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Abstract

Discovery processes have been an important topic in the network science field. The exploration of

nodes can be understood as the knowledge acquisition process taking place in the network, where

nodes represent concepts and edges are the semantical relationships between concepts. While

some studies have analyzed the performance of the knowledge acquisition process in particular

network topologies, here we performed a systematic performance analysis in well-known dynamics

and topologies. Several interesting results have been found. Overall, all learning curves displayed

the same learning shape, with different speed rates. We also found ambiguities in the feature

space describing the learning curves, meaning that the same knowledge acquisition curve can be

generated in different combinations of network topology and dynamics. A surprising example of

such patterns are the learning curves obtained from random and Waxman networks: despite the

very distinct characteristics in terms of global structure, several curves from different models turned

out to be similar. All in all, our results suggest that different learning strategies can lead to the

same learning performance. From the network reconstruction point of view, however, this means

that learning curves of observed sequences should be combined with other sequence features if one

aims at inferring network topology from observed sequences.
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I. INTRODUCTION

Many real-world systems can be naturally represented by sequences corresponding to

chains of events or transitions between states, including human actions [9], machine work-

flow [36], scientists mobility [21] and language [14]. Communication can also be accomplished

by encoding and decoding data into sequences of symbols or continuous signals. Indeed, a

significant portion of datasets derived from real-world systems is available in this form. For

a complex system, one can understand that sequences can be generated by a process driving

the changes among states across a certain space of allowed transitions [5].

Network science has been employed to represent a great variety of complex systems [2, 7,

17, 18, 20, 27]. In recent studies, complex networks have displayed the potential to represent

the space of transitions between states for many types of systems [14, 24, 25]. In this context,

the driving processes generating sequences are represented by stochastic walks of a variety

of heuristics. An example of this case is the knowledge acquisition process [6], in which

nodes represent knowledge that is connected according to how related they are. One or

multiple agents (such as researchers) navigate in this knowledge space, which is unknown

from the start, and discoveries are made when the agents visit new nodes. In such a system,

sequences are derived by the paths taken by the agents.

While Markov chains [33] are a simple way to model and recover the inherent network

of transition probabilities, it relies on considering that the studied phenomenon is driven

by a simple stochastic process with no a priori knowledge of its space. Many real-systems,

however, may present more intricate driving stochastic dynamics (which may depend on long

term memory or properties of the nodes, for instance). An example of that system is urban

transportation, where agents navigate across a system of roads with possibly predefined

origin and destinations. The paths taken by connecting these endpoints cannot be driven

solely based on local probabilities. Also, the inherent space of state transitions can display a

variety of different topologies [17] in contrast to more well-defined structures, such as regular

graphs, as a consequence, even simple stochastic dynamics can lead to intricate sequences [5].

In many real-world problems, only the sequences generated by the system are observed.

Thus, having a way to discriminate characteristics that are either consequence of the dy-

namics or from the network can lead to a better understanding of the studied phenomenon.

A simple property derived from sequences that can be differently impacted by both of these
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aspects is the rate of appearance of new symbols. This corresponds to the exploration cov-

erage of a network under the action of a walking dynamics, which is also related to the

learning curve in a knowledge acquisition process. This property is also related to how well

an agent performs in discovering knowledge.

To our knowledge, no previous study focused on a systematic analysis among the dy-

namics, networks, and the sequences generated by them. Here we analyzed the coverage

curves for sequences obtained from four random walk dynamics and four network models

with different topological structures. At first, we are interested in knowing if the coverage

curves are already good criteria for determining both the model and the dynamics used to

generate a sequence.

Our analysis revealed that, among the considered stochastic walk dynamics using only

local network information, the true self-avoiding dynamics (TSAW) was found to present the

best performance in coverage rate for the considered network models. In addition to that,

different patterns for the performances of coverage rate were observed. Aside from TSAW,

the ranking based on performance of exploration for different sets of walk dynamics tends to

depend on the network structure. For instance, when the stochastic walk is biased according

to the node degree, better performance is attained when the network is sparse and the walks

are biased towards preferring highly connected nodes. On the other hand, if the network is

denser, better performance is reached when the walk avoids highly connected nodes. We also

encountered situations in which there exists ambiguity in the coverage property for certain

combinations of dynamics and network models. This indicates that it would be possible to

swap the dynamics and the inherent structure and even so, attain similar coverage curves.

These developments could shed a light on the analysis of the mechanisms leading to text

generation, for instance, to better understand how the vocabulary grows along with the text.

The following section explores the related literature to the problem of modeling real-

world phenomena in terms of networks, dynamics, and sequences. Next, the methodology is

presented alongside the description of the considered network models and dynamics. Results

are presented together with discussions, which is followed by conclusions.
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II. RELATED WORKS

Random walks (RW) have been studied in many networked applications [8, 13, 15, 32]. In

the early studies of the emergent network science field, the properties of RW was investigated

in power-law distributed networks. In [1], the authors compared the efficiency of random

and self-avoiding walks in transferring messages through the network. Hubs were found to

play the role of centralizing and distributing information to other nodes. Most importantly,

this finding revealed that the efficiency of discovering new nodes depends on the topology

of the underlying network.

The process of network discovering has been approached by several recent studies [5, 6,

23, 28, 39]. In [6], the authors compared the learning speed of several dynamics for particular

network topologies. Specifically, they analyzed how effective different dynamics are when

discovering new nodes in the network. In addition to traditional random walks, this study

considered also random walks with Lévy flights [38]. Thus, the agents were allowed to visit

any node in the network in the next step with a certain probability. The authors found that

more frequent jumps favors the discovery rate, specially in Barabási-Albert networks. In

particular topologies, though, jumps were found not to be as effective. This is the case of

geographic networks. Another interesting finding is that the discovery of new nodes occurs

with different speed in different network regions. The core – as identified via accessibility

(entropy diversity) [4, 41] – tends to be covered faster than the network borders.

In [28] the authors studied the efficiency of agents walking over the network to learn

the structure of the network. Differently from other works, the authors considered a model

where knowledge discovered by different agents is integrated in a specific entity of the sys-

tem. This system is referred to as network brain. This type of dynamics was intended to

represent e.g. the knowledge acquisition when mapping communities of similar interests in

the Web. The most surprising result arising from this study is the fact that the learning

behavior, considering variations of the self-avoiding walk, has a very weak dependence on

the considered dynamics and network topologies.

The problem of knowledge acquisition in networks has also been studied in the context

of information theory applications [5]. In [5], distinct random walks are performed over

different topologies. The sequence of visited nodes generates a sequence of symbols, which

is further analyzed in function of the observed compression ratio – computed via Huffman
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coding. Finally, such a sequence is used to reconstruct the original network, and the error is

analyzed for distinct topologies and agent dynamics. Several interesting results have been

found using the framework combining knowledge acquisition and information theory. Inter-

estingly, the best performance in the framework constructed for representing the phenomena

of compression (during transmission) and reconstruction of networks revealed that a sim-

ple knitted network model [16] yielded the best performance. This finding is compatible

with the idea that language is optimized for transmission [11], since knitted networks are

representations of co-occurrence language networks [12, 31, 37, 40].

The study reported in [25] aimed at identifying key Physics concepts from students’ rep-

resentations of perceived similarity between distinct topics. The representation used in this

work was a concept network, where nodes represent the concepts (in the sense of quantities,

laws, models, or experiments), and edges represent similarities between these concepts, such

as actions for determining a model or the realization of a experiment using some law [39].

The paper studies these concept networks using subgraph and communicability betweenness

centrality. The most relevant concept networks were identified using an importance ranking

coefficient, which is a normalized geometric mean of the considered centrality measurements.

While this study does not relies on random walks to represent the acquired network, the

concepts networks are used as examples of networks representing the knowledge acquired by

students, according to unknown knowledge acquisition dynamics.

The study conducted in [23] analyzed the properties of self-avoiding walks (SAW) in

clustered scale-free networks. The study investigated how the number of SAWs changes

as the desired walk length increases. The main result of the paper shows that, for scale-

free networks with same average degree, there are more SAWs in clustered networks when

compared to unclustered networks. This result suggests that the modular organization in

the same topological family of networks may impact the discovery process in the network.

Differently from most of the works in the literature, here we analyze the knowledge

acquisition problem in terms of a generalist point of view. We analyze whether different

network topologies and dynamics can lead to the same behavior in the observed learning

curves. In other works, we analyze the behavior of learning curves by comparing, at the

same time, different configurations of network topology and agents dynamics.
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(a) Networks (b) Walk dynamics (c) Coverage curves (d) PCA

FIG. 1. Methodology employed to analysis the behavior of learning curves. In (a), we selected

different network topologies. In (b), dynamics based on variations of random walks were considered

to explore the networks. In (c), we obtain the learning curves describing how many nodes are

discovered as the network is explored. Finally, in (d) each curve is mapped into a 2-dimensional

space and similarities in the behavior of learning curves for different topologies and dynamics are

analyzed.

III. METHODOLOGY

The main objective of this paper is to compare the efficiency of different walking strategy

to discover new nodes in the network. We compare well known random walk strategies

in different network topologies. Most importantly, we analyze the behavior of “learning

curves” for each pair topology/dynamics in order to analyze whether different combinations

of topology and random walks can lead to the same learning curve (and vice-versa). The

adopted methodology is illustrated in Figure 1 and summarized in the following steps:

1. Network topology : we selected different network topologies. We have selected well-

known network models reproducing the characteristics of real-world networks. A brief

description of the adopted models is provided in Section III A.

2. Network dynamics : different ways to walk over the networks were considered, including

dynamics based on traditional random walks and dynamics biased towards particular

neighbor properties. A brief description of the adopted network dynamics is provided

in Section III B.

3. Learning curves : For each pair of topology and dynamics, we obtain the learning

curves. This learning curve describes how fast new nodes are discovered as the dy-

namics unfolds (see Section III C).

4. Cluster analysis : in this phase, each learning curves are mapped into a vector. This is

used to measure the similarity between two curves. Similar curves are then identified
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via cluster analysis. This step is important to show that the behavior curve A brief

description of this process is provided in Section III D.

A. Network topology

Artificial networks were built for each set of network models. The following parameters

were used to create the networks: number of nodes (N) = {500, 1000, 5000} and average

degree (〈k〉) = {4, 6, 8, 10}. We have worked with four well-known undirected network

topology models:

• Erdős-Rényi (ER): this model generates small-world networks, adding the character-

istic to have all the nodes with similar degrees, i.e., the probability of creating an edge

is equally distributed among the nodes.

• Barabási-Albert (BA): this topology implements the scale-free model, inherent to many

real networks. BA networks are characterized by a few hubs with a very high degree,

while most nodes have small degrees.

• Waxman (WAX): this a traditional geographic model, which comprehends a set of

nodes in a two dimensional space that incorporates new edges through an algorithm

in which the probability decays exponentially as the distance between each pair of

nodes grows. More specifically, the probability of two nodes to be linked is given by:

πij = a exp(dij/β), (1)

where a is a normalization factor, dij is the geographic distance between nodes vi and

vj and β is a parameter that defines the connectivity of the network.

• Modular Networks (LFR): networks with community structure were implemented us-

ing the methodology described in [26]. In this model, each community is represented

as a scale-free network. In addition to the number of nodes and average degree, addi-

tional parameters can be considered to generate the networks. The main parameters

describing this model are the number of communities (nC), the minus exponent for

the degree sequence (t1), the minus exponent for the community size distribution (t2),
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the maximum degree (maxk), and the the mixing parameter (µ), which determines the

fraction of edges linking distinct network communities. Here we used nC = 5, t1 = 3,

t2 = 0, µ = 0.20. The maximum degree maxk were chosen so as to obtain networks

with the desired average degree 〈k〉.

A visualization of the considered models for selected parameters is illustrated in Figure

2. The visualizations were generated using the Networks3d software [35]. It is clear that for

different models the nodes with highest degrees (orangish nodes) are distributed in different

ways.

(C) WAX (d) LFR

(a) ER (b) BA

FIG. 2. Force-directed visualizations of the considered network models. Different colors correspond

to different node degrees. The visualizations were generated using the Networks3d software [35].
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B. Network dynamics

In order to recover the symbols from these models we have worked with the following walk

dynamics: traditional random walk (RW) [29], random walk biased by degree (RWD) [10],

random walked biased by the inverse of the degree (RWID) [10], and true self-avoiding walk

(TSAW) [3, 24]. These walks have been widely employed to study the dynamics of learning

curves in the last few years [5, 6, 28]. The main differences among these walk dynamics are

detailed below:

• Traditional random walks : the random walk dynamics is one of the most used in

literature, and a very simple one. If the walker is at node vi and Γi is the set of

neighbors of vi, all nodes in Γi have the same probability to be chosen as next node in

the walk. In other words, the probability of transition from vi to vj ∈ Γi is pij = k−1
i .

• Degree-biased random walk : in this walking dynamics, a higher probability of transition

pij is given to those neighbors with higher degrees. Mathematically, pij is proportional

to the degree kj of vj ∈ Γi:

pij =
kj∑
l∈Γi

kl
. (2)

In other words, the RWD dynamics always tries to explore the network by prioritizing

visits to nodes with the highest number of neighbors.

• Low degree-biased random walk : a different variation of the traditional random walk

is the walk biased towards the inverse of the degree. In this case, the probability of

transition from vi to vj ∈ Γi is :

pij =
k−1
j∑

l∈Γi
k−1
l

. (3)

Therefore, in this case, the walker tends to select nodes with low-degree in the next

step of the random walk.

• True self-avoiding walk : in a true self-avoiding walk dynamics, already visited nodes

are avoided. This is achieved this by memorizing edges that have already been visited.
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The transition probability is computed as

pij =
e−λfij∑
l∈Γi

e−λfil
, (4)

where fij is the frequency of visits to the edge linking nodes vi and vj. The parameter

λ > 0 corresponds to the exponential decay factor for which the probabilities decrease

with the number visits. In this study, we use λ = ln 2.

The main advantage of this dynamics is that it tends to present a higher learning rate

when many nodes have already been visited. When the walker is visiting a region with

no visited nodes, this random walk behaves similarly to the RW dynamics.

C. Learning Curves

The measure used to characterize each dynamics is the so-called learning rate. This

is an important property in network science and is related to many processes on complex

networks, including knowledge acquisition, discovery processes, diffusion and spreading [19].

For each pair of network and random walk dynamics, we considered 5,000 iterations (steps).

Learning curves are then obtained as the fraction of the total number of different nodes

visited after a given number of steps.

The dynamics observed by visiting sequentially network nodes has an analogy with the

process of generating written texts [5]. If we consider that, at each step, a symbol is generated

to represent that the current node has been visited, after 5,000 steps we have a sequence of

symbols (i.e. a text) comprising 5,000 words. The learning curve can thus be seen as the

vocabulary observed for a given text length. While in written texts the relationship between

vocabulary size and text length is well described by the Heaps’ Law [30], the learning curve

observed in network discovery processes tends to follow a different pattern [6].

D. Principal Component Analysis

Here different learning curves are compared and similar learning curves is observed. To

quantify the similarity between curves we represent each curve as n-dimensional vector,

where the i-th position of the vector represents the fraction of nodes visited after the i-th
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step. Because such a representation of curves yields several strongly correlated features, we

use Principal Component Analysis (PCA) [22] to remove possible correlations. In fact, as

we shall show, two dimensions of the PCA analysis accounts for more than 95% of the data

variation.

After the learning curves are represented in a two-dimensional space, clusters can be iden-

tified. Because our objective is to analyze whether similar learning curves can be obtained

with different topology/dynamics choices, the identification of clusters was performed via

visual inspection. However, a scenario with several instances could also be analyzed by using

traditional clustering algorithms [34].

IV. RESULTS AND DISCUSSION

Our analyses take into account the exploration coverage over time for agents discovering

knowledge in network models as they explore nodes through edges. The first step is obtaining

the learning curves for the considered pairs of dynamics (RW, TSAW, RWD, and RWID)

and network models (ER, BA, WAX, and LFR models). For each network model setup, we

generated 5 networks and recorded the coverage curves for 50 realizations of each dynamics.

The starting position of each realization was drawn uniformly from the network nodes and

for each configuration we computed the average and standard deviation of the coverage

(learning) curves. The resulting curves are shown in Figure 3. Each row and column

corresponds to different network models and average degree, respectively. The panels contain

curves colored according to the considered dynamics.

An initial observation shows that the TSAW dynamics outperformed the other dynamics

in all the experiments, corroborating previous studies in which TSAW was found to be

among the most optimal stochastic walks [6]. On the other hand, the RWD and RWID

dynamic resulted in the worst performance among the considered configurations.

All curves seem to present similar shapes but different growing speeds, with faster cov-

erage as 〈k〉 increases, a behavior that is stronger for the RWD and RWID dynamics. In

particular, for ER, the performance among the dynamics becomes substantially similar as

the average degree increases. This indicates that the considered dynamics performs very

similarly for denser networks. An exception to this rule is the RWD for the BA and LFR. In

these cases, the performance of RWD gets slightly worse as network connectivity increases.
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FIG. 3. Learning curves for N = 5, 000 nodes and the models ER, BA, WAX and LFR. Each row

and column correspond to different network topologies and average degrees, respectively.

This is probably related to the fact that a scale-free network (such as BA or LFR) allows the

existence of extremely connected nodes in which a walker could get stuck given its preference

to move to nodes with high degrees.

Another important aspect of the analysis is how the ranking of dynamics performance

change amongs the experiments. In general, TSAW is followed by RW, except for the LFR

and BA networks with high connectivity. In this case, RWID attains a second place. This
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reveals that, in these networks, avoiding hubs can be a good strategy to explore them more

quickly. When the degree is lower, however, RWD performs better than RWID, indicating

that, in this case, it is preferable to reach the hubs than avoiding them to attain better

performance.
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FIG. 4. Learning rates for the considered models and N = 5, 000. Each curve indicates the growth

of the number of discovered nodes across the simulation epochs.

In addition to the previous analyses, we observe two distinct patterns for the behavior of

the curves among the network models, one for ER and WAX, and another for BA and LFR.
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While these pairs do not necessarily display exactly the same behavior, the performance

rankings of the dynamics within these pairs of models do not change much. We also analyzed

the differences (or rates of growth) of the cumulative discovery curves. Figure 4 shows the

obtained rate curves for all the considered configurations. Both the ranks and other overall

observations drawn from the cumulative curves can also be drawn for the rate curves.

To summarize the main characteristics of the obtained learning curves, we applied PCA

as a way to reduce their dimension. For each experiment, we derive a set of 50 features

corresponding to the values of the learning rate curves (i.e., the derivatives shown in Figure 4)

at epochs 100 iterations apart (see Section III D).

−10 −5 0 5 10 15 20
PCA1 (95.14%)

−2

0

2

4

PC
A2

 (3
.4

1%
)

ER RW 4

ER RW 6
ER RW 8

ER RW 10
ER RWD 4

ER RWD 6
ER RWD 8ER RWD 10

ER RWID 4

ER RWID 6

ER RWID 8

ER RWID 10
ER TSAW 4

ER TSAW 6
ER TSAW 8

ER TSAW 10

BA RW 4

BA RW 6BA RW 8

BA RW 10

BA RWD 4

BA RWD 6

BA RWD 8BA RWD 10

BA RWID 4

BA RWID 6

BA RWID 8

BA RWID 10

BA TSAW 4

BA TSAW 6
BA TSAW 8

BA TSAW 10

WAX RW 4

WAX RW 6
WAX RW 8

WAX RW 10 WAX RWD 4
WAX RWD 6

WAX RWD 8

WAX RWD 10

WAX RWID 4

WAX RWID 6

WAX RWID 8

WAX RWID 10 WAX TSAW 4

WAX TSAW 6WAX TSAW 8

WAX TSAW 10

LFR RW 4

LFR RW 6

LFR RW 8

LFR RW 10

LFR RWD 4

LFR RWD 6
LFR RWD 8

LFR RWD 10

LFR RWID 4

LFR RWID 6

LFR RWID 8

LFR RWID 10

LFR TSAW 4

LFR TSAW 6
LFR TSAW 8

LFR TSAW 10

RW
RWD
RWID
TSAW

ER
BA
WAX
LFR

FIG. 5. PCA results for ER, BA, WAX, and LFR for N = 5, 000 nodes. Each instance represents a

learning curve obtained for a specific pair of network topology and agent dynamics. Interestingly,

in some cases, different combinations of topology/dynamics can lead to similar learning curves.

The obtained data projection, shown in Figure 5, reveals that almost 100% of the variance

in the curves can be explained by only two components. In particular, the first component

covers about 95.1% of the variance. This outcome indicates a high correlation among the

curves. At the positive extreme of the first principal component, we find a separated group

corresponding to the curves obtained for RWD dynamics simulated on the BA and LFR

networks. These correspond to the curves with worst performance among the considered ex-

periments. The RWID curves spread across the PCA1 axis, revealing its diversified behavior

with each curve depending on the network model and connectivity.

Along the negative segment of the first principal component, we observe a substantial

overlap among the curves for different experiment configurations. This region corresponds

to configurations of high node degree or simulated through the TSAW dynamics. Among

the notable overlapping configurations are ER and WAX. This is a surprising result, since
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they present very distinct characteristics in terms of global structure. At least three other

regions are shared by different combinations of networks and dynamics. This includes those

obtained from ER, WAX and LFR models when the dynamics are TSAW for LFR, and

RW for the others. Another example are the RW curves for the BA, WAX, and ER. These

results indicate that just by looking at the coverage performance curves it is not trivial to

distinguish between network models and dynamics.

The profile of the PCA axes in the original space, shown in Figure 6, reveals that the

first principal component (PCA1) is almost flat along the iterations. This indicates that all

epochs are equally important for the principal component. Conversely, PCA2 seems to cap-

ture the difference of rates at the beginning and end of the curves. To further explore these

aspects we plotted together all the averaged cumulative learning curves of the considered

configurations colored by PCA1 and PCA2. This result is shown in Figure 6. We note that

PCA1 (a) indeed correspond to the inverse of total learning coverage, which is somewhat

independent from the shape of the curves. A second order effect seems to be captured by

PCA2 (b), corresponding to how fast the rates of the learning curves are increasing across

the epochs. This becomes more clear when all the curves are aligned so that the starts and

ends match, as shown in (c). Curves with low values of PCA2 tends to be more concave

(presenting high curvature) and vice-versa. All in all, PCA1 corresponds to the average

learning speed, while PCA2 seems to be related to the acceleration of the curves.
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FIG. 7. Averaged learning curves for all the considered configurations. The color of each curve

indicates the PCA1 (a) or PCA2 (b). The insight (c) shows all the curves normalized by their

respective maximum value.

V. CONCLUSION

With many real-world phenomena being modeled and represented as sequences, one way

to characterize their respective complex system is by separating the dynamics encoding the

sequences from their underlying state space. In this context, a certain stochastic walk dy-

namics acts as the encoder while a complex network can be used to represent the state space.

While this framework has been used to model several real-world problems, no systematic

analysis of the relationships among these three aspects of the systems exists in the literature.

In this paper, we performed a systematic analysis of the behavior of different dynamics in

well-known network topologies. Whenever a dynamics (or exploration strategy) is performed

on a network, one obtains a sequence of visited nodes. We aimed at studying how both

topology and network dynamics affects the observed sequence of visited nodes. Here we

focused in one property of the sequences, the total number of different visited nodes. This

property has many applications in network science, and is oftentimes related to the process

of knowledge acquisition [5, 6]. In a semantic network, for example, each visited node can

be considered as a new learned concept.

We adopted a framework to study the behavior of learning curves. For each combination

of network topology and dynamics, we obtained the corresponding learning curves. Then,

each learning curve was mapped into a two-dimensional space via Principal Component

Analysis. This allowed us to compare curves in a more systematic way, with the advantage
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of removing correlations while keeping the variability of the original learning curves space.

Several interesting results have been found with our approach. Overall we found that true

self avoiding walks outperformed all other dynamics, while the variations of random walks

biased towards high or low degree displayed the worst learning curve performances. Despite

such differences in performance, we found that all learning curves presented similar shapes.

A further investigation of growth rates (i.e. the derivatives) of learning curves revealed

that no additional information can be obtained from such an analysis. This means that the

learning curves are sufficient to discriminate different network topologies and dynamics.

The Principal Component Analysis confirmed that, despite distinct performances, all

curves shapes are similar. This could be confirmed by the fact that curves could be mapped

into a two-dimensional space virtually without any lost in the original data variation. Sur-

prisingly, the first component accounted for 95% of the original variation. The visualization

provided by PCA allowed us to observe some interesting patterns. Some regions were found

to share different combinations of topologies and dynamics. For example, similar learning

curves were found in ER and WAX, showing that the same behavior can be obtained even

in very distinct network topologies. The PCA visualization also revealed the variability of

learning curves with different topologies. While RWD and RWID were found to be very

dependent upon topology, learning curves obtained with TSAW dynamics were found to be

much less sensitive to distinct network topologies.

The ambiguity of the behavior of learning curves observed in the PCA space can be

useful in practical scenarios. For example, in a knowledge acquisition scenario, the network

topology can represent how concepts are linked to each other, while the chosen dynamics

can be interpreted as the methodology used to cover the concepts being taught. In such

educational scenario, our results suggest that one can be able to deliver the same learning

experience by adopting completely different knowledge organization (i.e. network topology)

and teaching sequence (i.e. network dynamics).

Our results show that when one uses learning curves to describe sequences of visited

nodes ambiguous behaviors may arise. In other words, sequences with similar behavior

can be observed from distinct pairs of topology/dynamics. This result suggests that the

reconstruction of the processes underlying network construction and topology cannot rely

only on learning curves as descriptive features of sequences. For this reason, in future works,

we intend to study additional sequence features to identify a minimum set of sequence
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descriptors that are able to discriminate both the topology and dynamics generating the

observed sequence. Because sequences are used to construct embeddings, further studies

can analyze if similar embeddings can be obtained from distinct topologies and walks.
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[15] E. A. Corrêa Jr, F. N. Silva, L. F. Costa, and D. R. Amancio. Patterns of authors contribution

in scientific manuscripts. Journal of Informetrics, 11(2):498–510, 2017.

[16] L. F. Costa. Knitted complex networks. arXiv: 0711.2736, 2007.

[17] L. F. Costa, O. N. Oliveira Jr, G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L. Antiqueira,

M. P. Viana, and L. E. Correa Rocha. Analyzing and modeling real-world phenomena with

complex networks: a survey of applications. Advances in Physics, 60(3):329–412, 2011.

[18] L. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization of complex

networks: A survey of measurements. Advances in physics, 56(1):167–242, 2007.

[19] L. F. Costa and G. Travieso. Exploring complex networks through random walks. Physical

Review E, 75(1):016102, 2007.

[20] A. S. da Mata. Complex networks: a mini-review. Brazilian Journal of Physics, July 2020.

[21] C. Franzoni, G. Scellato, and P. Stephan. Foreign-born scientists: mobility patterns for 16

countries. Nature biotechnology, 30(12):1250–1253, 2012.

[22] F. L. Gewers, G. R. Ferreira, H. F. Arruda, F. N. Silva, C. H. Comin, D. R. Amancio,

and L. F. Costa. Principal component analysis: A natural approach to data exploration.

arXiv:1804.02502, 2018.

[23] C. Herrero. Self-avoiding walks and connective constants in clustered scale-free networks.

Physical Review E, 99, 01 2019.

[24] Y. Kim, S. Park, and S.-H. Yook. Network exploration using true self-avoiding walks. Phys.

Rev. E, 94:042309, Oct 2016.

[25] I. T. Koponen and M. Nousiainen. Concept networks in learning: finding key concepts in learn-

ers’ representations of the interlinked structure of scientific knowledge. Journal of Complex

Networks, 2(2):187–202, 02 2014.

[26] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community

19

http://arxiv.org/abs/1804.02502


detection algorithms. Phys. Rev. E, 78:046110, Oct 2008.
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[41] B. A. N. Travençolo and L. F. Costa. Accessibility in complex networks. Physics Letters A,

373(1):89–95, 2008.

21


	A comparative analysis of knowledge acquisition performance in complex networks
	Abstract
	I Introduction
	II Related Works
	III Methodology
	A Network topology
	B Network dynamics
	C Learning Curves
	D Principal Component Analysis

	IV Results and discussion
	V Conclusion
	 References


