

SA starts the search process with a randomly generated initial solution denoted as

Solinitial and an initial temperature Tinitial. The objective function f evaluates the

initial solution and assigns the value to Qcurrent at the beginning. Then the SA algo-

rithm moves over the search space of solutions using a predefined neighbourhood/move

operator, denoted as CreateneighboringSol in line 6 of the Algorithm 1. This move oper-

ator designed specifically for the problem is applied to the current solution, Solcurrent

generating a new solution, Solnew at each step. The difference of the objective values

of Solnew and Solcurrent is computed as in line 7 and this value is denoted as ∆Obj.

Any improving new solution (∆Obj < 0) is directly accepted while a worsening solu-

tion is accepted with the probability of e∆Obj/T , where T is the current temperature

(line 8), and the current solution is set to the new solution (line 9). The best solution

could be lost as worsening solutions are accepted by SA, hence an explicit mechanism

is needed to maintain/remember the best solution found so far (lines 12-14). Then the

temperature is reduced using a cooling schedule at each step which reduces the prob-

ability of acceptance of worsening solutions in time. In this study, a geometric cooling

schedule is used and T is multiplied by a constant factor 0 < CT < 1 (line 16). This

iterative process of creating new solutions, evaluating them and accepting/rejecting

them is repeated until a termination criteria, i.e., the maximum number of iterations

or a final temperature of Tmin is reached (line 5) [46].

4. Proposed Approach

In this study, we introduce an MCDM interval type-2 fuzzy approach combined

with SA for selecting a garage considering the alternatives to place the electric charging

stations. There are various methods to rank the bus garages for the final decision, and
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Algorithm 1 Pseudo-code of a generic SA algorithm [46]

1: Input: Solinitial, Tinitial, Tmin, CR

2: Output: Solbest

3: Solcurrent, Solbest ← Solinitial; T ← Tinitial

4: Qcurrent, Qbest ← f(Solinitial)

5: while (T > Tmin) do

6: Solnew ← CreateneighboringSol(Solcurrent)

7: ∆Obj ← obj(Solnew) − Qcurrent

8: if ((∆Obj < 0) OR (e−∆Obj/T > rand(0, 1)) then

9: Solcurrent ← Solnew

10: Qcurrent ← Qcurrent + ∆Obj

11: end if

12: if (Qcurrent < Qbest) then

13: Solbest ← Solcurrent

14: Qbest ← Qcurrent

15: end if

16: T ← T × CR

17: end while

we tested two aggregation methods for ranking, namely the linguistic weighted sum

and average. In this section, we explain the details of our overall approach starting

with the specifics of the interval type-2 fuzzy membership functions, SA which is used

to improve the membership functions and then covering the ranking methods.

4.1. Fuzzy Membership Functions

In this study, we consulted and did a survey with four decision-makers referred

to as D1, D2, D3, and D4, working at IETT. A set of specific criteria are identified

for the overall evaluation process of the alternative bus garages based on the extant

literature and expert opinion as detailed in Section 2.

Firstly, the decision-makers rated the importance of each of the 5 main criteria and

14 sub-criteria as in Table 6 and 7, respectively, using the linguistic terms ‘Very Low’

(VL), ‘Low’ (L), ‘Medium Low’ (ML), ‘Medium’ (M), ‘Medium High’ (MH), ‘High’
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Table 2: Linguistic variables for evaluating each criterion [47], it also represents W̃ for LWA

approach.

Trapezoidal ITFSs au1 au2 au3 au4 hu1 hu2 al1 al2 al3 al4 hl1 hl2

Very low (VL) 0 0 0 0.1 1 1 0 0 0 0.05 0.9 0.9

Low (L) 0 0.1 0.1 0.3 1 1 0.05 0.1 0.1 0.2 0.9 0.9

Medium low (ML) 0.1 0.3 0.3 0.5 1 1 0.2 0.3 0.3 0.4 0.9 0.9

Medium (M) 0.3 0.5 0.5 0.7 1 1 0.4 0.5 0.5 0.6 0.9 0.9

Medium high (MH) 0.5 0.7 0.7 0.9 1 1 0.6 0.7 0.7 0.8 0.9 0.9

High (H) 0.7 0.9 0.9 1 1 1 0.8 0.9 0.9 0.95 0.9 0.9

Very high (VH) 0.9 1 1 1 1 1 0.95 1 1 1 0.9 0.9

Table 3: Linguistic variables for evaluating each alternative [47].

Trapezoidal ITFSs au1 au2 au3 au4 hu1 hu2 al1 al2 al3 al4 hl1 hl2

Very poor (VP) 0 0 0 1 1 1 0 0 0 0.5 0.9 0.9

Poor (P) 0 1 1 3 1 1 0.5 1 1 2 0.9 0.9

Medium poor (MP) 1 3 3 5 1 1 2 3 3 4 0.9 0.9

Fair (F) 3 5 5 7 1 1 4 5 5 6 0.9 0.9

Medium good (MG) 5 7 7 9 1 1 6 7 7 8 0.9 0.9

Good (G) 7 9 9 10 1 1 8 9 9 9.5 0.9 0.9

Very good (VG) 9 10 10 10 1 1 9.5 10 10 10 0.9 0.9

(H), ‘Very High’ (VH). Table 2 shows the corresponding interval type-2 fuzzy sets for

each term, specified using a real value between 0 and 1. For a better understanding,

the trapezoidal membership function for the linguistic term ‘Medium’ is demonstrated

in Figure 3.

After rating the importance of each criterion, the decision-makers provided a per-

formance evaluation of each bus garage based on all criteria as illustrated in Table 9

using the linguistic terms Very Poor’ (VP), Poor’ (P), Medium Poor’ (MP),Fair’ (F),

Medium Good’ (MG), Good’ (G), Very Good’ (VG). Table 3 shows the associated

interval type-2 fuzzy sets for each term, specified using an integer value between 0 and

10.
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4.2. Configuring fuzzy membership functions using SA

We apply the SA approach as described in Section 3.3 to obtain the best configura-

tion for the fuzzy membership functions to be used by the approach based on interval

type-2 fuzzy sets. In this section, we provide the details of the SA approach, including

the design of the problem domain-specific components, applied to the problem of bus

garage selection to locate the electric charging stations for electric buses.

A real-valued candidate solution representation is used in SA. This is because each

fuzzy membership function is designed as a trapezoid which can be uniquely repre-

sented using four real-valued parameters (see Section 3.1). Assuming that all type-2

fuzzy membership functions are known prior, a candidate solution is a 2-dimensional

real-valued array that encodes the distances as in (val1, val2, val3, val4) to the refer-

ence points (al
1, al

2, al
3, al

4) for each trapezoidal membership function for the impor-

tance weights. Hence, decoding a candidate solution yields a fixed fuzzy trapezoidal

membership function for each linguistic term as in (al
1
′ =al

1−val1, al
2
′=al

2, al
3
′=al

3,

al
4
′=al

1+val4). Table 4 summarises the maximum possible distances for val1, val2,

val3, and val4, calculated using al
1 − au

1 , al
2 − au

2 , al
3 − au

3 , and au
4 − al

4, respectively.

For illustrative purposes, let’s use ‘Medium (M)’ membership set in Figure 4(a) char-

acterised by (al
1=0.4, al

2=0.5, al
3=0.5, al

4=0.6). Assuming that we have a candidate

solution represented by four parameter values that are distances to the reference points

(val1=0.07, val2=0, val3=0 and val4=0.017), then this solution decodes into the fuzzy

membership function as illustrated in Figure 4(b), the new lower bound values moving

from 0.4 to 0.33 for al
1 and 0.6 to 0.617 for al

4 while al
2 and al

3 maintain the same

values. Parameterising the membership functions this way enables the use of optimi-

sation methods for detecting the best (optimal) parameter settings (configuration of

membership functions) and improving the fuzzy system at the end based on a certain

objective. We use Simulated Annealing for this purpose.
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(a) (b)

Figure 4: Illustration of (a) four parameters (al1=0.4, al2=0.5, al3=0.5, al4=0.6) characterising

the ‘Medium’ trapezoidal membership function for the importance of criteria, and (b) the

resultant ‘Medium’ trapezoidal membership function after decoding a candidate solution with

the given distances of (val1=0.07, val2=0, val3=0 and val4=0.017) into (al1
′=0.33, al2

′=0.5,

al3
′=0.5, al4

′=0.617).

Table 4: The maximum distances between upper and lower bounds of the trapezoids repre-

senting linguistic variables in Table 2

Linguistic variables max{val1} max{val2} max{val3} max{val4}

Very low (VL) 0 0 0 0.05

Low (L) 0.05 0 0 0.1

Medium low (ML) 0.1 0 0 0.1

Medium (M) 0.1 0 0 0.1

Medium high (MH) 0.1 0 0 0.1

High (H) 0.1 0 0 0.05

Very high (VH) 0.05 0 0 0

In this study, the Root Mean Square Error (RMSE) is used as the objective function

as defined below:

RMSE =

√
1

n
Σn

i=1

(
fi − f∗i

)2

(7)

where fi represents the value found by SA while f∗i demonstrated the maximum value

for each alternative.

First, the maximum value for the first alternative is calculated assigning each

criterion ‘very high’ for the first one and ‘very low’ for the rest. The maximum value

of each alternative is found using the same way. Then RMSE is calculated using
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the difference between maximum values and values achieved by a single SA run. In

Equation 7, fi shows the maximum value assigned for ith alternative and f∗i represents

the value found by SA for ith alternative. Therefore, the objective is to minimize

RMSE.

In this study, Algorithm 1 is employed starting with a randomly created initial

solution. The move operator CreateneighboringSol perturbs randomly selected array

entries of a given candidate solution, creating a new one. Each entry is randomly

perturbed to a valid value considering the maximum distance for the relevant fuzzy set.

This perturbative move operator has a discrete strength parameter taking an integer

value in [1,10], indicating the strength of the perturbation, that is, how many elements

are modified in a given solution. A simple reinforcement learning mechanism [46] is

used to adaptively control the strength setting of the move operator. A utility score

for each of the 10 settings for the strength parameter is maintained. Initially, all scores

are set to the same value. After applying the move operator with a particular strength

setting, if an improved solution is obtained then the score for this setting is increased

by one, otherwise, it is decreased by one. At each step, the strength setting with the

highest score is selected to be used with the move operator. Random choice is the

tie-breaking strategy if there are multiple settings with the highest score. More on

this method can be found in Turk et al. [46]. Cooling rate as shown CR in Algorithm 1

is computed as in Equation 8:

CR = elog((Ttermination/T )/MaxIts) (8)

where T , Ttermination and MaxIts represent the ‘current temperature’, ‘termination

temperature’ and ‘number of maximum iterations’, respectively.

4.3. Linguistic weighted sum (LWS) approach

This approach consists of six steps explained as follows:

Step 1: Decision makers decided main and sub-criteria as shown in Table 5.

The importance of each criterion is determined by four decision-makers as shown in

Table 6 for main criteria and Table 7 for sub-criteria, respectively. For example, the

first decision maker (DM1) defines the importance of the first main criterion (MC1)

as ‘Very High’ (VH) while the second decision maker (DM2) assigns MC1 as ‘High’

(H).
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Table 5: List of main and sub-criteria

Main

Criteria
Symbol Sub-criteria

Economy (M1)
C1 Investment return period

C2 Revenue potential

Energy (M2)

C3 Closeness to power grid

C4 Reliability of electricity power

C5 Distance from heavy electricity consumption

C6 Availability of renewable energy resources

Service Area (M3)

C7 Closeness to BRT or Interchange stations

C8 Traffic congestion

C9 Closeness to bus routes

C10 Topographical properties (high slope)

Garage Capacity (M4)

C11 Availability of garage space

C12 Expandability

C13 Maintenance capability

Safety (M5) C14 Security infrastructure

Step 2: Each main criterion and its corresponding sub-criterion are multiplied in

order to calculate interval type-2 sets of 14 criteria. In Table 8, these weighted fuzzy

sets are illustrated using symbol from C1 to C14. Let us compute C1 for DM1 to show

how to convert the linguistic terms to fuzzy numbers as an example:

C1 = (0.9, 1.0, 1.0, 1.0; 1.0, 1.0), (0.95, 1.0, 1.0, 1.0; 0.9, 0.9)

⊗ (0.7, 0.9, 0.9, 1.0; 1.0, 1.0), (0.8, 0.9, 0.9, 0.95; 0.9, 0.9)

=(0.63, 0.9, 0.9, 1.0; 1.0, 1.0), (0.76, 0.9, 0.9, 0.95; 0.9, 0.9)

The rest is computed in the same way for the other three decision-makers and

the average of these values is taken as the importance weight of C1 and shown

in Table 8.

Step 3: The linguistic terms of the importance of each alternative are de-

fined in Table 9. These terms are converted into interval type-2 fuzzy sets.
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Table 6: Importance of main criteria according to decision-makers

Decision Makers MC1 MC2 MC3 MC4 MC5

DM1 VH H MH H M

DM2 H VH H VH M

DM3 H VH VH H ML

DM4 VH VH MH MH MH

Table 7: Importance of sub-criteria according to decision-makers

Decision makers C1 C2 C3 C4 C5 C6 C7

DM1 H H MH MH ML M VH

DM2 MH H H VH M L H

DM3 H VH H MH M MH MH

DM4 VH MH VH H MH MH H

Decision makers C8 C9 C10 C11 C12 C13 C14

DM1 MH H M H M M MH

DM2 MH VH MH VH H MH ML

DM3 M VH ML MH M H ML

DM4 M H M H ML MH L

Step 4: The aggregate fuzzy sets for each alternative is calculated by mul-

tiplying interval type-2 fuzzy sets for performance by fuzzy importance weights

of criteria.

Step 5: The fuzzy set values for each alternative is converted into crisp

values using Centroid type-reduction and defuzzification methods.

Step 6: By considering the crisp values that we obtained, the alternatives

are ranked.

4.4. Linguistic weighted average (LWA) approach

For the LWA approach, all steps except Step 2 are carried out in the same

manner as described for the linguistic weighted sum approach as in the previ-

ous subsection. In Step 2, the main difference is the way of ‘computing with

words’ [16]. Each criterion is calculated based on its sub-criteria using formulas
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Table 8: The weighted trapezoidal interval type-2 sets for criteria

Criterion Interval type-2 fuzzy sets

C1 (0.57, 0.59, 0.84, 0.98; 1.0,1.0),(0.70, 0.84, 0.84, 0.90 ; 0.9,0.9)

C2 (0.55, 0.83, 0.83, 0.98; 1.0,1.0),(0.68, 0.83, 0.83, 0.90; 0.9,0.9)

C3 (0.61, 0.86, 0.86, 0.98; 1.0,1.0),(0.73, 0.86, 0.86, 0.89; 0.9,0.9)

C4 (0.56, 0.81, 0.81, 0.95; 1.0,1.0),(0.68, 0.81, 0.81, 0.88; 0.9,0.9)

C5 (0.27, 0.49, 0.49, 0.70; 1.0,1.0),(0.37, 0.49, 0.49, 0.60; 0.9,0.9)

C6 (0.28, 0.49, 0.49, 0.70; 1.0,1.0),(0.38, 0.49, 0.49, 0.60; 0.9,0.9)

C7 (0.44, 0.71, 0.71, 0.93; 1.0,1.0),(0.57, 0.71, 0.71, 0.82; 0.9,0.9)

C8 (0.26, 0.49, 0.49, 0.76; 1.0,1.0),(0.37, 0.49, 0.49, 0.62; 0.9,0.9)

C9 (0.54, 0.79, 0.79, 0.95; 1.0,1.0),(0.66, 0.79, 0.79, 0.87; 0.9,0.9)

C10 (0.17, 0.41, 0.41, 0.67; 1.0,1.0),(0.29, 0.41, 0.41, 0.53; 0.9,0.9)

C11 (0.50, 0.77, 0.77, 0.95; 1.0,1.0),(0.63, 0.77, 0.77, 0.86; 0.9,0.9)

C12 (0.28, 0.50, 0.50, 0.71; 1.0,1.0),(0.38, 0.50, 0.50, 0.60; 0.9,0.9)

C13 (0.35, 0.61, 0.61, 0.85; 1.0,1.0),(0.47, 0.61, 0.61, 0.73; 0.9,0.9)

C14 (0.05, 0.17, 0.17, 0.38; 1.0,1.0),(0.10, 0.17, 0.17, 0.26; 0.9,0.9)

shown in Section 3.2.2. All alternatives are evaluated in the same manner as

explained Section 4.3.

5. Experimental Results

The experiments are performed on an Intel i3 Windows 7 machine (2.4 GHz)

with 6 GB RAM.

5.1. Results from the Interval Type-2 Fuzzy Sets

The results from the interval type-2 fuzzy sets using LWS and LWA ap-

proaches are summarised in Table 10, providing the ranking of each alternative.
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Table 9: Performance evaluation of decision-makers

Alternatives
Decision

Makers
C1 C2 C3 C4 C5 C6 C7

Ikitelli

DM1 MG F MG G VG F F

DM2 G MG G G G MG MG

DM3 P MP F MG F P F

DM4 MP MG P G MG F MP

Edirnekapi

DM1 G G VG F G G VG

DM2 VG G G G G MG VG

DM3 VG VG G VG P G VG

DM4 G VG G MG P MG VG

Hasanpasa

DM1 G MG F F P F VG

DM2 MG G MP MG VP G G

DM3 MG G G MG P MG VG

DM4 G MG P G MP G V

Anadolu

DM1 F P F F F VP VP

DM2 MP MP P MG MG P VP

DM3 VP P MP MG VG P P

DM4 P F P G G MG MP

Kagithane

DM1 F MG F G P VG F

DM2 MG MG F MP P VG MP

DM3 MP MG G MG MP VG G

DM4 F MP P G P VG MG

Alternatives
Decision

Makers
C8 C9 C10 C11 C12 C13 C14

Ikitelli

DM1 MG G F VG G G G

DM2 G G MP VG MG VG G

DM3 F MP F VG G VG G

DM4 G P F G MG G VG

Edirnekapi

DM1 F F P F G VG G

DM2 MP MP VP MG VG VG VG

DM3 P VG P MG VG G VG

DM4 VP G P F VG VG VG

Hasanpasa

DM1 G G MP VP P F G

DM2 VG G P P VP G G

DM3 F G P P P MG G

DM4 MG MG VP MP P F G

Anadolu

DM1 P F F G G G MG

DM2 VP MG MP VG F F VG

DM3 VG F MP F MG MP VG

DM4 VG MP F MG MG G G

Kagithane

DM1 F MG G F P G G

DM2 MG VG VG P MP G VG

DM3 G MG VG F F G G

DM4 MG F VG MP MG G G

Both approaches yielded the same ranking for the alternatives. They show that

25



Ikitelli is the best garage alternative for placing the electric charging stations

with the crisp scores of 39.56 and 0.889 for the LWS and LWA approaches,

respectively. The worst alternative is Hasanpasa with the crisp scores of 24.66

and 0.554 for the LWS and LWA approaches, respectively.

Table 10: Found Scores for Alternatives

Alternatives
Score of LWS Score of LWA

Crisp Scores Rank Crisp Scores Rank

Ikitelli (A1) 39.56 1 0.889 1

Edirnekapi (A2) 36.66 2 0.824 2

Hasanpasa (A3) 24.66 5 0.554 5

Anadolu (A4) 32.68 3 0.734 3

Kagithane (A5) 28.79 4 0.647 4

5.2. Simulated Annealing Experiments

To investigate the impact of uncertainties involved in the linguistic evalua-

tion of bus garages, this approach has been extended in an attempt to improve

the results by using SA.

The main goal of this part of the study is to find out the best configuration

for fuzzy sets representing the importance of criteria to make it capable to cope

with the linguistic uncertainty better than fuzzy sets determined by decision-

makers at the beginning. The question of whether interval type-2 fuzzy systems

can enhance the ability to handle information has been tackled within different

fuzzy sets.

Each experiment is repeated for 30 trials generating 30 different solutions,

each from a single SA run. In the SA algorithm, the cooling schedule is geometric

which provides a slow and consistent reduction of temperature throughout a run,

and for each run, the cooling rate is computed using Equation 8.
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5.2.1. Parameter Tuning of SA

SA has three control parameters: Tinitial, Ttermination and MaxIts as de-

scribed in Section 3.3. It is a known phenomenon that tuning a metaheuristic

is likely to improve its performance. Hence, initial experiments are conducted

for obtaining the best settings for those SA parameters. Identifying the best

parameter setting for SA, the L9 Taguchi orthogonal arrays design [48] is used

to tune its parameters based on a factorial design. Each of the nine parameter

settings as provided in Table 11 is tested. The best SA configuration is detected

based on the main effects as illustrated in Figure 5, which is attained as 10,000

for P1, 5 × 10−6 for P2, and 1,000,000 for P3. Validation is carried out test-

ing the SA with those parameter settings and based on the RMSE scores, the

tuned SA outperforms all the other settings as presented in Table 11 with the

lowest RMSE score of 17.4308. Thus, this best parameter setting is fixed for

the algorithm in the remaining experiments.

Figure 5: Main effects plot based on the RMSE scores running SA with different parameter

settings, P1: Initial temperature, P2: Absolute temperature, P3: Maximum Evaluation.
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Table 11: RMSE scores obtained after running SA with each particular parameter configura-

tion (Conf.).

Conf.ID Tinitial Ttermination MaxIts RMSE

1 10,000 1× 10−5 100,000 17.4792

2 10,000 5× 10−6 500,000 17.4564

3 10,000 1× 10−6 1,000,000 17.4599

4 30,000 1× 10−5 500,000 17.4564

5 30,000 5× 10−6 1,000,000 17.4399

6 30,000 1× 10−6 100,000 17.5128

7 50,000 1× 10−5 1,000,000 17.4467

8 50,000 5× 10−6 100,000 17.4800

9 50,000 1× 10−6 500,000 17.4749

5.2.2. Analysing the Behavior of SA

As for the behaviour of the SA during the search process, Figure 6 provides

the progress-plot of mean RMSE of the current solution in time (based on

iteration) averaged over 30 runs for ID1 for two of the aggregation approaches

as an example. The RMSE score fluctuates radically during the initial phases

of the search process. This denotes that large moves are accepted initially as

expected, and this behaviour settles down in time and the algorithm seems to

reach a plateau as expected.

5.3. Results from the Proposed Approach

The experiments are repeated for 30 trials with the best SA settings for both

of the aggregation approaches. Each solution from SA is used to generate new

fuzzy sets for the importance of criteria.
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Table 12: The widths of fuzzy sets for the importance of criteria for each solution generated

by SA when the linguistic weighted sum is used. Each solution is reported along with the

corresponding RMSE score and rank, where ID#: solution ID, al1: Lower bound - first value,

al4: Lower bound - forth value. The top 3 and worst solutions’ RMSE scores and ranks are

highlighted in bold.

al1 al4 al1 al4 al1 al4 al1 al4 al1 al4 al1 al4

LT ID1 ID6 ID11 LT ID16 ID21 ID26

VL 0 0.05836 0 0.08276 0 0.07915 VL 0 0.06706 0 0.07156 0 0.08782

L 0.03723 0.23247 0.02223 0.24425 0.0052 0.29398 L 0.04636 0.24606 0.00192 0.26809 0.0413 0.21112

ML 0.10015 0.46082 0.17039 0.46273 0.18723 0.41967 ML 0.11348 0.45435 0.1293 0.41685 0.16749 0.46626

M 0.34473 0.63888 0.33439 0.63706 0.38193 0.65788 M 0.31516 0.6139 0.39887 0.68545 0.30181 0.68409

MH 0.51386 0.87788 0.56944 0.82285 0.58952 0.86163 MH 0.54423 0.87498 0.52734 0.82102 0.54038 0.89684

H 0.72363 0.9587 0.7541 0.98095 0.73024 0.95502 H 0.78975 0.9787 0.78567 0.98808 0.75818 0.97417

VH 0.93333 1 0.92346 1 0.90414 1 VH 0.91707 1 0.90365 1 0.92318 1

RMSE 17.4405 17.4462 17.4571 RMSE 17.4344 17.4803 17.4314

Rank 11 13 22 Rank 6 30 4

ID2 ID7 ID12 ID177 ID22 ID27

VL 0 0.07142 0 0.06834 0 0.07871 VL 0 0.08828 0 0.07278 0 0.06178

L 0.04049 0.2325 0.00252 0.29371 0.01397 0.27183 L 0.03726 0.29648 0.03004 0.24235 0.02399 0.28227

ML 0.15341 0.49908 0.13785 0.49129 0.15269 0.49048 ML 0.17367 0.42086 0.11437 0.47455 0.12042 0.48231

M 0.34811 0.67832 0.31235 0.68949 0.33016 0.6446 M 0.36903 0.60686 0.39255 0.62412 0.34525 0.65792

MH 0.54543 0.86168 0.56592 0.8024 0.54784 0.81556 MH 0.50942 0.81904 0.50637 0.85585 0.56732 0.8432

H 0.71211 0.97854 0.7636 0.98243 0.72075 0.99109 H 0.74577 0.99004 0.75234 0.96415 0.77377 0.99852

VH 0.9024 1 0.90237 1 0.90977 1 VH 0.90237 1 0.92546 1 0.91781 1

RMSE 17.4758 17.4569 17.4695 RMSE 17.4620 17.4267 17.4329

Rank 29 20 27 Rank 24 2 5

ID3 ID8 ID13 ID18 ID23 ID28

VL 0 0.06471 0 0.07054 0 0.09973 VL 0 0.08345 0 0.07907 0 0.05363

L 0.00581 0.25509 0.00449 0.25838 0.02306 0.25347 L 0.02809 0.22826 0.02038 0.24686 0.0484 0.27091

ML 0.16066 0.41482 0.10292 0.46336 0.18163 0.43584 ML 0.10047 0.45658 0.16177 0.48524 0.11269 0.42754

M 0.34916 0.68507 0.38877 0.65459 0.38612 0.65551 M 0.31662 0.67918 0.31267 0.65832 0.3096 0.62875

MH 0.57888 0.81423 0.5546 0.88908 0.50505 0.86849 MH 0.58294 0.80202 0.58489 0.84826 0.59046 0.85061

H 0.72294 0.99959 0.76 0.99593 0.70981 0.95532 H 0.76615 0.99878 0.79723 0.98759 0.72032 0.97482

VH 0.92401 1 0.93836 1 0.92023 1 VH 0.90285 1 0.9235 1 0.92623 1

RMSE 17.4624 17.4582 17.4487 RMSE 17.4407 17.4510 17.4381

Rank 25 23 15 Rank 12 16 10

ID4 ID9 ID14 ID19 ID24 ID29

VL 0 0.08805 0 0.09234 0 0.07728 VL 0 0.08988 0 0.08071 0 0.07792

L 0.0264 0.22736 0.04474 0.20775 0.00185 0.27067 L 0.01096 0.25507 0.03218 0.26899 0.03928 0.26156

ML 0.1887 0.45033 0.13031 0.43659 0.15824 0.41003 ML 0.16675 0.46812 0.14007 0.43315 0.17859 0.45037

M 0.38135 0.64086 0.38392 0.67858 0.36314 0.6425 M 0.35182 0.65345 0.30407 0.60249 0.33293 0.61343

MH 0.53871 0.87719 0.54973 0.85516 0.57152 0.8905 MH 0.52898 0.80211 0.59085 0.85014 0.53504 0.86442

H 0.76667 0.98073 0.76201 0.96625 0.7615 0.95153 H 0.70953 0.97879 0.76153 0.98733 0.713 0.97817

VH 0.90982 1 0.92588 1 0.92999 1 VH 0.91148 1 0.90853 1 0.90797 1

RMSE 17.4556 17.4346 17.4305 RMSE 17.4570 17.3974 17.4479

Rank 18 7 3 Rank 21 1 14

ID5 ID10 ID15 ID20 ID25 ID30

VL 0 0.08531 0 0.08171 0 0.09523 VL 0 0.09022 0 0.08728 0 0.09322

L 0.02848 0.29221 0.01997 0.26076 0.03729 0.25934 L 0.02806 0.28003 0.03211 0.25177 0.04754 0.24385

ML 0.16226 0.48485 0.17744 0.40947 0.16422 0.4855 ML 0.13755 0.49616 0.1078 0.48675 0.13352 0.45673

M 0.33274 0.66871 0.34997 0.68698 0.30717 0.68502 M 0.35659 0.67828 0.32552 0.61039 0.3192 0.69263

MH 0.59669 0.88884 0.52779 0.89454 0.53659 0.81601 MH 0.53507 0.87554 0.5415 0.83595 0.544 0.81348

H 0.70881 0.99437 0.72383 0.96292 0.79551 0.98406 H 0.71567 0.96685 0.74822 0.96938 0.74184 0.95353

VH 0.91276 1 0.94355 1 0.92784 1 VH 0.90213 1 0.92322 1 0.90431 1

RMSE 17.4711 17.4560 17.4514 RMSE 17.4355 17.4355 17.4361

Rank 28 19 17 Rank 8 26 9
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(a) (b)

Figure 6: The progress-plot of mean RMSE, averaged over 30 trials, in time (iteration) for the

SA algorithm applied to ID1 using the (a) linguistic weighted sum, and (b) linguistic weighted

average approaches.

5.3.1. Linguistic weighted sum approach

For the linguistic weighted sum approach, the fuzzy sets obtained for each

of the solutions from a trial are provided in Table 12. Considering the RMSE

scores, the top three solutions are ID24, ID22, and ID14 yielding the best RMSE

scores of 17.3974, 17.4267, and 17.4305 respectively, while ID21 is the worst with

an RMSE score of 17.4803. All those solutions indicating the fuzzy sets for the

importance of criteria are further illustrated in Figure 7. We observe almost no

similarities between any of the fuzzy sets for the linguistic terms for the top three

ranking solutions with the lowest RMSE scores. Moreover, comparing the best

and worst solutions ID24 and ID21, respectively, one can notice that there is a

slight similarity in the representation for the linguistic term ‘Medium’, however

almost none whatsoever for the other terms. Therefore, based on our observa-

tions, evaluating results considering each fuzzy set produced by SA separately

is not viable without considering all of the membership functions together and

looking into the final ranking of alternatives obtained using the overall approach.

5.3.2. Linguistic weighted average approach

For the linguistic weighted average approach, the fuzzy sets for the impor-

tance of criteria generated by SA are presented in Table 13. Considering the

RMSE scores, the top three solutions obtained from this approach are ID27,

ID25, and ID30 yielding the best RMSE scores of 0.3083, 0.3083, and 0.3085
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(a)

(b)

(c)

(d)

Figure 7: The top three and worst membership functions for the importance of criteria gener-

ated by simulated annealing from various trials are denoted as (a) ID24, (b) ID22, (c) ID14 and

(d) ID21, where the linguistic weighted sum approach is used. The lower level of trapezoidal

membership function for each linguistic variable is denoted in dashed-line style.
31



respectively, while ID18 is the worst with an RMSE score of 0.3091. In Figure 8

(a) ID27, (b) ID25 and (c) ID30, we can observe that the new lower bound of

the linguistic term ‘Very Low’ is narrower when compared to ID18 as illustrated

in Figure 8 (d). The impact of the differences between membership functions

embedded into solutions ID27, ID25, ID30, and ID18 can be seen in Table 13 in

terms of RMSE scores. The results show that two different solutions can yield

the same RMSE value, e.g., ID27 and ID25. Looking at the generated inter-

val type-2 fuzzy sets, one can observe that the largest differences occur for the

linguistic terms ‘Medium High’ between those two solutions. Thus, once again,

there is not much to observe considering each membership function separately

as they interact with each other. Hence, we need to consider all membership

functions together and look into the final ranking of alternatives obtained using

the overall approach.

5.3.3. Performance comparison of LWS and LWA approaches

We use the mean ranking scores, averaged over the 30 trials for each al-

ternative garage to comment on the results as illustrated in Table 14 and 15

when LWS and LWA are used, respectively. As expected, SA obtains a solution

with different settings for the membership functions and so leading to different

ranking scores for garages considering each solution from a trial. One tailed

Wilcoxon signed-rank test is applied using the normalised RMSE values from

the trials when LWS and LWA are used in SA improved fuzzy approach.

H0 : PLWS = PLWA

HA : PLWS < PLWA

where H0 represents the null hypothesis which asserts that there is no difference

between the medians of the two normalised RMSE distributions. HA represents

the alternative hypothesis, i.e, the median normalised RMSE value of the LWS

approach is different than the median normalised RMSE value of the LWA ap-

proach. The confidence level (significance level) is set to 95% (p-value under
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Table 13: The widths of fuzzy sets for the importance of criteria for each solution generated

by SA when the linguistic weighted average is used. Each solution is reported along with the

corresponding RMSE score and rank, where ID#: solution ID, al1: Lower bound - first value,

al4: Lower bound - forth value. The top 3 and worst solutions’ RMSE scores and ranks are

highlighted in bold.

al1 al4 al1 al4 al1 al4 al1 al4 al1 al4 al1 al4

LT ID1 ID6 ID11 LT ID16 ID21 ID26

VL 0 0.0813 0 0.0777 0 0.0527 VL 0 0.0535 0 0.0551 0 0.0976

L 0.0292 0.2729 0.0028 0.2180 0.0045 0.2616 L 0.0142 0.2455 0.0146 0.2230 0.0279 0.2972

ML 0.1113 0.4014 0.1953 0.4939 0.1714 0.4126 ML 0.1825 0.4820 0.1090 0.4391 0.1668 0.4261

M 0.3252 0.6288 0.3721 0.6706 0.3523 0.6299 M 0.3195 0.6740 0.3871 0.6402 0.3888 0.6780

MH 0.5192 0.8542 0.5644 0.8717 0.5734 0.8998 MH 0.5729 0.8598 0.5843 0.8296 0.5859 0.8469

H 0.7087 0.9875 0.7572 0.99789 0.7674 0.9609 H 0.7155 0.9746 0.7741 0.9841 0.7733 0.9654

VH 0.9206 1 0.9317 1 0.9480 1 VH 0.9031 1 0.9028 1 0.9346 1

RMSE 0.3089 0.3090 0.30869 RMSE 0.3086 0.3088 0.3088

Rank 20 27 7 Rank 6 15 13

ID2 ID7 ID12 ID17 ID22 ID27

VL 0 0.0762 0 0.0848 0 0.0569 VL 0 0.0830 0 0.0568 0 0.0613

L 0.0484 0.2798 0.0292 0.2940 0.0019 0.2189 L 0.0364 0.2588 0.0001 0.2024 0.0487 0.2652

ML 0.1060 0.4905 0.1597 0.4533 0.1647 0.4306 ML 0.1344 0.4570 0.1769 0.4741 0.1646 0.4259

M 0.3606 0.6818 0.3006 0.6538 0.3961 0.6907 M 0.3532 0.6172 0.3732 0.6319 0.3860 0.6537

MH 0.5981 0.8378 0.5394 0.8764 0.5447 0.8589 MH 0.5313 0.8287 0.5407 0.8537 0.5462 0.8685

H 0.7778 0.9903 0.7645 0.9590 0.7963 0.9529 H 0.7096 0.9531 0.7846 0.9899 0.7531 0.9503

VH 0.9142 1 0.9498 1 0.9105 1 VH 0.9238 1 0.9131 1 0.9407 1

RMSE 0.3087 0.3089 0.3088 RMSE 0.3089 0.3089 0.3083

Rank 9 18 14 Rank 23 22 1

ID3 ID8 ID13 ID18 ID23 ID28

VL 0 0.0832 0 0.0926 0 0.0509 VL 0 0.0808 0 0.0850 0 0.0512

L 0.0309 0.2730 0.0342 0.2305 0.0027 0.2186 L 0.0059 0.2034 0.0456 0.2273 0.0116 0.2897

ML 0.1542 0.4748 0.1234 0.4462 0.1330 0.4950 ML 0.1556 0.4353 0.1980 0.4545 0.1686 0.4964

M 0.3557 0.6983 0.3773 0.6834 0.3296 0.6898 M 0.3583 0.6254 0.3825 0.6623 0.3602 0.6647

MH 0.5097 0.8680 0.5891 0.8958 0.5225 0.8687 MH 0.5065 0.8146 0.5260 0.8696 0.5131 0.8777

H 0.7113 0.9708 0.7362 0.9541 0.7772 0.9564 H 0.7429 0.9928 0.7010 0.9864 0.7827 0.9837

VH 0.9373 1 0.9120 1 0.9187 1 VH 0.9151 1 0.9423 1 0.9127 1

RMSE 0.3085 0.3089 0.3089 RMSE 0.3091 0.3087 0.3090

Rank 4 21 24 Rank 30 12 28

ID4 ID9 ID14 ID19 ID24 ID29

VL 0 0.0904 0 0.0663 0 0.0901 VL 0 0.0948 0 0.0979 0 0.077

L 0.0259 0.2919 0.0031 0.2731 0.0153 0.2246 L 0.0271 0.2792 0.0486 0.2191 0.0454 0.2584

ML 0.1482 0.4118 0.1754 0.4278 0.1295 0.4084 ML 0.1506 0.4481 0.1783 0.4238 0.1237 0.4160

M 0.3551 0.6974 0.3042 0.6897 0.3614 0.6336 M 0.3046 0.6772 0.3807 0.6175 0.3610 0.6216

MH 0.5567 0.8507 0.5846 0.8633 0.5394 0.8045 MH 0.5519 0.8237 0.5786 0.8999 0.5537 0.8832

H 0.7972 0.9778 0.7638 0.9958 0.7043 0.9589 H 0.7047 0.9569 0.7866 0.9915 0.7833 0.9556

VH 0.9475 1 0.9412 1 0.9217 1 VH 0.9397 1 0.9387 1 0.9005 1

RMSE 0.3088 0.3087 0.3089 RMSE 0.3086 0.3088 0.3090

Rank 16 8 19 Rank 5 17 26

ID5 ID10 ID15 ID20 ID25 ID30

VL 0 0.0781 0 0.0569 0 0.0916 VL 0 0.0946 0 0.0721 0 0.0711

L 0.0056 0.2791 0.0181 0.2108 0.0012 0.2934 L 0.0356 0.2736 0.0124 0.2553 0.0136 0.2180

ML 0.1831 0.4015 0.1304 0.4296 0.1482 0.4227 ML 0.1107 0.4851 0.1761 0.4511 0.1918 0.4806

M 0.3304 0.6907 0.3924 0.6627 0.3742 0.6610 M 0.3004 0.6792 0.3852 0.6353 0.3218 0.6669

MH 0.5353 0.8662 0.5578 0.8119 0.5402 0.8449 MH 0.5397 0.8988 0.5705 0.8131 0.5505 0.8659

H 0.7545 0.9671 0.7424 0.9675 0.7291 0.9821 H 0.7503 0.9734 0.7852 0.9652 0.7721 0.9614

VH 0.9468 1 0.9198 1 0.9120 1 VH 0.9490 1 0.9037 1 0.9237 1

RMSE 0.3090 0.3091 0.3087 RMSE 0.3087 0.3083 0.3085

Rank 25 29 10 Rank 11 2 3
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Figure 8: The top three and worst membership functions for the importance of criteria gener-

ated by simulated annealing from various trials are denoted as (a) ID27, (b) ID25, (c) ID30,

and (d) ID18 where the linguistic weighted average approach is used. The lower level of

trapezoidal membership function for each linguistic variable is denoted in dashed-line style.34



0.05). The Wilcoxon signed-rank test illustrated that there is no statistically

significant performance difference between the SA improved fuzzy approaches

using LWS and LWA. The overall ranking of garages for each solution is con-

sistently the same with their ranking using the mean scores, regardless of the

aggregation method. More importantly, the ranking of garages obtained from

the standard interval type-2 fuzzy sets as illustrated in Table 10 is completely

different than the ranking of garages obtained from the fuzzy approach improved

by SA. type-2 neutrosophic number

The interval type-2 fuzzy sets improved by SA identified that Edirnekapi is

the best garage for the electric charging stations and electric buses. Having a

mean value of 34.70 for LWS approach and 0.958 for LWA approach, Edirnekapi

garage is slightly more appropriate than Ikitelli garage, which has a mean value

of 34.22 and 0.824, respectively. Edirnekapi garage is the closest garage to

a BRT station. Edirnekapi BRT station is one of the most crowded BRT sta-

tions, especially during peak hours. In terms of economic indicators, Edirnekapi

garage has high investment return and revenue potential due to its favorable and

close location to dense passenger areas. Its close location to the power grid is

another key factor making this location quite appropriate by the experts. Since

it already accommodates only the BRT vehicles and has state-of-the-art main-

tenance and repair facilities inside, accommodating new charging stations and

electric vehicles will not necessitate huge transformation costs. Enhanced secu-

rity infrastructure and expandability add to the capacity of this garage to being

able to host electric vehicles. In addition, Table 14 and Table 15 demonstrate

that the RMSE scores for all results obtained through improvement by SA re-

gardless of the aggregation method used are better than the result achieved by

the interval type-2 fuzzy sets without using SA as indicated by the 0th row

in the tables. The minimum RMSE score is achieved by 24th solution found

as 17.3974 for linguistic weighted sum and 27th solution found as 0.967 for

linguistic weighted average, respectively.
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Table 14: Solutions of a linguistic weighted sum approach for ranking potential charging

stations using the fuzzy sets obtained by SA. The top three solutions from SA based on RMSE

are highlighted and the top three alternatives ranked by the fuzzy approach are shown in bold,

italic and underline, respectively from the first to third, for those solutions. The 0th row is

obtained from the interval type-2 fuzzy sets directly without applying SA for improvement.

Solution ID RMSE Ikitelli Edirnekapi Hasanpasa Anadolu Kagithane Rank

0 17.7281 39.56 36.66 24.66 32.68 28.79 31

1 17.4405 34.11 34.62 26.92 26.70 29.72 11

2 17.4758 34.61 35.06 27.26 27.06 30.14 29

3 17.4624 34.60 35.03 27.27 27.06 30.14 25

4 17.4556 33.94 34.43 26.68 26.66 29.47 18

5 17.4711 33.96 34.43 26.71 26.67 29.50 28

6 17.4462 34.58 35.04 27.19 27.15 30.04 13

7 17.4569 34.57 35.01 27.20 27.14 30.04 20

8 17.4582 34.75 35.21 27.39 27.21 30.25 23

9 17.4346 34.12 34.62 26.87 26.73 29.68 7

10 17.4560 34.79 35.29 27.40 27.23 30.28 19

11 17.4571 34.77 35.25 27.40 27.22 30.26 22

12 17.4695 34.14 34.60 26.92 26.76 29.72 27

13 17.4487 34.26 34.74 27.07 26.85 29.86 15

14 17.4305 34.12 34.61 26.89 26.74 29.69 3

15 17.4514 34.13 34.60 26.90 26.75 29.71 17

16 17.4344 33.41 33.97 26.56 25.97 29.25 6

17 17.4620 33.44 33.98 26.58 25.99 29.27 24

18 17.4407 33.38 33.97 26.53 25.93 29.21 12

19 17.4570 33.39 33.96 26.54 25.95 29.22 21

20 17.4355 34.38 34.84 27.04 27.02 29.86 8

21 17.4803 34.38 34.83 27.05 27.02 29.87 30

22 17.4267 33.92 34.45 26.76 26.58 29.54 2

23 17.4510 33.94 34.45 26.78 26.60 29.56 16

24 17.3974 34.44 34.88 27.07 27.00 29.93 1

25 17.4644 34.55 35.04 27.23 27.09 30.07 26

26 17.4314 35.09 35.49 27.58 27.48 30.50 4

27 17.4329 34.45 34.91 27.06 27.00 29.93 5

28 17.4381 33.95 34.43 26.74 26.64 29.53 10

29 17.4479 33.97 34.44 26.77 26.65 29.55 14

30 17.4361 34.54 35.01 27.23 27.09 30.07 9

Mean 17.4483 34.22 34.70 26.99 26.80 29.79 -

Std 0.02 0.44 0.41 0.29 0.40 0.35 -
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Table 15: Solutions of a linguistic weighted average approach for ranking potential charging

stations using the fuzzy sets obtained by SA. The top three solutions from SA based on RMSE

are highlighted and the top three alternatives ranked by the fuzzy approach with LWA are

shown in bold, italic and underline, respectively from the first to third, for those solutions.

The 0th row is obtained from the interval type-2 fuzzy sets directly without applying SA for

improvement.

Solution ID RMSE Ikitelli Edirnekapi Hasanpasa Anadolu Kagithane Rank

0 0.3181 0.8890 0.8238 0.5542 0.7344 0.6470 31

1 0.3089 0.8256 0.9626 0.6140 0.4144 0.8243 20

2 0.3087 0.8426 0.9529 0.6199 0.4360 0.8414 9

3 0.3085 0.8373 0.9511 0.6180 0.4137 0.8360 4

4 0.3088 0.8116 0.9546 0.6434 0.4210 0.8102 16

5 0.3090 0.8087 0.9525 0.6401 0.4366 0.8073 25

6 0.3090 0.8214 0.9595 0.6501 0.4265 0.8199 27

7 0.3089 0.8175 0.9570 0.6467 0.4444 0.8159 18

8 0.3089 0.8326 0.9619 0.6310 0.4486 0.8314 21

9 0.3087 0.8260 0.9589 0.6284 0.4238 0.8247 8

10 0.3091 0.8431 0.9684 0.6368 0.4161 0.8420 29

11 0.3086 0.8377 0.9651 0.6338 0.4299 0.8365 7

12 0.3088 0.8143 0.9521 0.6213 0.4334 0.8128 14

13 0.3089 0.8113 0.9676 0.6189 0.4131 0.8097 24

14 0.3089 0.8217 0.9565 0.6259 0.4405 0.8203 19

15 0.3087 0.8178 0.9541 0.6235 0.4181 0.8163 10

16 0.3086 0.8292 0.9538 0.6136 0.4432 0.8278 6

17 0.3089 0.8247 0.9519 0.6115 0.4203 0.8233 23

18 0.3091 0.8393 0.9585 0.6182 0.4136 0.8380 30

19 0.3086 0.8341 0.9561 0.6158 0.4258 0.8328 5

20 0.3087 0.8119 0.9608 0.6479 0.4290 0.8105 11

21 0.3088 0.8091 0.9580 0.6446 0.4475 0.8076 15

22 0.3089 0.8186 0.9672 0.6147 0.4357 0.8173 22

23 0.3087 0.8151 0.9640 0.6131 0.4152 0.8137 12

24 0.3088 0.8297 0.9515 0.6351 0.4171 0.8283 17

25 0.3083 0.8252 0.9665 0.6320 0.4324 0.8237 2

26 0.3088 0.8421 0.9556 0.6413 0.4228 0.8408 13

27 0.3083 0.8346 0.9533 0.6382 0.4397 0.8333 1

28 0.3090 0.8118 0.9575 0.6244 0.4439 0.8104 28

29 0.3090 0.8090 0.9551 0.6221 0.4193 0.8075 26

30 0.3085 0.8210 0.9633 0.6293 0.4121 0.8194 3

Mean 0.3088 0.8242 0.9583 0.6284 0.4278 0.8228 -

Std 0.0002 0.0111 0.0053 0.0118 0.0116 0.0112 -
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Ikitelli garage is differentiated from the other garages with its substantially

larger garage space (see Table 1). This makes it quite suitable for the accom-

modation of the new electric vehicles and charging infrastructure. However,

in terms of economic criteria, Ikitelli garage lags behind the performance of

Edirnekapi garage. This raises the problem of economic viability for the in-

vestment, even though the capacity characteristics are rather favorable. Ikitelli

garage does not perform well in terms of service area characteristics, too. It is

not close to bus or BRT stations, nor does it have sufficiently available renewable

energy sources. Still, the above-average performance in other energy-related cri-

teria such as the distance from the power grid, reliability of electric power and

distance from heavy electricity consumption makes it favorable as a location for

the new electric vehicles and charging infrastructure.

Kagithane garage is moderately appropriate (with a mean value of 29.79

and 0.823 for both approaches, respectively) as a potential location. Its poor

performance in economic criteria and having inadequate capacity is balanced

with a relatively better performance in energy aspects. Kagithane garage has

the second largest CNG station for a public bus operator in Europe after Madrid.

Its customized design specifically for CNG vehicles makes it less appropriate for

accommodating electric vehicles. It is located at the bottom of a valley and has

the highest slope connecting it with the main roads, hence makes it considerably

unfavorable as a location for electric vehicles.

Hasanpasa and Anadolu garages are the worst options having quite close

mean values produced by both of the aggregation approaches. The findings

are consistent with their actual characteristics. They are both located in the

Asian part of Istanbul, which makes them away from dense passenger areas,

having negative implications in terms of economic performance. While Anadolu

garage has a relatively larger garage area compared to Hasanpasa garage, it is

much far away from bus and BRT lines. Hasanpasa has the smallest garage

area amongst all garages, therefore, the least suitable one in terms of capacity

considerations. Although it is quite close to one of the terminal BRT stations

and already accommodates BRT vehicles, the negative values in other criteria
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offset the gain from this positive aspect.

To summarize, the proposed multi-criteria decision making fuzzy approach

improved by SA consistently provides the same garage as the best option for

all runs. Considering that SA performing a search based on random moves is

a stochastic metaheuristic which could yield a different solution at each run,

having this level of consistency with the results increases our confidence in the

reliability of our approach. More importantly, the ranking of the alternative

garages for placing the battery charging stations resulting from our proposed

approach is also confirmed by the IETT experts. Another observation is that

there is no performance difference between the two aggregation methods, lin-

guistic weighted sum and average used within the interval type-2 fuzzy sets as

they provide the same ranking.

5.4. Type-1 fuzzy approach versus proposed interval type-2 fuzzy-based ap-

proaches

Interval Type-2 fuzzy sets [47] contains the type-1 fuzzy sets as in [49], inves-

tigated in this study. In interval type-2 fuzzy, foot print of uncertainty (FOU)

that is somewhat the width of the interval represents the level of uncertainty

characterised by the problem. Through the use of SA, we reduce this varying

width narrowing the distance between the upper and lower bound of the inter-

val type-2 fuzzy set for each linguistic variable towards a type-1 fuzzy set. SA

improves the interval type-2 fuzzy sets based on RMSE and so should be able

to return type-1 fuzzy set as a solution being part of the search space, if type-1

fuzzy set produces the best RMSE value. Hence, we compare the type-1 fuzzy

approach using the sets provided as in [49] and proposed approaches, first look-

ing into the ranking of alternatives, and then the ‘best’ RMSE values achieved

by them.

Table 16 compares the crisp scores obtained for each alternative using both

interval type-2 fuzzy approaches including the one improved by SA based on

LWS and LWA aggregation methods and type-1 fuzzy approach [49]. The results

demonstrate that the top three ranking of alternatives are the same using the
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approach based on type-1 fuzzy sets as well as the proposed approach based on

the interval type-2 fuzzy sets improved by SA, as expected.

Table 16: Scores obtained for each alternative using the approaches type-1 fuzzy, interval

type-2 fuzzy, and interval type-2 fuzzy improved by SA using different aggregation methods.

Type-1 fuzzy [49] Interval type-2 fuzzy Interval type-2 fuzzy improved by SA

Alternatives
Crisp

scores

Rank
LWS

scores

Rank
LWA

scores

Rank
LWS

based SA

Rank
LWA

based SA

Rank

Ikitelli (A1) 17.39 2 39.56 1 0.8890 1 34.44 2 0.8346 2

Edirnekapi (A2) 17.51 1 36.66 2 0.8238 2 34.88 1 0.9533 1

Hasanpasa (A3) 13.87 5 24.66 5 0.5542 5 27.07 4 0.6382 4

Anadolu (A4) 13.82 4 32.68 3 0.7344 3 27.00 5 0.4397 5

Kagithane (A5) 15.23 3 28.79 4 0.6470 4 29.93 3 0.8333 3

The maximum score for each of the five alternative is calculated assigning

each criterion to Very High using each fuzzy approach. This serves as a reference

point for each approach to compute the RMSE value for a given set of scores

for the alternatives. The crisp scores are then normalised for each approach

yielding the results in Table 17. The results show that the interval type-2 fuzzy

set improved by SA using the LWS aggregation method is obtained the best

RMSE value of 0.295 among the all fuzzy approach. The type-1 fuzzy approach

turns out to be the worst one achieving the RMSE value of 0.399. Moreover,

because of the sharp decrease in the crisp score of Anadolu (A4), the interval

type-2 fuzzy improved by SA along with LWA performs slightly worse than

interval type-2 fuzzy using LWA with the RMSE value of 0.296.

Developing a type-1 fuzzy model takes almost the same time as developing

the interval type-2 fuzzy model. In this study, we enabled simulated annealing

to search for the best interval type-2 fuzzy sets, hence this requires extra time.

Each trial using SA has taken about 100 minutes on the machines where the

experiments are performed.
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Table 17: Normalised scores and RMSE values for the approaches; type-1 fuzzy, interval type-2

fuzzy, and interval type-2 fuzzy improved by SA using different aggregation methods.

Approaches A1 A2 A3 A4 A5 RMSE

Type-1 fuzzy [49] 0.104 0.101 0.211 0.213 0.165 0.399

Interval type-2 fuzzy- LWS 0.034 0.060 0.242 0.107 0.165 0.349

Interval type-2 fuzzy- LWA 0.012 0.031 0.199 0.071 0.125 0.296

Interval type-2 fuzzy improved by SA - LWS 0.038 0.034 0.135 0.090 0.434 0.295

Interval type-2 fuzzy improved by SA - LWA 0.027 0.002 0.131 0.314 0.028 0.317

6. Conclusion

The city councils have been increasingly valuing sustainable transportation

options considering the societal and environmental benefits and so they have

been changing their fleets towards electric vehicles. Hence, the selection of

the best location for the deployment of the electric charging stations based

on the existing infrastructure has become a key issue to be addressed by the

decision-makers in many city councils. This study applies an interval type-2

fuzzy sets improved by simulated annealing (SA) using the linguistic weighted

sum and average to solve such a real-world problem instance provided by IETT

of Istanbul.

The best configuration for SA is obtained through parameter tuning and it

is run for 30 times obtaining 30 different improved membership functions for

the importance of criteria. Based on the results, it has been observed that

the shape of all membership functions plays a significant role in modeling the

problem effectively, and improving them via a search method, such as simulated

annealing is possible achieving potentially more reliable results. Based on the

mean RMSE score averaging all results from SA over 30 runs show that the

proposed approach ranks the options for the garage locations as Edirnekapi,

Ikitelli, Kagithane, Hasanpasa, and Anadolu, respectively, from the best to

the worst alternative for IETT to install the electric charging stations. The

viability and reliability of the proposed approach have been verified by the

experts for this particular case study as they have suggested the same ranking
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as the approach. The proposed method provides a feasible approach for tackling

this facility location problem and also it is reusable being applicable to other

multi-criteria decision making problems. The case study represents a unique

application in public sector in the context of a local municipal bus operator,

which has been largely overlooked up until now.

There is a growing body of work on the design and development of general-

purpose search methods with reusable components, which has a good cross-

domain performance. The goal in this line of research is raising the level of

generality of search methods enabling them to be applicable to multiple prob-

lem domains with no (the least) modification [50]. The proposed approach is

sufficiently general and so reusable. It can be applied to any real world multi-

criteria decision making problem, ranging from material selection to supplier

selection problems.

Hence, based on the same line of thinking as in search methods, the proposed

approach can be tested on various MCDM problems to see its cross-domain per-

formance and level of generality. Interestingly, the best-known search algorithm

with the best cross-domain performance has been changing. That creates an-

other opportunity, that is replacing simulated annealing with one of the top

cross-domain search algorithms is likely to generate an improved performance

which is also worth testing as a future study.
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