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Abstract

The average convergence rate (ACR) measures how fast the approximation error of an evolutionary algorithm
converges to zero per generation. It is defined as the geometric average of the reduction rate of the approxi-
mation error over consecutive generations. This paper makes a theoretical analysis of the ACR in continuous
optimization. The obtained results are summarized as follows. According to the limit property, the ACR
is classified into two categories: (1) linear ACR whose limit inferior value is larger than a positive and (2)
sublinear ACR whose value converges to zero. Then, it is proven that the ACR is linear for evolutionary
programming using positive landscape-adaptive mutation, but sublinear for that using landscape-invariant
or zero landscape-adaptive mutation. The relationship between the ACR and the decision space dimension
is also classified into two categories: (1) polynomial ACR whose value is larger than the reciprocal of a
polynomial function of the dimension for any generation, and (2) exponential ACR whose value is less than
the reciprocal of an exponential function of the dimension for an exponential long period. It is proven that
for easy problems such as linear functions, the ACR of the (1+1) adaptive random univariate search is
polynomial. But for hard functions such as the deceptive function, the ACR of both the (1+1) adaptive
random univariate search and evolutionary programming is exponential.

Keywords: Evolutionary algorithm, Continuous optimization, Convergence rate, Markov chain,
Approximation error

1. Introduction

In both empirical and theoretical studies of evolutionary algorithms (EAs), a fundamental question is:
how fast does an EA converge to the optimal solution of an optimization problem? In discrete optimization,
this can be measured by computational time, by either the hitting time (the number of generations) or
running time (the number of fitness evaluations) when an EA first finds an optimal solution [1]. In continuous
optimization, however, computational time often is infinite because for many optimization problems, the
number of optimal solutions is finite. So, computational time has to be modified to the time when EAs
reach an ǫ-neighbor around the optimal solutions [2, 3, 4].

The convergence rate is an alternative way to evaluate the performance of EAs in continuous optimization.
It quantifies how fast an EA converges to the optimal solution set per generation in the decision space. So far,
numerous theoretical work has been reported to discuss the convergence rate from different perspectives [5,
6, 7, 8, 9, 10, 11].
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Because of the equivalence of convergence in decision space and that in the objective space, it is rational
to investigate how fast the approximation error converges to zero in the objective space. The convergence
rate discussed in this paper is defined in the objective space in terms of the approximation error. Denote the
expected fitness value of the tth generation population as ft and the approximation error as et = |ft − f∗|
where f∗ represents the optimal fitness. The geometric convergence rate et ≤ e0c

t can be obtained from
the one-step convergence rate (CR): et/et−1 under the condition et/et−1 < c [6, 12]. But unfortunately,
randomness in EAs results in the oscillation of et/et−1, which in turn hinders its practical application in
computer experiments. Instead, the geometric average of et/et−1 over consecutive t generations is proposed
as the average convergence rate (ACR) [13]: ACRt = 1− (et/e0)

1/t. A major advantage of ACRt is that it
is more stable than et/et−1 in computer simulation.

The ACR has been adopted as a practical metric of the convergence speed of EAs in continuous opti-
mization [14, 15, 16, 17]. Although some theoretical results have been obtained for the ACR in discrete
optimization [13], there is no analysis of the ACR in continuous optimization. The current paper aims to
extend the study from discrete optimization to continuous optimization and to answer the following research
questions: When does the ACR converge to zero? When not? What is the relationship between the ACR
and the decision space dimension?

The paper is organized as follows: Section 2 reviews the related work. Section 3 presents an empirical
study of the ACR. Section 4 provides a general theoretical study of the ACR. Section 5 analyses the ACR
of evolutionary programming. Section 6 investigates the relation between the ACR and decision space
dimension. Finally, Section 7 concludes the paper.

2. Brief Literature Review of Convergence Rate

The convergence rate of EAs has been investigated from different perspectives and in varied terms. He,
Kang and Ding [7, 18] studied the convergence in distribution by considering sequence {‖ µt − π ‖, t =
1, 2, . . . } where µt is the probability distribution of the tth generation population Xt and π a stationary
probability distribution. Based on the Doeblin condition, they obtained an upper bound (1 − δ)t−1 on
‖ µt − π ‖ for some δ ∈ (0, 1). He and Yu [8] derived lower and upper bounds on 1− µt(X

∗
δ ) where µt(S∗δ )

denotes the probability of Xt entering in a δ-neighbor of X∗ where X∗ denotes the set of optimal solutions.
Rudolph [5] compared Gaussian and Cauchy mutation for minimization of the sphere function in terms of

the rate of local convergence, E[min{‖ Xt+1 ‖2 / ‖ Xt ‖2, 1} | Xt], where ‖ · ‖ denotes the Euclidean norm.
He proved that the rate is identical for Gaussian and spherical Cauchy distributions, whereas nonspherical
Cauchy mutations lead to slower local convergence. Rudolph [6] also proved under the condition et/et−1 ≤
c < 1, the sequence {et} converges in mean geometrically fast to 0, that is, qtet = o(1) for some q > 1. For
a superset of the class of quadratic functions, sharp bounds on the convergence rate are obtained.

Semenov and Terkel [19] studied the convergence velocity of a simple EA with self-adaptation using
a stochastic Lyapunov function and martingale theory. They proved that the velocity is asymptotically
exponential |xt| ≤ exp(−at) on the class of unimodal functions with the aid of Monte Carlo simulation.

Beyer [20] developed a systematic theory of evolutionary strategies (ES) based on the progress rate and
quality gain. The progress rate measures the distance change to the optimal solution in one generation,
E[‖ Xt−X∗ ‖ − ‖ Xt−1−X∗ ‖]. The quality gain is the fitness change in one generation, E[f̄(Xt)−f̄(Xt−1)],
where f̄(X) is the fitness mean of individuals in population X. Beyer et al. [21, 22] analyzed dynamics of ES
with cumulative step size adaption and ES with self-adaption and multi-recombination on the ellipsoid model
and derived the quadratic progress rate. Akimoto et al.[23] investigated ES with weighted recombination on
general convex quadratic functions and derived the asymptotic quality gain. However, Auger and Hansen [24]
argued the limit of the predictions using the progress rate.

Auger and Hansen [25] developed the theory of ES from a new perspective using the stability of Markov
chains. Auger [9] investigated the (1, λ)-SA-EA on the sphere function and proved the convergence of
(ln ‖ Xt ‖)/t based on Foster-Lyapunov drift conditions. Jebalia et al. [26] investigated convergence rate of
the scale-invariant (1+1)-ES in minimizing the noisy sphere function and proved a log-linear convergence rate
in the sense that: (ln ‖ Xt ‖)/t→ γ for some γ as t→ +∞. Auger and Hansen [10] further investigated the
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comparison-based step-size adaptive randomized search on scaling-invariant objective functions and proved
as t → +∞, ln(‖ Xt ‖ / ‖ X0 ‖t)/t → −CR for some positive CR. This log-linear convergence can be
regarded as an extension of the classical average rate of convergence in deterministic iterative methods [27].

The above convergence rates are ‘evaluated by Markov chain analysis, however, process is complicated
from theoretical and practical point of view’ [16]. Unlike them, the ACR has an attention to a close link with
the practice. Although optional to define convergence rate in various spaces, it is preferred in this paper to
investigate it in the objective space. With respect to many applications of EAs, their performance is often
evaluated by the approximation error of obtained solutions. Thus, the convergence rate of EAs is defined as
the average reduction rate of the approximation error over consecutive generations in the objective space [13].
For discrete optimization, it has been proved [13] that under particular initialization, the ACR is equal to the
spectral radius of a matrix corresponding to transition probabilities within non-optimal solutions and under
random initialization (all solutions can be chosen into the initial population with a positive probability),
the ACR converges to this spectral radius. However, there is no similar analysis for the ACR in continuous
optimization.

3. Empirical Study of Average Convergence Rate

3.1. Definition of Average Convergence Rate

Consider a minimization problem:

min f(x), x = (x1, · · · , xd) ∈ D ⊂ R
d, (1)

where f(x) is a continuous function and D is the definition domain (called the decision space) and is bounded.
d is the dimension. Denote the minimal function value as f∗ := min{f(x) | x ∈ D} and the optimal solution
set as X∗ := {x ∈ D | f(x) = f∗}.

Algorithm 1 describe a general framework of EAs. In EAs, an individual is a single point (solution) x.
A population X is a union of finite individuals X = (x1, · · · ,xµ) where µ is the population size. An optimal
population X satisfies X ∩X∗ 6= ∅ and a non-optimal population X satisfies X ∩X∗ = ∅. Let S denote the
set of all populations and S∗ denote the set of optimal populations.

Algorithm 1 Evolutionary Algorithm

1: generation counter t← 0;
2: X0 ← initialize a population of individuals;
3: while the stopping criterion is not satisfied do

4: Xt+1 ← generate a population of individuals from Xt subject to a conditional transition probability
Pr(Xt+1 | X0, · · · , Xt);

5: t← t+ 1;
6: end while

Given an initial population X0, the fitness of the population Xt is f(Xt | X0) := min{f(x) | x ∈ Xt},
and its approximation error is e(Xt | X0) := |f(Xt) − f∗|. Thereafter, f(Xt | X0) and e(Xt | X0) are
denoted by f(Xt) and e(Xt) in short respectively. An EA using elitist selection always keeps the best found
individual, that is, e(Xt+1) ≤ e(Xt). Let ft := E[E[f(Xt)] | X0] and et := E[E[e(Xt) | X0]] denote the
expected values of the fitness and approximation error respectively. In computer simulation, ft is calculated
as the the average value over a number of runs.

An EA is called convergent in mean [6] if starting from any X0, limt→+∞ et = 0. An EA is called
convergent almost surely [6] if starting from any X0, the probability Pr(limt→+∞ e(Xt) = 0) = 1. Given an
approximation error sequence {et; t = 0, 1, · · · }, its one-step convergence rate (CR) is the reduction rate of
the approximation error at at the tth generation.

CRt :=
et

et−1
, t ∈ Z

+, (2)
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where Z
+ denotes the set of positive integers. The average convergence rate for t generations (ACR) [13] is

defined by

ACRt := 1−
(

et
e0

)1/t

= 1−
(

t
∏

k=1

CRk

)1/t

, t ∈ Z
+. (3)

In (3), the term (et/e0)
1/t represents a geometric average of the CR over t consecutive generations. 1 −

(et/e0)
1/t normalizes the average between (−∞, 1]. This rate can be regarded as the convergence speed

because the larger ACR, the faster convergence. A negative value of the ACR means the EA moves away
from the optimal point. ACRt = 1 when et = 0 or equivalently the optimal solution is generated.

Similar to the convergence rate in deterministic iterative methods [27, Definition 3.1], the average con-
vergence rate of EAs can be defined in the logarithmic form [13].

ACR′
t := −

1

t
ln

et
e0

. (4)

However, this rate can be not adopted in computer simulation because its value is +∞ if et = 0.
Figure 1 compares the approximation error, CR and ACR through an example. Figure 1(a) shows et

decreases as t, but it does not quantify the convergence speed. Figure 1(b) shows CRt oscillates significantly
as t. Figure 1(c) depicts that ACRt is more stable because it averages the CR values over consecutive
generations. The ACR increases from 0.2 to 04, then jumps to 1 when the optimal solution is found.

0 250 500 750 1000 1250 1500
t

10−281
10−238
10−195
10−152
10−109
10−66
10−23

e t

(a)

0 250 500 750 1000 1250
t

0.0

0.2

0.4

0.6

0.8

1.0

CR
t

(b)

0 250 500 750 1000 1250 1500
t

0.0

0.2

0.4

0.6

0.8

1.0

AC
R t

(c)

Figure 1: (a) et converges to 0. (b) CRt oscillates between 0 and 1. (c) ACRt is stable at a constant 0.4.

Note: A jump to 1 is observed in Figure 1(c). It means that the EA has found the optimal solution.
This phenomenon could happen in computer simulation because the number of runs is finite and the EA
may find the optimum in all runs. However, in theory, it never happens. et is the expected value of e(Xt).
For a randomized search algorithm, its error et can be infinitely close to 0 but not equal to 0, thus, no jump
exists. This claim can be validated through increasing the number of runs.

There is an essential difference between the ACR and CR. Some sequence {CRt; t ∈ Z
+} oscillates,

but the sequence {ACRt; t ∈ Z
+} is still stable. A classical method in literature is to bound CRt such as

α ≤ CRt ≤ β for any t, and derive the geometric convergence rate as e0α
t ≤ et ≤ e0β

t [6]. But the lower
and upper bounds only provide a range of the convergence rate and are not sufficient for quantifying the
convergence rate. The ACR is the geometric average of the CR and its value is between α and β.

α ≤ min
k≤t

CRk ≤ ACRt ≤ max
k≤t

CRk ≤ β. (5)

In practice, the calculation of ACRt is easy and it results in an exact expression e(t) = e0(ACRt)
t. But

using CRt only is difficult to obtain the same expression.
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In the above ACR definition, the optimal fitness value f∗ is required. In case of f∗ unknown, the
alternative average convergence rate is also introduced in [13].

ACR†
t := 1−

∣

∣

∣

∣

ft+τ − ft
ft − ft−τ

∣

∣

∣

∣

1/τ

, if t ≥ τ, (6)

where τ is an appropriate and user-defined time interval. In computer simulation, it is necessary to set τ
to a large value because ACR†

t with a small τ suffers big noise. A drawback of the value of the alternative
ACR is not available for t < τ .

3.2. Empirical Study of ACR and Alternative ACR

Using the ACR or alternative ACR, it is convenient to quantify and visualize the convergence speed of
EAs. Let us show this claim through computer simulation.

For the purpose of illustration, consider (1+1) evolutionary programming (Algorithm 2) for minimizing
the 2-d sphere function as an example. The sphere function is a unimodal function which is often used as a
benchmark in EAs [28].

min fS(x) = x2
1 + x2

2, x ∈ R
2. (7)

The minimal point to this function is x∗ = (0, 0) with f∗ = 0.
Evolutionary programming (EP) is a type of EAs which employs mutation and selection but without

recombination. (1+1) EP is equivalent to (1+1) evolutionary strategies (ES) without crossover. However, a
population-based ES employs a recommendation operator [29].

Algorithm 2 (1+1) Evolutionary Programming

1: generation counter t← 0;
2: initialize an individual x0;
3: while the maximal number of generations is not reached do

4: generate a new individual yt = xt + zt where zt obeys a probability distribution (such as Gaussian,
Cauchy or Lévy) distribution;

5: select the best one from yt and xt as xt+1;
6: t← t+ 1;
7: end while

A child y is generated by Gaussian mutation y = x + z, where z = (z1, · · · , zd) obeys the Gaussian
probability distribution zi ∼ N (0, σi). Two variants of Gaussian mutation are chosen with different settings
of σ = (σ1, · · · , σd).

• Invariant Gaussian mutation: σ is set to constants, that is, for any i, σi is a constant. The (1+1)
EP using invariant Gaussian mutation is called the (1+1) invariant EP.

• Adaptive Gaussian mutation: σ varies as x, that is, σ is a function of x. The (1+1) EP using
adaptive Gaussian mutation is called the (1+1) adaptive EP.

In computer simulation, set σi = 1 in the (1+1) invariant EP and σi = |x|i in the (1+1) adaptive EP. The
adaption is based on commonsense in the design of EAs: as x is close to the optimal solution 0, σ is set to
a small value. This is equivalent to the practical strategy: as t increases, xt is close to the optimal solution,
then σ is reduced. x0 is randomly generated in [−20, 20]2. Each algorithm runs 1, 000 times independently
and ft is the average over the 1,000 runs. The maximum number of generations is 300. The time interval τ
for calculating the alternative ACR is chosen to be 50.

The first experiment is to compare the ACR and alternative ACR of the adaptive EP on the sphere
function. Trend plots of the ACR and alternative ACR are illustrated in Figure 2. Figure 2(a) shows that
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† t
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(b)

Figure 2: (a) ACRt of the (1+1) adaptive EP on the sphere function.(b) ACR
†
t

the ACR of the adaptive EP increases to a positive, while Figure 2(b) depicts similar tends of the alternative

ACR. But ACR†
t suffers a little bigger noise than ACRt due to the introduction of the τ -th order difference.

The second experiment is to compare the ACR and alternative ACR of the invariant EP on the sphere
function. Trend plots of the ACR and alternative ACR are illustrated in figure 3. Figure 3(a) shows that
the ACR decreases as time, while Figure 3(b) depicts a similar tend for the alternative ACR.

0 50 100 150 200 250 300
t

0.0

0.2

0.4

0.6

0.8

1.0

AC
R t

invariant

(a)

50 100 150 200 250
t

0.0

0.2

0.4

0.6

0.8

1.0

AC
R

† t

invariant

(b)

Figure 3: (a) ACRt of the (1+1) invariant EP on the sphere function. (b) alternative ACR
†
t
.

The results reveal that the adaptive EP converges faster than the invariant EP. For the adaptive EP, its
ACR and alternative ACR both tend to a positive constant around 0.38 to 0.4. In general, an ACR is called
linear if it tends towards a positive. But for the invariant EP, its ACR and alternative ACR decreases to a
smaller constant and eventually towards 0. In general, an ACR is called sublinear if it converges to 0.

3.3. Comparison between ACR and CR

The ACR is more stable than the CR in numerical calculation. Let us show the claim through computer
simulation.

The first experiment is to compare the ACR and CR of the (1+1) adaptive EP on the sphere function.
Experimental setting is the same as that in the previous subsection. Figure 4 illustrates trend plots of the
ACR and CR. The CR fluctuates greatly between 0 and 1. It is impossible to quantify the convergence
speed using the CR. But the ACR clearly converges to a positive constant around 0.38.

The second experiment is to compare the ACR and CR of the (1+1) invariant EP on the sphere function.
Experimental setting is the same as that in the previous subsection. Figure 5 illustrates trend plots of the
ACR and CR. The figure shows that the CR converges to 1 and the ACR to 0. The difference is caused by
the normalization in the ACR to ensure the lower ACR, the slower convergence. Figure 5(b) reveals that
the convergence speed of the (1+1) invariant EP eventually decreases to 0.
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Figure 4: (a) CR of (1+1) adaptive EP oscillates significantly on the sphere function. (b) ACR is more stable.
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Figure 5: (a) CR of the (1+1) invariant EP on the sphere function. (b) ACR.

The experimental results confirm that the numerical calculation of the ACR is more stable than the CR.

3.4. Relationship between ACR and Decision Space Dimension

The ACR of EAs will decrease as the decision space dimension increases. Let us verify this claim through
computer simulation.

For the sake of illustration, consider a (1+1) random univariate search method (RUS), described in
Algorithm 3, as an example. This algorithm can be regarded as a parallel version of random local search
in discrete optimization because both make a random one-dimensional search at each generation. The RUS
using adaptive Gaussian mutation is called the adaptive RUS in short.

Algorithm 3 (1+1) Random Univariate Search

1: t← 0;
2: initialize a solution x0 = (x1, · · · , xd) ;
3: while the maximal number of generations is not reached do

4: choose one index j ∈ {1, · · · , d} at random, and generate a new solution by yt = xt + zt where
zt = (z1, · · · , zd), zj ∼ N (0, σj) is a Gaussian random variable and zi = 0 for other i 6= j; if yt is out
of the definition domain, let yt = xt;

5: select the best one from yt and xt as xt+1;
6: t← t+ 1;
7: end while

Two test functions are used in computer simulation. The functions are inspired from the OneMax
function and deceptive function in pseudo-Boolean function optimization. The OneMax function is the
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easiest to a (1+1) elitist EA and the deceptive function is the hardest [30]. A variant OneMax function in
continuous optimization is defined by

max fO(x) := d−∑d
i=1 xi, x ∈ [0, 1]d. (8)

where x∗ = (0, · · · , 0) and f∗ = d.
A deceptive function in continuous optimization is defined by

max fD(x) =

{

∑d
i=1 xi, if

∑d
i=1 xi ≥ 1/2,

d+ 1−∑d
i=1 xi, if

∑d
i=1 xi < 1/2,

x ∈ [0, 1]d. (9)

The global optimum is x∗ = (0, · · · , 0) and f∗ = d+1. The basin of attraction of x∗ is {x |∑d
i=1 xi ≤ 1/2}.

The deceptive function (9) has a local optimum at (1, · · · , 1).
In computer simulation, set σj = xj for the selected index j in the adaptive RUS. x0 is chosen from

[0, 1]d at random. The algorithm is run 2, 000 times independently on each test function. ft is the average
over the 2,000 run. The maximum number of generations is 500.

The experiments is to compare the ACR between the variant OneMax function and deceptive function.
Trend plots of the ACR are illustrated in Figure 6. Figure 6(a) shows that the ACR on the variant OneMax
function converges to some positive constants over generations for d = 1, 3, 5. But Figure 6(b) depicts the
ACR on the deceptive function decreases quickly as the dimension d increases.

0 100 200 300 400 500
t

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

AC
R t

d=1
d=3
d=5

(a)

0 100 200 300 400 500
t

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

AC
R t

d=1
d=3
d=5

(b)

Figure 6: (a) The ACR of adaptive RUS decays slowly as dimension d = 1, 3, 5 on the variant OneMax function. (b) But it
decays quickly as dimension d = 1, 3, 5 on the deceptive function.

The experimental results demonstrate that the ACR decreases as the dimension increases. For an easy
function like the OneMax function, the ACR decreases slowly as the dimension. In theory, it is expected
that this ACR is larger than the reciprocal of a polynomial function of d. But for a hard function like the
deceptive function, the ACR decreases quickly as the dimension increases. In theory, it is expected that this
ACR is less than the reciprocal of an exponential function of d.

4. General Theoretical Study of Average Convergence Rate

4.1. Advantage of ACR over CR

Computer simulation in Section 3.3 shows an advantage of the ACR over the CR, that is, when a CR
sequence oscillates, the ACR sequence is still stable. This subsection explains this difference.

The terms of linear, sub-linear or super-linear convergence has been used in describing the convergence
speed of an iterative sequence. In EAs, a sequence {CRt, t ∈ Z

+} converges linearly if limt→+∞ CRt = C < 1
or converges sublinearly if limt→+∞ CRt = 1. Similarly, a sequence {ACRt, t ∈ Z

+} converges linearly if
limt→+∞ ACRt = C < 1 or converges sublinearly if limt→+∞ ACRt = 1.
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From the definition

ACRt = 1−
(

t
∏

k=1

CRk

)1/t

, (10)

the linear convergence of the ACR can be derived from the linear convergence of the CR. But the inverse
does not hold. This is the main advantage of the ACR over the CR. Let us verify the claim using an example.

Let us consider an example which is (1+1) EP (Algorithm 4) combining Cauchy and Gaussian mutation
together. Because Cauchy and Gaussian mutation operators have different probability density functions
(PDFs), combination of them could result in faster convergence [31, 32, 33, 34].

Algorithm 4 (1+1) Evolutionary Programming

1: generation counter t← 0;
2: initialize an individual x0;
3: while the maximal number of generations is not reached do

4: generate a new individual by Gaussian mutation yt = xt+zt where zt obeys a probability distribution;
if yt is beyond the definition domain D, let yt = xt;

5: select the best one from yt and xt as xt+1;
6: t← t+ 1;
7: end while

Two mutation operators are alternately used in this (1+1) EP, that is, Cauchy mutation is applied when
t is an odd number and Gaussian mutation is applied when t is an even number. Thus, zt obeys Cauchy or

Gaussian probability distribution, PDFs of which are pc =
1

π(1+x2) and pg = 1√
2π

e−
x2

2 , respectively.

The (1+1) EP is used to minimize a JUMP function which is a typical multi-modal problem. This
function is similar to the JUMP function in pseudo-Boolean optimization [35]. The the optimal solution set
is {x; |x| < 1}.

fJ(x) =







0 if |x| < 1,
4− |x| if 1 ≤ |x| < 2,
|x| otherwise.

(11)

For the sake of analysis, assume that the initial point x0 = 2. After t(t ≥ 1) iterations, xt either jump to
the flat {|x| < 1} or stay at |x| = 2. Thus, the reduction rate of expected error is (without loss of generality,
let xt = 2 or |xt| < 1)

et+1

et
=

E[e(xt+1)|xt = 2]Pr(xt = 2) + 0 · Pr(|xt| < 1)

2 · Pr(xt = 2) + 0 · Pr(|xt| < 1)
=

1

2
E[e(xt+1)|xt = 2]. (12)

Moreover, the conditional expectation of error change is for Cauchy mutation,

E[e(xt)− e(xt+1)|xt = 2] =

∫ 1

−1

(2− 0)
1

π

1

1 + (x− 2)2
dx =

2

π

(

arctan 3− π

4

)

, (13)

and for Gaussian mutation,

E[e(xt)− e(xt+1)|xt = 2] =

∫ 1

−1

(2− 0)
1√
2π

e−
x2

2 dx = 4

(

Φ(1)− 1

2

)

, (14)

where Φ(·) is cumulative distribution function (CDF) of the standard Gaussian distribution. From (12),
(13) and (14) we know that for any integer k ≥ 1

CR2k =
e2k

e2k−1
= Ca := 2

(

Φ(1)− 1

2

)

,
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and

CR2k+1 =
e2k+1

e2k
= Cb :=

3

4
− 1

π
arctan 3.

Since Ca 6= Cb, the sequence {CRt} oscillates and does not converge.
However, from

ACRt =

{

1− (CaCb)
1/2, if t = 2k,

1− (CaCb)
1/2(Cb/Ca)

1/2t, if t = 2k + 1,
k = 1, 2, . . .

we get ACRt → 1− (CaCb)
1/2 as t→ +∞, that is, the sequence {ACRt} is convergent.

The above example shows that the CR sequence could oscillate and not converge in some adaptive
EAs. However, the ACR sequence converges thanks to the average of the CR for consecutive generations.
Furthermore, for analyzing the ACR, it is necessary to consider the multi-step error change beyond the
one-step error change.

4.2. Assumptions in the Theoretical Study

In order to make a theoretical analysis, EAs under investigation are assumed to satisfy several conditions.

1. (Supermartingale). The expected approximation error does not increase. For any non-optimal X0 and
any t,

E[e(Xt+1) | X0, · · · , Xt] ≤ e(Xt). (15)

The sequence {et; t = 0, 1, · · · } is a monotonically decreasing function of t. This condition is different
from elitism in EAs which requires e(Xt+1) ≤ e(Xt). A direct consequence from this condition is
ACRt ∈ [0, 1].

2. (Markov chain). The state of Xt+1 depends on Xt only. For any X0 and any t, the transition
probability

Pr(Xt+1 | X0, · · · , Xt) = Pr(Xt+1 | Xt). (16)

3. (Stochastic algorithm). Starting from any non-optimal X0, for any t, it holds

Pr(Xt ∩X∗) < 1, et > 0 (17)

If Pr(Xt ∩ X∗) = 1, an EA reaches the optimal set at the tth generation with probability 1. It
degenerates to a deterministic-like algorithm which is not discussed in this paper.

4. (Normal reduction). The reduction rate of the approximation error satisfies

lim
t→+∞

(

et
et−1

)1/t

= 1. (18)

The condition is mild. If limt→+∞(et/et−1)
1/t < c < 1, then for a large t, et/et−1 < ct. For example,

let c = 0.9 and t = 1000, we have e1000 < 1.75 × 10−46e999. This rapid reduction rate is almost
impossible in normal EAs.

Many EAs satisfy the above four conditions. By default, they are always assumed to be true in the theoretical
study in this paper.

Markov chains associated with EAs can be classified into homogeneous and inhomogeneous, depending
on whether genetic operators (mutation, crossover and selection) change over time [8]. This paper focuses
on EAs which are modeled by homogeneous Markov chains as below.

1. The population sequence {Xt; t = 0, 1, · · · } is a homogeneous Markov chain, that is, for any t, any X
and any subset A ⊂ S, the transition probability

Pr(Xt+1 ∈ A | Xt = X) = P (X;A). (19)

Transition probabilities do not change over time.
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2. A population subsequence {Xκt, t = 0, 1, · · · } (where κ ∈ Z
+) is a homogeneous Markov chain. Tran-

sition probabilities follow a periodic change over generations. Let Yt = Xκt.

Pr(Yt+1 ∈ A | Yt = X) = P (κ)(X;A), (20)

Pr(Xt+1 ∈ A | Xt = X) 6= Pr(Xt+2 ∈ A | Xt+1 = X). (21)

The original population sequence {Xt; t = 0, 1, · · · } is an inhomogeneous Markov chain.

The current paper will not discuss other types of EAs whose genetic operators change over time. The
analysis of theses EAs needs further understanding of inhomogeneous genetic operators and advanced tools
from inhomogeneous Markov chains or stochastic processes. This topic is left for future research.

4.3. Linear and Sublinear ACR

Computer simulation in Section 3.2 demonstrates different trend plots of the ACR for the (1+1) invariant
EP and (1+1) adaptive EP. The ACR sequence has different limit properties. In practice, it is required that
et converges to 0 but there is no need for ACRt to converge as t → ∞. Thus, the limit superior and limit
inferior [36] of the sequence {ACRt}, defined as (22) and (23) respectively, are introduced to describe the
limit property.

lim
t→+∞

ACRt := inf
t≥0
{sup
s≥t
{ACRs : s ≥ t} : t ≥ 0}. (22)

lim
t→+∞

ACRt := sup
t≥0
{inf
s≥t
{ACRs : s ≥ t} : t ≥ 0}, (23)

where inf is the abbreviation of mathematical infimum and sup the abbreviation of supremum. An example of
the limit superior and inferior is illustrated in Figure 7. Consider the sequence Rt = 0.1 cos(t)×(exp(−0.1t)+
0.1) where t = 0, 1, 2, · · · . Although the sequence does not converge, its limit superior (−0.1) and inferior
(−0.1) still exist.

0 20 40 60 80 100
t

−1.0

−0.5

0.0

0.5

1.0 limit superior
limit inferior
Rt

Figure 7: The limit superior and inferior of the sequence Rt = cos(t)(0.1 + exp(−0.1t)).

Existing theoretical results [37, 38, 10] show that the convergence rate of EAs in continuous optimization
is up to linear. Similarly, the ACR of EAs can be classified into two categories via its limit property.

• The ACR is linear, if its limit inferior is a positive, that is, limt→+∞ ACRt = C > 0. In this case, the
approximation error reduces geometrically fast to 0. For example, the ACR in Figure 2 is linear.

• The ACR is sublinear, if it asymptotically reduces to zero as t→ +∞, that is, limt→+∞ ACRt = 0. In
this case the approximation error converges slowly to 0. For example, the ACR in Figure 3 is sublinear.

The ACR can be estimated using one-step transition or multi-step probability transition. Given an error
sequence {et, t = 0, 1, · · · }, the one-step error change at the tth generation is ∆et := et − et+1. It is similar
to the quality gain [20] but the latter is defined on the fitness mean of individuals in a population f̄t rather
than the error mean et. The rate of one-step error change is ∆et/et. Given a positive integer κ, the κ-step
error change at the tth generation is ∆(κ)et := et − et+κ. The rate of κ-step error change is ∆(κ)et/et.

11

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Theorem 1. (1) For the error sequence {et; t = 0, 1, · · · }, if there exist a positive integer κ and 0 < C < 1,
the rate of κ-step error change satisfies

lim
t→+∞

∆(κ)et
et

= 1− C > 0, (24)

then the ACR is linear, that is, limt→+∞ ACRt = 1− C1/κ > 0.
(2) For the error sequence {et; t = 0, 1, · · · }, if

lim
t→+∞

∆et
et

= 0, (25)

then the ACR is sublinear, that is, limt→+∞ ACRt = 0.

Proof. (1) While the rate of κ-step error change converges to a positive value, there are two different cases
to be discussed for the number of iteration t.

1. If t = mκ for an integer m > 0, we have

ACRmκ = 1−
(

mκ
∏

k=1

ek
ek − 1

)1/mκ

= 1−
[

m
∏

l=1

(

1− ∆(κ)e(l−1)κ

e(l−1)κ

)]1/(mκ)

. (26)

Note that m tends to +∞ when t→ +∞. Then, from (24) and (26) we know

lim
m→+∞

ACRmκ = 1− C1/κ. (27)

2. If t = mκ+ k for integers m, k such that m > 0, 0 < k < κ, we know

ACRmκ+k = 1−
(

mκ+k
∏

k=1

ek
ek−1

)1/(mκ+k)

= 1−
[

m
∏

l=1

(

1− ∆(κ)e(l−1)κ

e(l−1)κ

)

(

emκ+k

emκ

)

]1/(mκ+k)

(28)

From (24) we know that limt→+∞
et+κ

et
= C, which implies that there exists t0 > 0 such that

et+κ

et
>

C

2
, ∀ t > t0.

Then, monotonicity of et says that ∃m0 > 0,

C

2
<

emκ+κ

emκ
≤ emκ+k

emκ
≤ 1, ∀m > m0,

and we conclude that

lim
m→+∞

(

emκ+k

emκ

)1/(mκ+k)

= 1, ∀ 0 < k < κ. (29)

Combining (24), (28) and (29) we know

lim
m→+∞

ACRmκ+k = lim
m→+∞







1−
[

m
∏

l=1

(

1− ∆(κ)e(l−1)κ

e(l−1)κ

)]1/(mκ+k)






= 1− C1/κ. (30)

From (27) and (30), we conclude that limt→+∞ ACRt = 1− C1/κ.
(2) When limt→+∞ ∆et/et = 0, from the ACR definition, we know limt→∞ ACRt = 0.

To derive the linear ACR sequence, Condition (24) requires the rate of κ-step error change larger than a
positive. This condition is weaker than the rate of the one-step error change larger than zero. But to derive
the sublinear convergence of the ACR sequence, Condition (25) requires the rate of one-step error change
to converge to 0 too.
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4.4. Link between ACR and Alternative ACR

Computation simulation in Section 3.2 shows the ACR and alternative ACR have similar behaviors.
There is a link between the ACR and alternative ACR. Under some conditions, their limits are identical.

Theorem 2. For the error sequence {et}, if for a positive integer κ and 0 < C < 1,

lim
t→+∞

∆(κ)et
et

= 1− C > 0, (31)

and in the definition of the alternative ACR, choose τ to a multiple of κ,

lim
t→+∞

ACRt = lim
t→+∞

ACR†
t .

Proof. Since τ is a multiple of κ, we have τ = mκ for a positive integer m. Then,

lim
t→+∞

ACR†
t = 1− lim

t→+∞

(

et − et+τ

et−τ − et

)1/τ

= 1− lim
t→+∞

[

et
et−τ

× (
et − et+τ

et
)÷ (

et−τ − et
et−τ

)

]1/τ

.

Since

lim
t→+∞

(

et
et−τ

)1/τ

= lim
k→+∞

(

m
∏

l=1

(

1− ∆ek+(l−1)κ

ek+(l−1)κ

)

)1/(mκ)

= C1/κ,

lim
t→+∞

(

et − et+τ

et

)1/τ

= lim
t→+∞

(

1− et+τ

et

)1/τ

= (1− Cm)1/(mκ),

lim
t→+∞

(

et−τ − et
et−τ

)1/τ

= lim
k→+∞

(

1− et−τ

et

)1/τ

= (1− Cm)1/(mκ),

we know that
lim

t→+∞
ACR†

t = 1− C1/κ.

It has been proved in Theorem 1 that

lim
t→+∞

ACRt = 1− lim
t→+∞

(

t
∏

k=1

ek
ek−1

)1/t

= 1− C1/κ,

and thus, we get that limt→+∞ ACRt = limt→+∞ ACR†
t = 1− C1/κ.

The above theorem proves that the limit of ACRt is identical to the limit of ACR†
t . If the f∗ value is

unknown, ACR†
t can be used as a replacement of ACRt.

5. Theoretical Analysis of Evolutionary Programming

5.1. Landscape-invariant and Landscape-adaptive Mutation

In Section 3.2, it is observed that the ACR of invariant EP tends to zero, while the ACR of adaptive EP
tends to a positive constant. This section analyzes general EP (Algorithm 5) using landscape-invariant or
landscape-adaptive mutation. We only consider genetic operators which are unchanged over time or have
periodic change. So, the population sequence or a subsequence is a homogeneous Markov chain.
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Algorithm 5 Evolutionary Programming

1: counter t← 0;
2: initialize µ individuals X0 = (x1, · · · ,xµ);
3: while the stopping criterion is not satisfied do

4: generate Yt = (y1, · · · ,yµ) by mutation Yt = Xt + Zt where Zt = (z1, · · · , zµ) is µ random variables;
if yi is out of the definition domain D, let yi = xi;

5: evaluate each individual’s fitness in population Xt ∪ Yt;
6: Xt+1 ← select µ individuals from Xt ∪ Yt, where the best individual is always selected;
7: counter t← t+ 1;
8: end while

Mutation Y = X + Z can be characterized by probability transition. Given a population X ∈ S and a
subset A ⊂ S, the transition probability kernel Pg(X;A) [39] is defined as

Pg(X;A) =
∫

A
pg(X;Y )dY,

where pg(X;Y ) is the probability density function depicting the mutation transition from X to Y . Further-
more, the κ-step kernel is defined as

P (κ)
g (X;A) =

∫

Y ∈A
p(κ)g (Xt+κ = Y | Xt = X)dY.

In this paper, we assume it is continuous and bounded.
Generally, mutation operators can be classified into two categories.

• Landscape-invariant mutation: mutation Y = X+Z is called landscape-invariant if Z is a random
variable vector whose joint probability density function pg(0;Z) is independent on X. For simplicity,
denote pg(0;Z) as pz(Z). EP using invariant mutation is named invariant EP. For example, the
Gaussian mutation using invariant σ in Section 3.2 belongs to invariant mutation.

• Landscape-adaptive mutation: if the probability density function of Z varies on X, mutation
Y = X + Z is called landscape-adaptive. EP using adaptive mutation is named adaptive EP. For
example, the Gaussian mutation using adaptive σ in Section 3.2 is adaptive mutation.

Given a contraction factor ρ ∈ (0, 1] and a population X, the population set S can be divided into two
disjoint subsets:

S(X, ρ) = {Y ∈ S|e(Y ) < ρe(X)}, S(X, ρ) = S \ S(X, ρ). (32)

The set S(X, ρ) is named as a ρ-promising region. When ρ = 1, the set S(X, 1) is called a promising region.

5.2. Analysis of Landscape-invariant EP

For EP using landscape-invariant mutation, we prove that its ACR converges to 0. First we demonstrate
that the infinum of the transition probability to the promising region is zero under a mild condition.

Lemma 1. If the number of optimal solutions is finite, then the transition probability of the landscape-
invariant EP to the promising region satisfies

inf{Pg(X,S(X, 1));X /∈ S∗} = 0. (33)

Proof. In order to prove (33), it is sufficient to prove lime(X)→0 Pg(X,S(X, 1)) = 0. That is, ∀ε > 0, ∃δ > 0,
∀X ∈ A(S∗, δ) \ S∗ (where the set A(S∗, δ) = {X; e(X) ≤ δ}), it holds

Pg(X,S(X, 1)) < ε. (34)
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For a Lebesgue-measurable set A ⊂ S, let m(A) denote its Lebesgue measure. Because pz(Z) is contin-
uous and bounded, the probability of X + Z falling in a small area is small for a fixed X. That is, ∀ε > 0,
∃δ′ > 0 (set δ′ = ε/ sup pz(Z)), it holds ∀A ⊂ S : m(A) ≤ δ′ and ∀X ∈ S,

Pr(X + Z ∈ A) =
∫

Z:X+Z∈A
pz(X + Z)dZ < ε. (35)

Because the number of optimal solutions is finite (then m(S∗) = 0) and f is continuous, for the set
A(S∗, δ), we can choose δ sufficiently small so that m(A(S∗, δ)) ≤ δ′.

Because f is continuous, we may set δ sufficiently small so that ∀X ∈ A(S∗, δ) and Y /∈ A(S∗, δ): f(X) <
f(Y ). This implies that S(X, 1) ⊂ A(S∗, δ). According to (35) and m(A(S∗, δ)) ≤ δ′, ∀X ∈ A(S∗, δ) \ S∗,
we have

Pr(X + Z ∈ A(S∗, δ)) < ε.

Because S(X, 1) ⊂ A(S∗, δ), we have

Pg(X,S(X, 1)) ≤ Pr(X + Z ∈ A(S∗, δ)) < ε.

Then we get (34), and the proof is completed.

The theorem below analyzes the limit property of invariant EP.

Theorem 3. If the number of optimal solutions is finite and the invariant EP using elitist selection converges
in mean, then starting from any X0, limt→+∞ ACRt = 0.

Proof. According to Theorem 1, it is sufficient to prove limt→+∞ ∆et/et−1 = 0. That is ∀ε > 0, ∃t0 > 0,
∀t ≥ t0,

∆et < εet. (36)

From (34) in Lemma 1, we know ∀ε > 0, ∃δ > 0, let A(S∗, δ) = {X; e(X) ≤ δ}. Then ∀X ∈ A(S∗, δ)\S∗,
it holds

Pg(X,S(X, 1)) < ε. (37)

Since the sequence {et; t = 0, 1, · · · } converges to 0, EP converges almost surely to 0, that is,

Pr( lim
t→+∞

e(Xt) = 0) = 1.

Denote
S1 = {ω ∈ S| lim

t→+∞
e(Xt(ω)) = 0}, S2 = {ω ∈ S| lim

t→+∞
e(Xt(ω)) 6= 0}.

It is obvious that
Pr(ω ∈ S2) = 0, (38)

and for the given δ > 0, ∃ t0 > 0, then ∀ t > t0, it holds

e(Xt(ω)) < δ, ∀ω ∈ S1.

From (37) we know
Pg(X,S(Xt(ω), 1)) ≤ ε, ∀ω ∈ S1.

Then we obtain
E[e(Xt(ω))− e(Xt+1(ω)) | Xt(ω)] ≤ εe(Xt(ω)), ∀ω ∈ S1. (39)

While ∀ω ∈ S2, we know there exists a positive B:

E[e(Xt(ω))− e(Xt+1(ω)) | Xt(ω)] ≤ B. (40)
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Combining (38), (39) and (40) together, we get

∆et =

∫

S1

E[e(Xt(ω))− e(Xt+1(ω)) | Xt(ω)] Pr(dω) +

∫

S2

E[e(Xt(ω))− e(Xt+1(ω)) | Xt(ω)] Pr(dω)

≤ε
∫

S1

e(Xt(ω)) Pr(dω) +B · 0 ≤ εet.

So (36) is true, and we complete the proof.

Theorem 3 states that for the invariant elitist EP, ACRt → 0 as t → +∞. This means that landscape-
invariant mutation is less efficient in continuous optimization. This phenomenon can be explained by the
lazy convergence for general Markov search [40]. As the population approaches the optimum, the probability
of generating a better state from one step to another goes to zero. This causes the slow convergence.

Note: Theorem 3 does not hold if the number of the optimal set X∗ is not finite, for example, the Jump
function (11) in Section 4.1.

5.3. Analysis of Landscape-adaptive EP

Landscape-adaptive mutation can be further split into two categories according to the probability of
locating promising regions.

• Zero landscape-adaptive mutation: adaptive mutation Y = X+Z is called zero landscape-adaptive
if the transition probability to the promising region satisfies

inf{Pg(X;S(X, 1));X /∈ S∗} = 0. (41)

• Positive landscape-adaptive mutation: adaptive mutation Y = X+Z is called positive landscape-
adaptive if ∃ρ ∈ (0, 1), the transition probability to the ρ-promising region satisfies

Cρ = inf{P (κ)
g (X;S(X, ρ));X /∈ S∗} > 0. (42)

for some positive integer κ.

Thus, landscape-adaptive EP can be classified into two categories: the zero landscape-adaptive EP employing
zero landscape-adaptive mutation and the positive landscape-adaptive EP with positive landscape-adaptive
mutation. Theorems 4 and 5 analyze the limit property of the ACR of the two types of EP.

Theorem 4. If the number of optimal solutions is finite and the zero landscape-adaptive EP using elitist
selection converges in mean, then starting from some X0, the ACR satisfies limt→+∞ ACRt = 0.

Proof. For zero landscape-adaptive mutation, (41) implies that there exists a subsequence {Xt′} such that
limt′→+∞ Pg(Xt′ , S(Xt′ , 1)) = 0. Similar to the proof of Theorem 3, we know that limt→+∞ ACRt′ = 0.

Theorem 4 states that for the zero landscape-adaptive elitist EP, its ACR tends to 0 when starting from
some initial population. Thus, zero landscape-adaptive mutation is not always efficient. It is different from
Theorem 3 which holds for any initial non-optimal population.

Theorem 5. If the number of optimal solutions is finite and the positive landscape-adaptive EP using
elitist selection converges in mean, then starting from any non-optimal population X0, the ACR satisfies
limt→+∞ ACRt ≥ C > 0.

Proof. Let us estimate the lower bound of the ACR limit. From (32), we know that for any k ≥ 0,

S(Xk, ρ) = {Y ∈ S | e(Y ) ≤ ρe(Xk)}.

It follows that S(Xk, ρ) ⊂ S(Xk, 1), and for any Y ∈ S(Xk, ρ),

f(Xk)− f(Y ) ≥ (1− ρ)(f(Xk)− f∗). (43)
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So we get for κ consecutive steps that

e(Xk)− e(Xk+κ)

=

∫

S(Xk,1)

(f(Xk)− f(Y ))p(κ)g (Xt+κ = Y | Xt = X)dY

≥
∫

S(Xk,ρ)

(f(Xk)− f(Y ))p(κ)g (Xt+κ = Y | Xt = X)dY

≥
∫

S(Xk,ρ)

(1− ρ) (f(Xk)− f∗) p(κ)g (Xt+κ = Y | Xt = X)dY (from (43))

≥(1− ρ)Cρe(Xk). (from (42)) (44)

Then

∆(κ)ek
ek

≥ (1− ρ)CρE[e(Xk)]

ek
= (1− ρ)Cρ. (45)

It holds that

lim
t→+∞

ACRt = lim
t→+∞

[

1−
(

et
e0

)1/t
]

= lim
t→+∞



1−
(

t
∏

k=1

ek
ek−1

)1/t


 ≥ (1− ρ)Cρ = C.

Let C = (1− ρ)Cρ > 0. We complete the proof.

Theorem 5 proves that positive landscape-adaptive mutation is efficient because it results in a positive
lower bound of the ACR. Theorems 3 to 5 confirms the different behaviors between the landscape-adaptive
EP and landscape-invariant EP. To design an efficient EA, mutation should be positive landscape-adaptive.

5.4. Case Study of Landscape-invariant and Landscape-adaptive EP

This section makes a case study of EP using landscape-adaptive and landscape-invariant mutation.
Consider the following minimization problem:

min fA(x) = ‖x‖∞ = max{|x1|, |x2|}, x = (x1, x2) ∈ R
2. (46)

It is optimized by (1 + 1) EP using mutation y = x+ zΓ, where z is a random vector subject to a uniform
distribution U([−1, 1]× [−1, 1]). Γ = diag{γ1, γ2} represents the step sizes along x1 and x2 axes respectively.
Denote the individual at the tth generation as xt = (x1, x2). Due to symmetry of the landscape, we can
postulate without loss of generality that x1 ≥ x2. Then, ‖xt‖∞ = x1.

Scenario 1: Γ is constant. In this case, the uniform mutation is landscape-invariant. Theorem 3
implies that ACRt converge to 0 when t→ +∞.

We first validate that this landscape-invariant (1+1) EP converges in probability. Let xt = (x1, x2), set

γ1 = |x1|, γ2 = |x2|.

∀ 0 < δ < min{γ1, γ2}, denote
Rδ = [−δ, δ]× [−δ, δ].

The elitist selection confirms that

Pr(xt+1 /∈ Rδ|xt /∈ Rδ) ≤ Pr(x1 /∈ Rδ|x0 /∈ Rδ) =
δ2

4γ1γ2
∀t ∈ Z

+.
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Thus,

Pr(xt+1 /∈ Rδ) = Pr(xt+1 /∈ Rδ|xt /∈ Rδ) Pr(xt /∈ Rδ)

≤ δ2

4γ1γ2
Pr(xt /∈ Rδ) ≤ · · · ≤

(

δ2

4γ1γ2

)t+1

Pr(x(0) /∈ Rδ)

and we know

lim
t→∞

Pr(xt+1 /∈ Rδ) = 0. (47)

That is, this landscape-invariant (1+1) EP converges in probability.
From (47) we know ∀ε1 > 0, there exists t0 > 0 such that

Pr(xt /∈ Rδ) < ε1, t > t0. (48)

Meanwhile,

E[e(xt)− e(xt+1)|xt = (x1, x2)] =

∫

S(xt,1)

1

4γ1γ2
(x1 −max{|y1|, |y2|})dy1dy2

=
2

4γ1γ2

∫ x1

−x1

[
∫ y1

−x1

(x1 − |y1|)dy2
]

dy1 =
[x1]

3

2γ1γ2
. (49)

By setting ǫ = δ2

γ1γ2
, (48) and (49) imply that

∆et = E[E[e(xt)− e(xt+1)|xt = (x1, x2)]]

=

∫

xt∈Rδ

[x1]
3

2γ1γ2
dPxt

+

∫

xt /∈Rδ

[x1]
3

2γ1γ2
dPxt

<
ǫ

2
E[e(xt)] +Mǫ1E[e(xt)],

where M = max{ [x1]
2

2γ1γ2
− ǫ

2}. Hence, limt→∞
∆et
et
≤ ǫ

2 . Since ǫ is arbitrarily small, we can conclude that

lim
t→∞

ACRt =1− lim
t→∞

(

et
e0

)1/t

= 0.

Scenario 2: Γ is adaptive to the landscape. We consider an adaptive mutation strategy which
dynamically adjusts the step size as below. Let xt = (x1, x2),

γi(t) =

{

0.1|xi|, 2mκ ≤ t < (2m+ 1)κ,

0.2|xi|, 2(m+ 1)κ ≤ t < (2m+ 2)κ,
m ∈ Z

+, i = 1, 2, (50)

where κ is a positive integer.

Because γi(t)
|xi| is bounded from below by 0.1, we have

inf{Pg(X;S(X, 1));X /∈ S∗} > 0. (51)

Thus, the above strategy is positive landscape-adaptive. According to Thereom 5, there exists some positive
C such that limt→+∞ ACRt ≥ C. Now let us deduce the lower and upper bounds on the limit of ACRt. Set

λ =

{

0.1, 2mκ ≤ t < (2m+ 1)κ;

0.2, 2(m+ 1)κ ≤ t < (2m+ 2)κ,
m ∈ Z, i = 1, 2.

The analysis is split into two different cases.
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1. While 0 < (1 + λ)x2 < x1, we discuss two cases: (1 + λ)x2 ≤ (1− λ)x1 and (1− λ)x1 < (1 + λ)x2.
(a) If (1 + λ)x2 ≤ (1− λ)x1, we know

E[e(xt)− e(xt+1)|xt = (x1, x2)] =

∫

S(xt,1)

1

4γ1γ2
(x1 −max{|y1|, |y2|})dy1dy2

=
1

4λ2x1x2

∫ x1

(1−λ)x1

[

∫ (1+λ)x2

(1−λ)x2

(x1 − y1)dy2

]

dy1 =
λ

4
x1.

Then,
∆et
et

=
1

4
λ. (52)

(b) If (1− λ)x1 < (1 + λ)x2, we know

E[e(xt)− e(xt+1)|xt = (x1, x2)] =

∫

S(xt,1)

1

4γ1γ2
(x1 −max{|y1|, |y2|})dy1dy2

≤ 1

4λ2x1x2

∫ x1

(1−λ)x1

[

∫ (1+λ)x2

(1−λ)x2

(x
(t)
1 − y1)dy2

]

dy1 =
λ

4
x1,

and

E[e(xt − e(xt+1)|xt] = (x1, x2] =

∫

S(xt,1)

1

4γ1γ2
(x1 −max{|y1|, |y2|})dy1dy2

≥ 1

4λ2x1x2

∫ x1

(1−λ)x1

[

∫ (1−λ)x1

(1−λ)x2

(x1 − y1)dy2

]

dy1 =
1

8
λ(1− λ)x1.

Then,

a1(λ) ≤
∆et
et
≤ b1(λ), (53)

where

a1(λ) =
1

8
λ(1− λ), b1(λ) =

1

4
λ.

2. While (1 + λ)x2 ≥ x1 ≥ x2, we know

E[e(xt)− e(xt+1)|xt] = (x1, x2)] =

∫

S(xt,1)

1

4γ1γ2
(x1 −max{|y1|, |y2|})dy1dy2

=
1

4λ2x1x2

∫ x1

(1−λ)x1

[

∫ x1

(1−λ)x2

(x1 −max{|y1|, |y2|})dy2
]

dy1

=
1

4λ2x1x2

[

(
1

2
− 1

6
λ)(x1)

3 − 1

2
(1− λ)(x1)

2x2

]

=
x1

4

[

(
1

2
− 1

6
λ)

x1

x2
− 1

2
(1− λ)

]

.

Then,

1

12
λx1 ≤ E[e(xt)− e(xt+1)|xt] = (x1, x2)] ≤

1

6
λ(5− λ)x1,

and it holds

a2(λ) ≤
∆et
et
≤ b2(λ), (54)

where

a2(λ) =
1

12
λ, b2(λ) =

1

6
λ(5− λ).
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In summary, (52), (53) and (54) imply

min{1
8
λ(1− λ),

1

12
λ} ≤ ∆et

et
≤ 1

6
λ(5− λ).

Since

ACRt = 1−
(

t−1
∏

k=0

(1− ∆ek
ek

)

)1/t

,

The ACR is bounded by

min{1
8
λ(1− λ),

1

12
λ} ≤ ACRt ≤

1

6
λ(5− λ).

Set λ = 0.1 or λ = 0.2. Thus, the ACR of the landscape-adaptive EP bounded by

1

120
≤ ACRt ≤

4

25
. (55)

6. Relationship between ACR and Decision Space Dimension

6.1. Polynomial ACR versus Exponential ACR

In Section 3.4, computer simulation demonstrates that the ACR decrease as the the decision space
dimension increases. In theory, Teytaud and Selly [37] discussed the convergence by the logarithm of the
distance to the optimum and proved a linear convergence with constant in [1−O(1/d), 1] for the comparison-
based algorithms. In general, the relationship between the ACR and decision space dimension can be
studied similar to the time complexity. Recall in the theory of time complexity, the runtime of algorithms is
often classified into two categories: exponential runtime and polynomial runtime as the problem input size.
Similarly, the ACR of EAs can be classified into polynomial and exponential categories as follows.

• Polynomial ACR: starting from any X0, for any t, ACRt is not less than a reciprocal of a polynomial
function of d, that is

∃a > 1, ∀t ≥ 0 : ACRt = Ω
(

d−a
)

, (56)

where Ω is under Bachmann-Landau notation. (56) means ACRt reduces slowly as d increases.

• Exponential ACR: starting from some X0, for a period as long as an exponential function of d,
ACRt is not more than a reciprocal of an exponential function of d, that is

∃a > 1, b > 1, ∀t = Ω(bd) : ACRt = O
(

a−d
)

. (57)

where O is under Bachmann-Landau notation. (57) means ACRt reduces quickly as d increases.

According to the definition, a polynomial ACR is a linear ACR. However, an exponential ACR could be
either a sublinear or linear ACR. For example, an exponential ACR such that limt→+∞ ACRt(d) = exp(−d)
is still a linear ACR.

The theorem below provides sufficient conditions of determining whether an ACR is polynomial and
exponential.

Theorem 6. (1) If starting from any X0, for any t ≥ 0, some a > 1 and κ > 0, the rate of κ-step error
change satisfies

∆(κ)et
et

= Ω(d−a). (58)

then starting from any X0, for any t ≥ 0, ACRt = Ω
(

d−a/κ
)

.
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(2) If starting from some X0, for some t = O(bd) where b > 1, some a > 1 and and κ > 0, the rate of
error change satisfies

∆(κ)et
et

= O
(

a−d
)

. (59)

then starting from the above X0, for some t = O(bd), ACRt = O
(

a−d/κ
)

.

Proof. Denote t = mκ+ k, where m is a positive integer, k ∈ {0, 1, . . . , κ− 1}. Because

ACRt = 1−
[

t
∏

k=1

ek
ek−1

]1/t

= 1−
[

m−1
∏

l=0

(

1− ∆(κ)elκ
elκ

)

emκ+k

emκ

]1/(mκ+k)

,

from (58), we derive ACRt = Ω(d−a/κ). From (59), we have for some t = O(bd), ACRt = O(d−a/κ).

In the above theorem, two parameters a and b relies on problems and algorithms.

6.2. Polynomial ACR on Easy Problems

To exemplify a polynomial ACR on easy problems, consider the (1+1) adaptive RUS for minimizing the
linear function.

min fL(x) =
∑d

i=1 cixi, x = (x1, . . . , xd) ∈ [0, 1]d ⊂ R
d. (60)

fL is a natural extension of linear functions from pseudo-Boolean function optimization [1] to continuous
optimization. The OneMax function (8) is a special instance of linear functions. Since the OneMax function
is easiest to the adaptive (1+1) EP, the ACR slowly decreases as d on the OneMax function. Let us make
a rigorous analysis of this claim on linear functions.

Let xt = x = (x1, . . . , xd) be a non-optimal solution. An offspring y is generated by search along a
randomly selected dimension j with probability 1/d. That is,

yj = (x1, . . . , xj−1, yj , xj+1, . . . , xd),

where yj = xj +N (0, σj). Thanks to elitist selection, y is accepted if and only if it satisfies yj < xj . It is
trivial to validate that the probability of hitting the promising region is

Pg(x;S(x, 1)) =
d
∑

j=1

1√
2πσjd

∫ xj

0

e
− (y−xj)

2

2σ2
j dy =

1

d

d
∑

j=1

(

1

2
− Φ

(

−xj

σj

))

. (61)

Let σj such that xj/σj = C0 where C0 > 0. In this case, we prove that the Gaussian mutation is positive
landscape-adaptive, that is, ∃C > 0, ρ ∈ (0, 1), ∀x /∈ X∗, Pg(x;S(x, ρ)) ≥ C.

Since xj/σj = C0 > 0, we have

Pg(x;S(x, 1)) =
1

2
− Φ(−C0). (62)

Take Pg(x,S(x, ρ)) as a function of ρ defined in the interval (0, 1]. Obviously Pg(x,S(x, ρ)) is continuous,
that is, ∀ ε > 0, ∃ρ(ε) ∈ (0, 1) such that

Pg(x,S(x, ρ(ε))) > Pg(x,S(x, 1))− ε. (63)

Let ρ = ρ(ε) and Cρ = 1
2 − Φ(−C0)− ε for any given 1

2 − Φ(−C0) > ε > 0. (63) and (42) confirm that the
Gaussian mutation with xj/σj = C0 is positive landscape-adaptive. Then, Theorem 5 claims that the ACR
is not less than a positive,

ACRt ≥ C = (1− ρ(ε))(
1

2
− Φ(−C0)− ε). (64)
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However, the lower bound presented by (64) does not show how the ACR is connected to the dimension
d. In the following, we demonstrate a relationship between the ACR and decision space dimension.

Given a fixed j, for the Gaussian mutation with xj/σj = C0, the error change is

1√
2πσj

∫ xj

0

cj(xj − y) exp

{

− (y − xj)
2

2σ2
j

}

dy =
σjcj√
2π

(

1− e
−

x2
j

2σ2
j

)

=
σjcj√
2π

(

1− e−
C2
0
2

)

. (65)

Since j is chosen at random from {1, · · · , d}, the average error change over all j = 1, · · · , d is

∆et =
1

d

d
∑

j=1

σjcj√
2π

(

1− e−
C2
0
2

)

=
1√

2πdC0

(

1− e−
C2
0
2

) d
∑

j=1

cjxj .

Then we know that the rate of error change is

∆et
et

=
1

d

1√
2πC0

(

1− e−
C2
0
2

)

= Θ(
1

d
).

According to Theorem 6, ACRt is the reciprocal of a polynomial function of d for any t.

6.3. Exponential ACR on Hard Problems

To exemplify an exponential ACR on hard problems, consider the (1+1) adaptive EP for minimizing
the deceptive function (9). Since the deceptive function is hard to the adaptive (1+1) EP, the ACR quickly
decreases as d on the deceptive function. Let us make a rigorous analysis of this claim.

Let xt = x be a non-optimal solution. By Gaussian mutation, an offspring y is generated by x as
yi = xi + N (0, σi) where i = 1, · · · , d. Let σi = xi where i = 1, · · · , d. We prove that this Gaussian
mutation is positive landscape-adaptive.

For the deceptive function, let (1+1) EP start from the local optimum (1, · · · , 1). According to the

definition of the deceptive function (9), fD(y) < fD(x) if and only if
∑d

i=1 yi ≤ 1/2. Thus, only an offspring

y with
∑d

i=1 yi ≤ 1/2 can be accepted, and the transition probability to the promising region is

Pg(x,S(x, 1)) =
∫

∑
i yi≤1/2

px(y)dy

=

∫

∑
i yi≤1/2

1

(
√
2π)d

exp

{

−
∑

i(yi − 1)2

2

}

dy1 . . . dyd

≤
∫

y∈[0,1/2]d

1

(
√
2π)d

exp

{

−
∑

i(yi − 1)2

2

}

dy1 . . . dyd ≤ b−d, (66)

for some b > 1.
The expected hitting time to the promising region is at least bd. We choose a constant c ∈ (0, 1) such

that 1 < cb < b, then for t ≤ (cb)d, the event of xt leaving the local optimum happens with a probability at

most 1− (1− b−d)(cb)
d ≤ cd. Thus et = d−O(cd).

For any xt satisfying
∑d

i=1 xi ≤ 1/2, its average error change is at most cd/2. For xt = (1, · · · , 1), its
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average error change is

∫

∑
i yi≤1/2

(

(d+ 1−
∑

i

xi)−
∑

i

yi

)

px(y)dy

=

∫

∑
i yi≤1/2

(

1−
∑

i

yi

)

1

(
√
2π)d

exp

{

−
∑

i(yi − 1)2

2

}

dy1 . . . dyd

≤
∫

y∈[0,1/2]d

(

1−
∑

i

yi

)

1

(
√
2π)d

exp

{

−
∑

i(yi − 1)2

2

}

dy1 . . . dyd

=

∫

z∈[−1/2,0]d

(

1−
∑

i

(1 + zi)

)

1

(
√
2π)d

exp

{

−
∑

i z
2
i

2

}

dz1 . . . dzd

≤
∫

z∈[−1/2,0]d

1

(
√
2π)d

exp

{

−
∑

i z
2
i

2

}

dz1 . . . dzd

=(Φ(0)− Φ(−1/2))d . (67)

Then, by setting a = 1/(Φ(0) − Φ(−1/2)), we know that a > 1. Then the rate of error change is not more
than the reciprocal of an exponential function of d, that is

∆et
et
≤ a−d +O(cd)

d−O(cd)
. (68)

According to Theorem 6, we conclude that ACRt is not more than the reciprocal of an exponential
function of d for t ≤ (cb)d. This theoretical result confirms ACRt decreases quickly as d on the deceptive
function.

For the (1+1) adaptive RUS on the deceptive function, it is trivial to prove that starting from the local
optimum x0 = (1, · · · , 1), the algorithm cannot generate a better child y such that fD(y) < fD(1, · · · , 1).
Thus, for any t, we have xt = x0 and then ACRt = 0.

7. Conclusions

This paper conducts a theoretical analysis of the ACR of EAs in continuous optimization. According to
the limit property, the ACR is classified into two categories: (1) linear ACR whose limit inferior value is
larger than a positive and (2) sublinear ACR whose value converges to zero. Then, it is proven that for EP
using positive landscape-adaptive mutation, its ACR is linear. But for EP using landscape-invariant or zero
landscape-adaptive mutation, its ACR is sublinear.

The relation between the ACR and the decision space dimension is also classified into two categories:
(1) polynomial ACR whose value is larger than the reciprocal of a polynomial function of the dimension for
any generation, and (2) exponential ACR whose value is less than the reciprocal of an exponential function
of the dimension for an exponential long period. It is proven that for easy functions such as linear functions,
the ACR of the (1+1) adaptive RUS is polynomial. But for hard functions such as the deceptive function,
the ACR of both the (1+1) adaptive EP and RUS is exponential.

This paper does not discuss EAs whose genetic operators change over time. This topic will be left for
future research.
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