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Highlights

Feature Grouping and Selection: A Graph-based Approach

Ling Zheng, Fei Chao, Neil Mac Parthaláin, Defu Zhang, Qiang Shen

• A novel graph-based feature grouping framework with different types
of feature relationships.

• An undirected graph representing features as vertices with edges.

• Both straightforward and metaheuristic search methods for graph op-
timisation.
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Abstract

Most current feature selection techniques are focused on the incremental in-
clusion or exclusion of single individual features with respect to the candidate
feature subset(s). The use of such approaches, where only the individual in-
clusion/exclusion of features is considered, means that information such as
the collaborative contribution or correlation between features may be lost.
The result is that the final selected feature subset may contain high levels
of inter-feature redundancy, assuming that the key information embedded in
the original feature set can still be retained. To address this problem, a gen-
eral framework based on graph processing and three-way mutual information
metrics is proposed in this paper that works by clustering similar features
into groups, from which representative features are then drawn. Two dif-
ferent feature selection techniques based on this framework are presented:
one by straightforward selection of representative features from the result-
ing feature groups and the other via a music-inspired metaheuristic search.
Comparative experimental evaluation against traditional feature selection
techniques over a diverse range of 20 benchmark datasets demonstrates the
efficacy of the proposed approach. With these implementations, significant
performance gains can be made in terms of classification accuracy in general
and dimensionality reduction in particular while retaining feature semantics
and considerably lessening the redundancy in the returned feature subsets.
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tree, harmony search
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1. Introduction

Feature selection (FS) [13] is becoming an increasingly necessary step as
the problem of dataset dimensionality grows ever more pervasive for real-
world problems. Traditionally used in areas such as data mining, pattern
recognition, and machine learning, FS is now being widely applied in many
other domains [25]. This is because complex problems often contain large
numbers of features, which may result in considerable computational over-
head for data-driven knowledge discovery and decision-making tasks [17]. In
particular, certain features may be either irrelevant or redundant and there-
fore offer no contribution when building robust predictive models. These
features may involve a significant amount of noise or even be misleading and
hence adversely affect the accuracy of a given model [7]. FS works by selecting
a subset of features relevant to the problem at hand from the full set of avail-
able features and therefore preserves the original underlying semantics of the
data. It can be used to remove irrelevant or redundant features, including
noisy ones. FS techniques not only indirectly alleviate the computational
overhead for subsequent learning mechanisms and use learned models but
also offer more compact representations and reductions in data acquisition
and storage requirements [29].

FS is considered to be an NP-hard problem [4]. Given a data set with n
dimensions, FS techniques attempt to search for an ”optimal” feature subset
from 2n candidate subsets. An exhaustive search can be used to guarantee
a global optimum, but this also leads to an exponential increase in the com-
putational time complexity. This means that exhaustive methods are often
computationally intractable for feature subset searches where the datasets
are large. One of the most common approaches to addressing this drawback
is the greedy hill climbing strategies, where single features that result in the
greatest increase in the subset score are greedily added to the candidate sub-
set (i.e., the emerging subset of selected features). However, many of these
approaches can easily become trapped in local optima. Alternatives that
employ metaheuristics may facilitate escape from local regions and achieve,
or at least approach the achievement of, the global optimum. Such work in-
cludes genetic algorithm(s) (GAs) [15], memetic algorithms (MAs) [12], par-
ticle swarm optimisation (PSO) [23], harmony search (HS) [26], and other
nature-inspired techniques [25].

Although the existing work in the area of FS has resulted in many pow-
erful techniques, for most approaches, important information regarding the
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level of feature correlation is often ignored during the selection process (of
course, not intentionally). Techniques that only iteratively include/exclude
single individual features from a candidate subset of features are typical ex-
amples where this is the case. This loss of important information may result
in the appearance of redundant features in the final selected subset [17]. FS
algorithms based upon a high-level clustering framework can address this
issue by grouping redundant features together and then selecting the repre-
sentative features from each group to form the final subset of features. Initial
clustering-related FS methods have been reported in the literature [9, 18, 27],
where features are partitioned according to their similarity. Features with a
high degree of similarity tend to be members of the same group. However,
these intra-group feature similarities are calculated in isolation of their cor-
relation to the decision, and the resultant group is more likely to contain
features that involve redundant contributions with regard to the decision.

This paper proposes a novel graph-based feature grouping framework by
considering different types of feature relationships in the context of decision-
making (particularly for classification problems). This general framework
can be implemented in a number of different ways. In this work, two par-
ticular instantiations are described, one based on the ranking of generated
feature groups and the other based on a music-inspired metaheuristic (har-
mony search [26]). The framework itself involves a series of three primary
steps:

1. First, an undirected graph is constructed by representing the features as
vertices, where the edges are created by computing feature redundancy
or collaboration with respect to the decision.

2. Second, an algorithm is devised to derive minimum spanning trees
(MSTs) [24] from the undirected graph, where an MST is a graph
representation of all the given features inter-connected such that the
sum of the weights on the edges ensures a global minimum.

3. Finally, candidate feature groupings are obtained by manipulating the
resulting MST through an iterative process of identifying and then
removing a certain single edge from the MST.

The remainder of this paper is structured as follows. Section 2 reviews
the relevant work on FS algorithms that are based on feature grouping or
clustering. Section 3 presents the novel feature grouping approach by exploit-
ing MSTs. Section 4 describes two FS methods based on feature grouping.
Section 5 reports on an experimental evaluation and discusses the results,
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demonstrating the efficacy of the proposed framework. Finally, the paper is
concluded with further suggestions related to the current work in Section 6.

2. Background

Broadly speaking, FS approaches can be divided into three different cate-
gories (or variants thereof): wrapper, filter, and hybrid methods [29]. Filter-
based FS techniques often make use of information-based metrics such as
mutual information [4], correlation coefficients [28], message passing [21],
and fuzzy-rough set dependency [2] to determine the relevance between the
features themselves and the decision classes. In [8], the correlation coefficient
is used to assist in identifying pair-wise redundancy between features and the
relatedness between these features and the decision classes. The conventional
K-means method is adopted for grouping features. Through the selection of
a representative feature from each group, a feature subset is then formed.
Whether a feature is chosen as the representative from a group depends on
its correlation level to the decision classes. The features most correlated to
the decision classes are selected to represent the full group of features. How-
ever, this approach requires the specification of the number of feature groups
and hence the dimensionality of the selected feature subset in advance.

In [18], symmetric uncertainty, defined using the Shannon entropy, is
employed as an estimation of the inter-feature correlation and correlations
between the conditional features and the decision classes. This algorithm is
proposed within the framework of graph processing methods by introducing
and exploiting the following four concepts: T-Relevance, which indicates
the symmetric uncertainty correlation between the features and the decision
classes, F-Correlation, which implies the pair-wise correlation between any
pair of features, F-Redundancy, which refers to the features that may be
identified as redundant in a particular cluster, and R-Feature, which stands
for a representative feature for a particular cluster. In this work, features
that are less correlated with each other but are most highly correlated with
the decision classes are selected to form the feature subset. Additionally, this
ensures that the features with the most redundant information are clustered
together. However, the T-Relevance of the features in the same resulting
subset may have a large bias.

In [9], a greedy hill climbing approach for FS based on feature grouping is
proposed, where an evaluation metric based on fuzzy-rough set dependency is
utilised to determine the internal ranking of the features in each group as well
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as the overall subset quality. Correlation coefficients are utilised to calculate
the degree of redundancy between any pair of features. If the correlation
between a given pair of features is greater than a predefined threshold, then
one of the features is considered to be redundant, and both are assigned to
the same group. Each individual group is initialised with a single distinct
feature prior to recruiting other group members. As a result, an individual
feature can be included or assigned to more than one group. Features are
then internally ranked within the groups according to the fuzzy-rough set
metric prior to returning the final subset. This algorithm is generally efficient,
but it requires the determination of the value of the externally introduced
threshold. Different configurations of this parameter may have significantly
different impacts on the subset selection outcome.

In addition to the aforementioned representations of feature grouping-
based FS methods, more recently, embedded FS techniques have been de-
veloped to identify homogeneous subgroups of a set of features. In [27], for
instance, a feature grouping method is embedded within the process of sparse
modelling. First, the popular OSCAR algorithm is used to generate the so-
called co-efficiency matrix among features. The features that have identical
coefficients are then grouped together, and those with coefficients of zero are
immediately discarded. The new features formed by merging the features
in the same group are subsequently used to train a sparse regression model.
Testing against selected real-world datasets (e.g., breast cancer [3]), the re-
gression models generated by this algorithm may be more robust than those
obtained by conventional methods, though this is not always the case. Nev-
ertheless, when the problem dimensionality increases, this algorithm tends
to be more efficient than others.

While the techniques for FS outlined above are all interesting and po-
tentially useful for conducting semantics-preserving data dimensionality re-
duction, they each have various shortcomings, as discussed. Inspired by this
observation, the work below presents an alternative FS framework, following
a rigorous theoretical approach based on graph processing [1, 10, 20].

3. Framework for feature grouping

Information regarding redundancy between relevant features (aka., inter-
feature relevance) is the main focus of this work. Therefore, the identification
of homogeneous feature groups may help to remove redundancy from the fi-
nal returned feature subset. The framework described in this section is based
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on the concepts of graph processing, clustering redundant features together.
This is achieved using the idea of three-way mutual information [19]. In
this framework, denoted graph-based feature grouping (GBFG) hereafter,
one feature that is the most collaborative with the other selected features
regarding the decision classes is selected as a representative from each group.
The evaluation result of these representatives is used as the quality metric for
comparing the existing and the currently emerging candidate feature group-
ing. The final grouping is automatically determined according to whether the
quality of the previous (stored) groupings is improved compared with that of
the current candidate groupings. Therefore, the grouping can be viewed as
an iterative refinement process. The new GBFG framework is illustrated in
Fig. 1. The technical details of GBFG are presented below and in the next
section.

Dataset

Compute a graph on features

Find minimum spanning tree

Build feature grouping

Feature groups

Select feature subset

Evaluate subset quality

Feature subset

iterative refinement

Kruskal’s

· · ·
Prim’s

Metaheuristics

· · ·
Hierarchical

Interaction gain

Fuzzy-Rough Sets

Consistency

Correlation

Rough Sets

· · ·
Information gain

Figure 1: Framework for feature selection using GBFG

3.1. Relationship metrics and interaction gain

This subsection addresses the issue of what features may be grouped
together. Generally, redundant features are those whose information content
is already present in other features, and irrelevant features are those that
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provide no information with respect to the decision classes, while naturally,
relevant features are highly correlated to the decision classes. In this work,
the relevant features are further divided into two classes according to the
quantity of information that they carry, namely, strong relevance and weak
relevance. According to the above relations between the features or those
between the features and the decision classes, three possible methods may be
considered for developing feature groups: simply clustering highly redundant
features, clustering features that are equally relevant to the decision classes,
and clustering features that are not only highly redundant but also equally
relevant to the decision classes.

Many of the quality metrics developed in the literature (e.g., those re-
ported in [9, 18, 27]) are capable of distinguishing between different types
of features by ranking them using the calculated degree of correlation or de-
pendency. High values of correlation not only indicate redundancy between
features but also suggest that the relationship between the conditional fea-
tures and the decision classes is strongly relevant. A moderate value typically
implies a weak relevance, while a value level close to zero signifies irrelevance.
Note, however, that most known metrics can only be used to assess the pair-
wise relationship between two features.

In this research, the measure of three-way mutual information is used to
build a graph on the original features. This measure is also known as inter-
action gain [19], which is a metric that attempts to identify the relationships
between the domain features, including collaboration and redundancy with
respect to the decision classes. No problem-specific assumptions are required
when three-way mutual information to feature selection is applied, regardless
of whether a maximum-relevance or minimum redundancy-based approach is
taken [28]. This is because the measure can be applied to help automatically
identify the relationships between subsets of features that are similar with
respect to the decision classes [19].

In an information system, data are depicted as a tuple 〈X, Y 〉, where
X is a non-empty set of finite objects, also referred to as the universe of
discourse; and Y is a non-empty, finite set of features. For decision-making
systems, Y = {A ∪C}, where A = {a1, a2, · · · , a|A|} is the set of conditional
features, |A| denotes the cardinality of A, and C is a set of decision classes.
Each feature ai ∈ A may be either discrete- or continuous-valued and has
a value domain of Vai . The three-way mutual information of any given two
(conditional) features ai, aj ∈ A is computed as follows:
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I(ai, aj, C) =
∑
ai

∑
aj

∑
C

p(ai, aj, C) log
p(ai, aj, C)p(ai)p(aj)p(C)

p(ai, aj)p(ai, C)p(aj, C)
(1)

where p(. . . ) is the probability distribution function and the values of three-
way mutual information are bounded by the inequality:

−[H(ai) +H(aj)] ≤ I(ai, aj, C) ≤ [H(ai) +H(aj)] (2)

where H(ai) and H(aj) are the entropies of ai and aj, respectively. In prac-
tical use, such an interaction gain is often normalised to the interval [−1, 1]
by the term [(H(ai) +H(aj)]; thus, Eqn 2 can be rewritten as:

Iij =
I(ai, aj, C)

H(ai) +H(aj)
(3)

Similar to conventional two-way mutual information, the interaction gain
satisfies the symmetry property, which means that it is not influenced by
the ordering of the features involved. Unlike two-way mutual information,
three-way mutual information can be positive, negative, or zero. A posi-
tive interaction gain value implies collaboration between two features. Such
inter-feature collaboration indicates that the two features provide more in-
formation about the decision classes together than they do individually. The
higher the positive value is, the stronger the collaboration. A negative inter-
action value implies that two features are redundant. In other words, the two
features provide common information about the decision classes. A low neg-
ative value that tends towards −1 demonstrates high redundancy. A value
of zero indicates that the inclusion of feature ai (or aj) has no impact on the
relationship between aj (or ai) and C. That is, ai and aj provide information
about C independently of one another.

3.2. Feature graph construction

In the initial stages of GBFG, a graph is constructed according to the
distribution of the features and their relatedness. Each of the conditional
features is represented by a node in the graph, and the relationships between
the features are represented by the graph edges. Let A = {a1, a2, · · · , a|A|}
be the set of features in a dataset and C be the set of decision classes of
the dataset. For any pair of features ai, aj ∈ A, the concept of a feature
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matrix that represents the relatedness can be introduced by using the nor-
malised interaction gain Iij as shown in Eqn. (3) with i, j ∈ {1, 2, · · · , |A|}
and i 6= j, which is computed from I(ai, aj, C) between the features ai and
aj per Eqn. (1). This establishes a link between a pair of features if a non-
zero normalised interaction gain is calculated between them, and the link is
weighted by the value of the resulting gain.

Table 1: Example of a feature relatedness matrix

Feature a1 a2 a3 a4 a5 a6 a7 a8

a1 0 0.25 0 0.4 0 0.5 0.6 0
a2 0 0.15 0 0 0.1 0.35 0
a3 0 0.45 0.3 -0.6 0 0
a4 0 0.2 0.3 -0.5 0
a5 0 0.4 0.15 0
a6 0 0 0
a7 0 0
a8 0

Table 1 shows an example of a graph matrix. Features a1 − a7 have
weighted connections with the others, where any link that is associated with
the gain value of ‘0’ is omitted, as no interaction exists between such features.
Note that feature a8 does not interact with the others at all. In terms of
three-way mutual information, a8 independently provides information about
the decision classes. The addition of such features neither improves the per-
formance of the inter-feature collaboration nor demonstrates that they are
redundant features with respect to the others. At this point, these fully
isolated features are therefore disregarded at the feature clustering stage.
Although the independent features may contain a certain amount of infor-
mation regarding the decision classes, their intra-feature uncertainty always
remains unresolved with the others. A graph constructed with this matrix
is shown in Fig. 2. An increasing feature space could result in this kind of
graph with more internal complexity. Thus, the direct use of such a graph
for grouping tasks becomes intractable. The simplification of the graph into
a kNN graph could be a solution. This may generate a loop, which in turn
may lead to more complex feature grouping. An MST avoiding looping is
thus used for grouping within the proposed approaches.

An MST is a sub-graph of a given graph that contains all the nodes
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a4

a5

a6
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0.4

0.5

0.6

0.15

0.1

0.35

0.45
0.3

−0.60.2

0.3

−0.5
0.4

0.15

Figure 2: Graph constructed with the link weights given in Table 1

from the original super-graph such that the nodes are connected with the
minimal total weighting on all links. To help reduce the otherwise massive
computational effort necessary, a well-known adjacency list where an MST is
built is introduced to represent the original graph. From the adjacency list
obtained in the graph of Fig. 2, a possible MST can then be constructed as
illustrated in Fig. 3. The MST is used in the proposed methods to produce
feature groups, each of which is expected to cluster the most similar features
together. Thus, only one feature is necessarily nominated from each feature
group.

a3

a6

a2

0.1

a1

−0.6
a5

a7

0.15

a4

0.3

−0.50.25

Figure 3: A possible MST derived from the adjacency list generated from the graph of
Fig. 2
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3.3. Grouping of features

The use of three-way mutual information reinforces the concepts of col-
laboration and redundancy. Features that are collaborative can provide more
information about the decision than they can individually, and features that
are redundant provide common information about the decision classes. The
larger the positive value of three-way mutual information is, the stronger the
collaborative contribution of the features. Similarly, the smaller the negative
value of three-way mutual information is, the higher the level of redundancy
between the features.

Reflecting the above observation, the feature grouping process proposed
here consists of two steps:

• Generate a minimum spanning tree of the features involved in the given
problem using Kruskal’s algorithm [11].

• Cluster the features by iteratively removing edges from the resulting
trees such that highly redundant (or weakly collaborative) features ap-
pear in the same groups.

In particular, the negative relationships of three-way mutual information
can be used to build a feature MST to minimise redundancy. That is, to
cluster highly redundant features together, edges with larger negative values
in the resulting MST are removed iteratively, and features that are connected
by edges with smaller negative values are formed into feature groups. If
considered from the perspective of inter-feature collaboration, in building an
MST, features that are deemed weakly collaborative are clustered into the
same groups. This design intention reflects the underlying task of the present
research, which is to perform feature subset selection where the choice of one
feature from each of the resulting groups can readily construct and serve as
the required feature subset.

More formally, let A′ ⊆ A be a set of nodes {a1, a2, · · · , a|A′|} and E be
the set of possible graph edges {< ai, aj > |ai, aj ∈ A′, i ≤ j}. A graph
or an adjacency list can be generated for the features using the three-way
mutual information measures. Then, an MST, T , that has |A′| nodes and
|A′|− 1 edges can be built from the adjacency list using Kruskal’s algorithm.
Note that such a resultant T may not be unique. However, the strategy of
a first-come, first-served basis is used to help guarantee Kruskal’s algorithm
to generate a single T . The implementation of such a strategy for Kruskal’s
algorithm simply ranks the edges in ascending order in terms of their weights.
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In an MST T , the removal of a certain number of edges will result in a
forest F that contains the same number of subtrees as that of the removed
edges plus one. The proposed approach to feature grouping works by iter-
atively removing a single edge from the graph such that the existing tree is
divided into two new MST subtrees by deleting the link that has the maxi-
mum weight in the original tree. Every subtree then forms a feature group,
and the resulting forest F forms a grouping of features. To judge the quality
of this grouping, a selection of representative features are evaluated regarding
their relevance to the decision classes. In particular, the popular probabilistic
consistency [13] is herein adopted as the quality metric.

The probabilistic consistency measure calculates the discriminability of a
given feature subset S ⊆ A with respect to the given decision classes. For
each feature ai ∈ S (i = 1, 2, · · · , |S|), suppose that ai has |Vai | distinctive
values. A combination of the values, one for each different feature, forms a
feature pattern, which is a part of a data instance without the decision class.
The total number of patterns for S is the product of the value amount of all
features in S, Π

|S|
i=1|Vai |. In practice, not all of the possible patterns have to

be contained in a real-world dataset, and the consistency measure only needs
to consider the patterns already existing in the dataset. For all the emerged
patterns {N j

S : j = 1, 2, · · · , k} of S, such a probabilistic consistency measure
between S and a given set of decision classes C is mathematically defined by

f(S,C) = 1−
k∑

j=1

(∑
c∈C

p(N j
S|c)p(c)− sup

c∈C
(p(N j

S, c))
)

(4)

where regarding all the instances in a given dataset,
∑
c∈C

p(N j
S|c)p(c) is the

marginal probability of the pattern N j
S over all the decision classes c in C,

calculated by the frequency of the instances containingN j
S, and p(N j

S, c) is the
joint probability between the pattern N j

s and a given class c, calculated by the
frequency of the instances that contain N j

S and c at the same time. Instances
containing the same pattern and the same decision class are considered to be
consistent, and instances containing the same pattern but different decision
classes are treated as inconsistent with each other. The term sup

c∈C
(p(N j

S, c))

determines the most consistent instances for a specified pattern after taking
into account all the given decision classes, and with this term, the remaining
instances are determined to be inconsistent.
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Recall the MST of Fig. 3, which is discovered from the graph given in Fig.
2 (with a8 treated as an independent feature and hence ignored). From this,
the feature grouping process can be illustrated as follows: Initially, forest F
contains only a single tree T = {A′, E}, where A′ = {a1, a2, · · · , a7} and E =
{< a2, a6 >, < a2, a3 >, < a5, a7 >, < a4, a5 >, < a1, a2 >, < a4, a6 >}, with
its elements weighted by {0.1, 0.15, 0.15, 0.2, 0.25, 0.3}, respectively. The
proposed approach attempts to remove a single edge that iteratively takes the
maximum weight in F . For this example, the edge < a4, a6 >= 0.3 is removed
in the first instance, and the current tree is then divided into two subtrees,
T 1
new = {{a4, a5, a7}, {< a4, a5 >,< a5, a7 >}} and T 2

new = {{a1, a2, a3, a6},
{< a2, a3 >,< a1, a2 >, < a2, a6 >}}. Thus, F now contains two members
{T 1

new, T
2
new} rather than the original single tree {T}. As such, a grouping

of two feature groups {{a4, a5, a7}, {a1, a2, a3, a6}} is formed in place of the
previous fully connected tree. Suppose that following the ranking of the
features using the probabilistic consistency measure, two features a4 and a6
are selected as representatives of these two groups (one from each). This
leads to a selected feature subset {a4, a6}. A better subsequent grouping
will result in the continuation of the algorithm and otherwise, the algorithm
is terminated. For illustration, suppose that the current grouping is better
than the previous, then the edge < a1, a2 > with the weight 0.25 is excluded
from F . Three feature groups are therefore obtained at this stage: {a1},
{a2, a3, a6}, and {a4, a5, a7}. The process of edge removal will cease and the
algorithm will terminate if there is no improvement in the quality of the
resulting grouping. Supposing that |A| is the number of features for an input
dataset, the complexity of the feature grouping process can be approximated
to O(|A|2).

4. Feature Selection with GBFG

In this section, two feature selection techniques based on GBFG are pro-
posed. The first method performs feature selection by a straightforward
selection of representative features from the generated feature groups, where
the feature subsets are assessed and selected following the choice of one rep-
resentative feature from each group that is most collaborative with the other
representative features chosen from the other groups. The second approach
performs feature selection from the feature groups by employing a harmony
search in an effort to discover multiple quality feature subsets in one pass.
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4.1. GBFG-based feature selection with greedy hill climbing

In the proposed framework for GBFG, the evaluation of the selected rep-
resentatives from feature groups is used to decide whether the current can-
didate feature grouping is of a better quality than the previous one. This
iterative refinement step helps to automatically decide when to stop pruning
edges from the MST. In this method, the process of selecting representatives
out of a feature grouping can be directly viewed as a form of implementing
FS. This selection process includes the iteration of the two steps listed as
follows:

1. Select a pair of features from two groups (one from each) returned by
GBFG that are the most collaborative with each other and include
these features in the feature representative subset R.

2. For the remaining feature groups that do not contain features in R,
search for one feature from each group that is the most collaborative
with R regarding the decision classes and add this feature to R until all
the groups have nominated a representative feature. The collaboration
of a feature ai of a given group and R is defined as follows:

Col(ai, R) = Σaj∈R∧0 ≤ I(ai,aj ,C)I(ai, aj, C) (5)

Algorithm 1 formalises the above procedure in which a desirable feature
grouping is returned, and subsequently, one representative feature is selected
from each group and is jointly returned with the other group representatives
as the elements of the ultimately selected feature subset. Supposing that k
groups result in the process of feature grouping, the worst searching com-
plexity occurs when all k groups have the same number of members |A|/k.
The complexity of this search strategy is then O(|A|). The complexity of the
entire GBFG-based FS algorithm is O(|A|3).

In particular, the loop in Alg. 1 is first used to weight the edges between
any paired features in a constructed graph, where all conditional features are
mapped as nodes. Edges with a large weight value indicate high collabo-
ration between the features according to three-way mutual information. In
line 6, Kruskal’s algorithm is utilised to build an MST. Through the removal
of the edges with the largest weight value (or one of those with the largest
weight if there are more than one), feature groupings are generated in line 10.
Feature groups in a grouping are consistent with the subtrees in the resulting

14



forest. As such, large-weighted edges are iteratively eliminated, the weakly
collaborative features are then grouped in the same subtree. To evaluate
the quality of the feature groupings, lines 11-13 in the second while loop in
conjunction with lines 7-8 introduce the process of finding representatives,
and a possible combination of features that are most collaborative with each
other is produced for evaluation (instead of the evaluation of the feature
groupings themselves) in line 14. In this implementation, the resulting rep-
resentative features are evaluated using the probabilistic consistency measure
f(S,C), as defined in Section 3.3. For lines 15-17, if the representative fea-
tures selected from the current grouping are better than those selected from
the previous grouping, then the loop continues. Otherwise, the algorithm
returns the currently best feature grouping, and the selected representatives
are also returned as the FS outcome.

To continue the example used in Section 3.3, the grouping of two fea-
ture groups {{a4, a5, a7}, {a1, a2, a3, a6}} is obtained after the first iteration.
Based on the relatedness matrix of Table 1, a pair of features a7 and a1 are
deemed most collaborative with each other, so they are included in the set of
(emerging) representative features R (which started as an empty set). Since
a7 and a1 are in {a4, a5, a7} and {a1, a2, a3, a6}, respectively, R = {a1, a7}
is then used as the selected feature subset for the current grouping. If this
feature subset is better than the previous subset, which was obtained in the
same manner, the feature grouping process continues. Otherwise, the algo-
rithm returns the selected feature subset as well as the current grouping.

In continuing the illustrative example, the evaluation of the selected sub-
set is (correctly) assumed to be better than the previous (which was empty).
Thus, the next grouping results with three groups: {a1}, {a2, a3, a6}, and
{a4, a5, a7}. As with the last iteration, a1 and a7 are included in R. For
the group {a2, a3, a6} that has not yet nominated a feature, we compute the
collaboration of each feature of {a2, a3, a6} and R based on Eqn. (5). The
value of the collaboration of a2 and R is 0.25 + 0.35 = 0.6, the value of that
of a3 and R is 0 + 0 = 0, and the value of that of a6 and R is 0.5 + 0 = 0.5.
As a2 has the largest collaboration value, a2 is then included in R. Thus,
the feature subset {a1, a2, a7} is selected. If the quality of this subset is no
better than that of the current best, then R = {a1, a7} is returned as the
final feature subset.

15



4.2. GBFG-based feature selection with harmony search
Although the previous approach has an advantage in runtime cost, bet-

ter feature combinations may exist between feature groups. This is where
a metaheuristic approach may help strengthen the work. Selecting an ‘op-
timal’ feature subset from groups of features is a combinatorially difficult
problem. An exhaustive search can guarantee that the best feature subsets
are discovered, but this is often computationally impractical for real-world
applications. A harmony search (HS) [26] may be useful for the task of se-
lecting features from a particular feature grouping and can potentially be
used as a meta-heuristic approach to set up the initial solution pool. More
significantly, an HS can help identify multiple quality feature subsets by com-
pleting a single search process. This observation has inspired the following
development.

An HS is proposed as a meta-heuristic search algorithm that mimics the
improvisation process of instrument players, primarily for discrete variables.
Each musician represents a system variable (not a feature from FS perspec-
tive) that characterises the objective function, playing a note (or taking a
value) to construct a harmony (solution) together with the rest to optimise
this function. Newly generated harmonies iteratively progress based on the
musicians’ experience (a pool of existing harmonies) and are used to up-
date historical solutions with respect to harmony quality. The HS algorithm
consists of the following key steps:

The original harmony search-based FS approach, as represented in [26],
can be extended to take advantage of the GBFG framework. In particular,
musicians are mapped onto feature selectors, the number of which is equal
to that of the features in a given dataset. Suppose that a dataset has |A|
features, and each selector then has |A| choices. This means that the space for
the harmony search is |A||A| in theory. Here, the harmony search is employed
to effectively reduce the size of the search space and thus the computational
effort. In contrast to the original work of [26], where feature selectors are
assigned for each feature, here, a single feature selector is assigned to each
grouping of features. For example, if k groups are derived from |A| features
by establishing homogeneous feature groups, the search space is then reduced
to |A|k (where typically k � |A|), while a single selector still has |A| choices.
Additionally, the original approach, as reported in [26], treats the FS as a bi-
objective optimisation problem, while the new algorithm turns the FS into a
single objective optimisation problem. This is because the feature subset size
is a direct derivation of GBFG, and there is no longer a need to consider the
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evaluation of this search parameter. The procedure of the GBFG-based HS
algorithm is summarised in Algorithm 2, and the steps are listed as follows:

Step 1: Initialise parameters: There are six key parameters in the HS
algorithms: HMS, HMCR, PAR, λ, BW and M . HMS is the number of
(potential) solutions stored in the harmony memory (HM), which is a two-
dimensional matrix where each row indicates a solution and each column is
dedicated to a single musician, storing the musician’s experience. HMCR and
PAR control the global and local searches of the HS algorithm, respectively.
In a typical implementation, both take values ranging from 0 to 1. The
threshold λ acts as the stopping criterion, with the search process terminating
when the number of iterations reaches λ. Note, however, that BW is no
longer employed since in FS, each feature is an independent granule [14].
The neighbouring features cannot be computed simply using the standard
arithmetic operators and random numbers. Instead, the feature similarity
measure proposed in [26] is used here to identify any neighbouring features
given another. As the number of musicians is assigned to the number of
feature groups obtained using the GBFG approach (see Section 3.3), M is
set to the number of groups k rather than that of features |A|, which is the
natural setting of the original HS (fortunately, k � |A|).

Step 2: Initialise HM: HM is now a two-dimensional matrix with a size
of HMS×k. Each row stores a feature subset, while each column stores HMS
historical features, taking the form below:

HM =


a11 a12 · · · a1k f(S1, C)
a21 a22 · · · a2k f(S2, C)
...

...
. . .

...
...

aHMS
1 aHMS

2 · · · aHMS
k f(SHMS, C)


where aji is a feature selected by the ith feature selector in the jth harmony
and f(Sj, C) is the evaluation function used to calculate the relevance of a
given feature subset Sj to C, which denotes a set of decision classes. As there
may exist duplicated features in a harmony, the size of a feature subset may
be smaller than that of the corresponding harmony.

Step 3: Improvise new feature subsets: A new harmonyH ′ = (a′1, a
′
2, · · · , a′k)

is generated based on the same two key factors as those of the original HS:
the HMCR and a random value r (0 < r < 1). A new feature a′i is selected
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by the ith feature selector with respect to the following rules:

a′i =

{
a′i ∈ fi if HMCR ≤ r

a′i ∈ {a1i , a2i , · · · , aHMS
i } if HMCR > r

(6)

where fi is a homogeneous group of the features that are only utilised by
the ith feature selector. When the condition HMCR ≤ r is satisfied, the
feature selector randomly selects a feature from its own homogeneous group.
Otherwise, the feature selector randomly selects a feature from the historical
feature pool. As shown in the graph of Fig. 2, constructed using three-way
mutual information, the neighbours of a feature are those that are topo-
logically connected. The link of the smallest weight determines the closest
neighbour of a feature in terms of all possible links regardless of whether the
link is negatively weighted or positively weighted.

Step 4: Update the HM: The quality of each newly produced harmony
is computed using the probabilistic consistency measure f(S,C) after the
conversion of the harmony to a feature subset. Regarding the evaluated
quality, the update of HM is then denied if no existing feature subsets worse
than the new feature subset are found. Otherwise, the HM is updated on
the basis of the following rule:

H′ ∈ HM ∧Hworst /∈ HM (7)

Step 5: Check the stopping criterion: If the number of improvisations
reaches λ, the algorithm stops. Otherwise, repeat step 3 and step 4. The
complexity of this HS-based FS algorithm is O(λ ∗ |A|3) for the worst case.
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Algorithm 1: GBFG-FS: Direct GBFG-based FS

input : A: set of features and C: set of decision classes
output: S ← ∅: feature subset and F ← ∅: feature grouping
// Step 1: construct a graph using features by

calculating the three-way mutual information amongst

them

1 G← {V,E}: undirected graph, where V ← A and E ← ∅
2 while ai, aj ∈ V do
3 if < ai, aj >/∈ E then

4 Weight(< ai, aj >)← I(ai, aj, C)

H(Ai) +H(Aj)
5 E ← E ∪ {< ai, aj >}

// Step 2: build an MST, T over G using Kruskal’s

algorithm

6 T ← Kruskal(G), which has nodes V ′ and edges E ′

// Step 3: iteratively generate feature groupings and

select representative features

7 while True do
8 Remove edge(s) with the maximum weight in E ′, and break T

into a forest {V ′, E ′}, indicating a feature grouping
F ← {V ′, E ′}

9 R← ∅: set of representative features
10 Select one largest edge from E, and include nodes connected by

the selected edge in R
11 for Each group f ′ ∈ F && f ′ ∩R == ∅ do
12 S ← R
13 foreach a′ ∈ f ′ do
14 if Col(a′, R) is the largest then
15 Temp← R ∪ {a′}

16 Evaluate the selected representatives Temp as the quality of the
grouping F

17 if f(Temp,C) > f(R,C) then
18 R← Temp

else
19 S ← R
20 return S and F
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Algorithm 2: GBFG-HS: FS with harmony search via GBFG

F : set of feature groups from graph-based grouping
C: set of decision classes
S: returned (conditional) feature subset
H: harmony memory (2-dimensional matrix)
Hi,, H,j, and Hi,j: row, column, and cell of H
Hnew,, Hw,, and Hb,: newly improvised harmony, worst harmony and
best harmony in H, respectively

HMS: number of rows in H
k: number of columns in H and number of groups

1 F ← {f1, f2, · · · , fk}
2 S ← ∅
// Initialisation Phase

3 for i← 1 to HMS do
4 for j ← 1 to k do
5 Hi,j ← Random(fj)

end

end
// Iteration Phase

6 while Λ is not satisfied do
7 for j ← 1 to k do
8 if Random([0,1]) < HMCR then
9 t← Random(fj)

else
10 t← Random(H,j)

end
11 Hnew,j ← t

end
12 if f(Hnew,, C) > f(Hw,, C) then
13 Hw, ← Hnew,

end

end
14 S ← Hb,

15 return S
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5. Experimental Evaluation

In this section, a series of experiments are discussed using 20 different
UCI-MLR benchmark datasets [3]. The experimental studies include 1) a
comparison with popular FS approaches that are based on an existing fea-
ture grouping method (FRFG) [9] or on metaheuristic searches or greedy
hill climbing, including the genetic algorithm (GA-FS) [6], particle swarm
optimisation (PSO-FS) [5], and greedy hill climbing (GHC-FS) [28]; and 2)
a comparison with the harmony search-based FS approach (HSFS) [26].

5.1. Experimental Setup

Ten stratified randomisations of 10-fold cross-validation [22] are employed
in the generation of the experimental results. FS is performed as part of the
cross-validation, and each fold results in a new selection of features. Three
different aspects of performance are examined in the evaluation: the classi-
fication accuracy, final selected subset size, and average runtime per cross-
validation fold. A paired t-test (p = 0.05) is used to examine the statistical
significance of the generated results of both the classification accuracy and
subset size.

The datasets used for the experimental evaluation range in size from 120-
5000 instances and from 10-2557 features. Most of the data have 2-7 decision
classes, but a number of them have 10 to 19. A summary of the datasets
is shown in Table 2, where these datasets are arranged in ascending order
by the number of decision classes. As stated previously, all the datasets are
drawn from [3]; they are selected to facilitate comparative studies since they
have been used by the other algorithms that are compared against here.

The parametric settings in the compared methods are those typically
used by the original approaches in the literature. In particular, the GA-
based FS method has an initial population size of 20, a maximum number
of generations of 5000, crossover probability of 0.6 and mutation probability
of 0.033. The number of generations for the PSO search is set to 5000,
while the number of particles is set to 20, with acceleration constants c1 =
2 and c2 = 2. For the harmony search approaches (both HSFS [26] and
GBFG-HS), the maximum number of iterations is set to 5000, harmony-
memory consideration rate to 0.7, pitch-adjustment rate to 0.8, and harmony
memory size to 20. These parameters may not be ideal for all of the datasets
employed here, and an optimisation phase may well result in an improvement
in performance. However, such a parameter optimisation would need to be
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performed on a dataset-by-dataset basis, which would involve a significant
investment of computational effort (and which may involve unfair settings
for the comparisons) and therefore is not adopted here.

For consistency and fair comparison within all the experiments concerning
FS, the probabilistic consistency measure [13] is used to evaluate the feature
subsets. Other subset-based evaluation functions may also be applicable,
such as correlation [28], correlation coefficient [17], message passing [21], and
fuzzy rough dependency [2], but this is beyond the scope of this paper. Note
that the numbers in brackets indicate the standard deviation (SD) in all the
tables hereafter. The time unit is milliseconds (MS) for gauging the runtime
of the algorithms. A figure in bold signifies a statistically better result in the
comparison of the experimental results of the top two methods.

Table 2: Summary of datasets

Dataset Features Instances Classes

breastcancer 10 286 2
heart 14 270 2
vote 17 435 2
ionosphere 35 230 2
credit-g 21 1000 2
water2 39 390 2
sonar 61 208 2
ozone 73 2534 2
secom 591 1567 2
water3 39 390 3
waveform 41 5000 3
olitos 26 120 4
cleveland 14 297 5
web 2557 149 5
glass 10 214 6
segment 20 1500 7
multifeat 650 2000 10
libras 91 360 15
arrhythmia 280 452 16
soybean 36 683 19

5.2. Comparison with popular FS methods

The two implementations (GBFG-FS and GBFG-HS) developed in this
work are evaluated in this section by comparison with several popular exist-
ing FS methods that are readily available. FRFG [9] is an existing feature
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grouping-based FS technique. GA-FS, PSO-FS and HSFS use metaheuristic
strategies, while GHC-FS employs a greedy search. In FRFG, the features
are grouped by clustering redundant features, which is defined as the degree
of correlation between features exceeding a predefined threshold β that can
take values from 0 to 1. The best results tend to be obtained when β is set
to a value between 0.8 and 0.9; therefore, two sets of results are presented
as one by taking their average. The classification accuracies achieved by the
two algorithms proposed in this work and the existing FS methods are pre-
sented in Tables 3-6, the sizes of the reduced feature subsets (which reflects
the number of feature groups) for these algorithms are reported in Table 7,
and the runtimes produced by these FS methods are shown in Table 8.

The results presented in Tables 3-6 are the classification accuracies that
are attained by four classic learning classifiers. They are JRip, a rule-based
classifier; J48, a decision-tree learner; IBk, a nearest-neighbour classifier
(with k = 3), and their ensemble with the voting strategy [16]. For the dif-
ferent classifiers used in this experiment, although all three classifiers return
slightly different results for the same dataset, there are no statistically sig-
nificant differences among them. When compared with the other approaches
regarding the JRip classifier, the two proposed algorithms together have a
win ratio of 40%. The remainder are all statistically comparable to the best
of other methods, and their difference values fall in the range [0, 2). Regard-
ing classification with J48, overall, the proposed GBFG-based algorithms
outperform the others for 55% of the datasets. Especially for the datasets
ionosphere and web, GBFG-HS is the only algorithm that achieves statis-
tically better performance, consistently beating all the rest. Regarding the
use of the IBk classifier, similar overall results can be seen across the use of
feature subsets returned by different FS methods. However, when the ensem-
ble classifier is used, the proposed algorithms have the best achievement for
the win ratio of 60%. Obviously, whichever classifier is used, the proposed
methods are the overall winners regarding the average of the classification
accuracy on 20 datasets.

Table 7 presents the results in terms of the selected feature subset size.
The statistically smallest size was achieved by GBFG-HS for 90% of the
datasets except for multifeat and waveform, on which GBFG-HS remains
comparable to GHS-FS and GA-FS, respectively, regarding the feature re-
duction capability. GBFG-FS also performs better at reducing the features
on most datasets than GA-FS, PSO-FS, and FRFG-based FS. These results
indicate that the graph-based approach is effective at identifying compact
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representatives.
Compared with the GBFG-FS algorithm, GBFG-HS not only achieves

better classification accuracy but also further reduces the feature subset size
on over 30% of the datasets for any classifiers used. GBFG-FS, however,
offers a significant reduction in the runtime, which is clear from Table 8. It
is also the most efficient among all the compared FS methods and across all
the datasets, with the exception of web. For the dataset web, GA-FS offers a
very good runtime, but its corresponding subset size is far larger than those
of the other FS methods (more than 140 times larger than that achieved
using GBFG-HS, for instance). Although the runtime of GBFG-HS is not
as good as that of GBFG-FS, it is more efficient than the other FS methods
except for GHC-FS when dealing with large datasets such as arrhythmia,
secom, and multifeat. Overall, GBFG-HS is a clear winner.

Table 3: Comparison with other FS methods: average classification accuracies (%(SD))
for the JRip classifier, where bold indicates the statistically best value

Unred. GBFG-HS GBFG-FS FRFG GA-FS PSO-FS GHC-FS HSFS

breastcancer 71.37 ± 6.62 71.37 ± 6.63 70.93 ± 5.90 70.00 ± 6.59 70.96 ± 6.96 71.24 ± 6.58 69.90 ± 6.53 69.02 ± 6.88
heart 78.63 ± 7.37 78.89 ± 7.21 76.63 ± 8.61 77.73 ± 7.04 79.37 ± 6.56 79.41 ± 6.58 77.23 ± 6.89 77.61 ± 6.86
vote 95.61 ± 2.79 95.64 ± 3.94 95.42 ± 3.08 93.70 ± 2.76 95.47 ± 2.68 95.40 ± 2.77 93.70 ± 2.73 93.61 ± 2.87
ionosphere 86.78 ± 7.43 86.09 ± 6.74 84.52 ± 7.75 84.92 ± 7.63 85.04 ± 6.58 83.74 ± 7.76 85.30 ± 7.59 83.21 ± 7.48
credit-g 71.92 ± 3.65 70.60 ± 5.95 72.25 ± 3.89 69.95 ± 4.19 71.74 ± 3.83 72.41 ± 3.99 71.04 ± 4.40 70.32 ± 4.10
water3 82.26 ± 6.80 82.56 ± 6.26 84.15 ± 5.65 81.44 ± 5.16 82.97 ± 5.95 82.56 ± 5.80 81.71 ± 5.41 82.05 ± 6.10
sonar 75.06 ± 8.64 71.64 ± 9.92 72.83 ± 9.97 72.78 ± 9.80 71.51 ± 9.40 74.93 ± 9.82 73.43 ± 9.82 73.22 ± 10.48
ozone 93.13 ± 1.33 93.33 ± 1.12 93.13 ± 1.27 91.35 ± 1.14 93.19 ± 1.02 92.83 ± 1.18 91.42 ± 1.21 91.45 ± 1.13
secom 92.52 ± 1.03 93.36 ± 0.32 93.06 ± 0.76 89.94 ± 1.30 92.69 ± 1.00 92.51 ± 1.21 91.34 ± 0.57 90.63 ± 1.11
water4 82.10 ± 4.81 82.31 ± 6.78 80.95 ± 6.06 80.83 ± 5.93 82.74 ± 6.8 81.54 ± 6.13 80.91 ± 6.69 80.51 ± 5.68
waveform 79.14 ± 1.70 76.64 ± 2.08 78.37 ± 2.10 76.70 ± 1.98 76.88 ± 2.07 75.66 ± 2.20 76.53 ± 1.92 75.80 ± 2.21
olitos 68.25 ± 11.29 65.00 ± 12.91 65.50 ± 12.54 65.38 ± 13.12 64.67 ± 12.09 64.42 ± 14.26 68.03 ± 12.20 64.36 ± 11.80
cleveland 54.08 ± 3.36 53.18 ± 2.68 53.78 ± 3.65 53.16 ± 3.31 55.23 ± 3.31 55.53 ± 3.81 54.03 ± 3.21 53.69 ± 3.07
web 55.57 ± 13.23 57.64 ± 11.16 56.20 ± 11.24 53.28 ± 12.80 55.16 ± 11.17 51.39 ± 12.27 55.05 ± 12.19 53.19 ± 10.59
glass 68.19 ± 10.23 66.41 ± 7.89 66.43 ± 9.26 65.84 ± 9.12 66.85 ± 9.17 65.51 ± 9.03 65.55 ± 9.03 64.66 ± 9.79
segment 93.23 ± 2.08 92.47 ± 1.30 92.16 ± 3.47 91.96 ± 1.71 93.15 ± 2.45 93.59 ± 2.01 92.06 ± 1.91 91.29 ± 2.42
multifeat 92.17 ± 1.84 86.90 ± 2.88 72.46 ± 6.18 85.55 ± 4.01 82.32 ± 2.84 81.53 ± 2.94 86.28 ± 2.57 89.56 ± 2.09
libras 54.61 ± 9.80 51.67 ± 12.51 49.67 ± 9.01 52.55 ± 8.40 54.14 ± 8.69 54.08 ± 7.99 51.88 ± 8.05 52.98 ± 8.67
arrhythmia 70.55 ± 5.42 69.69 ± 6.86 65.77 ± 6.77 68.93 ± 6.11 69.47 ± 5.72 70.38 ± 5.97 69.71 ± 5.41 68.07 ± 6.25
soybean 91.88 ± 3.03 79.13 ± 5.10 74.49 ± 5.17 82.59 ± 6.10 69.57 ± 5.97 81.05 ± 5.82 78.40 ± 3.49 78.50 ± 6.06

Avg. 77.85 ± 5.62 76.23 ± 6.01 74.94 ± 6.12 75.43 ± 5.91 75.66 ± 5.72 75.99 ± 5.91 75.68 ± 5.59 75.19 ± 5.78
Win Ratio 6/20 2/20 1/20 2/20 6/20 2/20 1/20

To further illustrate the potential of GBFG-HS, it is important to demon-
strate that it is an improvement over the improved counterpart of the orig-
inal harmony search-based FS (HSFS) method (which uses the same search
strategy) [26]. This section presents such a comparative analysis. In terms of
the classification accuracy presented in Tables 3-6, GBFG-HS offers results
comparable to those of HSFS. However, when the results of the respective
approaches are considered in terms of the subset size with similar classifica-
tion accuracies, the advantage of employing GBFG-HS becomes clear. Of the
20 datasets, GBFG-HS offers reductions that are impressive and statistically
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Table 4: Comparison with other FS methods: average classification accuracies(%(SD)) for
the J48 classifier, where bold indicates the statistically best value

Unred. GBFG-HS GBFG-FS FRFG GA-FS PSO-FS GHC-FS HSFS

breastcancer 74.28 ± 6.02 73.40 ± 7.72 72.96 ± 6.01 71.64 ± 6.20 70.40 ± 6.26 70.12 ± 6.29 71.03 ± 6.32 68.85 ± 6.34
heart 78.15 ± 7.38 82.22 ± 5.47 78.04 ± 8.52 77.29 ± 7.31 79.19 ± 7.35 79.22 ± 7.33 77.23 ± 7.54 77.53 ± 7.36
vote 96.57 ± 2.55 95.87 ± 3.54 96.27 ± 2.94 94.55 ± 2.57 96.55 ± 2.62 96.60 ± 2.58 94.50 ± 2.60 94.50 ± 2.70
ionosphere 86.13 ± 6.17 88.26 ± 5.81 85.04 ± 7.78 85.90 ± 7.74 86.13 ± 6.47 84.74 ± 7.19 87.18 ± 6.46 83.43 ± 7.10
credit-g 71.25 ± 3.15 72.80 ± 4.29 72.20 ± 3.43 70.24 ± 3.29 72.03 ± 3.26 72.47 ± 3.56 70.98 ± 3.36 70.48 ± 3.35
water3 81.59 ± 6.48 84.62 ± 6.51 83.03 ± 4.75 82.18 ± 5.32 83.79 ± 5.40 82.82 ± 5.07 82.00 ± 4.98 81.64 ± 5.45
sonar 73.61 ± 9.30 69.17 ± 11.70 74.20 ± 10.13 72.72 ± 9.60 73.86 ± 9.90 75.68 ± 9.82 74.17 ± 9.82 72.84 ± 10.19
ozone 92.48 ± 1.34 93.21 ± 0.67 93.27 ± 1.06 91.22 ± 1.11 93.17 ± 1.17 92.59 ± 1.24 91.24 ± 1.08 91.23 ± 1.14
secom 89.49 ± 1.97 93.30 ± 0.33 93.06 ± 0.87 90.04 ± 1.20 91.10 ± 1.72 90.01 ± 2.03 91.30 ± 0.84 88.19 ± 1.76
water4 83.18 ± 5.47 79.49 ± 3.63 80.23 ± 6.59 80.52 ± 6.20 81.20 ± 6.16 81.44 ± 6.18 79.51 ± 5.70 79.33 ± 6.70
waveform 75.25 ± 1.89 75.00 ± 1.83 76.16 ± 1.87 74.79 ± 2.00 74.95 ± 2.28 73.12 ± 2.41 74.57 ± 2.03 73.57 ± 2.05
olitos 65.75 ± 12.07 62.50 ± 13.75 65.25 ± 11.85 63.09 ± 12.73 62.17 ± 13.37 63.08 ± 13.41 63.87 ± 11.81 62.89 ± 12.11
cleveland 53.39 ± 7.28 53.23 ± 8.17 55.40 ± 6.61 52.81 ± 7.29 55.13 ± 6.75 55.11 ± 6.93 53.80 ± 6.49 53.97 ± 7.23
web 57.63 ± 11.25 56.38±11.89 55.98 ± 12.11 52.55 ± 12.62 55.40 ± 12.87 53.21 ± 14.45 54.59 ± 11.78 54.35 ± 11.00
glass 68.08 ± 9.24 68.14 ± 7.99 69.78 ± 8.70 68.35 ± 9.17 69.84 ± 9.26 68.50 ± 9.15 68.26 ± 9.23 68.62 ± 9.37
segment 95.71 ± 1.84 95.20 ± 1.63 94.06 ± 3.23 94.05 ± 1.78 95.49 ± 1.84 95.38 ± 1.88 93.92 ± 1.76 93.59 ± 1.89
multifeat 94.62 ± 1.68 86.75 ± 3.59 75.30 ± 5.52 87.69 ± 5.00 84.72 ± 2.24 83.88 ± 2.54 87.91 ± 2.17 91.75 ± 1.74
libras 69.36 ± 8.34 65.83 ± 7.75 62.28 ± 8.71 66.89 ± 8.26 66.33 ± 8.44 66.67 ± 6.96 62.72 ± 8.01 65.49 ± 7.07
arrhythmia 65.78 ± 5.75 64.39 ± 5.43 61.58 ± 7.28 66.09 ± 6.54 66.59 ± 5.67 66.46 ± 5.83 65.23 ± 5.83 64.33 ± 6.41
soybean 91.78 ± 3.17 80.10 ± 4.87 78.51 ± 4.96 83.73 ± 5.24 69.46 ± 6.52 82.45 ± 5.43 81.52 ± 3.95 81.46 ± 5.05

Avg. 78.20 ± 5.62 76.99 ± 5.83 76.13 ± 6.15 76.32 ± 6.06 76.38 ± 5.98 76.68 ± 6.01 76.28 ± 5.59 75.90 ± 5.80
Win Ratio 7/20 4/20 2/20 3/20 3/20 1/20 0

better than those of HSFS for all datasets. For example, GBFG-HS offers
reductions of 99.6% and 94% for the web and arrhythmia datasets over the
results returned by HSFS, respectively. This illustrates that significant im-
provements in performance are achieved by GBFG-HS compared with HSFS,
as GBFG-HS is capable of discovering compact and robust feature subsets.
When using the runtime for the algorithm estimations, as seen from Table
8, with the exception of the web and waveform datasets, GBFG-HS offers
considerably faster performance. For the two exceptions noticed, the rel-
atively higher runtimes may be related to the high dimensionality of the
datasets, which necessitate a long time for feature grouping. Therefore, the
more efficient algorithm of feature grouping remains desirable, but GBFG-
HS performs better than the HSFS algorithm [26] in terms of the size of the
selected feature subsets. More interestingly, web has 2557 dimensions but
only takes 149 samples. The distribution of the small size of samples in such
high dimensionality means this could be considered a sparse dataset, which
may be the main cause of the singularity of GBFG-HS.

5.3. Comparison between GBFG-HS and HSFS regarding iterations

To gain more useful insight into the behaviour of both GBFG-HS and
HSFS, as the search for feature subsets progresses, an investigation is further
conducted on two of the relatively more complex datasets: arrhythmia and
multifeat. In Fig. 4, four plots are shown in each of the two sub-figures: the
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Table 5: Comparison with other FS methods: average classification accuracies (%(SD))
for the IBk (k=3) classifier, where bold indicates the statistically best value

Unred. GBFG-HS GBFG-FS FRFG GA-FS PSO-FS GHC-FS HSFS

breastcancer 73.13 ± 5.51 70.62 ± 5.87 72.25 ± 5.94 71.36 ± 5.52 71.27 ± 5.86 71.20 ± 5.85 70.81 ± 5.59 70.08 ± 5.57
heart 79.11 ± 6.74 81.85 ± 6.64 77.33 ± 8.16 78.00 ± 7.30 79.48 ± 7.76 79.48 ± 7.76 77.17 ± 8.03 78.00 ± 7.82
vote 93.08 ± 3.68 95.64 ± 3.13 94.51 ± 3.67 91.62 ± 3.50 94.28 ± 3.22 94.48 ± 3.70 92.17 ± 3.57 92.26 ± 3.35
ionosphere 82.74 ± 5.72 86.52 ± 4.32 85.70 ± 7.50 83.01 ± 7.40 83.04 ± 6.58 82.87 ± 7.74 83.34 ± 6.61 79.85 ± 6.70
credit-g 72.21 ± 3.24 71.90 ± 4.25 72.17 ± 3.47 69.85 ± 3.32 71.74 ± 3.64 72.38 ± 3.16 70.56 ± 3.75 70.56 ± 3.50
water3 82.28 ± 4.47 83.08 ± 4.05 84.46 ± 5.14 85.08 ± 5.36 86.95 ± 5.19 85.26 ± 4.56 85.56 ± 5.04 84.65 ± 4.73
sonar 83.76 ± 8.46 81.31 ± 7.82 81.13 ± 9.52 80.22 ± 8.50 80.98 ± 9.09 82.59 ± 8.42 80.94 ± 8.42 82.42 ± 7.44
ozone 93.71 ± 0.92 93.25 ± 1.01 93.45 ± 1.01 91.83 ± 0.96 93.50 ± 1.09 93.63 ± 0.88 91.69 ± 1.01 91.97 ± 0.98
secom 92.72 ± 0.74 92.47 ± 1.07 92.29 ± 1.63 91.41 ± 1.27 92.25 ± 1.09 92.72 ± 0.82 90.88 ± 0.88 90.78 ± 1.10
water4 84.82 ± 4.48 81.79 ± 3.72 80.23 ± 5.63 83.20 ± 4.84 84.87 ± 4.94 82.77 ± 4.51 83.07 ± 4.65 81.74 ± 5.08
waveform 77.67 ± 1.78 75.98 ± 2.72 79.49 ± 2.40 77.21 ± 2.09 76.71 ± 2.41 74.56 ± 2.56 76.48 ± 2.14 75.29 ± 2.54
olitos 81.25 ± 9.08 70.00 ± 17.66 76.42 ± 11.11 75.42 ± 10.62 74.00 ± 10.68 76.83 ± 9.52 74.40 ± 11.90 75.95 ± 10.29
cleveland 55.70 ± 6.35 53.21 ± 7.21 53.92 ± 6.65 53.94 ± 6.47 54.18 ± 6.20 54.12 ± 6.96 52.70 ± 5.88 53.26 ± 6.34
web 37.97 ± 4.31 58.12 ± 8.26 57.28 ± 8.46 42.67 ± 10.41 38.43 ± 7.06 39.71 ± 8.93 55.71 ± 13.00 38.21 ± 7.08
glass 69.84 ± 8.57 75.69 ± 10.21 71.60 ± 9.01 72.11 ± 9.87 72.92 ± 9.86 70.88 ± 9.83 71.46 ± 9.98 71.55 ± 10.01
segment 94.95 ± 1.67 94.67 ± 1.54 94.49 ± 3.62 93.67 ± 1.78 94.80 ± 1.80 94.95 ± 1.87 93.04 ± 1.63 93.04 ± 1.90
multifeat 97.97 ± 0.94 91.40 ± 2.94 82.41 ± 4.95 92.78 ± 2.29 92.40 ± 1.70 88.66 ± 2.35 91.49 ± 1.86 95.76 ± 1.02
libras 80.67 ± 5.62 76.39 ± 6.31 71.58 ± 7.48 75.73 ± 6.62 75.86 ± 6.28 79.11 ± 5.65 74.78 ± 6.26 77.28 ± 5.44
arrhythmia 58.37 ± 3.75 63.51 ± 5.32 62.37 ± 6.00 60.02 ± 4.74 60.70 ± 5.18 59.60 ± 4.34 60.16 ± 4.49 59.04 ± 4.45
soybean 91.20 ± 3.16 73.93 ± 4.68 76.61 ± 4.86 80.74 ± 6.04 66.97 ± 5.38 79.87 ± 5.09 76.85 ± 4.01 77.77 ± 5.33

Avg. 79.16 ± 4.46 78.57 ± 5.44 (*) 77.98 ± 5.81 77.49 ± 5.44 77.27 ± 5.25 77.78 ± 5.23 77.66 ± 5.44 76.97 ± 5.03
Win Ratio 6/20 2/20 1/20 4/20 6/20 0 1/20

dashed lines represent the subset size, the dotted lines depict the subset eval-
uation results that are computed using the probabilistic consistency measure
(described in Section 3.3), and the solid lines indicate the classification accu-
racy. All of these are plotted with respect to the total number of iterations
used for the evaluation (5,000) at an interval of 500.

The observed trend shows a logarithmic increase in the evaluation score
coupled with a stable and very low subset size for GBFG-HS from the out-
set. For arrhythmia, the trend is even more pronounced. Statistically, there
are no significant differences in the resulting classification accuracies, as the
outcomes are essentially statistically comparable. However, there is a large
difference between HSFS and GBFG-HS in terms of the trend of subset size
(which is obvious from the outset), indicating that whilst GBFG-HS may
sometimes not score with respect to absolute classification accuracy, it al-
ways results in very compact and representative feature subsets.
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Table 6: Comparison with other FS methods: average classification accuracies (%(SD))
for the ensemble classifier, where bold indicates the statistically best value

Unred. GBFG-HS GBFG-FS FRFG GA-FS PSO-FS GHC-FS HSFS

breastcancer 72.93 ± 6.05 71.80 ± 6.74 72.05 ± 5.95 71.00 ± 6.10 70.88 ± 6.36 70.85 ± 6.24 70.58 ± 6.15 69.32 ± 6.26
heart 78.63 ± 7.16 80.99 ± 6.44 77.33 ± 8.43 77.67 ± 7.21 79.35 ± 7.22 79.37 ± 7.22 77.21 ± 7.49 77.71 ± 7.35
vote 95.09 ± 3.01 95.72 ± 3.54 95.40 ± 3.23 93.29 ± 2.94 95.43 ± 2.84 95.49 ± 3.02 93.46 ± 2.97 93.46 ± 2.97
ionosphere 85.22 ± 6.44 86.96 ± 5.62 85.09 ± 7.68 84.61 ± 7.59 84.74 ± 6.54 83.78 ± 7.56 85.27 ± 6.89 82.16 ± 7.09
credit-g 71.79 ± 3.35 71.77 ± 4.83 72.21 ± 3.60 70.01 ± 3.60 71.84 ± 3.58 72.42 ± 3.57 70.86 ± 3.84 70.46 ± 3.65
water3 82.04 ± 5.92 83.42 ± 5.61 83.88 ± 5.18 82.90 ± 5.28 84.57 ± 5.51 83.55 ± 5.14 83.09 ± 5.14 82.78 ± 5.43
sonar 77.48 ± 8.80 74.04 ± 9.81 76.05 ± 9.87 75.24 ± 9.30 75.45 ± 9.46 77.73 ± 9.35 76.18 ± 9.35 76.16 ± 9.37
ozone 93.11 ± 1.20 93.26 ± 0.93 93.28 ± 1.11 91.47 ± 1.07 93.29 ± 1.09 93.02 ± 1.10 91.45 ± 1.10 91.55 ± 1.08
secom 91.58 ± 1.25 93.04 ± 0.57 92.80 ± 1.09 90.46 ± 1.25 92.01 ± 1.27 91.75 ± 1.35 91.17 ± 0.76 89.87 ± 1.32
water4 83.37 ± 4.92 81.20 ± 4.71 80.47 ± 6.09 81.51 ± 5.66 82.94 ± 5.99 81.92 ± 5.61 81.16 ± 5.68 80.53 ± 5.82
waveform 77.35 ± 1.79 75.87 ± 2.21 78.01 ± 2.12 76.24 ± 2.02 76.18 ± 2.25 74.45 ± 2.39 75.86 ± 2.03 74.89 ± 2.27
olitos 71.75 ± 10.81 65.83 ± 14.77 69.06 ± 11.83 67.96 ± 12.16 66.95 ± 12.05 68.11 ± 12.40 68.77 ± 11.97 67.73 ± 11.40
cleveland 54.39 ± 5.66 53.21 ± 6.02 54.37 ± 5.64 53.30 ± 5.69 54.85 ± 5.42 54.92 ± 5.90 53.51 ± 5.19 53.64 ± 5.55
web 50.39 ± 9.60 57.38 ± 10.44 56.49 ± 10.60 49.50 ± 11.94 49.66 ± 10.37 48.10 ± 11.88 55.12 ± 12.32 48.59 ± 9.56
glass 68.70 ± 9.35 70.08 ± 8.70 69.27 ± 8.99 68.76 ± 9.38 69.87 ± 9.43 68.30 ± 9.34 68.42 ± 9.41 68.28 ± 9.72
segment 94.63 ± 1.86 94.11 ± 1.49 93.57 ± 3.44 93.23 ± 1.76 94.48 ± 2.03 94.64 ± 1.92 93.01 ± 1.77 92.64 ± 2.07
multifeat 94.92 ± 1.49 88.35 ± 3.14 76.72 ± 5.55 88.67 ± 3.77 86.48 ± 2.26 84.69 ± 2.61 88.56 ± 2.20 92.36 ± 1.62
libras 68.21 ± 7.92 64.63 ± 8.86 61.18 ± 8.40 65.06 ± 7.76 65.44 ± 7.80 66.62 ± 6.87 63.13 ± 7.44 65.25 ± 7.06
arrhythmia 64.90 ± 4.97 65.86 ± 5.87 63.24 ± 6.68 65.01 ± 5.80 65.59 ± 5.52 65.48 ± 5.38 65.03 ± 5.24 63.81 ± 5.70
soybean 91.62 ± 3.12 77.72 ± 4.88 76.54 ± 5.00 82.35 ± 5.79 68.67 ± 5.96 81.12 ± 5.45 78.92 ± 3.82 79.24 ± 5.48

Avg. 78.40 ± 5.23 77.26 ± 5.76 76.35 ± 6.02 76.41 ± 5.80 76.43 ± 5.65 76.82 ± 5.72 76.54 ± 5.54 76.02 ± 5.54
Win Ratio 7/20 5/20 1/20 1/20 5/20 0 1/20

Table 7: Comparison with other FS methods: average feature subset size, where the bold
indicates the statistically smallest size

Unred. GBFG-HS GBFG-FS FRFG GA-FS PSO-FS GHC-FS HSFS

breastcancer 10.00 ± 0.00 7.00 ± 0.47 8.31 ± 0.93 8.04 ± 0.47 7.08 ± 0.27 7.08 ± 0.27 7.99 ± 0.48 7.08 ± 0.27
heart 14.00 ± 0.00 6.60 ± 1.43 7.18 ± 1.63 10.85 ± 1.39 9.60 ± 0.49 9.61 ± 0.49 9.08 ± 2.11 9.68 ± 0.53
vote 17.00 ± 0.00 5.30 ± 0.82 8.38 ± 2.36 12.99 ± 2.34 8.53 ± 0.58 9.86 ± 1.10 8.66 ± 1.57 9.13 ± 0.68
ionosphere 35.00 ± 0.00 6.40 ± 1.07 8.53 ± 1.85 9.09 ± 4.42 9.14 ± 1.63 11.24 ± 1.82 7.64 ± 1.26 16.13 ± 1.18
credit-g 21.00 ± 0.00 10.60± 1.51 14.32± 1.51 13.47 ± 1.84 12.18± 0.58 13.65 ± 0.94 12.62 ± 0.76 12.29 ± 0.59
water3 39.00 ± 0.00 4.50 ± 1.58 5.09 ± 3.36 18.07 ± 4.39 12.03± 1.04 23.79 ± 2.05 12.56 ± 1.09 20.39 ± 1.11
sonar 61.00 ± 0.00 9.20 ± 1.40 13.46± 1.85 22.26 ± 8.60 11.89± 1.17 12.63 ± 1.32 12.63 ± 1.32 31.53 ± 1.77
ozone 73.00 ± 0.00 12.40± 0.97 21.31± 8.22 34.24 ± 9.96 19.38± 1.43 39.04 ± 5.09 19.76 ± 2.86 35.84 ± 1.08
secom 591.00± 0.00 2.10 ± 1.10 8.09 ± 2.71 108.25± 74.32 94.40± 10.06 401.61± 42.25 3.57 ± 7.03 326.61± 3.42
water4 39.00 ± 0.00 3.20 ± 0.42 5.51 ± 2.66 15.12 ± 4.95 10.23± 1.32 21.98 ± 2.96 10.57 ± 1.05 19.54 ± 1.31
waveform 41.00 ± 0.00 11.70± 1.57 13.42± 1.16 13.34 ± 1.89 11.14± 0.90 17.58 ± 1.87 11.68 ± 0.68 18.46 ± 0.86
olitos 26.00 ± 0.00 7.80 ± 1.62 11.47± 2.04 11.83 ± 3.05 9.30 ± 0.67 12.92 ± 1.52 10.03 ± 1.14 13.84 ± 1.14
cleveland 14.00 ± 0.00 6.70 ± 1.16 6.84 ± 1.41 11.21 ± 1.63 8.03 ± 0.67 8.85 ± 0.48 7.27 ± 2.38 8.37 ± 0.69
web 2557.0± 0.00 6.98 ± 0.74 18.34± 1.56 411.29±489.09 987.96±159.06 940.99±162.14 17.68 ± 1.41 1459.65± 5.51
glass 10.00 ± 0.00 5.50 ± 0.85 6.35 ± 0.98 6.79 ± 0.53 6.73 ± 0.53 7.60 ± 0.64 6.73 ± 0.53 6.73 ± 0.53
segment 20.00 ± 0.00 7.00 ± 1.15 11.94± 2.53 9.11 ± 2.07 7.22 ± 0.63 8.82 ± 1.35 7.85 ± 0.83 8.32 ± 0.66
multifeat 650.00± 0.00 6.90 ± 0.88 13.00± 1.46 7.85 ± 0.24 43.00± 0.00 28.00 ± 0.00 6.46 ± 0.50 353.72± 2.87
libras 91.00 ± 0.00 8.60 ± 0.52 15.19± 2.96 48.65 ± 18.05 17.50± 3.37 45.00 ± 6.85 16.87 ± 1.73 46.61 ± 1.99
arrhythmia 280.00± 0.00 8.90 ± 1.60 14.49± 3.29 54.24 ± 58.85 30.12± 2.64 160.66± 18.38 22.14 ± 1.99 150.58± 2.38
soybean 36.00 ± 0.00 10.80± 1.99 13.99± 2.24 19.00 ± 4.73 10.49± 0.63 18.93 ± 2.81 12.48 ± 0.72 16.88 ± 1.06

Avg. 231.25± 0.00 7.41 ± 1.14 11.26± 2.34 42.28 ± 34.64 66.30± 9.38 89.99 ± 12.72 11.21 ± 1.57 128.57± 1.48
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Table 8: Comparison with other FS methods: average runtime of 10×10 cross-validation
folds (MS) in terms of generating FS outcomes, where bold indicates the statistically most
efficient

GBFG-HS GBFG-FS FRFG GA-FS PSO-FS GHC-FS HSFS

breastcancer 426 ± 62 6 ± 1 780 ± 312.5 26 ± 14 81 ± 252 31 ± 165 572 ± 115
heart 230 ± 49 4 ± 1 486± 7 100 ± 50 84 ± 167 8 ± 19 333 ± 50
vote 391 ± 86 7 ± 1 4264 ± 861 364 ± 175 172 ± 296 59 ± 213 864 ± 162
ionosphere 278 ± 54 4 ± 1 9083 ± 1603 120 ± 289 187 ± 211 77 ± 452 454 ± 81
credit-g 1856 ± 277 126 ± 2 39605 ± 2319 4356 ± 272 255 ± 95 197 ± 106 2776 ± 108
water2 295 ± 69 3 ± 1 30455 ± 9875.5 5086 ± 1566 206 ± 116 137 ± 94 837 ± 55
sonar 287 ± 51 22 ± 1 20385± 3586 3332 ± 1339 78 ± 60 78 ± 60 577 ± 55
ozone 5208 ± 476 634 ± 25 1745352 ± 276629 83577 ± 9500 1791 ± 390 2904 ± 570 8164 ± 432
secom 1334 ± 146 839 ± 951 44678361 ± 5555810 205022 ± 16832 11220 ± 5392 1352 ± 3076 30692 ± 1818
water3 329 ± 36 3 ± 1 24318 ± 5586 4127 ± 2204 182 ± 66 70 ± 46 855 ± 87
waveform 33977 ± 3805 1282 ± 53 2264626 ± 400507.5 166172 ± 90326 3238 ± 1667 3619 ± 789 29292 ± 2371
olitos 153 ± 45 7 ± 1 426 ± 86 417 ± 286 93 ± 46 17 ± 34 195 ± 20
cleveland 238 ± 44 8 ± 4 674 ± 116 36 ± 21 94 ± 149 29 ± 81 330 ± 40
web 1414253 ± 318 1412567 ± 421 5460160 ± 1140662 675 ± 714 15267 ± 6607 4602 ± 1228 22264 ± 116
glass 181 ± 36 2 ± 0 166 ± 5 10 ± 8 126 ± 732 39 ± 304 262 ± 73
segment 2176 ± 266 113 ± 4 69656 ± 32476 1719 ± 1461 313 ± 211 123 ± 61 3359 ± 442
multifeat 8189 ± 664 828 ± 433 85723105 ± 2277627 144 ± 6 4005 ± 390 10229 ± 3030 54541 ± 8564
libras 510 ± 91 49 ± 4 104658 ± 38064 8096 ± 2333 392 ± 177 510 ± 189 1203 ± 40
arrhythmia 959 ± 171 53 ± 7 966082 ± 146275 23529 ± 432 2905 ± 2534 856 ± 123 7702 ± 2225
soybean 1061 ± 89 48 ± 1 41559 ± 7108 9534 ± 3565 287 ± 308 215 ± 490 1511 ± 40

Avg. 73616 ± 341 70830 ± 95 7059210± 494976 25822 ± 6569 2048 ± 993 1257 ± 556 8339 ± 844
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Dataset Execution Time

GBFG-HS HSFS

heart 230(49) 333(50)
glass 181(36) 262(73)
cleveland 238(44) 330(40)
olitos 153(45) 195(20)
ozone 5208(476) 8164(432)
libras 510(91) 1203(40)
arrhymythia 959(171) 7702(2225)
water2 295(69) 837(55)
water3 329(36) 855(87)
web 1414253(318) 22264(116)
secom 1334(146) 30692(1818)
soybean 1061(89) 1511(40)
segment 2176(266) 3359(442)
vote 391(86) 864(162)
ionosphere 278(54) 454(81)
credit-g 1856(277) 2776(108)
breastcancer 426(62) 572(115)
multifeat 8189(664) 54541(8564)
waveform 33977(3805) 29292(2371)
sonar 287(51) 577(55)

TABLE X
GBFG-HS AND HSFS: AVERAGE EXECUTION TIME PER

CROSS-VALIDATION FOLD (MS)
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Fig. 5. Analysis of GBFG-HS and HSFS in terms of classification accuracy,
subset size, and evaluation score for the arrhythmia and multifeat datasets.

from feature groups may not consider the information on
inter-feature collaboration. In particular, harmony search has
been used for the purpose of selecting the final subsets. The
multiple finally selected subsets obtained with harmony search

provide more flexibility in returning optimal subsets, instead of
producing just a single one at a time. Interestingly, other search
mechanisms such as particle swarm optimisation, ant colony
optimisation, and genetic algorithms are equally applicable
to this particular instantiation of the framework for the task
of FS. However, the proposed harmony search-based method
outperforms such FS methods, including FRFG, GA-FS, PSO-
FS and GHC-FS, especially with respect to the resultant subset
size across all twenty datasets investigated.

Whilst both implementations of the proposed approach are
promising, as indicated previously, more efficient strategies for
generating groupings are highly desirable. At the moment, a
rather simple approach of iteratively removing a single edge
from the MST is employed. However, this can be time consum-
ing particularly when combined with the iterative refinement
step. One particular strategy that could be employed here
would be the removal of a number of edges simultaneously
at each iteration, where such edges are of an equal weight.
Another strategy might be to adopt a fuzzy approach where
all edge weights are considered linguistically. It would also
be interesting to further investigate the method used for the
assessment of the quality of the feature subsets. For the current
approach they are assessed by evaluating representatives drawn
from each of the feature groups. Since the size of selected
subset is controlled by the number of groups, wrapper or
hybrid methods could be considered for the grouping phase,
there further reducing the computational overhead.
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Fig. 5. Analysis of GBFG-HS and HSFS in terms of classification accuracy,
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from feature groups may not consider the information on
inter-feature collaboration. In particular, harmony search has
been used for the purpose of selecting the final subsets. The
multiple finally selected subsets obtained with harmony search

provide more flexibility in returning optimal subsets, instead of
producing just a single one at a time. Interestingly, other search
mechanisms such as particle swarm optimisation, ant colony
optimisation, and genetic algorithms are equally applicable
to this particular instantiation of the framework for the task
of FS. However, the proposed harmony search-based method
outperforms such FS methods, including FRFG, GA-FS, PSO-
FS and GHC-FS, especially with respect to the resultant subset
size across all twenty datasets investigated.

Whilst both implementations of the proposed approach are
promising, as indicated previously, more efficient strategies for
generating groupings are highly desirable. At the moment, a
rather simple approach of iteratively removing a single edge
from the MST is employed. However, this can be time consum-
ing particularly when combined with the iterative refinement
step. One particular strategy that could be employed here
would be the removal of a number of edges simultaneously
at each iteration, where such edges are of an equal weight.
Another strategy might be to adopt a fuzzy approach where
all edge weights are considered linguistically. It would also
be interesting to further investigate the method used for the
assessment of the quality of the feature subsets. For the current
approach they are assessed by evaluating representatives drawn
from each of the feature groups. Since the size of selected
subset is controlled by the number of groups, wrapper or
hybrid methods could be considered for the grouping phase,
there further reducing the computational overhead.
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Figure 4: Analysis of GBFG-HS and HSFS in terms of classification accuracy, subset size,
and evaluation score for the arrhythmia and multifeat datasets.
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6. Conclusion

This paper presents a novel framework for feature grouping, upon which
two instantiations for the task of feature selection are proposed. The first
offers a simple group-then-rank approach based on the selection of represen-
tative features from the feature grouping generated. The second employs a
metaheuristic approach to strengthen the search since the simple inclusion
of representatives selected from feature groups may not consider the infor-
mation on inter-feature collaboration. In particular, the harmony search has
been used for the purpose of selecting the final subsets. The multiple subsets
ultimately selected by the harmony search provide more flexibility in return-
ing the optimal subsets instead of producing just a single subset at a time.
Interestingly, other search mechanisms, such as particle swarm optimisation,
ant colony optimisation, and genetic algorithms, are equally applicable to
this particular instantiation of the framework for the task of FS. However,
the proposed harmony search-based method outperforms such FS methods,
including FRFG, GA-FS, PSO-FS and GHC-FS, especially with respect to
the resultant subset size across all twenty datasets investigated. The pro-
posed FS methods also offer great potential for improving the performance
of SVMs and other learning classifiers. Since conducting experimental eval-
uations similar to ours by using the other classifiers over the 20 datasets
would require substantial computational efforts, we feel this investigation is
best treated as an important piece of future work.

While both implementations of the proposed approach are promising, as
indicated previously, more efficient strategies for generating groupings are
highly desirable. At the moment, a rather simple approach of iteratively
removing a single edge from the MST is employed. This could potentially
be improved with two alternatives below. One particular strategy that could
be employed here is the simultaneous removal of a number of edges in each
iteration, where the edges are of equal weight. Another strategy might be to
adopt a fuzzy approach where all edge weights are considered linguistically.
It would also be interesting to further investigate the method used for the
assessment of the quality of the feature subsets. In the current approach,
they are assessed by evaluating the representative features drawn from each
of the feature groups. Since the size of the selected subset is controlled by
the number of groups, wrapper or hybrid methods could be considered for
the grouping phase, further reducing the computational overhead. The deep
features learned by deep neural networks often have high dimensionality. This
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would be a potential application of the proposed method on deep features.
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