
Exploring Cohesive Subgraphs with Vertex Engagement and Tie Strength
in Bipartite Graphs

1Yizhang He, 1Kai Wang∗, 1Wenjie Zhang, 1Xuemin Lin, 2Ying Zhang

1School of Computer Science and Engineering, University of New South Wales, NSW 2033, Australia
2Centre for AI, University of Technology Sydney, NSW 2007, Australia

Abstract

We propose a novel cohesive subgraph model called τ -strengthened (α, β)-core (denoted as (α, β)τ -core),
which is the first to consider both tie strength and vertex engagement on bipartite graphs. An edge is a
strong tie if contained in at least τ butterflies (2×2-bicliques). (α, β)τ -core requires each vertex on the upper
or lower level to have at least α or β strong ties, given strength level τ . To retrieve the vertices of (α, β)τ -
core optimally, we construct index Iα,β,τ to store all (α, β)τ -cores. Effective optimization techniques are
proposed to improve index construction. To make our idea practical on large graphs, we propose 2D-indexes
Iα,β , Iβ,τ , and Iα,τ that selectively store the vertices of (α, β)τ -core for some α, β, and τ . The 2D-indexes
are more space-efficient and require less construction time, each of which can support (α, β)τ -core queries.
As query efficiency depends on input parameters and the choice of 2D-index, we propose a learning-based
hybrid computation paradigm by training a feed-forward neural network to predict the optimal choice of 2D-
index that minimizes the query time. Extensive experiments show that (1) (α, β)τ -core is an effective model
capturing unique and important cohesive subgraphs; (2) the proposed techniques significantly improve the
efficiency of index construction and query processing.

Keywords: Bipartite graph; Cohesive subgraph; Classification; Vertex engagement; Tie strength

1. Introduction

Bipartite graphs are widely used to represent networks with two different groups of entities such as user-
item networks [1], author-paper networks [2], and member-activity networks [3]. In bipartite graphs, cohesive
subgraph mining has numerous applications including fraudsters detection [4, 5, 6], group recommendation
[7, 8] and discovering inter-corporate relations [9, 10].

(α,β)-core and bitruss are two representative cohesive subgraph models in bipartite graphs extended
from the unipartite k -core [11] and k -truss [12] models. (α, β)-core is the maximal subgraph of a bipartite
graph G such that the vertices on upper or lower layer have at least α or β neighbors respectively. (α, β)-core
models vertex engagement as degrees and treats each edge equally, but ties (edges) in real networks have
different strengths. k -bitruss is the maximal subgraph where each edge is contained in at least k butterflies
(i.e. 2x2-biclique), which can model the tie strength [13, 14].

In the author-paper network as shown in Figure 1, the graph is the (α, β)-core (α=2, β=2) and the light
blue region is the k -bitruss (k=2). Without considering tie strength, (α, β)-core blindly includes research
groups of different levels of cohesiveness. We can see that v0 and v1 are not as closely connected as the rest

∗Corresponding author
Email addresses: yizhang.he@unsw.edu.au (1Yizhang He), kai.wang@unsw.edu.au (1Kai Wang),

zhangw@cse.unsw.edu.au (1Wenjie Zhang), lxue@cse.unsw.edu.au (1Xuemin Lin), ying.zhang@uts.edu.au (2Ying Zhang)
1This manuscript is the authors’ original work and has not been published nor has it been submitted simultaneously

elsewhere.
2All authors have checked the manuscript and have agreed to the submission.

Preprint submitted to Elsevier August 11, 2020

ar
X

iv
:2

00
8.

04
05

4v
1

 [
cs

.S
I]

 5
 A

ug
 2

02
0

2-bitruss

v4

u0 u1

v0 v1 v2 v3

u2 u3

v5 v6

u4 u5

(2,2)2-core

Figure 1: Motivation example

authors. The k -bitruss model can exclude the relatively sparse subgraph containing v0 and v1, but it also
deletes edges (u3, v4) and (u4, v3) when their incident vertices are present. This exposes the drawbacks of
the k -bitruss model: (1) As k -bitruss only keeps strong ties, the weak ties between important vertices are
missed. In Fig 1, it fails to recognize the contributions of authors v3, v4 in papers u3, u4. (2) After removing
weak ties, the tie strengths are modeled inaccurately. Edges (u3, v3) and (u4, v4) have more supporting
butterflies (u3, u4, v3, v4 form a butterfly) than (u1, v2), but their tie strengths are modeled as equal.

In this paper, we study the efficient and scalable computation of τ -strengthened (α, β)-core, which is the
first cohesive subgraph model on bipartite graphs to consider both tie strength and vertex engagement. Given
a bipartite graph G, we model the tie strength of each edge as the number of butterflies containing it. With
a strength level τ , we consider the edges with tie strength no less than τ to be strong ties. The engagement
of a vertex is modeled as the number of strong ties it is incident to. Given engagement constraints α, β
and strength level τ , (α, β)τ -core is the maximal subgraph of G such that each upper or lower vertex in the
subgraph has at least α or β strong ties. The (α, β)τ -core model is highly flexible and is able to capture unique
structures. For instance, in Figure 1, the subgraph induced by vertices {u1, u2, u3, u4, u5, v2, v3, v4, v5, v6} is
the (2, 2)2-core which cannot be found by (α, β)-core or k -bitruss for any α, β or k. Also, as shown in Figure
1, (α, β)-core can preserve the weak ties if the incident vertices are present (e.g., the red edges are preserved
due to u3, u4, v3 and v4), which better resembles reality. The flexibility of the (α, β)τ -core model is also
evaluated in another experiment conducted on dataset DBpedia-producer. Figure 2 shows the subgraphs
of different densities found by (α, β)τ -core and (α, β)-core, where density is the ratio between the number
of existing edges and the number of all possible edges [13]. 165 subgraphs with a density greater than 0.2
are found by (α, β)τ -core while only 9 such subgraphs are found by (α, β)-core.

(a) subgraphs found by (α, β)τ -core

101 102 103 104 105 106

|U'|
101

102

103

104

105

106

|L
'|

density
0.0
0.2
0.4
0.6

(b) subgraphs found by (α, β)-core

Figure 2: Dense subgraphs in DBpedia-producer.

2

Applications. The τ -strengthened (α, β)-core model has many applications. We list some of them below.
• Identify nested communities. On Internet forums like Reddit, Quora, and StackOverflow, users hold con-
versations on topics that interest them. The users and the topics form a bipartite network. In these networks,
communities naturally exist and are nested. For instance, Reddit displays a list of top communities like
“News”, “Gaming” and “Sports” on the front page. “Sports” community contains many sub-communities
including “Cricket”, “Bicycling” and “Golf”. The edges in sub-communities have higher tie strength be-
cause users and topics within them are more closely connected. By increasing strength level τ , (α, β)τ -core
captures the subgraphs forming a hierarchy, which can model nested communities on bipartite networks.
• Group similar users and items. In online shopping platforms like Amazon, eBay and Alibaba, users and
items form a bipartite graph, where each edge indicates a purchasing record. Such a network consists of
many closely connected communities, where some items are repeatedly bought by the same group of users
(i.e., the target market). Examples of such communities include gym-goers and gym attires, students and
stationery, diabetic patients and no-sugar foods, etc. Within one community, items are considered more
similar and users tend to be alike due to their common shopping habits. As the edges between these users
and items have high tie strength (butterfly support), we can use (α, β)τ -core to find these communities and
group similar users or items together.
Challenges. To obtain the (α, β)τ -core from the input graph, we can first compute the support of edges and
the engagement of vertices and then iteratively delete the vertices not meeting the engagement constraints.
When α, β, τ are large, (α, β)τ -core is small and computing (α, β)τ -core from the input graph is time-
consuming. Thus, the online computation method cannot support a large number of (α, β)τ -core queries.

In this paper, we resort to index-based approaches. A straightforward solution is to compute all possible
(α, β)τ -cores and build a total index Iα,β,τ based on them. Instead of computing all (α, β)τ -cores from the
input graph, we take advantage of the nested property of the (α, β)τ -core, which means that if α ≥ α∗,
β ≥ β∗ and τ ≥ τ∗, (α, β)τ -core is a subgraph of (α∗, β∗)τ∗ -core. Specifically, for all possible α and β,
we first find (α, β)1-core and then compute (α, β)τ -core while gradually increasing strength level τ . In this
manner, we can compute all (α, β)τ -cores and construct the index Iα,β,τ . Although Iα,β,τ supports optimal
retrieval of the vertex set of any (α, β)τ -core, it still suffers from long construction time on large graphs. To
devise more practical index-based approaches, we face the following challenges.

1. When building index Iα,β,τ , it is time-consuming to enumerate all butterflies containing the deleted
edges. Also, the Iα,β,τ index construction algorithm is prone to visit the same (α, β)τ -core subgraph
repeatedly as it can correspond to different combinations of α, β, and τ . It is a challenge to speed
up butterfly enumeration and avoid repeatedly visiting the same subgraphs during the construction of
the total index Iα,β,τ .

2. Due to the flexibility of the (α, β)τ -core model, there are a large number of (α, β)τ -cores corresponding
to different combinations of α, β, and τ . The time cost of indexing all (α, β)τ -cores becomes not
affordable on large graphs. It is also a challenge to strike a balance between building space-efficient
indexes and supporting efficient and scalable query processing.

Our approaches. To address the first challenge, we extend the butterfly enumeration techniques in [15]
and propose novel computation sharing optimizations to speed up the index construction process of Iα,β,τ .
Specifically, we build a Bloom-Edge-Index (hereafter denoted by BE-Index) proposed in [15] to quickly fetch
the butterflies containing an edge. The BE-Index captures the relationships between edges and (2 × k)-
bicliques (also called blooms). When an edge is deleted, we can quickly locate the blooms containing this
edge in the BE-Index and update the support of affected edges in these blooms accordingly. In addition,
computation-sharing optimization is based on the fact that the same (α, β)τ -core subgraph corresponds to
various parameter combinations. If we realize the vertices in a subgraph have already been recorded, we can
choose to skip the current parameter combination.

To address the second challenge, we introduce space-efficient 2D-indexes including Iα,β , Iβ,τ , and Iα,τ ,
and train a feed-forward neural network to predict the most promising index to handle an (α, β)τ -core
query. Instead of indexing all (α, β)τ -cores, the 2D-indexes Iα,β , Iβ,τ , and Iα,τ store the vertex sets of
all (α, β)-core, (1, β)τ -core, and (α, 1)τ -core respectively. These 2D-indexes are much smaller in size and
require significantly less build time, each of which can be used to handle (α, β)τ -core queries. For example,

3

to compute (α, β)τ -core using Iβ,τ , we fetch the vertices in (1, β)τ -core and recover the edges of (1, β)τ -
core. Then, we iteratively remove the vertices not having enough engagement from (1, β)τ -core until we
find (α, β)τ -core. However, the query processing performance based on each 2D-index is highly sensitive to
parameters α, β, and τ . This is because the 2D-indexes only store the vertices in (α, β)-core, (1, β)τ -core, and
(α, 1)τ -core and the size difference between (α, β)τ -core and each of these subgraphs is uncertain. We also
observe that there are no simple rules to partition the parameter space so that queries from each partition
can be efficiently handled by one type of index. This motivates us to resort to machine learning techniques
and train a feed-forward neural network as the classifier to predict the optimal choice of the index for each
incoming query of (α, β)τ -core. Since we aim to minimize the query time instead of accuracy, we propose
a scoring function, time-sensitive-error, to tune the hyper-parameters of the classifier. The experiment
results show that the resulting hybrid computation algorithm significantly outperforms the query processing
algorithms based on Iα,β ,Iβ,τ , and Iα,τ , and it is less sensitive to varying parameters.
Contribution. Our major contributions are summarized here:
• We propose the first cohesive subgraph model τ -strengthened (α, β)-core on bipartite graphs which con-
siders both tie strength and vertex engagement. The flexibility of our model allows it to capture unique and
useful structures on bipartite graphs.
•We construct index Iα,β,τ to support optimal retrieval of the vertex set of any (α, β)τ -core. We also devise
computation sharing and BE-Index based optimizations to effectively reduce its construction time.
• We build 2D-indexes that are more space-efficient and require significantly less build time. Also, we
propose a learning-based hybrid computation paradigm to predict which index to choose to minimize the
response time for an incoming (α, β)τ -core query.
• We validate the efficiency of proposed algorithms and the effectiveness of our model through extensive
experiments on real-world datasets. Results show that the 2D-indexes are scalable and the hybrid computa-
tion algorithm on a well trained neural network can outperform the algorithms based on each 2D-index alone.

Organization. The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3
summarizes important notations and definitions and introduces (α, β)-core and τ -strengthened (α, β)-core.
Section 4 presents the online computation algorithm. Section 5 and 6 presents the total index Iα,β,τ and
optimizations of the index construction process. Section 7 presents the learning-based hybrid computation
paradigm. Section 8 shows the experimental results and Section 9 concludes the paper.

2. Related work

In the literature, there are many recent studies on cohesive subgraph models on both unipartite graphs
and bipartite graphs.
Unipartite graphs. k -core [11, 16, 17, 18] and k -truss [12, 19, 20] are two of the most well-known cohesive
subgraph models on general, unipartite graphs. Given a unipartite graph, k -core is the maximal subgraph
such that each vertex in the subgraph has at least k neighbors. k -core models vertex engagement as degrees
and assumes the importance of each tie to be equal. However, on real networks, ties (edges) have different
strengths and are not of equal importance [21]. As triangles are considered as the smallest cohesive units, the
number of triangles containing an edge is used to model tie strength on unipartite graphs. Thus, k -truss is
proposed to better model tie strength, which is the maximal subgraph such that each edge in the subgraph is
contained in at least (k−2) triangles. The issue with k -truss is that it does not tolerate the existence of weak
ties, which is inflexible for modeling real networks. To consider both vertex engagement and tie strength,
the (k,s)-core model is proposed in [22]. In addition, recent works studied problems related to variants of
k -core such as radius-bounded k -core on geo-social networks [23], core maintenance on dynamic graphs [24],
core decomposition on uncertain graphs [25, 26], and anchored k -core problem [27, 28]. Variants of k -truss
are also studied including k -truss communities on dynamic graphs [19], k -truss decomposition on uncertain
graphs [29], and anchored k -truss problem [30]. However, these algorithms do not apply to bipartite graphs.
Attempts to project the bipartite graph to general graphs will incur information loss and size inflation [13].
Bipartite graphs. In correspondence to k -core and k -truss, (α, β)-core [7, 6] and k -bitruss [14, 15] are
proposed on bipartite graphs. (α, β)-core is the maximal subgraph such that each vertex on the upper or

4

lower level in the subgraph has at least α or β neighbors. Just like k -core on unipartite graphs, (α, β)-core
cannot distinguish weak ties from strong ties. On bipartite graphs, tie strength is often modeled as the
number of butterflies (i.e., (2× 2)-bicliques) containing an edge because butterflies are viewed as analogs of
triangles [31, 32, 33, 15]. k -bitruss is the maximal subgraph such that each edge in the subgraph is contained
in at least k butterflies, which can model tie strength. k -bitruss suffers from the same issue as its counterpart
k -truss does: it forcefully deletes all weak ties even if the incident vertices are strongly-engaged. Other works
for bipartite graph analysis using cohesive structures such as (p,q)-core [34], fractional k -core [35] cannot be
used to address these issues. In contrast to the above studies, we propose the first cohesive subgraph model
τ -strengthened (α, β)-core that considers both vertex engagement and tie strength on bipartite graphs.

3. Problem Definition

Table 1: Summary of Notations

Notation Definition

G a bipartite graph
α, β the engagement constraints
τ the strength level

nb(u,G) the set of adjacent vertices of u in G
deg(u,G) the number of adjacent vertices of u in G

onG the number of butterflies in G
sup(e) the number of butterflies containing e
eng(u) the number of strong ties adjacent to u

(α, β)τ -core the τ -strengthened (α, β)-core
Iα,β,τ the decomposition-based index

Iα,β ,Iβ,τ ,Iα,τ the 2D-indexes

In this section, we formally define our cohesive subgraph model τ -strengthened (α, β)-core. We consider
an unweighted, undirected bipartite graph G(V,E). V (G) = U(G) ∪ L(G) denotes the set of vertices in
G where U(G) and L(G) represent the upper and lower layer, respectively. E(G) ⊆ U(G) × L(G) denotes
the set of edges in G. We use n = |V (G)| to denote the number of vertices and m = |E(G)| to denote the
number of edges. The maximum degree in the upper and lower layer is denoted as dmax(U) and dmax(L)
respectively. The set of neighbors of a vertex u in G is denoted as nb(u,G). The degree of a vertex is
deg(u,G) = |nb(u,G)|. When the context is clear, we omit the input graph G in notations.

Definition 1. (α, β)-core. Given a bipartite graph G and degree constraints α and β, a subgraph G′ is the
(α, β)-core, denoted by Cα,β(G), if (1) all vertices in G′ satisfy degree constraints, i.e. deg(u,G′) ≥ α for
each u ∈ U(G′) and deg(v,G′) ≥ β for each v ∈ L(G′); and (2) G′ is maximal, i.e. any subgraph G′′ ⊇ G′

is not an (α, β)-core.

Definition 2. Butterfly. In a bipartite graph G, given vertices u,w ∈ U(G) and v, x ∈ L(G), a butterfly

on is the complete subgraph induced by u, v, w, x, which means both u and w are connected to v and x by

edges. The total number of butterflies in G is denoted as onG.

(α, β)-core is a vertex-induced subgraph model, which assumes that the edges are of equal importance.
To better model the strength of an edge e, we define the support sup(e) to be the number of butterflies
containing e.

Definition 3. Strong Tie. Given an integer τ , an edge e ∈ E(G) is called a strong tie if sup(e) ≥ τ ,
where τ is called the strength level. Weak ties are the edges e such that sup(e) < τ .

Definition 4. Vertex Engagement. Given a strength level τ and u ∈ V (G), the engagement eng(u) is
the number of strong ties incident to u. At strength level 0, eng(u) = deg(u,G).

5

If the engagement of an upper or lower vertex is at least α or β, we call it a strongly-engaged vertex.
Otherwise, it is a weakly-engaged vertex.

Definition 5. τ-strengthened (α, β)-core. Given a bipartite graph G and engagement constraints α
and β, and strength level τ , a subgraph G′ is the τ -strengthened (α, β)-core, denoted by (α, β)τ -core, if (1)
eng(u) ≥ α for each u ∈ U(G′) and eng(v) ≥ β for each v ∈ L(G′); and (2) G′ is maximal, i.e. any subgraph
G′′ ⊇ G′ is not a τ -strengthened (α, β)-core.

Problem Statement. Given a bipartite graph G and parameters α, β and τ , we study the problem of
scalable and efficient computation of (α, β)τ -core in G.

Algorithm 1: OnlineComputation

Input: G,α, β, τ
Output: (α, β)τ -core

1 Compute sup(e) foreach e ∈ E(G)
2 Compute eng(u) foreach u ∈ V (G)
3 Peeling(G,α, β, τ, sup, eng)
4 return G

Algorithm 2: Peeling

Input: G,α, β, τ, sup, eng
Output: (α, β)τ -core

1 while exists u ∈ V (G) without enough engagement do
2 foreach v ∈ nb(u) do
3 if sup((u, v)) ≥ τ then
4 eng(v)← eng(v)− 1

5 foreach on containing (u, v) do

6 foreach edge e′ = (u′, v′) ∈ on s.t. e′ 6= e and sup(e′) ≥ τ do
7 sup(e′)← sup(e′)− 1
8 if sup(e′) = τ − 1 then
9 decrease eng(u′) and eng(v′) by 1

10 remove (u, v) from G

11 remove u from G

12 return G

4. The Online Computation Algorithm

Given engagement constraints α, β and strength level τ , the online algorithm to compute the (α, β)τ -
core is outlined in Algorithm 1. First, we compute the support of each edge e using the algorithm in [33]
and count how many strong ties each vertex u has. Then, Algorithm 2 is invoked to iteratively remove
the vertices without enough engagement along with their incident edges. The vertices in U(G) and L(G)
are sorted by engagement and the edges are sorted by support. In this manner, we can always delete the
vertices with the smallest engagement first and quickly identify which edges are strong ties. When an edge
e is removed due to lack of support (i.e., sup(e) < τ), we go through all the butterflies containing e and
update the supports of the edges in these butterflies (lines 5-9). Specifically, we do not need to update the
support of the edges connected to weakly-engaged vertices, because they will be removed (line 10). Neither
do we update the support of weak ties because they do not contribute to any vertex engagement. In other
words, we only update the support of strong ties between strongly-engaged vertices. When a strong tie

6

becomes a weak tie, we decrease the engagement of its incident vertices (lines 4,9). The order of vertices
and edges are maintained in linear heaps [36] after their engagement and support are updated. Here we
evaluate the time and space complexity of Algorithm 1.

Lemma 1. The time complexity of Algorithm 1 is O(
∑

(u,v)∈E(G)

∑
w∈nb(v)min(deg(u), deg(w))) and the

space complexity is O(m).

Proof. The butterfly counting process takes O(
∑

(u,v)∈E(G)min(deg(u), deg(v))) time [33]. After the support

of each edge is computed, it takes O(m) time to compute the engagement for each vertex. Then, we need to
run Algorithm 2. For each weakly engaged vertex u, we need to delete all its incident edges, which dominates
the time cost of Algorithm 2.

For each deleted edge (u, v), we need to enumerate the butterflies containing it. Let w be a vertex in
nb(v,G) \ {u}. For each vertex x in nb(u,G) ∩ nb(w,G), the induced subgraph of {u, v, w, x} is a butterfly.
The set intersection (computing nb(u,G) ∩ nb(w,G)) can be implemented in O(min(deg(u), deg(w)) time
by using a O(m) hash table to store the neighbor set of each vertex.

Thus, the butterfly enumeration for each delete edge (u, v) takes O(
∑
w∈nb(v)min(deg(u), deg(w))) time.

As each edge can only be deleted once, the total time complexity of the butterfly enumeration for all deleted
edges takes O(

∑
(u,v)∈E(G)

∑
w∈nb(v)min(deg(u), deg(w))) time. Thus, the time complexity of Algorithm 1

is O(
∑

(u,v)∈E(G)

∑
w∈nb(v)min(deg(u), deg(w))) which is denoted as Tpeel(G) hereafter.

We store the neighbors of each vertex as adjacency lists as well as the support of edges and engagement
of vertices, which in total takes O(m) space. Therefore, the space complexity of Algorithm 1 is O(m).

(a) Iα,β,τ based on Figure 1

α
β

τ

Iα,τ

Iβ,τ

Iα,β

Iα,β,τ

(b) the relationships of indexes

β τ+1τ

β+1
α

α+1

(c) Computation sharing

Figure 3: Illustrating our ideas

5. The Decomposition Based Total Index

Given α, β, and τ , Algorithm 1 computes the (α, β)τ -core from the input graph, which is slow and cannot
handle a large number of queries. In this section, we present a decomposition algorithm that retrieves all
(α, β)τ -cores and build a total index based on the decomposition output to support efficient query processing.

The decomposition algorithm. The following lemma is immediate based on Definition 5, which depicts
the nested relationships among (α, β)τ -cores.

Lemma 2. (α, β)τ -core ⊆ (α′, β′)τ ′-core if α ≥ α′, β ≥ β′, and τ ≥ τ ′.

Based on Lemma 2, if a vertex u is in (α, β)τ ′ -core, u is also in (α, β)τ -core if τ < τ ′. Thus, in the
decomposition, for given vertex u and α, β values, we aim to retrieve the maximum τ value such that
u is in the corresponding (α, β)τ -core, namely, τmax(α, β, u)= max{τ |u ∈ (α, β)τ -core}. For each vertex
u and all possible combinations of α and β, it is only necessary to store u in (α, β)τ ′ -core to build a

7

Algorithm 3: Decomposition

Input: G(V = (U,L), E)
Output: τmax(α, β, u), for all α, β, ∀u ∈ V (G)

1 α← 1, β ← 1, τ ← 1
2 Compute sup(e), ∀ e ∈ E(G)
3 Compute eng(u), ∀ u ∈ V (G)
4 while (α, 1)1-core in G is not empty do
5 Peeling((α, 1)1-core, α, 1, 1, sup, eng);β ← 1
6 while (α, β)1-core in G is not empty do
7 sup′ ← sup; eng′ ← eng; τ ← 1
8 Peeling((α, β)1-core, α, β, 1, sup′, eng′)
9 while (α, β)τ -core in G is not empty do

10 sup′′ ← sup′; eng′′ ← eng′

11 Peeling((α, β)τ -core, α, β, τ, sup′′, eng′′), add τmax(α, β, u)← τ − 1 before line 2
12 τ ← τ + 1
13 foreach e=(u′, v′) ∈ E(G), sup(e)=τ do
14 eng′′(u′)← eng′′(u′)− 1
15 eng′′(v′)← eng′′(v′)− 1

16 β ← β + 1

17 α← α+ 1

18 return τmax(α, β, u), for all α, β, ∀u ∈ V (G)

space compact index, where τ ′ = τmax(α, β, u) and u ∈ (α, β)τ -core can be implied if τ < τ ′. Algorithm
3 is devised for (α, β)τ -core decomposition which applies three nested loops to go through all possible
α, β, τ combinations. Note that when computing the (α, β)τ -core, we record τmax(α, β, u) for each vertex
u. Specifically, for a vertex u contained in (α, β)τ0-core but is removed when computing (α, β)τ0+1-core, we
assign τ0 to τmax(α, β, u) (line 11). Here we evaluate the time and space complexity of Algorithm 3.

Lemma 3. The time complexity of Algorithm 3 is O(
∑αmax
α=1

∑βmax(α)
β=1 Tpeel((α, β)1-core)), where αmax is

the maximal α such that (α, 1)1-core exists and βmax(α) is the maximal β such that (α, β)1-core exists.
Algorithm 3 takes up O(m) space.

Proof. In the outer while-loop, we start from the input graph G and compute (α, 1)1-core, which takes
Tpeel(G). In the middle while-loop, we calculate (α, β)1-core from (α, 1)1-core for all possible α, which takes∑αmax
α=1 Tpeel((α, 1)1-core). The dominant cost occurs in the innermost while-loop when we run the Peeling al-

gorithm on (α, β)1-core for all possible α and β. As iterative removing edges and vertices in (α, β)1-core until

it is empty takes Tpeel((α, β)1-core), the overall time complexity is O(
∑αmax
α=1

∑βmax(α)
β=1 Tpeel((α, β)1-core)).

At any time during the execution of this algorithm, we always store G, (α, 1)1-core, (α, β)1-core, and
(α, β)τ -core in memory, which takes O(m) space. We also store the support of edges and engagement of
vertices in these graphs, which also takes O(m) space. Thus, the total space complexity is O(m).

Decomposition-based index. Based on the decomposition results, a four level index Iα,β,τ can be con-
structed to support query processing as shown in Figure 3(a).

• α level. The α level of Iα,β,τ is an array of pointers, each of which points to an array in the β level.
The length of the array in the α level is αmax. The kth element is denoted as Iα,β,τ [k].

• β level. The β level has αmax arrays of pointers. The array pointed by Iα,β,τ [k] has length βmax(α).
The jth pointer in the kth array is denoted as Iα,β,τ [k][j], which points to an array in the τ level.

• τ level. The τ level has
∑αmax
i=1 βmax(i) arrays of pointers to vertex blocks, corresponding to all pairs

of α, β. The array pointed by Iα,β,τ [k][j] has length τmax(α, β) = max{τ |(α, β)τ -core exists}.

8

Algorithm 4: DecompQuery

Input: Iα,β,τ , α, β, τ,G
Output: (α, β)τ -core

1 U ′, V ′, E′ ← ∅
2 if Iα,β,τ .size < α or Iα,β,τ [α].size < β or Iα,β,τ [α][β].size < τ then
3 return ∅
4 ptr ← Iα,β,τ [α][β][τ]
5 while ptr is not null do
6 v ← vertices in vertex block pointed by ptr
7 if v ∈ U(G) then
8 U ′ ← U ′ ∪ v
9 else

10 V ′ ← V ′ ∪ v
11 ptr ← the address of the next vertex block

12 E′ ← E(G) ∩ (U ′ × V ′)
13 return G′ = (U ′, V ′, E′)

• vertex blocks. The fourth level of Iα,β,τ is a singly linked list of vertex blocks. Each vertex block
corresponds to a set of α, β, τ value, which contains all vertex u such that τmax(α, β, u) = τ along
with a pointer to the next vertex block. The vertex blocks with the same α and β are sorted by the
associated τ values and each of them has a pointer to the next. Among them, the vertex block with
the largest τ has its pointer pointing to null.

We can construct index Iα,β,τ from the output of Algorithm 4. Given α and β, we store all vertices u in
the same vertex block if they have the same τmax(α, β, u), so each vertex block has an associated (α, β, τ)
value. In each Iα,β,τ [α][β][τ], we store the address of the vertex block associated with (α, β, τ ′), where τ ′

is the smallest integer such that τ ≤ τ ′. The index construction time is linear to the size of decomposition
results, which is bounded by the time complexity of Algorithm 4.

Lemma 4. The space complexity of index Iα,β,τ is O(
∑αmax
i=1

∑βmax(i)
j=1 (τmax(i, j) + n)), where τmax(i, j) be

the maximal τ in all (i, j)τ -cores.

Proof. By construction, the space complexity of the first two levels of pointers is bounded by that of τ level.

The space complexity of τ level is
∑αmax
i=1

∑βmax(i)
j=1 τmax(i, j). Given vertex u, let αmax(u) be the maximal

α such that u ∈ (α, β)τ -core. The space complexity of the vertex blocks is
∑
u∈V (G)

∑αmax(u)
i=1 max{β|u ∈

(i, β)1-core} ≤
∑αmax
i=1

∑βmax(i)
j=1 n. Adding it to the space complexity of level τ completes the proof.

Index based query processing. When the index Iα,β,τ is built on a bipartite graph G, Algorithm 4
outlines how to restore (α, β)τ -core given α, β, τ and Iα,β,τ . First, it checks the validity of the input
parameters. If the queried (α, β)τ -core does not exist, it terminates immediately (lines 2,3). Otherwise, it
collects the vertices of (α, β)τ -core from Iα,β,τ and restores the edges in the queried subgraph.

Lemma 5. Given a graph G and parameters α, β and τ , Algorithm 4 retrieves V ((α, β)τ -core) from index
Iα,β,τ in O(|V ((α, β)τ -core)|) time. The edges in (α, β)τ -core can be retrieved in O(

∑
v∈V ((α,β)τ -core)

deg(v)
time after obtaining the vertex set.

Proof. As each vertex block only stores the vertices with one given τ value, the vertex blocks pointed by
Iα,β,τ [α][β][τ ′] where τ ′ ≥ τ give us all the vertices in (α, β)τ -core, which takes O(|V ((α, β)τ -core)|) time.
To restore the edges in (α, β)τ -core, for each vertex v in (α, β)τ -core, we go through each of its neighbors in
G and check if it is in V ((α, β)τ -core). This takes O(

∑
v∈V ((α,β)τ -core)

(deg(v))) time.

According to Lemma 5, given α, β and τ , the vertex set of the (α, β)τ -core is retrieved in optimal time.

9

Example 1. Figure 3(a) illustrates the Iα,β,τ index for the bipartite graph in Figure 1. When querying
(1, 2)1-core, we start with the vertex block pointed by Iα,β,τ [1][2][1] (u0, v0 and v1). Then we keep collecting
the vertices until we have fetched the vertices pointed by Iα,β,τ [1][2][2] (u1 to u5 and v2 to v6) . All the
collected vertices provides the final solution to vertex set of (1, 2)1-core, which are u0 to u5 and v0 to v6.

6. Optimizations of Index Construction

The above decomposition algorithm has these issues: (1) the same subgraph can be computed repeatedly
for different α and β values. For example, if (1, 1)τ -core is the same subgraph as (1, 2)τ -core, then we will
compute it twice when β=1 and β=2. (2) when removing an edge e, we need to enumerate all the butterflies
containing e. The basic implementation of butterfly enumeration is inefficient, which involves finding three
connected vertices first and then check if a fourth vertex can form a butterfly with the existing ones.
We devise computation-sharing optimizations to address the first issue, and adopt the Bloom-Edge-Index
proposed in [33] to speed up the butterfly enumeration process.
Computation sharing optimizations. In this part, we reduce the times of visiting the same (α, β)τ -core
subgraphs by skipping some combinations of α, β, and τ , while yielding the same decomposition results.
• Skip computation for τ . In Algorithm 3, if vertex u is removed when computing (α, β)τ+1-core from
(α, β)τ -core, we conclude that τmax(α, β, u)=τ . However, if both (α, β)τ -core and (α, β)τ+1-core are already
visited for other β, this process is redundant and the current τ value can be skipped. Specifically, in the
innermost while loop (lines 9-15), we can use an array βmin[τ] to store the minimal lower engagement of
(α, β)τ -core for each τ . If βmin[τ] ≥ β, then the current (α, β)τ -core has already been visited. We only
compute τmax(α, β, u) values when one of (α, β)τ -core and (α, β)τ+1-core is not visited. Otherwise, we skip
the current τ value. The following lemma explains how to correctly obtain multiple τmax(α, β, u) values
when removing one vertex.

Lemma 6. Given α, β, τ and graph G, let u be a vertex in (α, β)τ -core but not in (α, β)τ+1-core. If there
exists an integer k such that (α, β)τ -core = (α, β + k)τ -core, then u 6∈ (α, β + k)τ+1-core.

This lemma is immediate from Lemma 2, because if vertex u is in (α, β + k)τ+1-core, then it must also
be contained in (α, β)τ+1-core, which contradicts our assumption. Therefore, for vertices like u, we can
conclude that τmax(α, β′, u)=τ , for all β ≤ β′ ≤ β + k. In this way, we fully preserve the decomposition
outputs of Algorithm 3.
• Skip computation for α and β. To skip some β values, we keep track of the minimal engagement of lower
level vertices of the visited (α, β)τ -cores in the middle while-loop (lines 7-16) in Algorithm 3 as β∗. At line
16, if β∗ > β, then β should be directly increased to β∗ + 1 (the first value which is not computed yet) and
values from β to β∗ are skipped. This is because for all β ≤ β′ ≤ β∗, the decomposition process are exactly
the same. Likewise, to skip some α values, we record the minimal engagement of upper-level vertices of the
visited (α, β)τ -cores in the outermost while-loop (lines 5-17) of Algorithm 3 as α∗. At line 17, if α∗ > α,
then α should be directly increased to α∗ + 1 and values from α to α∗ are skipped.

Example 2. As shown in Figure 3(a), when β=1, we remove u0, v0 and v1 when computing (1, 1)2-core
from (1, 1)1-core. The minimal engagement of lower vertices in (1, 1)1-core and (1, 1)2-core are 2, so the
array βmin is [2, 2]. This means that τmax(1, β′, u) = 1 and τmax(1, β′, u′) = 2, where u ∈ {u0, v0, v1} and
u′ ∈ {u1, u2, u3, u4, u5, v2, v3, v4, v5, v6} and β′ ∈ {1, 2}. When β=2, we infer that (1, 2)1-core and (1, 2)2-
core are already visited based on array βmin, so we can skip β=2. When β=3, the current β value exceeds
the values in βmin, so it cannot be skipped.

Bloom-Edge-Index-based optimization. During edge deletions of Algorithm 3, we need to repeatedly
retrieve the butterflies containing the deleted edges. To efficiently address this, We deploy a Bloom-Edge-
Index (hereafter denoted as BE-Index) proposed in [15] to facilitate butterfly enumeration. Specifically, a

bloom is a 2×k-biclique, which contains k×(k-1)
2 butterflies. Each edge in the bloom is contained in k-1 butter-

flies. The BE-Index compresses butterflies into blooms and keeps track of the edges they contain. The space
complexity of BE-Index and the time complexity to build it are both O(

∑
e=(u,v)∈E(G)min(deg(u), deg(v))

10

[15]. Hereafter we also use TBE to represent
∑
e=(u,v)∈E(G)min(deg(u), deg(v)). Deleting an edge e based

on BE-Index takes O(sup(e)) time, where sup(e) is the number of butterflies containing e. This is because
when e is deleted, BE-Index fetches the associated blooms and updates the support number of the affected
edges in these blooms. In total, there are O(sup(e)) affected edges if edge e is deleted. Here we evaluate the
BE-Index’s impact on the overall time and space complexity of Algorithm 3.

Lemma 7. By adopting the BE-Index for edge deletions, the time complexity of Algorithm 3 becomes

O(TBE)+O(
∑αmax
α=1

∑βmax(α)
β=1 on (α,β)1-core), where on (α,β)1-core is the number of butterflies in (α, β)1-core.

Proof. In the innermost loop of Algorithm 4, we remove the edges from (α, β)1-core to get (α, β)τ -core.

As each edge deletion operation takes sup(e) [15], it takes
∑
e∈E((α,β)1-core)

= O(on (α,β)1-core) to compute

(α, β)τ -core from (α, β)1-core. As we are doing this for all possible α and β, the time complexity within

the while-loops becomes O(
∑αmax
α=1

∑βmax(α)
β=1 on (α,β)1-core). Adding the BE-Index construction time to it

completes the proof.

7. A Learning-based Hybrid Computation Paradigm

Although the index Iα,β,τ supports the optimal retrieval of the vertices in the queried (α, β)τ -core, it
does not scale well to large graphs due to its long build time and large space complexity even with the related
optimizations. For instance, on datasets Team, Wiki-en, Amazon, and DBLP, the index Iα,β,τ cannot be built
within two hours as evaluated in our experiments. In this section, we present 2D-indexes that selectively
store the vertices of (α, β)τ -core for some combinations of α, β, and τ . We also train a feed-forward neural
network on a small portion of the queries to predict the choice of 2D-index that minimizes the running time
for each new incoming query.

Index Space Complexity Build Time Query Time

Iα,β,τ O(
∑αmax
i=1

∑βmax(i)
j=1 (τmax(i, j) + n)) O(TBE+

∑αmax
α=1

∑βmax(α)
β=1 on (α,β)1-core) O(

∑
v∈V ((α,β)τ -core)

(deg(v)))

Iα,β O(m) O(δ ·m) O(Tpeel((α, β)-core))

Iβ,τ O(
∑βmax
j=1 (τmax(1, j) + n)) O(TBE+

∑βmax
β=1 on (1,β)1-core) O(Tpeel((1, β)τ -core)

Iα,τ O(
∑αmax
i=1 (τmax(i, 1) + n)) O(TBE+

∑αmax
α=1 on (α,1)1-core) O(Tpeel((α, 1)τ -core)

Table 2: Space complexity, index construction time and query processing time of different indexes

2D-indexes. We introduce three 2D-indexes Iα,β , Iβ,τ , and Iα,τ in this part. Each of them is a three-level
index with two levels of pointers and one level of vertex blocks. The main structures of them are presented
as follows.
• Iβ,τ . For all β, τ , Iβ,τ [β][τ] points to the vertices u ∈ V (G) s.t. τmax(1, β, u) = τ . It is the component of
Iα,β,τ where α=1, which can fetch the vertices of all subgraphs of the form (1, β)τ -core in optimal time.
• Iα,τ . For all α, τ , Iα,τ [α][τ] points to the vertices u ∈ V (G) s.t. τmax(α, 1, u) = τ . It is the component of
Iα,β,τ where β=1, which can fetch the vertices of all subgraphs of the form (α, 1)τ -core in optimal time.
• Iα,β consists of Iα,βU and Iα,βV to store the vertices in U(G) and L(G) separately. Iα,βU [α][β] points to
the vertices u ∈ U(G) s.t. β = max{β′|u ∈ (α, β′)-core} and Iα,βV [β][α] points to the vertices v ∈ L(G)
such that α = max{α′|v ∈ (α′, β)-core}. Iα,β can fetch the vertices of any (α, β)-core in optimal time.

Note that, Iα,β is proposed to support efficient (α, β)-core computation as introduced in [6] while Iβ,τ
and Iα,τ are essentially parts of Iα,β,τ . For each type of 2D-indexes, we analyze its construction time, space
complexity, and the query time to compute (α, β)τ -core based on it.

Lemma 8. The time complexity to build Iβ,τ is O(TBE+
∑βmax
β=1 on (1,β)1-core) and the space complexity of

Iβ,τ is O(
∑βmax
j=1 (τmax(1, j) + n)). It takes Tpeel((1, β)τ -core) time to compute (α, β)τ -core using Iβ,τ .

Proof. As discussed in Lemma 7, the BE-Index can significantly speed up butterfly enumeration during
edge deletions, which takes O(TBE) to construct. Then, we fix α to one and run lines 6-16 of Algorithm

11

3 to compute all (1, β)τ -core. For each possible β, this process takes O(on (1,β)1-core) time, so in total it

takes O(
∑βmax
β=1 on (1,β)1-core)) time. Adding it to the BE-Index construction time (O(TBE)) gives the time

complexity of Iβ,τ construction.
As Iβ,τ is the part of Iα,β,τ with α = 1, its space is equal to the part of Iα,β,τ that is pointed by Iα,β,τ [1].

The size of the arrays of pointers in Iβ,τ is bounded byO(
∑βmax
j=1 (τmax(1, j)))). The size of the vertex blocks is

bounded by the number of vertices in all (1, β)τ -core, which is O(
∑βmax
j=1 (|V ((1, β)τ -core)|)) = O(

∑βmax
j=1 n).

Therefore, the space complexity of Iβ,τ is O(
∑βmax
j=1 (τmax(1, j) + n)).

In order to query (α, β)τ -core based on Iβ,τ , we first find the (1, β)τ -core from Iβ,τ and then compute
(α, β)τ -core from (1, β)τ -core.

Lemma 9. The query time of (α, β)τ -core based on Iβ,τ is Tpeel((1, β)τ -core).

Proof. Given engagement constraints α, β and strength level τ , let G′ be the (1, β)τ -core on bipartite graph
G. First, it takes O(|V (G′)| time to fetch the vertices in (1, β)τ -core from Iβ,τ . Restoring the edges of
(1, β)τ -core from G takes O(

∑
u∈V (G′) deg(u,G′)) time. Then, we call the Peeling algorithm on (1, β)τ -core

to compute (α, β)τ -core, which takes O(Tpeel((1, β)τ -core)) time.

Example 3. In Figure 3(a), the component of Iα,β,τ wrapped in dotted line is the Iβ,τ of the graph in Figure
1. If (2, 2)2-core is queried, we first to obtain (1, 2)2-core from Iβ,τ and compute (2, 2)2-core by calling the
peeling algorithm.

Note that index Iα,τ is symmetric to index Iβ,τ , with α and β switched. It is immediate that it takes

O(TBE+
∑αmax
α=1 on (α,1)1-core) time to construct Iα,τ and its space complexity is O(

∑αmax
i=1 (τmax(i, 1) + n)).

It takes Tpeel((α, 1)τ -core) time to compute (α, β)τ -core using Iα,τ . As for Iα,β , it takes O(δ ·m) time to con-
struct and its space complexity is O(m), where δ is the degeneracy of the graph [6]. To compute (α, β)τ -core
using Iα,β , we fetch the vertices of (α, β)-core and restore the edges in O(|V (G′)|+O(

∑
u∈V (G′) deg(u,G′))

time (G′ = (α, β)-core). Then, we call the peeling algorithm on (α, β)-core to compute (α, β)τ -core, which
takes O(Tpeel((α, β)-core)) time.

The sizes of 2D-indexes can be considered as the projections of Iα,β,τ onto 3 planes, as depicted in Figure
3(b). We also summarize the space complexity, build time, and query time of 2D-indexes in Table 2.

1 2 3 4 5 6 7 8 0
200

400
600

800
1000

0
50
100
150
200
250
300
350

Figure 4: Motivation example for learning-based query processing (DBpedia-Team)

Learning-based hybrid query processing. As Iα,β , Iβ,τ , and Iα,τ do not store all the decomposition
results like Iα,β,τ , the construction of these indexes is more time and space-efficient than Iα,β,τ . However,
the reduced index computation inevitably compromises the query processing performance. This is because

12

the 2D-indexes only store the vertices in (α, β)-core, (1, β)τ -core, and (α, 1)τ -core. Clearly, computing the
(α, β)τ -core based on these 2D-indexes results in different response time. To better illustrate this point,
we plot all parameter combinations on dataset DBpedia-team and give each combination a color based on
which query processing algorithm performs the best in Figure 4. For ease of presentation, we denote the
query processing algorithms based on index Iα,β , Iβ,τ , and Iα,τ as Qα,β , Qβ,τ and Qα,τ respectively. The
red points indicate that Qβ,τ is the fastest among the three. The green ones represent the win cases for
Qα,τ and the black points are the cases when Qα,β is the best. Evidently, the points of different colors are
mingled together and distributed across the parameter space. This suggests that finding simple rules to
partition the parameter space is not promising in deciding which of Qα,β , Qβ,τ , Qα,τ is the fastest. Hence,
we formulate it as a classification problem and resort to machine learning techniques to solve this problem.

Algorithm 5: Hybrid Computation Algorithm

// Offline training:

Input: G : Input bipartite graph
Output: Neural network C : D → {Qα,β , Qβ,τ , Qα,τ}

1 Build Iβ,τ , Iα,τ and Iα,β for G
2 foreach q ∈ {N random queries} on G do
3 feature(q)← [α, β, τ of q]
4 label(q)← the fastest algorithm in {Qα,β , Qβ,τ , Qα,τ}
5 X = [feature(q)], q ∈ N queries run on G
6 Y = [label(q)] , q ∈ N queries run on G
7 C ← trained neural network on X,Y
// Online query processing:

Input: Query parameters: α, β, τ
Output: (α, β)τ -core in G

1 Qpred ← C.predict(α, β, τ)
2 Run Qpred to compute (α, β)τ -core
3 return (α, β)τ -core

We introduce a hybrid computation algorithm (Algorithm 5, denoted by Qhb), which selects from
{Qα,β , Qβ,τ , Qα,τ} based on the query parameters α, β, and τ . In the offline training phase, we build
Iβ,τ , Iα,τ and Iα,β on G and obtain the runtime of Qα,β , Qβ,τ , Qα,τ on N queries, where N is chosen to be
less than 5% of all possible queries. The label of a query is the algorithm that responds to it in the shortest
time. Then, we train a feed-forward neural network C on the N labeled query instances. In the online query
processing phase, given a new query of (α, β)τ -core, the trained neural network makes a prediction based
on α, β, and τ . Then, we use the predicted query processing algorithm to compute (α, β)τ -core.

Here we detail how to train the feed-forward neural network. We impose only one hidden layer in C to
avoid over-fitting. The important hyper-parameters of C include the number of hidden units H and the
type of optimizer. We use 5-fold cross-validation to evaluate the above hyper-parameters. Specifically, we
split the N labeled queries into 5 partitions and each time we take one partition as the validation set and
the remainder as the training set. For each parameter setting, we build a classifier on the training sets for
5 times and calculate a performance metric on the validation set. In our model, we define a time-sensitive
error on the validation set as the performance metric, which calculates a weighted mis-classification cost
w.r.t the actual query time. Let ik, jk ∈ {1, 2, 3} (encoding of Qα,β , Qβ,τ , Qα,τ) be the predicted class and
the actual class of the kth instance. The time-sensitive error is defined as

error(ik, jk)=eTik

 0 t1,k − t2,k t1,k − t3,k
t2,k − t1,k 0 t2,k − t3,k
t3,k − t1,k t3,k − t2,k 0

 ejk
where eik and ejk are one-hot vectors of length 3 with the ik, jk position being 1. t1,k, t2,k and t3,k are the

13

running time of Qα,β , Qβ,τ , Qα,τ on the kth instance respectively. The time-sensitive error measures the gap
between the predicted query algorithm and the optimal query algorithm. It is averaged over all instances
in the validation set and across 5 iterations of cross-validation. Then, the hyper-parameter setting with the
lowest time-sensitive error should be chosen. In this way, we are more prone to find the parameter settings
that allow us to minimize the query time instead of merely correctly classify each instance.

Note that, training a feed-forward neural network (lines 2 - 7) take significantly less time compared to
the 2D-index construction process (line 1) since only N (N ≤ 5% of the total number of possible queries)
random queries are used.

Example 4. On dataset DBpedia-starring, given α=2, β=8, and τ=9. Qα,β takes 0.53 seconds to find the
queried subgraph. Qβ,τ and Qα,τ takes 0.03 and 0.05 respectively. The optimal query processing algorithm
on this instance is Qβ,τ . Accuracy as a performance metric would give equal penalty to mis-classifying Qα,β
and Qα,τ as the best algorithm, which is clearly inappropriate. Instead, the time-sensitive error gives penalty
of 0.02 if we predict Qβ,τ and 0.51 if we predict Qα,τ .

8. Experiments

In this section, we first validate the effectiveness of the τ -strengthened (α, β)-core model. Then, we
evaluate the performance of the index construction algorithms as well as the query processing algorithms.

8.1. Experiments setting
Algorithms. Our empirical studies are conducted against the following algorithms:
• Index construction algorithms. We compare two Iα,β,τ construction algorithms: the naive decomposition
algorithm decomp-naive and the decomposition algorithm with optimizations decomp-opt. We also evaluate
the index construction algorithms of Iβ,τ and Iα,τ . As for Iα,β , we report its size and build time by running
the index construction algorithm in [6].
• Query processing algorithms. We use the online computation algorithm presented in Section 4 as the base-
line method, denoted asQbs. We compare it to the index-based query processing algorithmsQα,β,τ , Qα,β , Qβ,τ ,
and Qα,τ , which are based on Iα,β,τ , Iα,β , Iβ,τ , and Iα,τ respectively. We also evaluate the hybrid computa-
tion algorithm Qhb, which depends on a well-trained classifier and the indexes Qα,β , Qβ,τ , and Qα,τ .

All algorithms are implemented in C++ and the experiments are run on a Linux server with Intel Xeon
E3-1231 processors and 16GB main memory. We end an algorithm if the running time exceeds two hours.

Dataset |E| |U | |L| αmax βmax τmax δ

Cond-mat (AC) 58K 38K 16K 37 13 63 8
Writers (WR) 144K 135K 89K 11 82 99 6

Producers (PR) 207K 187K 48K 220 18 219 6
Movies (ST) 281K 157K 76K 19 215 222 7

Location (LO) 294K 225K 172K 12 853 852 8
BookCrossing (BX) 434K 264K 78K 376 100 375 13

Teams (TM) 1.4M 935K 901K 11 1063 373 9
Wiki-en (WC) 3.80M 2.04M 1.85M 39 7659 7658 18
Amazon (AZ) 5.74M 3.38M 2.15M 659 294 658 26
DBLP (DB) 8.6M 5.4M 1.4M 421 64 420 10

Table 3: This table reports the basic statistics of 10 real graph datasets.

Datasets. We use 10 real graphs in our experiments, which are obtained from the website KONECT 3.
Table 3 includes the statistics of these datasets, sorted by the number of edges in ascending order. The
abbreviations of dataset names are listed in parentheses. |E| is the number of edges in the graph. |U | and
|L| are the number of vertices in the upper and lower levels. αmax is the largest α such that (α, 1)1-core
exists. βmax is the largest β such that (1, β)1-core exists. τmax is the largest τ such that (1, 1)τ -core exists.

3http://konect.uni-koblenz.de/networks/

14

http://konect.uni-koblenz.de/networks/

8.2. Effectiveness Evaluation

LO PR ST TM
Datasets

10 1

100

101
Bi

pa
rti

te

 C
lu

st
er

in
g

Co
ef

fic
ie

nt
=0 =50 =100

LO PR ST TM
Datasets

10 4

10 3

10 2

10 1

100

Gr
ap

h
De

ns
ity

=0 =50 =100

Figure 5: The cohesive metrics comparisons

In this section, we validate the effectiveness of the τ -strengthened (α, β)-core model. First, we compute
some cohesive metrics for (α, β)-core and (α, β)τ -core. Then, we conduct a case study on dataset DBLP-2019.
Compare (α, β)-core with τ-strengthened (α, β)-core. We compare the graph density and bipartite
clustering coefficient for (α, β)-core and (α, β)τ -core. The graph density [13] of a bipartite graph is calculated
as |E|/(|U | × |L|), where |E| is the number of edges and |U | and |L| are the number of upper and lower
vertices. The bipartite clustering coefficient [37] is a cohesive measurement of bipartite networks, which is
calculated as 4 × onG/

n

G where
n

G and onG are the number of caterpillars (three-path) and the number
of butterflies in graph G respectively. In Figure 5, the black bars with τ=0, represents the (α, β)-core.
The shaded bars and the white bars represent the (α, β)τ -core with τ being 50 and 100 respectively. The
engagement constraints α and β are set to 0.6δ and 0.4δ respectively, where δ is the graph degeneracy. As we
can see, on all four datasets, the (α, β)τ -core has a higher density and bipartite coefficient than (α, β)-core.
As τ increases, both of the metrics increase as well. This means that with higher values of τ , we can find
subgraphs within (α, β)-core of higher density and cohesiveness.

Figure 6: Case study on DBLP-2019

Case study. The effectiveness of our model is evaluated through a case study on the DBLP-2019 dataset.
The graph in Fig 6 is an (α, β)-core (α=7, β=8). Given τ=50, (α, β)τ -core excludes the relatively sparse
group represented by the light blue lines. The k -bitruss (k=56) represented by the red lines is in (α, β)τ -
core. The black lines are the edges included in (α, β)τ -core but not in k -bitruss. The (α, β)τ -core and
k -bitruss involve the same authors, but k -bitruss removes the second last paper on the upper level to enforce
the tie strength constraint. Figure 6 implies that: (1) Although (α, β)-core models vertex engagement via
degrees, it fails to distinguish between edges with different tie strength. (2) k -bitruss models tie strength
via butterfly counting, but it forcefully excludes the weak ties between strongly engaged nodes, which leads
to the imprecise estimation of tie strength and failure to include important nodes and their incident edges.

15

(3) (α, β)τ -core considers both vertex engagement and tie strength. Its flexibility allows it to capture unique
structures that better resemble the communities in reality.

AC WR PR ST LO BX TM WC AZ DB
Datasets

100

101

102

103
INF

Ti
m

e(
s)

decomp-naive
decomp-opt

Figure 7: The Iα,β,τ construction time

Data
Index size (MB) Index construction time (sec)

Iα,β,τ Iα,β Iβ,τ Iα,τ Iα,β,τ Iα,β Iβ,τ Iα,τ
Cond-mat 1.29 0.78 0.26 0.50 5.11 0.11 0.68 1.37

Writers 2.14 2.24 0.93 0.24 18.81 0.24 5.01 1.31
Producers 5.55 3.16 0.37 2.43 79.43 0.38 4.99 28.37

Movies 5.26 3.51 2.01 0.53 66.18 0.46 34.29 6.26
Location 68.96 4.15 33.22 0.75 77.3978 0.36 49.5368 9.19316

BookCrossing 33.56 5.58 3.07 9.32 342.728 1.02 48.8196 75.2869
Teams − 18.42 114.17 2.44 time out 1.94 944.102 127.265

Wiki-en − 46.66 945.91 10.92 time out 9.079 3850.51 680.569
Amazon − 72.96 74.47 129.21 time out 17.184 3598.13 4731.29
DBLP − 112.60 29.13 159.74 time out 19.44 559.76 3000.08

Table 4: Evaluate the size of indexes and their build time.

8.3. Performance Evaluation

In this part, we evaluate the efficiency of the index construction algorithms and explore the appropriate
hyperparameter settings for the feed-forward neural network that Qhb depends on. Then, we evaluate the
efficiency of the query processing algorithms to retrieve (α, β)τ -core.
Index construction. First, We compare the build time of Iα,β,τ , Iα,β , Iβ,τ and Iα,τ on all datasets, as
reported in Table 4. The reported build time corresponds to the index construction algorithms with the
optimization techniques in Section 6. As shown in 7, although the computation-sharing and the Bloom-Edge-
index based optimizations effectively reduce the running time, the Iα,β,τ still cannot be built within time
limit on Teams, Wiki-en, Amazon or DBLP. This is because Iα,β,τ stores all the decomposition results and
it takes the longest time to build, followed by Iβ,τ , Iα,τ , and Iα,β . When the graph is denser on the upper
level, Iα,τ takes longer to construct than Iβ,τ . For example, in DBLP, where dmax(L)=119 < dmax(U)=951,
Iβ,τ is built within 10 minutes while Iα,τ is built in 50 minutes. Iα,β construction is the fastest as it does not
involve any butterfly counting or updating of support. In addition, we report the index sizes in Table 4. The
size of Iα,β,τ is larger than Iα,β , Iβ,τ and Iα,τ . In summary, the 2D-indexes that the hybrid computation
algorithm depends on are space-efficient and can be built within a reasonable time.

Tuning hyperparameters for the neural network. When training the neural network for the hybrid
computation algorithm, we choose the hyperparameters (the type of optimizer and size of the hidden layer)
that minimizes the time-sensitive error from cross-validation. For each graph G, we set the size of hidden
layer to 50 and test the stochastic gradient descent, L-BFGS method and Adam and compare the time-
sensitive error. As shown in Figure 8, the L-BFGS method consistently outperforms the other methods and

16

BX ST WR AC
Datasets

10 4

10 3

10 2

10 1
tim

e
se

ns
iti

ve
 e

rro
r lbfgs

sgd
adam

0 5 10 15 20 25 30 35 40
hidden layer size

10 4

10 3

10 2

10 1

100

tim
e

se
ns

iti
ve

 e
rro

r WR
BX

ST
AC

Figure 8: Effects of hyperparameters

Dataset Qbs Qα,β,τ Qα,β Qβ,τ Qα,τ Qhb
Cond-mat 0.139 0.004 0.030 0.008 0.009 0.006

Writers 0.406 0.011 0.069 0.011 0.009 0.006
Producers 0.560 0.022 0.200 0.047 0.037 0.029

Movies 0.871 0.023 0.235 0.028 0.041 0.027
Location 11.782 0.285 7.005 1.755 2.895 0.234

BookCrossing 44.397 0.147 13.271 2.935 4.794 1.722
Teams 59.510 − 10.911 3.080 2.778 1.394

Wiki-en 128.536 − 28.589 2.638 13.613 1.775
Amazon 973.026 − 153.085 88.673 59.228 16.432
DBLP 61.101 − 1.843 1.321 1.055 0.269

Table 5: This table reports the average response time for all query processing algorithms.

thus is chosen in our model. Then, we explore the effect of the size of the hidden layer on our model. We
report the change of time-sensitive error w.r.t varying hidden layer size on dataset DBpedia-location and
the trends are similar on other datasets. As shown in the plot, 30 hidden units are enough for the classifier
built on most tested datasets and beyond this point, more hidden units have little effect on the performance
of the model.
Average query time of Qα,β,τ , Qα,β , Qβ,τ , Qα,τ and Qhb. For each algorithm, we report the average
response time of 50 randomly generated queries on each dataset in Table 5. As expected, all index based al-
gorithms outperform Qbs, as Qbs computes (α, β)τ -core from the input graph. Among them, Qα,β,τ performs
the best on most datasets, as it fetches the vertices from Iα,β,τ in optimal time and then restores the edges.
However, the long build time of Iα,β,τ makes Qα,β,τ not scalable to larger graphs like Team,Wiki-en,Amazon
or DBLP. The performances of Qα,β , Qβ,τ , and Qα,τ differ a lot from each other and across datasets. On
average, Qα,β is slower than Qβ,τ and Qα,τ , because it needs to delete many edges from (α, β)-core to get
(α, β)τ -core especially when τ is large. As Qhb is trained to pick the fastest from {Qα,β , Qβ,τ , Qα,τ}, it out-
performs these 3 algorithms on average in all datasets. In addition, Qhb outperforms the online computation
algorithm Qbs by up to two orders of magnitude.
Evaluate the effect of α, β and τ . We investigate the effects of varying α, β, τ on each query processing
algorithm. We input three types of query streams for all algorithms, each of which increments one of α,
β, and τ while letting the other two parameters be generated randomly. As trends are similar, we only
report the results on Location and BookCrossing in Figure 9. Each data point in the figure represents
the average response time of 50 random queries. As expected, index-based query processing algorithms
always outperform Qbs. The performance of Qα,β,τ is not affected much by the varying parameters, while
the 2D-index based algorithms are highly sensitive to them. Each of Qα,β , Qβ,τ , and Qα,τ tends to perform
better when the increased parameter results in a smaller subgraph in the index. For instance, Qβ,τ performs
better as β or τ increases. In contrast, the hybrid computation algorithm Qhb has very stable performance,

17

2 4 6 8 11
alpha

10 3

10 2

10 1

100

101

102

Ti
m

e(
s)

(a) LO (Vary α)

21 43 65 87 109
beta

10 1

100

101

102

Ti
m

e(
s)

(b) LO (Vary β)

19 39 59 79 99
tau

10 2

10 1

100

101

102

Ti
m

e(
s)

(c) LO (Vary τ)

3 6 9 12 16
alpha

10 1

100

101

102

Ti
m

e(
s)

(d) BX (Vary α)

14 28 42 56 70
beta

10 2

10 1

100

101

102

Ti
m

e(
s)

(e) BX (Vary β)

19 39 59 79 99
tau

10 2

10 1

100

101

102

Ti
m

e(
s)

(f) BX (Vary τ)

Figure 9: Effects of varying parameters on each query processing algorithm.

as it stays close to and in many cases outperforms the fastest of Qα,β , Qβ,τ , and Qα,τ . In summary, the
hybrid computation algorithm Qhb with a well-trained classifier can adjust its querying processing algorithm
to different parameters and datasets.

9. Conclusion

In this paper, we introduce a novel cohesive subgraph model, τ -strengthened (α, β)-core, which is the
first to consider both tie strength and vertex engagement on bipartite graphs. We propose a decomposition-
based index Iα,β,τ that can retrieve vertices of any (α, β)τ -core in optimal time. We also apply computation
sharing and BE-Index-based optimizations to speed up the index construction process of Iα,β,τ . To balance
space-efficient index construction and time-efficient query processing, we propose a learning-based hybrid
computation paradigm. Under this paradigm, we introduce three 2D-indexes and train a feed-forward neural
network to predict which index is the best choice to process an incoming (α, β)τ -core query. The efficiency
of the proposed algorithms and the effectiveness of our model are verified through extensive experiments.

References

[1] J. Wang, A. P. De Vries, M. J. Reinders, Unifying user-based and item-based collaborative filtering approaches by sim-
ilarity fusion, in: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in
information retrieval, ACM, 2006, pp. 501–508.

[2] M. Ley, The DBLP computer science bibliography: Evolution, research issues, perspectives, in: Proc. Int. Symposium on
String Processing and Information Retrieval, 2002, pp. 1–10.

[3] J. C. Brunson, Triadic analysis of affiliation networks, arXiv preprint arXiv:1502.07016.
[4] M. Allahbakhsh, A. Ignjatovic, B. Benatallah, E. Bertino, N. Foo, et al., Collusion detection in online rating systems, in:

Asia-Pacific Web Conference, Springer, 2013, pp. 196–207.
[5] A. Beutel, W. Xu, V. Guruswami, C. Palow, C. Faloutsos, Copycatch: stopping group attacks by spotting lockstep

behavior in social networks, in: Proceedings of the 22nd international conference on World Wide Web, ACM, 2013, pp.
119–130.

18

http://arxiv.org/abs/1502.07016

[6] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, J. Zhou, Efficient (α,β)-core computation in bipartite graphs, The VLDB
Journal (2020) 1–25.

[7] D. Ding, H. Li, Z. Huang, N. Mamoulis, Efficient fault-tolerant group recommendation using alpha-beta-core, in: Pro-
ceedings of the 2017 ACM on Conference on Information and Knowledge Management, ACM, 2017, pp. 2047–2050.

[8] E. Ntoutsi, K. Stefanidis, K. Nørv̊ag, H.-P. Kriegel, Fast group recommendations by applying user clustering, in: Inter-
national Conference on Conceptual Modeling, Springer, 2012, pp. 126–140.

[9] M. D. Ornstein, Interlocking directorates in canada: evidence from replacement patterns, Social Networks 4 (1) (1982)
3–25.

[10] D. Palmer, Interlocking directorates and intercorporate coordination, Social Networks: Critical Concepts in Sociology 3
(2002) 261.

[11] S. B. Seidman, Network structure and minimum degree, Social networks 5 (3) (1983) 269–287.
[12] J. Cohen, Trusses: Cohesive subgraphs for social network analysis, National security agency technical report 16 (2008)

3–1.
[13] A. E. Sarıyüce, A. Pinar, Peeling bipartite networks for dense subgraph discovery, in: Proceedings of the Eleventh ACM

International Conference on Web Search and Data Mining, ACM, 2018, pp. 504–512.
[14] Z. Zou, Bitruss decomposition of bipartite graphs, in: International Conference on Database Systems for Advanced

Applications, Springer, 2016, pp. 218–233.
[15] K. Wang, X. Lin, L. Qin, W. Zhang, Y. Zhang, Efficient bitruss decomposition for large-scale bipartite graphs, in: 2020

IEEE 36th International Conference on Data Engineering (ICDE), IEEE, 2020, pp. 661–672.
[16] J. Cheng, Y. Ke, S. Chu, M. T. Özsu, Efficient core decomposition in massive networks, in: 2011 IEEE 27th International

Conference on Data Engineering, IEEE, 2011, pp. 51–62.
[17] W. Khaouid, M. Barsky, V. Srinivasan, A. Thomo, K-core decomposition of large networks on a single pc, Proceedings of

the VLDB Endowment 9 (1) (2015) 13–23.
[18] F. Zhang, C. Li, Y. Zhang, L. Qin, W. Zhang, Finding critical users in social communities: The collapsed core and truss

problems, IEEE Transactions on Knowledge and Data Engineering.
[19] X. Huang, H. Cheng, L. Qin, W. Tian, J. X. Yu, Querying k-truss community in large and dynamic graphs, in: Proceedings

of the 2014 ACM SIGMOD international conference on Management of data, ACM, 2014, pp. 1311–1322.
[20] Y. Shao, L. Chen, B. Cui, Efficient cohesive subgraphs detection in parallel, in: Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, 2014, pp. 613–624.
[21] M. S. Granovetter, The strength of weak ties, in: Social networks, Elsevier, 1977, pp. 347–367.
[22] F. Zhang, L. Yuan, Y. Zhang, L. Qin, X. Lin, A. Zhou, Discovering strong communities with user engagement and tie

strength, in: International Conference on Database Systems for Advanced Applications, Springer, 2018, pp. 425–441.
[23] K. Wang, X. Cao, X. Lin, W. Zhang, L. Qin, Efficient computing of radius-bounded k-cores, in: 2018 IEEE 34th Interna-

tional Conference on Data Engineering (ICDE), IEEE, 2018, pp. 233–244.
[24] Y. Zhang, J. X. Yu, Y. Zhang, L. Qin, A fast order-based approach for core maintenance, in: 2017 IEEE 33rd International

Conference on Data Engineering (ICDE), IEEE, 2017, pp. 337–348.
[25] F. Bonchi, F. Gullo, A. Kaltenbrunner, Y. Volkovich, Core decomposition of uncertain graphs, in: Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2014, pp. 1316–1325.
[26] Y. Peng, Y. Zhang, W. Zhang, X. Lin, L. Qin, Efficient probabilistic k-core computation on uncertain graphs, in: 2018

IEEE 34th International Conference on Data Engineering (ICDE), IEEE, 2018, pp. 1192–1203.
[27] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, A. Sharma, Preventing unraveling in social networks: the anchored

k-core problem, SIAM Journal on Discrete Mathematics 29 (3) (2015) 1452–1475.
[28] F. Zhang, W. Zhang, Y. Zhang, L. Qin, X. Lin, Olak: an efficient algorithm to prevent unraveling in social networks,

Proceedings of the VLDB Endowment 10 (6) (2017) 649–660.
[29] Z. Zou, R. Zhu, Truss decomposition of uncertain graphs, Knowledge and Information Systems 50 (1) (2017) 197–230.
[30] F. Zhang, Y. Zhang, L. Qin, W. Zhang, X. Lin, Efficiently reinforcing social networks over user engagement and tie

strength, in: 2018 IEEE 34th International Conference on Data Engineering (ICDE), IEEE, 2018, pp. 557–568.
[31] S.-V. Sanei-Mehri, A. E. Sariyuce, S. Tirthapura, Butterfly counting in bipartite networks, in: Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2150–2159.
[32] J. Wang, A. W.-C. Fu, J. Cheng, Rectangle counting in large bipartite graphs, in: 2014 IEEE International Congress on

Big Data, IEEE, 2014, pp. 17–24.
[33] K. Wang, X. Lin, L. Qin, W. Zhang, Y. Zhang, Vertex priority based butterfly counting for large-scale bipartite networks,

Proceedings of the VLDB Endowment 12 (10) (2019) 1139–1152.
[34] M. Cerinsek, V. Batagelj, Generalized two-mode cores, CoRR abs/1505.01817. arXiv:1505.01817.

URL http://arxiv.org/abs/1505.01817

[35] C. Giatsidis, D. M. Thilikos, M. Vazirgiannis, Evaluating cooperation in communities with the k-core structure, in: 2011
International conference on advances in social networks analysis and mining, IEEE, 2011, pp. 87–93.

[36] L. Chang, L. Qin, Cohesive subgraph computation over large sparse graphs, in: 2019 IEEE 35th International Conference
on Data Engineering (ICDE), IEEE, 2019, pp. 2068–2071.

[37] S. G. Aksoy, T. G. Kolda, A. Pinar, Measuring and modeling bipartite graphs with community structure, Journal of
Complex Networks 5 (4) (2017) 581–603.

19

http://arxiv.org/abs/1505.01817
http://arxiv.org/abs/1505.01817
http://arxiv.org/abs/1505.01817

	1 Introduction
	2 Related work
	3 Problem Definition
	4 The Online Computation Algorithm
	5 The Decomposition Based Total Index
	6 Optimizations of Index Construction
	7 A Learning-based Hybrid Computation Paradigm
	8 Experiments
	8.1 Experiments setting
	8.2 Effectiveness Evaluation
	8.3 Performance Evaluation

	9 Conclusion

