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Abstract. Imbalanced data is one of the main challenges for classification mod-
els. This paper proposes a new approach for addressing the treatment of imbal-
anced data using diversity optimisation. For the first time, a novel approach of 
oversampling the minority group adopts diversity optimisation to generate syn-
thetic instances. Diversity optimisation assures that the generated synthetic in-
stances are close enough to the minority group but not identical. It also ensures 
the optimal spread of the generated instances in the space. We develop two for-
mulations named as Diversity-based Average Distance Over-sampling (DADO) 
and Diversity-based Point Wise Over-sampling (DPWO). To evaluate the perfor-
mance of the proposed formulations, we design experiments using both synthetic 
data sets and real data sets with unbalanced classes. We examine the performance 
of the proposed formulations through F1-score and area under curve (AUC) 
measures in comparison with existing approaches. For this examination, we im-
plement six commonly used classifiers. Our results show that both proposed for-
mulations have potentials to improve the performance of classifiers and DPWO 
outperforms other comparable re-sampling approaches. We also conduct a sensi-
tivity analysis to investigate the robustness of the formulations and find roadmaps 
for improvement.  
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1 Introduction 

Imbalanced data refer to situations that the frequency of classes is not equally distrib-
uted. It is one of the main challenging circumstances in classification algorithms [1]. 
Classifiers in machine learning are to minimise the misclassification error (or maximise 
the predictive accuracy). Therefore, the classification algorithms work effectively as-
suming the number of instances for in classes is approximately balanced. The accuracy 
of these algorithms would be biased when at least one class has substantially different 
number of instances. The classification algorithms result in high False Negative rates 
(FNR) when instances from positive classes are predicted negative [2, 3]. 

The issue of imbalanced data in machine learning has generally been addressed by 
two approaches. In the first approach, the learning algorithm of the classifiers is ad-
justed based on the class with the fewest instances and without changing the training 
data set. One method to adjust the classification algorithms is the cost-sensitive 
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learning. In cost-sensitive learning, a variety of costs are assigned to misclassification 
errors across classes and the classifier does not minimise just a simple misclassification 
error. The idea is that the misclassification from one class results in higher undesirable 
outcomes. For example, classifying a person who suffers from cancer as a healthy per-
son is more critical than classifying a healthy person as a person with cancer [4, 5]. 
Thresholding is a method that adjust the decision boundary for classification [6]. In 
binary classifiers that estimate probability, the decision boundary is usually 0.5 [7]. 
Another method to adjust the algorithms is using an ensemble of classifiers to reduce 
the variance and create a more robust classifier [8]. 

The second approach, which is the focus of this study, re-samples the training data 
set to equalise the number of instances in classes. Under-sampling methods are methods 
that eliminate instances from the class with the majority number of instances. Random 
under-sampling is the most commonly used under-sampling method. The main draw-
back of under-sampling is the loss of valuable information from data sets [9]. Another 
method is over-sampling that replicates the instances of the minority class to balance 
the data set. The main drawback of over-sampling is that it may increase the chance of 
overfitting [10]. Also, the existence of a considerable number of identical instances in 
a data set is a challenging circumstance for classifiers [1]. Applying a combination of 
over-sampling and under-sampling has also been used to reduce the problem of unbal-
anced classes [11]. 

Over-sampling can be used randomly, in a focused way or using synthetic sampling. 
Focused over-sampling replicates the instances of the minority class where are close to 
the boundary between majority and minority classes. Over-sampling with replication 
results in the creation of smaller and more specific decision regions [10]. This problem 
is addressed by generating synthetic instances from the minority class. Synthetic Mi-
nority Oversampling Technique (SMOTE) [3] generates synthetic instances using near-
est neighbors of the same class. So, the synthetic instances are not the replication of 
original instances and broaden the decision region. Using synthetic instances for over-
sampling can reduce the FN rate and stabilise the performance of classifiers [4, 10]. In 
this paper, we aim to propose a new method to generate synthetic instances for the 
minority class using diversity optimisation. The proposed method ensures that the gen-
erated synthetic instances are close to the instances in the minority class but not identi-
cal. It maintains the advantages of synthetic over-sampling to treat imbalanced data. 
Diversity optimisation also ensures the generated instances are spread optimally in the 
space and broadens the decision region to improve the classification models. 

2 Diversity optimisation 

Optimisation models usually aim to obtain the best solution to minimise (or maximise) 
the objective function. However, diversity optimisation is to find a set of solutions that 
have acceptable objective values and are optimally diverse. There are several benefits 
for diversity optimisation. First, it provides a variety of options for decision makers to 
choose from. Sometimes the best solution is hard to achieve but knowing other solu-
tions with almost similar quality makes decision-making easier. Second, some 
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abstractions and simplifications are normally considered in developing optimisation 
models. So, the obtained best solution is not necessarily the optimal solution in real 
world. Third, having a diverse set of almost optimal solutions provides an opportunity 
to explore more the case study.  

Diversity optimisation is to optimise the objective function and optimise the diver-
sity among the solutions. However, it cannot be considered as a typical multi-objective 
optimisation problem because diversity is not an independent objective function. It does 
not aim to find diverse with low-quality solutions. Diversity optimisation is a special 
type of multi-objective optimisation that can be called as mixed multi-objective prob-
lem. First, it finds a set of high-quality solutions. Then, it uses a diversity measure to 
guarantee that the set includes diverse high-quality solutions. The algorithm of diversity 
optimisation usually contains three main steps. (1) Optimising the objective function: a 
standard evolutionary algorithm generates pools of solutions and optimises the objec-
tive function. (2) Bound adaptation: a bound is determined based on the last generated 
pool to guarantee the quality of solutions. (3) Diversity maximisation: new solutions 
are generated to improve the diversity measure under the constraint of the quality 
bound. These steps iterate to reach the stopping criteria [12]. 

Diversity optimisation has attracted interests from researchers in recent years. It has 
been introduced by Ulrich and Thiele [12] for single-objective optimisation problems. 
It has also been used for multi-objective problems [13]. Jiang and Yang [14] proposed 
an evolutionary algorithm based on diversity for multi-objective optimisation problems 
by prioritising diversity over convergence. Gao et al. [15] used diversity optimisation 
to construct a diverse set of instances for the Traveling Salesperson problem. Neumann 
et al. [16] adapted popular indicators in multi-objective optimisation such as hypervol-
ume, inverted generational distance and additive epsilon approximation to diversity op-
timisation. Diversity optimisation has also been used to create a variety of images that 
are close to the original image but are different [17]. For the first time, we study the 
adaptation of diversity optimisation to generate synthetic instances which resemble to 
instances in minority class but differ. These synthetic instances are used to develop a 
novel method for over-sampling the minority class to treat imbalanced data problems. 

3 Diversity-based over-sampling 

This section describes the algorithm used for diversity optimisation, the diversity meas-
ure, population selection based on diversity and the adaptation of diversity optimisation 
for over-sampling. 
3.1 Diversity optimisation algorithm 

Diversity optimisation comprises three steps. The algorithm we use in this study for 
diversity optimisation is an extended version of NOAH algorithm [12] and has these 
three steps as well (as shown in Algorithm 1). The input parameters are population size 
(n), the number of generations for optimising the objective function (g), the number of 
instances remains in the population after bound adaptation (r), the percentage that 
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defines the improvement of bound (v) and c which is the stopping criterion diversity 
maximisation and the whole algorithm. If the population’s diversity does not improve 
for c generations, the diversity maximisation converges. If the bound does not improve 
for c generations, whole algorithm stops. This parameter facilitates the convergence of 
the algorithm when the optimal value of the objective function is unknown. In this sit-
uation, NOAH algorithm iterates forever. 

Every evolutionary algorithm can be applied to optimise the objective function. We 
use genetic algorithm (GA) as the most popular evolutionary algorithm. So, we use 
mutation and crossover to generate new instances by considering the bound value. In 
minimisation problems such as our study, the bound is an upper bound and its initial 
value is infinity which decreases through the algorithm. 
3.2 Diversity-based selection 

We use Solow-Polasky measure [18] as the diversity measure. In this diversity measure, 
a distance matrix (𝑀𝑀 = �𝑚𝑚𝑖𝑖𝑖𝑖�) is constructed and the summation of elements of the 
distance matrix’s inverse (𝑀𝑀−1) is the diversity measure (D(S)). 

 𝐷𝐷(𝑆𝑆) = ∑𝑀𝑀−1 = ∑ ∑ 𝑒𝑒−𝑑𝑑(𝑠𝑠𝑖𝑖,𝑠𝑠𝑗𝑗)
𝑖𝑖𝑖𝑖  (1) 

Algorithm 1: Diversity optimisation algorithm 

Input:  n, g, r, c, v 
Output: A diverse set of instances S 

1. S = Null; b = ∞; i = 0 
2. while 𝑖𝑖 < 𝑐𝑐 do 

/* Optimising the objective function */ 
3.    𝑃𝑃 ←  Randomly generate a population with n instances  
4.    for g generations do 
5.        𝑃𝑃′  ←  Generate new n instances from P with objective values better than b  
6.        𝑃𝑃 ←  Select n best instances from 𝑃𝑃 ∪  𝑃𝑃′ 
7.    end for 

/* Bound adaptation */ 
8.    𝑃𝑃 ←  Select r best instances from 𝑃𝑃 ∪  𝑆𝑆 
9.    𝑏𝑏′  ←  Put the objective value of rth best instance in 𝑃𝑃 ∪  𝑆𝑆 
10.    if 𝑏𝑏 − 𝑏𝑏′ < 𝑣𝑣 × 𝑏𝑏 then 𝑖𝑖 ← 𝑖𝑖 + 1 else 𝑖𝑖 ← 0 
11.    𝑏𝑏 ← 𝑏𝑏′ 

/* Diversity maximisation */ 
12.    j = 0 
13.    while 𝑗𝑗 < 𝑐𝑐 do 
14.           𝑃𝑃"  ←  Generate new r instances from P with objective values better than b  
15.           𝑃𝑃∴  ← Select r best diverse instances from 𝑃𝑃"  ∪  𝑆𝑆 
16.    end while 
17.    if diversity of 𝑃𝑃∴ is more than S then 𝑆𝑆 ← 𝑃𝑃∴ else 𝑗𝑗 ← 𝑗𝑗 + 1 
18. end while 
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where 𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖) denotes the distance between elements of set S which are instances. We 
use Euclidean distance in our study. 

The Solow-Polasky measure has three properties that are needed for a diversity 
measure [19]. These three properties are (1) Monotonicity in varieties: the diversity 
measure increases by adding an individual element that was not in the set, (2) Twining: 
the diversity measure remains the same by adding an individual element that was al-
ready in the set, (3) Monotonicity in distance: the diversity of set S should not be smaller 
than another set 𝑆𝑆′ if all pairs in S are as distant as all pairs in 𝑆𝑆′. 

To select the best diverse instances (Algorithm 1, line 15), all possible subsets should 
be checked. However, this is computationally infeasible. So, we use a greedy approach 
to discard instances with the least contribution to diversity of the set. The contribution 
of an instance is defined by the difference between the diversity of the whole set and 
the diversity of the set without that instance. To reduce the computation, this difference 
can be formulated as (2) as proved in [12]. 

 ∑𝑀𝑀−1 − ∑𝐴𝐴−1 = 1
𝑐𝑐̅

(∑𝑏𝑏� + 𝑐𝑐̅) (2) 

where A is the distance matrix of the set without that particular instance, 𝑀𝑀 = � 𝐴𝐴 𝑏𝑏
𝑏𝑏𝑇𝑇 𝑐𝑐�, 

𝑀𝑀−1 = � �̅�𝐴 𝑏𝑏�
𝑏𝑏�𝑇𝑇 𝑐𝑐̅

�, c and 𝑐𝑐̅ are single elements, b and 𝑏𝑏� are vectors and 𝑏𝑏𝑇𝑇 and 𝑏𝑏�𝑇𝑇are their 

transpose. 
3.3 Objective functions 

To apply the diversity optimisation for over-sampling, a proper objective function is to 
be defined. As we aim to generate synthetic instances that are close to instances in 
minority class, we define the objective function as the distance from the instances in 
the minority class. Therefore, our optimisation problem is a minimisation one. We use 
Euclidean distance as the distance measure. To clarify the problem, we visualise an 
example in Fig. 1. The example shows a data set with two features (X and Y) where 99 
instances are in class 0 and one instance is in class 1 (minority class).  

  
(a) (b) 

Fig. 1. Synthetic instance generation (red, blue and green dots denote class 0, 1 and synthetic 
instances respectively) 
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Fig. 1(a) shows the generated instances in the last generation of GA. Some of the in-
stances generated by GA located in the space of the majority class and close instances 
are clustered together. Whereas, the instances generated by diversity optimisation (Fig. 
1(b)) are located close and diversely around the instance in the minor class. 

Normally, there are more than one instance in the minority class. To address this 
situation, we proposed two formulations to implement diversity optimisation. First, we 
define the objective function as the average of distance from all instances in the minor-
ity class. This formulation named as Diversity-based Average Distance Over-sampling 
(DADO). In DADO, the synthetic instances are diversely spread in the space among 
the minority class’ instances. Second, we divide generating synthetic instances around 
each instance of the minority class. For example, if we tend to generate 100 synthetic 
instances and there are 5 instances in the minority class, we generate 20 diverse syn-
thetic instances around each one of those 5. This formulation named as Diversity-based 
Point Wise Over-sampling (DPWO). 

4 Experiments 

In this section, we examine the performance of the proposed formulations using both 
synthetic and real data sets with unbalanced classes. Each data set is randomly divided 
into training and test data sets by half. We just control to maintain the imbalance ratio 
across training and test data sets. For example, if the ratio of the majority class to mi-
nority one is 95% to 5%, we make sure that both training and test data sets have the 
same ratio. We develop classifiers on training data set and measure the performance on 
the test data set. The classifiers are Logistic Regression (LR), Naïve Bayes (NB), De-
cision Tree (DT), k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Ran-
dom Forest (RF). We choose NB, KNN and RF as they are sensitive to imbalanced data 
based on their model assumptions [1]. LR is a commonly used classifier in medical 
problems even if the data is imbalanced [20]. It also is an effective classifier when 
classes are linearly separable. DT works based on developing decision regions which 
are influenced by re-sampling methods [10]. SVM with radial kernel is effective to 
classify classes which are non-linearly separable.  
We measure the performance of the classifiers on test data using F1-score and area 
under curve (AUC) as classification accuracy is not an appropriate measure for imbal-
anced data. To calculate F1-score, we need to measure recall and precision which are 
calculated using (3) and (4). Recall is the proportion of correctly predicted positive 
instances to all instances in the positive class. Precision is the proportion of correctly 
predicted positive instances to all predicted positive instances.  

 𝑅𝑅𝑒𝑒𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (3) 

 𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (4) 

where TP stands for True Positive that is the number of instances from positive class 
predicted correctly, FN stands for False Negative that is the number of instances from 
positive classes predicted negative and FP stands for False Positive which is the number 
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of instances from negative classes predicted positive. F1-score is the harmonic average 
of recall and precision as (5) [2, 21]. 

 𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 = 2×𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅×𝑇𝑇𝑃𝑃𝑅𝑅𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅+𝑇𝑇𝑃𝑃𝑅𝑅𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃

 (5) 

The Receiver Operating Characteristic (ROC) curve is a technique to summarise the 
performance of a classifier over trade-offs between sensitivity (is the same as recall) 
and False Positive rate (FPR) as (6). 

 𝐹𝐹𝑃𝑃𝑅𝑅 = 𝐹𝐹𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

 (6) 

where TN stands for True Negative that is the number of instances from negative class 
predicted correctly. AUC is the area under the ROC curve, is a suitable measure for 
classifiers’ performance especially in the situation of imbalanced data and is independ-
ent of the decision boundary [3, 22]. 

We compare the performance of the proposed formulations with other comparable 
re-sampling methods such as random over-sampling, random under-sampling, a hybrid 
of these two and SMOTE [23] method. we run all these methods 30 times and record 
the values of F1-score and AUC measures. We use mean and Mann-Whitney test, 
which is a non-parametric statistical test, to compare methods. We also record the 
measures for original training data set without re-sampling and use 1-sample Wilcoxon 
test to compare all methods with original measures.   
4.1 Synthetic data sets 

We create 6 two-dimensional data sets with imbalanced ratio of 95% to 5%. We attempt 
to cover a variety of situations in these data sets. Fig. 2 visualises these data sets. Data 
set 1 shows two classes that are linearly separable. In data set 2, two classes are not 
separable and instances in the minority class have low variance. In data set 3, two clas-
ses are not separable as well but the minority class’ instances have higher variance. For 
the remaining data sets, we use multivariate normal distribution to generate feature val-
ues. In data set 4, the features in two classes have similar variance and covariance val-
ues but different means. In data set 5, the features in two classes have similar means 
but different variance and covariance values. The minority class is located inside the 
majority class. In data set 6, first we generate all instances, then we label them ran-
domly. So, there is no specific difference between two classes making it harder to clas-
sify. 

   
Data set 1 Data set 2 Data set 3 



8 

   
Data set 4 Data set 5 Data set 6 

Fig. 2. Synthetic data sets 

Table 1 presents the outcomes of experiments on these data sets. The best value in 
average for each row is indicated as a bold number. The results of non-parametric tests 
at 1% significant level are presented as well. For example, 5+ means the measure values 
for that method are significantly better than method (5), which is under-sampling. It 
worth to note that NA value for F1-score means TP is equal to zero. The proposed 
formulations show great potential to handle imbalanced data and outperform other re-
sampling methods. Especially in data set 6, which is a hard data set, DPWO shows a 
great performance. Another interesting observation is that re-sampling methods show 
various performances in different cases. In some cases, the original training data set 
results in better performances. It shows that dealing with imbalanced data is the re-
search area that still needs attention from the machine learning community.  
4.2 Real data sets 

We conduct the experiments on three real data sets that cover different ranges imbal-
anced ratios. The details of these data sets are brought in Table 2. Hepatitis and Pima 
data sets are from UCI repository [24]. Oil data set has been used to detect oil spills 
from satellite radar images [25] and is accessible from [26]. Table 3 presents the out-
comes of the experiments on real data sets. The proposed formulations show great po-
tential in real data sets compared with other comparable methods. Still, the original 
training data set results in better performances in few cases. 

Table 2. Data sets description. 
Data set # of instances # of features Missing Imbalanced ratio 

Pima 768 8 No 65% - 35% 
Hepatitis 155 19 Yes 80% - 20% 

Oil 937 49 No 95% - 5% 
 



Table 1. Results for synthetic data sets. 
Data 
set 

Meas-
ure 

Method Origi-
nal (1) 

DPWO (2) DADO (3) Over-sampling (4) Under-sampling (5) Hybrid (6) SMOTE (7) 
Mean Stat Mean Stat Mean Stat Mean Stat Mean Stat Mean Stat 

D
at

a 
se

t 1
 

F1
 

LR 1 1 5+ 1 5+ 1 5+ 0.61  1 5+ 1 5+ 
NB 0.5 0.909 1+3+7+ NA  0.961 1+2+3+7+ 0.955 1+2+3+7+ 0.952 1+2+3+7+ 0.855 1+3+ 
DT NA 1 1+3+5+6+ 0.8 1+5+6+ 1 1+3+5+6+ NA  0.661 1+5+ 1 1+3+5+6+ 

KNN 1 1  1  1  1  1  1  
SVM 1 1 5+ 1 5+ 1 5+ 0.852  1 5+ 1 5+ 
RF 0.667 0.789 1+5+ 0.796 1+5+ 0.778 1+5+ 0.45  0.867 1+2+3+4+5+ 0.829 1+2+3+4+5+ 

A
U

C
 

LR 1 1 5+ 1 5+ 1 5+ 0.973  1 5+ 1 5+ 
NB 1 1 3+ 0.701  1 3+ 0.997 3+ 1 3+ 1 3+ 
DT 0.5 1 1+3+5+6+ 0.858 1+5+ 1 1+3+5+6+ 0.5  0.905 1+3+5+ 1 1+3+5+6+ 

KNN 1 1  1  1  1  1  1  
SVM 1 1  1  1  1  1  1  
RF 1 1  1  1  0.999  1  1  

D
at

a 
se

t 2
 

F1
 

LR NA 0.276 1+3+4+6+7+ 0.241 1+4+7+ 0.224 1+ 0.272 1+3+4+6+7+ 0.246 1+4+7+ 0.228 1+ 
NB 0.4 0.475 1+3+7+ 0.298  0.475 1+3+7+ 0.508 1+2+3+4+7+ 0.491 1+3+7+ 0.442 1+3+ 
DT NA 0.333 1+3+4+5+6+ 0.237 1+4+5+ 0.221 1+5+ NA  0.23 1+4+5+ 0.500 1+2+3+4+5+6+ 

KNN 1 1  1  1  1  1  1  
SVM NA 0.55 1+5+6+ 0.557 1+5+6+ 0.535 1+5+ 0.378 1+ 0.516 1+5+ 0.588 1+2+3+4+5+6+ 
RF NA 0.29 1+4+ 0.329 1+4+ 0.264 1+ 0.317 1+4+ 0.315 1+4+ 0.321 1+4+ 

A
U

C
 

LR 0.88 0.88 5+ 0.88 5+ 0.88 5+ 0.843  0.88 5+ 0.88 5+ 
NB 0.956 0.956 3+7+ 0.910  0.955 3+ 0.956 3+7+ 0.956 3+ 0.954 3+ 
DT 0.5 0.728 1+5+ 0.601 1+5+ 0.626 1+5+ 0.500  0.694 1+5+ 0.664 1+5+ 

KNN 1 1  1  1  1  1  1  
SVM 0.964 0.975 1+3+5+ 0.962  0.974 1+3+5+ 0.965  0.972 1+3+5+ 0.975 1+3+5+ 
RF 0.922 0.945 1+3+5+6+ 0.931 1+3+5+ 0.945 1+3+5+6+ 0.908  0.927 5+6+ 0.945 1+3+5+6+ 

D
at

a 
se

t 3
 

F1
 

LR NA 0.206 1+6+ 0.24 1+2+4+5+6+7+ 0.202 1+ 0.224 1+ 0.199 1+ 0.206 1+6+ 
NB NA 0.25 1+3+4+5+ 0.211 1+ 0.244 1+ 0.219 1+ 0.246 1+ 0.265 1+2+3+4+5+6+ 
DT NA 0.209 1+5+ 0.33 1+2+4+5+6+7+ 0.223 1+5+ NA  0.265 1+5+ 0.226 1+5+ 

KNN 1 1  1  1  1  1  1  
SVM NA 0.432 1+3+5+6+7+ 0.267 1+ 0.447 1+2+3+5+6+7+ 0.237 1+ 0.341 1+3+5+ 0.313 1+3+5+ 
RF NA 0.267 1+5+7+ 0.3 1+5+7+ 0.286 1+5+7+ 0.219 1+ 0.311 1+5+7+ 0.232 1+ 

A
U

C
 

LR 0.846 0.85 1+3+5+7+ 0.844 5+ 0.849 1+3+5+7+ 0.804  0.847 1+3+5+7+ 0.844 5+ 
NB 0.85 0.85 3+ 0.804  0.85 3+ 0.847 3+ 0.85 3+ 0.85 3+ 
DT 0.5 0.578 1+5+ 0.779 1+2+4+5+6+7+ 0.593 1+5+ 0.5  0.668 1+2+4+5+ 0.646 1+2+4+5+ 

KNN 1 1  1  1  1  1  1  
SVM 0.926 0.916 3+5+6+7+ 0.728  0.916 3+5+6+7+ 0.867 3+ 0.908 3+5+ 0.911 3+5+ 
RF 0.77 0.746 7+ 0.774 1+2+4+7+ 0.732 7+ 0.833 1+2+3+4+7+ 0.821 1+2+3+4+7+ 0.701  

D
at

a 
se

t 4
 

F1
 

LR NA 0.159 1+ 0.21 1+2+4+5+7+ 0.173 1+2+7+ 0.166 1+2+ 0.17 1+2+7+ 0.162 1+3+ 
NB NA 0.169 1+ 0.167 1+ 0.172 1+ 0.169 1+ 0.166 1+ 0.172 1+3+ 
DT NA 0.102 1+5+ 0.188 1+2+5+ 0.187 1+2+5+ NA  0.157 5+ 0.186 1+2+5+ 

KNN 0.25 0.914 1+3+4+5+6+7+ 0.444 1+5+6+ 0.554 1+3+5+6+ 0.22  0.383 1+5+ 0.811 1+3+4+5+6+ 
SVM NA 0.044 1+ 0.235 1+2+4+5+6+7+ 0.108 1+2+ 0.149 1+2+4+7+ 0.142 1+2+6+4+ 0.144 1+2+4+ 
RF 0.25 0.189 5+ 0.215 2+5+ 0.392 1+2+3+5+7+ 0.139  0.23 2+5+ 0.204 5+ 

A
U

C
 

LR 0.737 0.747 1+3+4+5+6+7+ 0.728  0.744 1+3+5+7+ 0.73  0.742 1+3+5+ 0.741 1+3+5+ 
NB 0.75 0.684  0.687 2+ 0.75 2+3+5+7+ 0.735 2+3+6+ 0.75 2+3+5+7+ 0.734 2+3+ 
DT 0.5 0.707 1+3+4+5+6+ 0.633 1+5+ 0.584 1+5+ 0.5  0.655 1+3+4+5+ 0.729 1+3+4+5+6+ 

KNN 0.843 0.303  0.305 2+ 0.521 2+3+6+7+ 0.497 2+3+7+ 0.495 2+3+7+ 0.453 2+3+ 
SVM 0.592 0.504  0.495  0.616 1+2+3+ 0.689 1+2+3+4+6+7+ 0.638 1+5+ 0.667 1+2+3+4+6+ 
RF 0.638 0.648  0.671 1+4+ 0.64  0.665 1+2+4+ 0.668 4+ 0.734 1+2+3+4+5+6+ 

D
at

a 
se

t 5
 F1

 

LR NA 0.072 1+7+ 0.093 1+2+4+6+7+ 0.086 1+2+7+ 0.1 1+2+4+6+7+ 0.075 1+7+ 0.036 1+ 
NB NA 0.275 1+3+ NA  0.287 1+2+3+ 0.277 1+ 0.29 1+2+3+5+ 0.325 1+2+3+4+5+6+ 
DT NA 0.222 1+3+5+ NA  0.285 1+3+5+ NA  0.281 1+3+5+ 0.287 1+2+3+5+ 

KNN 0.923 1 1+3+4+5+6+ 0.923 5+6+ 0.923 5+6+ 0.153  0.767 5+ 1 1+3+4+5+6+ 
SVM NA 0.35 1+3+4+5+6+7+ 0.235 1+7+ 0.303 1+3+5+ 0.243 1+3+ 0.305 1+3+5+ 0.337 1+3+4+5+6+ 
RF NA 0.181 1+3+4+ NA  NA  0.206 1+3+4+ 0.221 1+3+4+ 0.33 1+2+3+4+5+6+ 

A
U

C
 

LR 0.559 0.575 1+3+4+5+6+7+ 0.554 5+ 0.559 1+3+5+7+ 0.534  0.538  0.564 1+3+5+6+ 
NB 0.885 0.902 1+3+4+5+6+7+ 0.817  0.887 2+7+ 0.888 3+6+7+ 0.89 1+3+7+ 0.882 1+3+ 
DT 0.5 0.723 1+3+4+5+ 0.343 5+ 0.662 1+5+ 0.5  0.759 1+2+3+4+5+ 0.752 1+3+4+5+ 

KNN 1 1 5+ 1 5+ 1 5+ 0.926  1 5+ 1 5+ 
SVM 0.876 0.923 1+3+4+5+6+7+ 0.899 1+ 0.919 1+3+5+ 0.901 1+7+ 0.916 1+5+ 0.919 1+3+5+ 
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RF 0.849 0.91 1+3+4+5+6+ 0.815  0.873 1+3+5+ 0.808  0.884 1+3+5+ 0.907 1+3+4+5+6+ 

D
at

a 
se

t 6
 

F1
 

LR NA 0.138 1+4+5+6+7+ 0.13 1+4+5+6+7+ 0.056 1+ 0.085 1+4+7+ 0.083 1+4+7+ 0.057 1+ 
NB NA 0.079 1+4+6+7+ 0.108 1+2+4+6+7+ 0.067 1+ 0.105 1+2+4+6+7+ NA  0.058 1+ 
DT NA 0.24 1+3+4+5+6+7+ NA  0.091 1+ NA  0.074 1+ 0.084 1+ 

KNN NA 0.643 1+3+4+5+ 0.521 1+4+5+ 0.471 1+5+ 0.182 1+ 0.663 1+3+4+5+ 0.722 1+2+3+4+5+6+ 
SVM NA 0.248 1+3+4+5+6+7+ 0.148 1+4+5+6+7+ 0.102 1+7+ 0.106 1+7+ 0.109 1+7+ 0.078 1+ 
RF NA 0.144 1+3+4+5+6+7+ NA  NA  0.118 1+3+4+6+7+ NA  0.066 1+3+4+6+ 

A
U

C
 

LR 0.593 0.598 1+3+4+5+ 0.563  0.586  0.583  0.62 1+2+3+4+5+ 0.641 1+2+3+4+5+ 
NB 0.57 0.456  0.559 2+6+ 0.594 1+2+3+6+ 0.593 1+2+3+6+ 0.489 2+ 0.669 1+2+3+4+5+6+ 
DT 0.5 0.797 1+3+4+5+6+7+ 0.632 1+4+5+6+7+ 0.466  0.5 4+6+ 0.443  0.544 1+4+5+6+ 

KNN 0.735 0.8 1+3+4+5+ 0.739 1+5+ 0.741 1+3+5+ 0.664  0.8 1+3+4+5+ 0.8 1+3+4+5+ 
SVM 0.486 0.586 1+3+4+5+6+7+ 0.539 1+4+5+6+7+ 0.534 1+5+6+7+ 0.567  0.571 1+5+ 0.551 1+5+6+ 
RF 0.651 0.726 1+3+4+5+6+7+ 0.525  0.633 3+5+6+7+ 0.583 3+6+ 0.52  0.566  

Table 3. Results for real data sets. 
Data 
set 

Meas-
ure 

Method Origi-
nal (1) 

DPWO (2) DADO (3) Over-sampling (4) Under-sampling (5) Hybrid (6) SMOTE (7) 
Mean Stat Mean Stat Mean Stat Mean Stat Mean Stat Mean Stat 

Pi
m

a 

F1
 

LR 0.646 0.653 1+ 0.649  0.685 1+2+3+6+ 0.684 1+2+3+6+ 0.667 1+3+ 0.692 1+2+3+5+6+ 
NB 0.657 0.63 3+ 0.593  0.672 1+2+3+6+ 0.663 2+3+ 0.652 2+3+ 0.671 1+2+3+6+ 
DT 0.583 0.609 1+ 0.631 1+2+6+ 0.645 1+2+6+ 0.647 1+2+6+ 0.601  0.65 1+2+6+ 

KNN 0.557 0.624 1+3+6+ 0.547 6+ 0.645 1+3+6+ 0.655 1+2+3+6+ 0.257  0.645 1+2+3+6+ 
SVM 0.644 0.69 1+3+4+6+ 0.654 1+ 0.676 1+3+ 0.684 1+3+6+ 0.659 1+ 0.688 1+3+6+ 
RF 0.626 0.659 1+ 0.661 1+6+ 0.671 1+6+ 0.687 1+2+3+6+ 0.654 1+ 0.671 1+6+ 

A
U

C
 

LR 0.832 0.819 6+ 0.827 1+2+4+5+ 0.828 2+6+ 0.825 6+ 0.806  0.831 2+3+5+6+ 
NB 0.812 0.797 3+6+ 0.754  0.811 2+3+6+ 0.803 3+6+ 0.785 3+ 0.816 1+2+3+5+6+ 
DT 0.732 0.729 6+ 0.766 1+2+4+6+ 0.753 1+2+6+ 0.762 1+2+6+ 0.718  0.755 1+2+6+ 

KNN 0.783 0.79 1+3+4+5+6+7+ 0.774 4+6+7+ 0.761 6+ 0.778 4+6+7+ 0.745  0.764 6+ 
SVM 0.828 0.827 6+ 0.83 1+2+4+5+6+7+ 0.824 6+ 0.825 6+ 0.795  0.826 6+ 
RF 0.816 0.812 6+ 0.824 1+2+4+5+6+7+ 0.82 1+2+6+ 0.815 6+ 0.793  0.816 6+ 

H
ep

at
iti

s 

F1
 

LR 0.235 0.26 1+3+7+ 0.204  0.239 1+3+7+ 0.26 1+3+7+ 0.26 1+3+7+ 0.235 3+ 
NB 0.593 0.454 3+ 0.387  0.542 1+2+3+5+ 0.492 3+ 0.522 1+2+3+5+ 0.579 1+2+3+4+5+6+ 
DT 0.3 0.394 1+3+4+5+ 0.256  0.328 1+3+5+ NA  0.378 1+3+4+5+ 0.379 1+3+4+5+ 

KNN NA 0.364 1+3+4+5+6+7+ 0.167  0.313 1+3+5+6+7+ 0.167  0.257 1+3+5+7+ 0.196  
SVM 0.461 0.456 5+ 0.462 1+5+ 0.457 5+ 0.389 5+ 0.461 5+ 0.459 5+ 
RF 0.4 0.392 4+7+ 0.377 4+7+ 0.352  0.457 3+4+6+7+ 0.373 4+7+ 0.349  

A
U

C
 

LR 0.495 0.544 1+3+4+7+ 0.486 7+ 0.479 7+ 0.572 1+3+4+7+ 0.576 1+3+4+7+ 0.477  
NB 0.859 0.841 5+ 0.872 1+2+4+5+6+ 0.853 5+ 0.812  0.842 5+ 0.866 1+2+5+6+ 
DT 0.574 0.621 1+3+4+5+ 0.56 5+ 0.614 1+3+5+ 0.500  0.648 1+3+4+5+ 0.662 1+3+4+5+ 

KNN 0.533 0.575 1+3+5+6+7+ 0.551 1+5+7+ 0.561 1+5+7+ 0.448  0.536 5+ 0.508 5+ 
SVM 0.741 0.813 1+4+5+ 0.83 1+2+4+5+7+ 0.782 1+5+ 0.716  0.806 1+5+ 0.801 1+4+5+ 
RF 0.777 0.779  0.774  0.784  0.779  0.783  0.792 1+3+ 

O
il 

F1
 

LR 0.439 0.392 5+ 0.407 4+5+6+7+ 0.374 5+ 0.107  0.354 5+ 0.387 5+ 
NB 0.069 NA  NA  0.066 2+3+ 0.148 1+2+3+4+7+ 0.091 1+2+3+4+7+ 0.062 2+3+ 
DT 0.286 0.262 6+ 0.306 1+2+5+6+ 0.313 1+2+5+6+ 0.25 6+ 0.197  0.328 1+2+3+5+6+ 

KNN NA 0.277 1+3+4+5+6+7+ 0.083 1+ 0.246 1+3+5+ 0.149 1+3+ 0.257 1+3+4+5+ 0.255 1+3+5+ 
SVM NA NA  NA  NA  NA  NA  NA  
RF 0.091 0.29 1+4+5+ 0.282 1+4+5+ 0.202 1+ 0.238 1+ 0.435 1+2+3+4+5+ 0.432 1+2+3+4+5+ 

A
U

C
 

LR 0.727 0.714 4+5+ 0.735 1+2+4+5+ 0.688 5+ 0.602  0.721 4+5+ 0.722 4+5+ 
NB 0.51 0.566 1+3+4+7+ 0.506  0.517  0.664 1+3+4+7+ 0.548 1+3+7+ 0.492  
DT 0.564 0.694 1+3+ 0.622 1+ 0.671 1+3+ 0.755 1+2+3+4+6+7+ 0.708 1+3+4+ 0.735 1+2+3+4+6+ 

KNN 0.652 0.682 1+3+4+ 0.652 4+ 0.649  0.682 3+4+ 0.671 1+3+4+ 0.797 1+2+3+4+5+6+ 
SVM 0.5 0.5  0.5  0.5  0.5  0.5  0.5  
RF 0.846 0.852 1+3+5+ 0.831 5+ 0.85 3+5+ 0.793  0.852 1+3+5+ 0.85 3+5+ 



As Tables 1 and 3 are large and difficult to interpret, we summarise those results in 
Table 4. Across all data sets and classifiers, for each method, we record the number of 
cases it has resulted in the best value in average (#best), the average of the number of 
other methods it has significantly outperformed (#OP), and the percentage of the cases 
it has been significantly better than the original (%(1)). 

Table 4. Summary of results. 
Meas-

ure 
DPWO DADO Over-sampling Under-sampling Hybrid SMOTE 

#best #OP %(1) #best #OP %(1) #best #OP %(1) #best #OP %(1) #best #OP %(1) #best #OP %(1) 
F1 19 2.75 85.2 13 1.94 64.8 11 2.19 75.9 10 1.72 55.5 9 2.11 66.7 18 2.75 75.9 

AUC 28 2.57 50 15 1.65 37 13 1.93 40.5 9 1.2 16.7 16 1.85 42.6 21 2.46 50 

Table 4 shows that DPWO performs the best among the re-sampling methods consid-
ering all three metrics in terms of F1 and AUC. DPWO significantly improves the F1-
score of original classifiers in more than 85% cases. SMOTE has the second highest 
performance. DADO has the third rank based on #best and improves the F1-score of 
original classifiers significantly in about 65% cases. 

DPWO performs the best in overall because it generates synthetic instances diversely 
around each original instance. So that the chance of having instances similar to in-
stances of minority class in test data (unknown future) get higher and classifiers can 
develop more generalised classification rules. However, DADO generates the synthetic 
instances in the space between original instances. It may result in generating instances 
in the space that does not belong to the minority class and misleading the classifiers. It 
does not mean that DADO always misleads the classifiers. DADO, by generating in-
stances in the space between original instances, highlights the space of the minority 
class. It helps the classifiers like DT and SVM to determine the decision region better 
to classify minority instances more correctly like as shown in the results for data set 4. 

  
DADO DPWO 

Fig. 3. Synthetic data generation for data set 4 

Fig. 3 shows how DADO and DPWO have performed for data set 4. DADO generates 
synthetic instances in a space that is helpful for DT and SVM to determine the best 
decision region for classification. DPWO generates synthetic instances around the orig-
inal instances where the instances from test data would be there. These synthetic in-
stances are helpful for KNN classifier.  
4.3 Sensitivity analysis 

Both objective function and diversity measure are formulated using a distance measure 
which we have used the Euclidean distance. In this section, we investigate how 
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changing the distance measure can impact the performance of DPWO and DADO. So, 
we replace the Euclidean distance with the summation of absolute differences of ele-
ments, which is called Manhattan distance [27, 28]. We repeat the experiments on real 
data sets using the Manhattan distance and examine whether F1-score and AUC are 
different significantly using Mann-Whitney test. Table 5 summarises the results for 
each formulation that shows for how many cases there is no significant difference, and 
for how many cases either of distance measures result in better performance.  

Table 5. Sensitivity analysis results. 
Formulation Euclidean No Difference Manhattan 

DPWO 10 26 0 
DADO 3 22 11 

In most cases (more than 65%), there is no significant differences. This shows that both 
formulations are almost robust in terms of changing distance measure from Euclidean 
to Manhattan. However, by investigating those cases that have significant difference, 
DPWO has better results using Euclidean while DADO has better results using Man-
hattan. It concludes that using Manhattan distance can improve the performance of 
DADO.    

5 Conclusions 

In this paper, we have introduced the novel application of diversity optimisation for 
over-sampling through generating synthetic instances. We have proposed two formula-
tions as DPWO and DADO to adapt diversity optimisation in constructing classifiers 
for imbalanced data by generating diverse synthetic instances close to the instances in 
the minority class. We have examined the performance of the proposed formulations 
through an extensive experimental design using both synthetic and real data, six classi-
fiers and appropriate measures in comparison with existing re-sampling methods. The 
results have shown both formulations are powerful to improve the performance of the 
classifiers for imbalanced data, and DPWO outperforms other comparable methods.  

This study is an initial work in using diversity optimisation for over-sampling and 
shows great potentials. So, further research can be conducted to improve the current 
study. Moreover, the results have shown that there is a need to explore new re-sampling 
methods to deal with imbalanced data, as the existing methods do not have stable per-
formance. According to sensitivity analysis, a suggestion for further research would be 
to investigate the impact of distance measures to improve the performance. Other sug-
gestions are developing new formulations, using various diversity measures and pro-
posing hybrid approaches. 
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