
Deep Kernel Supervised Hashing for Node Classification in Structural Networks

Jia-Nan Guo, Xian-Ling Mao, Shu-Yang Lin, Wei Wei and Heyan Huang
Beijing Institute of Technology, Beijing, China

Huazhong University of Science and Technology, China
{guojn, maoxl, hhy63}@bit.edu.cn

linshuyang2017@gmail.com
Weiw@hust.edu.cn

Abstract

Node classification in structural networks has been proven to
be useful in many real world applications. With the develop-
ment of network embedding, the performance of node clas-
sification has been greatly improved. However, nearly all the
existing network embedding based methods are hard to cap-
ture the actual category features of a node because of the lin-
early inseparable problem in low-dimensional space; mean-
while they cannot incorporate simultaneously network struc-
ture information and node label information into network em-
bedding. To address the above problems, in this paper, we
propose a novel Deep Kernel Supervised Hashing (DKSH)
method to learn the hashing representations of nodes for node
classification. Specifically, a deep multiple kernel learning is
first proposed to map nodes into suitable Hilbert space to deal
with linearly inseparable problem. Then, instead of only con-
sidering structural similarity between two nodes, a novel sim-
ilarity matrix is designed to merge both network structure in-
formation and node label information. Supervised by the sim-
ilarity matrix, the learned hashing representations of nodes
simultaneously preserve the two kinds of information well
from the learned Hilbert space. Extensive experiments show
that the proposed method significantly outperforms the state-
of-the-art baselines over three real world benchmark datasets.

1 Introduction
Networks are ubiquitous in the real world, and many real-
world datasets take the form of networks such as social net-
works, citation networks, language networks and biological
networks. Generally, networks can be divided into two cate-
gories: structural networks (Wang, Cui, and Zhu 2016; Xie
et al. 2019a) and attributed networks (Chen and Qian 2020;
Yu et al. 2020). Compared with attributed networks, struc-
tural networks are more widely used, which can be con-
structed by the most fundamental network structure infor-
mation without using auxiliary information from node at-
tributes.

In structural networks, node classification is one of the
most typical learning tasks, which focuses on exploiting the
node interactions to predict the missing labels of unlabeled
nodes in a structural network. Many real world applications
can be modeled as the node classification problem, such as

Beijing Institute of Technology. DataHammer. All rights reserved.

profession identification (Tu et al. 2017) and persona classi-
fication (Kaul et al. 2020).

Generally speaking, existing node classification meth-
ods can be divided into two categories: traditional methods
(Neville and Jensen 2000; Yamaguchi, Faloutsos, and Kita-
gawa 2015) and network embedding based methods (Tang
et al. 2015; Grover and Leskovec 2016; Xie et al. 2019b; Dai
et al. 2019; Xie et al. 2019a). Compared with the traditional
methods that directly infer posterior distribution of node la-
bels from neighborhood information, network embedding
based methods can achieve better performance by allevi-
ating the curse of dimensionality for large-scale structural
networks and avoiding cascading errors. However, nearly all
the existing embedding based node classification methods in
structural networks suffer from the following two problems:
(1) They are hard to capture the actual category features hid-
den in highly nonlinear network structure, because of the
linearly inseparable problem in low-dimensional space; (2)
They only preserve network structure information into net-
work embedding, without node label information.

To address the above problems, we propose a novel Deep
Kernel Supervised Hashing, called DKSH, to learn node rep-
resentations for node classification in structural networks.
Specifically, a deep multiple kernel learning is first pro-
posed to map nodes into suitable Hilbert space, which can
deal with linearly inseparable problem of category features.
Then, instead of only considering structural similarity and
ignoring category similarity between two nodes, a novel
similarity matrix is designed to merge both network struc-
ture information and node label information. Supervised by
the similarity matrix, the learned hashing representations of
nodes can simultaneously preserve the two kinds of informa-
tion from the learned Hilbert space. Extensive experiments
show that the proposed method significantly outperforms the
state-of-the-art baselines over three real world benchmark
datasets.

The main contributions of our work are summarized as
follows:

• We design a deep kernel hashing to maps nodes into suit-
able Hilbert space, which can deal with linearly insepara-
ble problem of category features so as to generate good-
quality hashing representations of nodes for node classifi-
cation.

ar
X

iv
:2

01
0.

13
58

2v
2

 [
cs

.S
I]

 3
 A

pr
 2

02
1

• We define a novel similarity matrix in network embed-
ding area to merge both network structure information and
node label information. Supervised by the similarity ma-
trix, the proposed method can incorporate simultaneously
the two kinds of information into network embedding.

• Extensive experiments over three real world benchmark
datasets show that the proposed method significantly out-
performs the state-of-the-art baselines.

The rest of paper is arranged as follows: In Section 2, we
will first review the related work of node classification and
kernel hashing. Then, the details of our DKSH will be pre-
sented in Section 3. Moreover, in Section 4, we will present
the experimental results of node classification over three real
world benchmark datasets. Finally, the conclusions will be
given to summary our work in Section 5.

2 Related Work
2.1 Node Classification in Structural Networks
In this section, we discuss the recent trends and some state-
of-the-art node classification methods in structural networks
instead of attributed networks. Generally, existing node clas-
sification methods can be divided into two categories: tradi-
tional methods and embedding based methods.

Traditional methods (Neville and Jensen 2000; Yam-
aguchi, Faloutsos, and Kitagawa 2015) pose node classifica-
tion as an inference in an undirected Markov network, and
then use iterative approximate inference algorithms to di-
rectly compute the posterior distribution of labels given the
network structure. For example, OMNI-Prop (Yamaguchi,
Faloutsos, and Kitagawa 2015) assigns each node with the
prior belief about its label and then updates the label using
the evidence from its neighbors, i.e., if the most of neigh-
bors have the same label, then the rest also have the same
label. However, these methods have a high computational
complexity, which suffer from the curse of dimensionality
for large-scale structural networks; meanwhile they cannot
avoid cascading errors.

Different from traditional methods, network embedding
based methods learn a classifier from the learned low-
dimensional node representations, which can achieve better
performance by alleviating the curse of dimensionality for
large-scale structural networks and avoiding cascading er-
rors. Nowadays, network embedding based methods become
the recent trend for node classification. Essentially, this type
of methods adopt following three steps (Cui et al. 2018):
(1) a network embedding algorithm, such as deep neural
network (Perozzi, Al-Rfou, and Skiena 2014; Wang, Cui,
and Zhu 2016) and matrix factorization (Ou et al. 2016), is
applied to learn low-dimensional node representations with
preserving rich network structure information; (2) the nodes
with known labels are used as the training set; (3) a classi-
fier, such as support vector classifier (Dai et al. 2019) and
logistic regression classifier (Grover and Leskovec 2016), is
learned from the representations and labels of training nodes
to perform node classification. The representative methods
include DeepWalk (Perozzi, Al-Rfou, and Skiena 2014),
node2vec (Grover and Leskovec 2016), SDNE (Wang, Cui,

and Zhu 2016) and Dwns (Dai et al. 2019). DeepWalk first
adopts random walk to extract local structure information
of a node into node representation and then use an one-vs-
rest logistic regression for classification. node2vec adopts a
flexible method for sampling node sequences to strike a bal-
ance between local and global structure information in net-
work embedding process and then also use an one-vs-rest
logistic regression classifier to classify. SDNE first adopts
a deep autoencoder to simultaneously extract both the first-
order and the second-order similarity into node representa-
tions and then uses a support vector classifier for classifica-
tion. Dwns improves DeepWalk with generative adversarial
networks (GANs) based regularization methods to generate
better node representation and then also use a support vector
classifier to classify. With these methods, the performance
of node classification has been greatly improved.

The major problems of previous methods are that: (1)
They are hard to capture the actual category features of a
node because of the linearly inseparable problem; (2) They
only preserve network structure information into network
embedding without considering node labels. Among these
methods, node2hash (Wang et al. 2018) is the closest to our
DKSH, which also uses a kernel hashing method to obtain
node representations from network information. However,
their algorithm adopts a shallow kernel hashing method (Shi
et al. 2009), which is still suffer from the above two prob-
lems. In contrast, the proposed method adopts a deep kernel
supervised hashing, which can address the above two prob-
lems well. Before introducing our deep kernel supervised
hashing, the existing kernel hashing methods is briefly de-
scribed in the next subsection.

2.2 Kernel Hashing
Kernel hashing is an useful method for nonlinear data, which
maps original data into suitable Hilbert space and then learns
hashing representations from this space. Generally, the ex-
isting kernel hashing methods can be categorized into sin-
gle kernel hashing (He, Liu, and Chang 2010; Wang et al.
2018) and multiple kernel hashing (Liu, He, and Lang 2014).
Compared with multiple kernel hashing that is designed for
multiple features data, single kernel hashing is the most fun-
damental method in kernel hashing. Thus, we take single
kernel hashing as an example to introduce kernel hashing.

Single kernel hashing is an useful method to deal with
classification tasks, which can learn hashing functions to
map data from Hilbert space to hashing space. The formula-
tion of hashing functions is:

Bmi = hm(Xi) = sign(V Tmϕ(Xi)− bm) (1)

with

Vm =

R∑
r=1

Wrmϕ(Xr)

where hm is m-th hashing code of data Xi, ϕ is the func-
tion that maps original data to Hilbert space, and bm is the
threshold scalar. Besides, Vm is the m-th hyperplane vector
in the Hilbert space, which is a linear weighted combina-
tion of R landmarks, i.e., Xr, r = 1, · · · , R, with weight

… … …
…

Preprocessing
Learning deep kernel matrix

ℎ1

ℎ2

ℎ𝑀

Optimized deep kernel hashing

Structural network

Random walks

Similarity matrix

Deep kernel matrixStructure matrix

Learned Hilbert space Hashing functions 𝐻

Hashing

representations

Figure 1: The conceptual framework of Deep Kernel Supervised Hashing (DKSH). This framework contains three parts: (1)
Preprocessing: extracting structure matrix from bold red random walk and then deriving similarity matrix; (2) Learning deep
kernel matrix: learning DKL constructed by the structure matrix; (3) Optimized deep kernel hashing: mapping nodes into
learned Hilbert space and then learning hashing functions H supervised by the similarity matrix.

matrix WR×M . Note that, the landmarks are cluster centers
produced by clustering or random choosing.

According to the definition of kernel matrix Kij =
ϕ(Xi)

Tϕ(Xj), Equation (1) can be rewritten in a kernel
form:

Bi = sign(WTKi − b) (2)

where WR×M is the weight matrix of R landmarks, Ki is
i-th column of a designed kernel matrix KR×N . In this way,
the formulation of hashing functions is obtained, which can
be used to learn nonlinear features from many data modali-
ties, especially image (He, Liu, and Chang 2010).

Nevertheless, both single kernel hashing and multiple ker-
nel hashing adopt shallow kernel (Zhuang, Tsang, and Hoi
2011), which is often powerless to capture the actual features
from highly nonlinear network data.

3 Deep Kernel Supervised Hashing
In this section, we first describe the problem formulation of
node classification in structural networks, and then introduce
the details of the proposed Deep Kernel Supervised Hash-
ing (DKSH) method. The conceptual framework of DKSH
is shown in Figure 1.

3.1 Problem Formulation
Formally, an undirected network is denoted as G =
(V,E, Y), where V = {vi}Ni=1 represents the set of N
nodes, E = {eij}Ni,j=1 represents the set of edges between
two nodes and Y denotes the labels set. For vi and vj are

linked by an edge, eij = 1. Otherwise, eij = 0. Net-
work hashing embedding is to learn a set of hash functions
H = {hm}Mm=1, which are used to map each node in G into
a low-dimension hashing representationBi ∈ {−1, 1}M ,M
is the dimension of hashing representations.

Given the labeled node set VL and the unlabeled node set
VN , where each node vi ∈ VL is associated with a label
yi ∈ Y but not in another, our goal is to predict the miss-
ing labels of unlabeled nodes VN with the learned hashing
representations B.

3.2 Preprocessing Algorithms
The algorithms of preprocessing is used to construct struc-
ture matrix by sampling network structure information and
then similarity matrix by merging node labels and the struc-
ture matrix.

Structure Matrix In network embedding area, the ran-
dom walk is one of the most popular and powerful network
sampling methods, which reflects the rich network structure
information of center node in G. Generally, the relationship
extracted from random walks contains 0 and 1, where 0 is
the relationship between unknown node pairs and 1 is the
relationship between similar node pairs (Perozzi, Al-Rfou,
and Skiena 2014). However, this type of relationship ignores
the relative distance between center node and context nodes
of it in window. Therefore, in this paper, we assign differ-
ent weights to context nodes in window, according to their
relative distance to the center node.

Initializing structure matrix P = O, where O is zero ma-
trix. For each similar node pairs (vi, vj) inwindowpvi, where

Algorithm 1 Building Structure Matrix

Require: Network denoted as G = (V,E, Y), window size
p, walk length l and walks per nodes γ.

Ensure: Structure matrix P .
1: Initialize structure matrix P = O, paths = ∅.
2: for t = 0 to γ do
3: Nodes = Shuffle(V)
4: for each vi ∈ Nodes do
5: pathvi = RandomWalk(G, vi, l)
6: Put pathvi in paths
7: end for
8: end for
9: Store paths

10: for each path in paths do
11: for each vi ∈ path do
12: for each vj ∈ path[i− p : i+ p] do
13: Pij = Pij + (p+ 1− dis(vi, vj))/p
14: end for
15: end for
16: end for
17: Store structure matrix P

vi is the center node, vj is the context nodes of vi and p is
the window size, the recursive definition of P is:

P ′ij = Pij +
p+ 1− dis(vi, vj)

p
(3)

where dis(vi, vj) is to compute the relative distance between
vi and vj in the window. Note that, (p + 1 − dis(vi, vj))/p
is the weight provided by (vi, vj), which is negatively re-
lated to the relative distance. In this way, Pij can reflect
simultaneously the relative distance and the co-occurrence
frequency of (vi, vj) in random walks. More details of con-
structing structure matrix is shown in Algorithm 1.

Similarity Matrix According to DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014), structure matrix reflects rich struc-
ture information, which can be treated as feature matrix.
Thus, in order to simultaneously preserve network structure
information and node label information, similarity matrix S
is defined as:

Sij =

{
exp (− ‖Pi−Pj‖2

max(dis2)) , yj = yi
0 , otherwise

(4)

where, Pi and Pj are feature vectors of vi and vj , max(dis2)
is the max globally distance between all the feature vectors
and yi is the label of node vi.

3.3 Learning Deep Kernel Matrix
Learning a deep kernel matrix aims to map nodes into suit-
able Hilbert space, which detail the architecture and imple-
mentation of deep multiple kernel learning.

Deep Multiple Kernel Learning Multiple kernel learning
(MKL) (Liu, He, and Lang 2014) is a widely used tech-
nique for kernel designing. Its principle consists in learn-
ing, for a given support vector classifier, the most suitable

𝐾1
(1)

𝐾2
(1)

⋯

𝐾𝑇
(1)

𝐾1
(2)

𝐾2
(2)

𝐾𝑇
(2)

𝐾1
(3)

𝐾2
(3)

𝐾𝑇
(3)

𝐾

⋯ ⋯

Figure 2: The architecture of a 3-layers deep multiple kernel
learning. Lines represent the weight for each kernel matrix,
µ
(l)
t .

Algorithm 2 Learning Deep Kernel Matrix

Require: Initial network parameters µ = 1
T , structure ma-

trix P , the number of nodes N .
Ensure: Optimal µ, coefficients of SVM α.

1: repeat
2: Fix µ, compute output deep kernel K.
3: α is optimized by SVM solver.
4: Fix α, compute the gradient∇µ of Tspan w.r.t K.
5: Update weight µ, according to ∇µ, and keep µ ≥ 0.
6: until Convergence

convex linear combination of standard elementary kernels.
However, this kind of linear combination of kernels is a
shallow way, which often cannot capture highly nonlinear
features. In this way, deep multiple kernel learning (DKL)
is proposed (Strobl and Visweswaran 2013; Jiu and Sahbi
2017). Interestingly, network structure information is just a
highly nonlinear network information. Thus, in this section,
we describe how to make DKL to fit network data.

Figure 2 shows the architecture of our DKL, which adopts
a nonlinear multi-layered combination of multi-kernels. The
recursive definition of our deep kernel is:

K
(l)
t = gt(

T∑
t=1

µ
(l−1)
t K

(l−1)
t)

s.t. µ ≥ 0

(5)

where gt(·) is the activation function for kernel matrix Kt

like rbf(), which can map feature matrix (or kernel matrix)
to kernel matrix. Moreover, we assume that the architecture
of DKL has L layers and each layer contains T single kernel
matrices, l ∈ {1, · · · , L}, t ∈ {1, · · · , T}. In this case, K(l)

t
expresses the kernel matrix of l-th layer and t-th unit in this
model. Besides, K(1)

t = gt(P), where P is the structure ma-
trix of a structural network (see Algorithm 1), and the finial
output of the proposed DKL is K =

∑T
t=1 µ

(L)
t K

(L)
t .

Implementation In order to optimize the network param-
eters µ of the proposed DKL, we use the backward informa-
tion from an one-vs-rest SVM classifier. The SVM classifier
for network data is designed as sgn(

∑N
i=1 αiyiK(vi, v) +

b), where yi is the label of node vi. Generally, µ can be
optimized by minimizing a objective function, which is a
global hinge loss of the classifier like (Jiu and Sahbi 2017).
However, in order to reduce the risk of over-fitting, we use
span bound method to learn deep kernel (Liu, Liao, and Hou
2011). Under the assumption that the set of support vectors
remains the same during the leave-one-out procedure, the
span bound can be stated as:

L((v1, y1), · · · , (vN , yN)) ≤
N∑
i=1

ϕ(αiD
2
i − 1) (6)

where L is leave-one-out error, and Di is the dis-
tance between the point ϕ(vi) and the set Γi =
{
∑
j 6=i,αj>0 λjϕ(vj)|

∑
j 6=i λj = 1}. Based on Equa-

tion (6), we can formulate the objective function of deep
multiple kernel learning as minimize the upper bounds of
leave-one-out error:

min
µ,α
Tspan =

N∑
i=1

ϕ(αiD
2
i − 1) (7)

Here, the objective function is optimized w.r.t two parame-
ters: µ and α. Alternating optimization strategy is adopted,
i.e., we fix µ to optimize α, and then vice-versa. At each
iteration, when µ is fixed, the deep kernel K is also fixed,
α can be auto-optimized using a SVM classifier (Fan et al.
2008). When α fixed, µ can be directly optimized by com-
puting the gradient of Equation (7) (Strobl and Visweswaran
2013). The iterative procedure continues until convergence
or when a maximum number of iterations is reached (see
Algorithm 2).

3.4 Optimized Deep Kernel Hashing
The function of deep kernel hashing is used to learn the
hashing representations of nodes from the learned Hilbert
space. Note that, in the section of related work, we intro-
duce the existing kernel hashing methods. However, both
single kernel hashing and multiple kernel hashing are shal-
low kernel hashing methods, which are often powerless to
learn a suitable Hilbert space for highly nonlinear network
structure. In order to address this problem, we extend shal-
low kernel into the learned deep kernel. According to Equa-
tion (2) and Equation (4), the proposed deep kernel hashing
functions can be written as:

Bi = sign(WTKi − b) (8)

with

KR×N = (

T∑
t=1

µ
(L)
t K

(L)
t)R×N

where WR×M is weighted matrix of landmarks, Ki is i-th
column of the learned deep kernel matrix KR×N .

With the similarity matrix and the hashing functions,
the form of similarity-distance product minimization (Wang
et al. 2017) is adopted to design the following objective

function for network hashing representation:

min
W

1

2

N∑
i,j=1

Sij‖Bi −Bj‖2 + λ

M∑
m=1

‖Vm‖2

s.t.
N∑
i=1

Bi = 0

1
N

N∑
i=1

BiB
T
i = I

(9)

where S is the similarity matrix. Bi is the hashing represen-
tation of vi obtained from Equation (8), which has the same
constraints.

∑M
m=1 ‖Vm‖2 is utilized to a regularized term to

control the smoothness of hyperplane vector Vm. The con-
straint

∑N
i=1Bi = 0 is to make sure bit balance, i.e., 50% to

be 1 and 50% to be −1. The constraint 1
N

∑N
i=1BiB

T
i = I

is to ensure bit uncorrelation. In this way, we can obtain
compact hashing representations of nodes.

Using Laplacian matrix L = diag(S1)−S, the objective
function can be derived as:

min
W

tr(WT (C + CT)

2
W)

s.t. WTGW = I

(10)

with
C = KR×NLK

T
R×N + λKR×R

G =
1

N
KR×N (I − 1

N
11T)KT

R×N

Here, b = −(1
N)WTKR×N1, WR×M is weighted matrix

of landmarks. Note that, the derivation follows (He, Liu, and
Chang 2010).

Implementation For simpler implementation, Equa-
tion (10) can be further rewritten into an eigen vector
problem:

min
W

tr(ŴT ĈŴ)

s.t. ŴT Ŵ = I
(11)

with

Ĉ = Λ−
1
2TT

(C + CT)

2
TΛ−

1
2

G = T0Λ0T
T
0

W = TΛ−
1
2 Ŵ

where Λ is a diagonal matrix consisting of M largest ele-
ments of Λ0, and T is the corresponding columns of T0. In
this way, the solution of this eigen vector problem is matrix
Ŵ , which is M eigen vectors of matrix Ĉ. Given Ŵ , W
can be directly obtained by W = TΛ−

1
2 Ŵ . Based on W ,

we can get the hashing representations of vi, i = 1, · · · , N ,
according to Equation (8).

Note that, after obtaining the hashing representations of
nodes, an off-the-shelf classifier is trained to predict the
missing labels of unlabeled nodes.

4 Experiments
In the previous section, the proposed method incorporates si-
multaneously network structure information and node label
information into the hashing representations of nodes. In this
section, extensive node classification experiments are con-
ducted to verify that the proposed method can improve the
performance of node classification in structural networks.

4.1 Experimental Setup
Datasets We conduct experiments on three real world
benchmark datasets, which are popularly used in many pre-
vious works (Dai et al. 2019; Zhao et al. 2020). Wiki (Sen
et al. 2008) is a network with nodes as web pages and edges
as the hyperlinks between web pages. The network has 2,405
nodes, 17,981 edges, and 17 different labels. Cora (McCal-
lum et al. 2000) is a network of citation relationships of sci-
entific papers. The network has 2,708 nodes, 5,429 edges,
and 7 different labels. Citeseer is also a scientific paper ci-
tation network constructed by (McCallum et al. 2000). The
network has 3,312 nodes, 4,732 edges, and 6 different labels.
We regard these three networks as undirected structural net-
works, and do some preprocessing on the original datasets
by deleting nodes with zero degree.

Metric Following previous works (Dai et al. 2017, 2019),
we employ the popularly used Accuracy to evaluate the per-
formance of node classification. In this paper, accuracy mea-
sures the micro-averaged accuracy of the aggregated contri-
butions of all classes.

Baselines We compare our DKSH with the state-of-the-
art baselines and its variants. For fair comparisons, all the
selected baselines are widely used structural network em-
bedding methods, which need not node attributes informa-
tion. Besides, among these baselines, node2hash is the only
hashing based method like our DKSH. The details of the
baselines are as follows:

• DeepWalk (Perozzi, Al-Rfou, and Skiena 2014): Deep-
Walk is an unsupervised method, which uses local struc-
ture information obtained from truncated random walks to
learn low-dimensional feature representations of nodes.

• Line (Tang et al. 2015): Line uses the breadth-first strat-
egy to sample the inputs, based on node neighbors. The
method preserves both the first-order and second-order
similarity in network embedding process.

• GraRep (Cao, Lu, and Xu 2015): GraRep applies SVD
technique to different k-step probability transition matrix
to learn node representations, and finally obtains global
representations through concatenating all k-step represen-
tations.

• node2vec (Grover and Leskovec 2016): node2vec differs
from DeepWalk by proposing more flexible method for
sampling node sequences to strike a balance between lo-
cal and global structure information.

• AIDW (Dai et al. 2017): AIDW is an inductive version
of DeepWalk with GAN-based regularization methods.
A prior distribution is imposed on node representations

through adversarial learning to achieve a global smooth-
ness in the distribution.

• Dwns (Dai et al. 2019): Dwns is also an inductive ver-
sion of DeepWalk, which introduces a succinct and effec-
tive regularization technique, namely adversarial training
method, in network embedding process.

• node2hash (Wang et al. 2018): node2hash uses the
encoder-decoder framework, where the encoder is used to
map the structural similarity of nodes into a feature space,
and the decoder is used to generate the node representa-
tions through a single kernel hashing.

Besides, we also include two additional baselines, namely
DKSH-1L and DKSH-2L, which are the variants of our
DKSH and respectively represent DKSH with 1-layer MKL
and 2-layers MKL. Note that, although graph neural net-
works based methods (Tang, Ji, and Zhou 2020; Zhang et al.
2019) are relevant to our DKSH, to the best of our knowl-
edge, nearly all these methods need node attributes informa-
tion. It means that these methods are limited, and we do not
select them as baselines.

Parameter Settings For DKSH and its variants including
DKSH-1L and DKSH-2L, the window size p, walk length l,
walks per nodes γ, number of kernel in each layer T , number
of landmarks R and regularization parameter λ are respec-
tively set to 50, 200, 10, 4, 256 and 0.0001. Different from
DKSH-1L and DKSH-2L, DKSH adopts a 3-layer DKL. For
each layers in these kernel models, we consider 4 elemen-
tary kernels, i.e., a linear kernel, an RBF kernel with γ = 1,
a sigmoid kernel with α = −1 × 10−4 and β = 1, and a
polynomial kernel with α = 1, β = 1, and δ = 2. Besides,
the dimension of node representations are set to 128 for all
methods, and the other parameters are set to be the default
value for the baselines.

4.2 Comparison of Node Classification
Performance

For node classification, a portion of the labeled nodes is ran-
domly selected as training data in which there is a same in-
crement from 10% to 90% on training ratio and the rest of
unlabeled nodes is used to test. Besides, for fair compar-
isons, all the methods adopt a support vector classifier in
Liblinear (Fan et al. 2008). Table 1 lists the results of node
classification over Wiki. Table 2 lists the results of node clas-
sification over Cora. Table 3 lists the results of node classi-
fication over Citeseer. From these tables, it can be observed
that:

• The proposed method DKSH consistently outperforms all
the state-of-the-art baselines across all the ratio of labeled
nodes over Wiki and Citeseer. As shown in Tables 1, when
the training ratio is 10%, our DKSH performs better than
these baselines with 90% training ratio. As shown in Ta-
bles 2, with the training ratio change from 10% to 90%,
our DKSH outperforms these baselines about 1.5%. Be-
sides, over Cora, although the baselines can outperforms
our DKSH with training ratio 10%, 50% and 60%, our
DKSH is still competitive.

Table 1: Accuracy (%) of Node Classification over Wiki.

Methods % Labeled Nodes
10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 46.60 54.48 59.05 62.70 64.66 65.95 66.98 68.37 68.78
Line 57.88 61.08 63.50 64.68 66.29 66.91 67.43 67.46 68.61
GraRep 58.57 61.91 63.58 63.77 64.68 65.39 65.92 65.18 67.05
nove2vec 55.94 59.67 61.11 64.21 65.08 65.58 66.76 67.19 68.73
AIDW 57.32 61.84 63.54 64.90 65.58 66.54 65.59 66.58 68.02
Dwns 55.77 59.63 61.98 64.01 64.59 66.99 66.45 67.55 67.51
node2hash 53.35 55.32 57.74 59.65 61.28 60.96 62.83 62.08 64.07
DKSH-1L 66.50 69.77 70.91 72.13 71.92 74.45 73.38 74.39 73.53
DKSH-2L 66.65 70.72 72.70 72.70 74.06 75.07 74.13 74.05 75.85
DKSH 69.05 71.20 73.41 74.35 74.38 75.16 74.85 75.30 77.10

Table 2: Accuracy (%) of Node Classification over Cora.

Methods % Labeled Nodes
10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 64.60 69.85 74.21 76.68 77.59 77.68 78.63 79.35 79.23
Line 66.06 70.86 72.25 73.94 74.03 74.65 75.12 75.30 75.76
GraRep 74.98 77.48 78.57 79.38 79.53 79.68 79.75 80.89 80.74
nove2vec 73.96 78.04 80.07 81.62 82.16 82.25 82.85 84.02 84.91
AIDW 73.83 77.93 79.43 81.16 81.79 82.27 82.93 84.11 83.69
Dwns 73.20 76.98 79.83 80.56 82.27 82.52 82.92 82.97 84.54
node2hash 55.99 56.16 63.87 67.51 70.24 70.20 71.34 72.83 73.43
DKSH-1L 71.55 75.32 76.64 76.74 78.63 78.60 79.80 79.93 81.40
DKSH-2L 72.90 77.83 79.40 79.57 80.99 81.14 81.16 80.22 82.73
DKSH 74.22 78.71 80.55 81.89 81.89 82.03 83.87 84.69 86.23

Table 3: Accuracy (%) of Node Classification over Citeseer.

Methods % Labeled Nodes
10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 45.53 50.98 53.79 55.25 56.05 56.84 57.36 58.15 59.11
Line 47.03 50.09 52.71 53.52 54.20 55.42 55.87 55.93 57.22
GraRep 50.60 53.56 54.63 55.44 55.20 55.07 56.04 55.48 56.39
nove2vec 50.78 55.89 57.93 58.60 59.44 59.97 60.32 60.75 61.04
AIDW 50.77 54.82 56.96 58.04 59.65 60.03 60.99 61.18 62.84
Dwns 50.00 53.74 57.37 58.59 59.00 59.53 59.62 59.51 60.18
node2hash 38.58 47.96 49.29 50.96 52.66 52.30 53.22 56.11 57.23
DKSH-1L 58.17 58.82 59.28 59.82 60.10 59.50 60.46 60.33 60.24
DKSH-2L 57.44 58.80 59.72 59.01 59.73 59.67 60.26 61.84 61.75
DKSH 57.97 59.81 59.78 59.96 60.59 60.89 61.79 62.84 63.25

• DKSH consistently outperforms DKSH-2L, and DKSH-
2L mostly outperforms DKSH-1L on three datasets across
all the ratio of labeled nodes. For example, DKSH
achieves about 1% gain in Accuracy on Wiki, about 3%
gain in Accuracy on Cora, about 1.5% gain in Accu-
racy on Citeseer with ratio of labeled nodes being 90%.
Besedes, DKSH-2L mostly gives about 1% gain in Accu-
racy over DKSH-1L on Wiki, Cora and Citeseer. These re-
sults demonstrate that it is easier to capture the actual cat-
egory features of a node in a more suitable Hilbert space.

• It can significantly improve the performance of node clas-
sification by incorporating simultaneously network struc-
ture information and node label information into net-
work embedding, instead of only network structure in-
formation. For example, both of node2hash and DKSH-
1L adopt a single kernel hashing method. Compared with
node2hash, DKSH-1L achieves more than 10% gain in
Accuracy on Wiki, more than 11% gain in Accuracy on
Cora, about 5% gain in Accuracy on Citeseer across all
training ratios.

128 256 512 1024
R

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

 (%
)

(a) Sensitivity of Landmarks

Wiki
Cora
Citeseer

16 32 48 64 128 256
M

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

 (%
)

(b) Sensitivity of Dimension

Wiki
Cora
Citeseer

10 20 30 40 50 60
p

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

 (%
)

(c) Window Size p

Wiki
Cora
Citeseer

40 80 120 160 200 240
l

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

 (%
)

(d) Walk Length l

Wiki
Cora
Citeseer

1 5 10 15 20
0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 (%
)

(e) Walks Per Nodes

Wiki
Cora
Citeseer

Figure 3: Parameter sensitivity analysis of our DKSH over Wiki, Cora and Citeseer.

• The hashing method does not necessarily lead to accuracy
loss. In fact, it may avoid over-fitting in this paper. For
example, both DKSH and node2hash use hashing meth-
ods to learn node representations. The results show that
DKSH is better than nearly all the non-hashing methods,
and node2hash has a competitive performance compared
with DeepWalk and Line.

4.3 Sensitivity Analysis
In this subsection, we analyze sensitivity of parameters in
our DKSH, i.e., the number of landmarks R, the dimen-
sion of node representations M , the window size p, walk
length l and walks per nodes γ on Wiki, Cora and Cite-
seer datasets with ratio of labeled nodes being 90% being
128bits. More specially, Figure 3 (a) shows the affect of the
parameter R over the three datasets with the value between
128 and 1,024. Figure 3 (b) shows the affect of the parame-
ter M over the three datasets with the value between 16 and
256. Figure 3 (c) shows the affect of the parameter p over
the three datasets with the value between 10 and 60. Fig-
ure 3 (d) shows the affect of the parameter l over the three
datasets with the value between 40 and 240. Figure 3 (e)
shows the affect of the parameter γ over the three datasets
with the value between 1 and 20. Note that except for the
parameter being tested, all the other parameters are set to
default values.

Figure 3 (a) shows Accuracy of our DKSH w.r.t. the num-
ber of landmarks R. When the dimension increases from
M to 1, 024, the Accuracy relatively stable over the three
benchmark datasets, which means our DKSH is not sensi-
tive on the number of landmarks R. However, training time
is positively correlated with R. Thus, we select an relatively
small R, i.e., 256.

Figure 3 (b) shows Accuracy of our DKSH w.r.t. the di-
mension of node representations M . DKSH achieves the
best Accuracy over the three benchmark datasets whenM =
128. The reason why the Accuracy over the three bench-
mark datasets improves first when M varies from 16 to 128
is largely because more features are captured into higher di-
mension of node representation. However, when the dimen-
sion further increases to 256, the linear SVM classifier is
powerless to classify these high-dimensional node represen-
tations.

Figure 3 (c), (d) and (e) show Accuracy of our DKSH
w.r.t. the window size p, walk length l and walks per nodes
γ. It can be found that DKSH is not sensitive to all the three
parameters, i.e., p, l and γ. For instance, DKSH can achieve
good performance on all the three datasets in the range of 10
to 60 for the parameter p, and also can achieve good perfor-
mance on all the three datasets with 40 ≤ l ≤ 240. Further-
more, DCHUC can get the high MAP values with only one
walks per nodes.

5 Conclusions

In this paper, we propose a novel Deep Kernel Supervised
Hashing (DKSH) method to learn the hashing representa-
tions of nodes for node classification in structural networks.
In DKSH, we designed a deep kernel hashing to mapping
highly non-linear network structure information into suit-
able Hilbert space to deal with linearly inseparable prob-
lem, and define a novel similarity to incorporate simultane-
ously network structure information and node label infor-
mation into network embedding. The experimental results
demonstrate the superior usefulness of the proposed method
in node classification.

References
Cao, S.; Lu, W.; and Xu, Q. 2015. Grarep: Learning graph
representations with global structural information. In Pro-
ceedings of the 24th ACM international on conference on
information and knowledge management, 891–900.
Chen, Y.; and Qian, T. 2020. Relation constrained attributed
network embedding. Information Sciences 515: 341–351.
Cui, P.; Wang, X.; Pei, J.; and Zhu, W. 2018. A survey on
network embedding. IEEE Transactions on Knowledge and
Data Engineering 31(5): 833–852.
Dai, Q.; Li, Q.; Tang, J.; and Wang, D. 2017. Adversarial
network embedding. arXiv preprint arXiv:1711.07838 .
Dai, Q.; Shen, X.; Zhang, L.; Li, Q.; and Wang, D. 2019.
Adversarial training methods for network embedding. In
The World Wide Web Conference, 329–339.
Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; and
Lin, C.-J. 2008. LIBLINEAR: A library for large linear
classification. Journal of machine learning research 9(Aug):
1871–1874.
Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 855–864.
He, J.; Liu, W.; and Chang, S.-F. 2010. Scalable similarity
search with optimized kernel hashing. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 1129–1138. ACM.
Jiu, M.; and Sahbi, H. 2017. Nonlinear deep kernel learning
for image annotation. IEEE Transactions on Image Process-
ing 26(4): 1820–1832.
Kaul, A.; Mittal, V.; Chaudhary, M.; and Arora, A. 2020.
Persona Classification of Celebrity Twitter Users. In Digital
and Social Media Marketing, 109–125. Springer.
Liu, X.; He, J.; and Lang, B. 2014. Multiple feature kernel
hashing for large-scale visual search. Pattern Recognition
47(2): 748–757.
Liu, Y.; Liao, S.; and Hou, Y. 2011. Learning kernels with
upper bounds of leave-one-out error. In Proceedings of
the 20th ACM international conference on Information and
knowledge management, 2205–2208.
McCallum, A. K.; Nigam, K.; Rennie, J.; and Seymore, K.
2000. Automating the construction of internet portals with
machine learning. Information Retrieval 3(2): 127–163.
Neville, J.; and Jensen, D. 2000. Iterative classification in
relational data. In Proc. AAAI-2000 workshop on learning
statistical models from relational data, 13–20.
Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; and Zhu, W. 2016. Asym-
metric transitivity preserving graph embedding. In Proceed-
ings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 1105–1114. ACM.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701–710. ACM.

Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine 29(3): 93.
Shi, Q.; Petterson, J.; Dror, G.; Langford, J.; Smola, A.;
Strehl, A.; and Vishwanathan, S. 2009. Hash kernels. In
Artificial intelligence and statistics, 496–503.
Strobl, E. V.; and Visweswaran, S. 2013. Deep multiple ker-
nel learning. In 2013 12th International Conference on Ma-
chine Learning and Applications, volume 1, 414–417. IEEE.
Tang, H.; Ji, D.; and Zhou, Q. 2020. Triple-based graph
neural network for encoding event units in graph reasoning
problems. Information Sciences 544: 168–182.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
Proceedings of the 24th international conference on world
wide web, 1067–1077.
Tu, C.; Liu, Z.; Luan, H.; and Sun, M. 2017. PRISM: Pro-
fession identification in social media. ACM Transactions on
Intelligent Systems and Technology (TIST) 8(6): 1–16.
Wang, D.; Cui, P.; and Zhu, W. 2016. Structural deep net-
work embedding. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data
mining, 1225–1234.
Wang, J.; Zhang, T.; Sebe, N.; Shen, H. T.; et al. 2017. A
survey on learning to hash. IEEE transactions on pattern
analysis and machine intelligence 40(4): 769–790.
Wang, Q.; Wang, S.; Gong, M.; and Wu, Y. 2018. Feature
Hashing for Network Representation Learning. In IJCAI,
2812–2818.
Xie, Y.; Gong, M.; Qin, A. K.; Tang, Z.; and Fan, X. 2019a.
TPNE: Topology preserving network embedding. Informa-
tion Sciences 504: 20–31.
Xie, Y.; Gong, M.; Wang, S.; Liu, W.; and Yu, B. 2019b.
Sim2vec: Node similarity preserving network embedding.
Information Sciences 495: 37–51.
Yamaguchi, Y.; Faloutsos, C.; and Kitagawa, H. 2015.
Omni-prop: Seamless node classification on arbitrary label
correlation. In Twenty-Ninth AAAI Conference on Artificial
Intelligence. Citeseer.
Yu, Z.; Zhang, Z.; Chen, H.; and Shao, J. 2020. Structured
subspace embedding on attributed networks. Information
Sciences 512: 726–740.
Zhang, S.; Tong, H.; Xu, J.; and Maciejewski, R. 2019.
Graph convolutional networks: a comprehensive review.
Computational Social Networks 6(1): 11.
Zhao, Z.; Zhou, H.; Li, C.; Tang, J.; and Zeng, Q. 2020.
DeepEmLAN: Deep embedding learning for attributed net-
works. Information Sciences 543: 382–397.
Zhuang, J.; Tsang, I. W.; and Hoi, S. C. 2011. Two-
layer multiple kernel learning. In Proceedings of the Four-
teenth International Conference on Artificial Intelligence
and Statistics, 909–917.

	1 Introduction
	2 Related Work
	2.1 Node Classification in Structural Networks
	2.2 Kernel Hashing

	3 Deep Kernel Supervised Hashing
	3.1 Problem Formulation
	3.2 Preprocessing Algorithms
	3.3 Learning Deep Kernel Matrix
	3.4 Optimized Deep Kernel Hashing

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison of Node Classification Performance
	4.3 Sensitivity Analysis

	5 Conclusions

