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Abstract

High-utility sequential pattern mining (HUSPM) has recently emerged as a focus of intense research interest.
The main task of HUSPM is to find all subsequences, within a quantitative sequential database, that have
high utility with respect to a user-defined minimum utility threshold. However, it is difficult to specify the
minimum utility threshold, especially when database features, which are invisible in most cases, are not un-
derstood. To handle this problem, top-k HUSPM was proposed. Up to now, only very preliminary work has
been conducted to capture top-k HUSPs, and existing strategies require improvement in terms of running
time, memory consumption, unpromising candidate filtering, and scalability. Moreover, no systematic prob-
lem statement has been defined. In this paper, we formulate the problem of top-k HUSPM and propose a
novel algorithm called TKUS. To improve efficiency, TKUS adopts a projection and local search mechanism
and employs several schemes, including the Sequence Utility Raising, Terminate Descendants Early, and
Eliminate Unpromising Items strategies, which allow it to greatly reduce the search space. Finally, experi-
mental results demonstrate that TKUS can achieve sufficiently good top-k HUSPM performance compared
to state-of-the-art algorithm TKHUS-Span.
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1. Introduction

We are currently in the age of big data. Sequential pattern mining (SPM), which has been very popular
since it was first proposed [1] in the early 1990s, has been successfully applied to many realistic scenarios,
such as bioinformatics [32], consumer behavior analysis [28], and webpage click-stream mining [14]. The goal
of SPM is to extract all frequent sequences (as sequential patterns) from a sequence database with respect
to a user-defined minimum threshold called ”support”. In recent years, multiple approaches [15, 23] have
been developed to achieve this goal by efficiently discovering patterns reflecting the potential connections
within items.

In a frequency-oriented pattern mining framework [15, 23], where the frequency is the only metric for a
sequence, many infrequent but crucial patterns are likely to be missed. In other words, most of the patterns
selected by SPM algorithms are uninformative because the frequency of a pattern does not always fully
correspond to its significance (i.e., profit, interest) [29]. Consider a recommendation system in an electronics
store; clearly, the main task of the system is to generate more benefits for the business. As is well known,
the unit profit from the sale of luxury goods, such as large screen OLED TV, is much greater than that of
everyday supplies, such as batteries; however, the former are sold in much lower volumes than the latter.
In this scenario, the system will tend to emphasize the patterns that lead to the purchase of luxury goods,
yielding a higher profit for revenue maximization instead of the frequent purchases of everyday supplies.
To deal with this problem in the frequency-oriented pattern mining framework, the concept of utility was
incorporated and high-utility itemset mining (HUIM) [18, 37] belonging to the utility-oriented framework,
which considers the relative importance of items [17], was developed. HUIM has been widely researched.
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It has been found that although HUIM methods are able to gain valuable information in certain practical
applications, they are incapable of addressing sequential databases, where each item has a timestamp. To
deal with this problem, high-utility sequential pattern mining (HUSPM) [27, 38, 41] was developed, and it
has become an emerging topic of interest in the domain of knowledge discovery in databases (KDD) [13, 16].
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purchasing records

Figure 1: Example of purchasing records in a consumer retail store

HUSPM can be applied in many common scenarios. Consider the real-life example of a consumer retail
store as shown in Figure 1, where users purchase a series of items, each of which has a corresponding unit
profit, at different times. These consumers’ purchasing behaviors make up a large-scale transaction database
containing a large amount of underlying knowledge, which can be discovered by HUSPM, for decision-making.
In contrast to other pattern mining tasks, HUSPM emerged quickly and had attracted much attention. To
represent the relative importance of patterns in the HUSPM problem, each item in the mining object, called
a quantitative sequence database, is associated with a positive value called internal utility, which generally
represents the number of occurrences (e.g., the number of the items purchased by a customer in one visit).
Moreover, each kind of item appearing in the database is associated with a special value called external
utility, which indicates the item’s relative importance (e.g., the unit profit of the item). The main task
of HUSPM is to find all subsequences with high utility, i.e., high-utility sequential patterns (HUSPs), in
a quantitative sequential database with respect to a user-defined minimum utility threshold. Specifically,
compared to the aforementioned SPM and HUIM, HUSPM considers the chronological ordering of items
as well as utility values associated with them [21], which makes it a much more challenging and complex
problem. Many researchers have proposed algorithms [20, 41, 43] with novel pruning strategies and data
structures to efficiently mine HUSPs.

However, HUSPM has a limitation in identifying HUSPs that contain valuable information: it is difficult
for users to specify the minimum utility threshold, especially when they are not familiar with the database’s
features, such as the average number of items per itemset, total number of sequences, and distribution of
utilities, which are customarily invisible to the user. For example, if the threshold is set to a too small value,
we may discover too many HUSPs with unimportant and redundant information, whereas if the threshold
is too large, we may capture only a few HUSPs that cannot provide sufficient information. Furthermore,
given the same threshold, one database may yield millions of HUSPs, whereas another may yield none. It
is time-consuming for decision makers to fine-tune the threshold to extract the proper number of patterns
for their intended purpose. An interesting but difficult question arises from this: how do we mine an
appropriate number of HUSPs? Top-k HUSPM was proposed to answer this question [39]. For instance,
Figure 1 can be considered as a motivated real-world application of top-k utility mining. In general, users
are more inclined to find out the top-k profitable products instead of hundreds of thousands of results in
retail store. There is a need to analyze sales data to establish sales strategies related to retail benefits
such as inventory preparation, product arrangement, and promotion. If there are three available promotion
positions on the shelf, then top-3 HUSPM technology can be used to discover the three patterns with the
highest utility. Assume one of the patterns is <{ham cheese}, {milk}>, decision-makers can put ham and
cheese on sale and then arrange milk into the promotion position for cross-marketing based on the mining
results. Furthermore, it is necessary to perform a rapid analysis with respect to huge sales databases during
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non-opening hours for their smooth running according to plan [26]. With no requirement for a predefined
minimum utility threshold, top-k HUSPM selects patterns with the top-k highest utilities; it is inspired by
top-k SPM [31] and top-k HUIM [35]. Different from classic HUSPM, top-k HUSPM is simpler and more
user-friendly because setting the value of k, the number of desired HUSPs, is more straightforward than
specifying the minimum utility threshold which requires domain knowledge.

In practice, top-k HUSPM can play a significant role in many real-life applications, such as web log
mining [3], gene regulation analysis in bioinformatics [46], mobile computing [27], and cross-marketing in
retail stores [39]. Some typical challenges faced by top-k HUSPM are listed here.

• Frequency of patterns in a frequency-oriented framework are monotone, but the download closure
property is not held in the utility-oriented framework. Therefore, it is computationally infeasible to
reduce the search space with existing SPM pruning strategies.

• Compared to top-k HUIM, top-k HUSPM is intrinsically better equipped to face a critical combina-
torial explosion of the search space. This is because the sequential ordering of items leads to various
possibilities of concatenation in a quantitative sequential database. This means that HUSPM must
check more candidates than HUIM, which can lead to high computational complexity without powerful
pruning strategies.

• With the purpose of guaranteeing algorithm completeness, i.e., missing no top-k pattern, the minimum
utility threshold must be increased from a very low value (very close or equal to zero) because the
threshold is not specified in advance. Increasing the threshold as fast as possible with efficient strategies
is very challenging in top-k HUSPM.

Up to date, only very preliminary work [34, 39, 46] has been conducted to capture top-k HUSPs. The
research topic is still at a very early stage of development, and existing strategies require significant improve-
ments in terms of running time, memory consumption, unpromising candidates filtering, and scalability.
Moreover, no systematic problem statement is defined. Therefore, in this paper, we formulate the problem
of top-k HUSPM and propose a novel algorithm called TKUS. The major contributions of this study can be
summarized as follows:

• We address the concept of top-k HUSP by considering not only frequency but also utility value. We
also formulate the problem of top-k HUSPM. In particular, important notations and concepts of top-k
HUSPM are defined.

• With the purpose of overcoming the challenges mentioned earlier, a novel algorithm called TKUS is
proposed. To ensure that all top-k HUSPs are found, we investigate the Sequence Utility Raising (SUR)
strategy to increase the minimum utility threshold quickly. For further efficiency improvement, we
adopt two utility upper bounds and design two companion pruning strategies: Terminate Descendants
Early (TDE) and Eliminate Unpromising Items (EUI).

• Extensive experiments using various algorithms on both real-world and synthetic datasets demonstrate
that the proposed TKUS has excellent performance in terms of runtime, memory usage, unpromising
candidate filtering, and scalability. In particular, experimental results comparing our proposed scheme
with state-of-the-art algorithm TKHUS-Span demonstrate that TKUS achieves sufficiently good per-
formance for top-k HUSPM compared to TKHUS-Span.

The remainder of this paper is organized as follows. Related work is briefly reviewed in Section 2.
Then, the top-k HUSPM problem is formulated in Section 3 alongside related definitions. The proposed
TKUS algorithm is presented with several strategies and data structures in Section 4. Experimental results
are presented and evaluated in Section 5. Finally, Section 6 concludes the paper, and future work is also
discussed.

2. Related Work

All research work related to this topic can be divided into three categories: (1) SPM algorithms, (2)
HUSPM algorithms, and (3) key algorithms for mining top-k high-utility patterns.
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2.1. Sequential Pattern Mining

Agrawal and Srikant [1] presented the first definition of SPM when considering customer consumption
records. They also presented a simple algorithm called AprioriAll based on the Apriori property [2]. Re-
sembling AprioriAll in its mining principle, GSP, which greatly outperforms AprioriAll, was introduced by
Srikant and Agrawal [28]. However, the drawback of GSP is that it traverses the original database repeat-
edly to calculate the support of candidate patterns, which incurs very high computational costs. Later,
an alternative algorithm called SPADE [40] with a vertical database representation is developed to resolve
the repetitive scanning problem. SPADE is able to decompose the original search space into smaller pieces
that are independently solved according to combinatorial properties; this efficiently reduces the amount of
scanning required. The excellent search schemes result in only three database scans, or even one single scan
in the case of SPADE, which minimizes the I/O costs. Similar to SPADE in adopting a vertical database,
SPAM [6] can extract very long sequential patterns with a novel depth-first search strategy. As is well known,
algorithms will generate a large number of candidates when handling dense datasets because of combinatorial
explosion, making them ineffective. Therefore, Yang et al. [36] developed LAPIN using a straightforward but
innovative idea that the last occurrence position of an item determines whether to continue concatenating
candidates or not. All of the aforementioned algorithms can be considered Apriori-based algorithms.

Note that these algorithms have a disadvantage of generating many unpromising candidates that have no
possibility of appearing in the database, similar to other Apriori-based algorithms. To solve this problem, a
series of pattern growth algorithms have been proposed. For instance, the high-efficiency FreeSpan, which
was developed by Han et al. [22], adopts projected sequential databases built recursively by frequent items to
grow pattern fragments. For further improvement, they proposed an improved version called PrefixSpan [23]
with two projection strategies called level-by-level projection and bi-level projection. PrefixSpan projects
only corresponding postfix subsequences into the projected database, which can greatly decrease the scope of
scanning, allowing it to run fast, especially when the desired sequential patterns are numerous and/or long.
As a parallelized version of PrefixSpan utilizing MapReduce, Sequence-Growth [24] adopts a lexicographical
order to construct candidates with a breadth-wide support-based approach called lazy mining. Moreover,
some efficient data structures, such as Web access pattern tree (WAP-tree) [25] and its preorder linked and
position coded version [12], have been proposed to compress databases and improve efficiency.

However, pattern growth SPM algorithms have the crucial limitation that recursively building projected
databases incurs high computational costs. Consequently, several early pruning strategies have been designed
to avoid constructing projected storing structures of unpromising sequences. For example, DISC-all [8] adopts
a novel pruning strategy called DISC to remove unpromising patterns early based on sequences of the same
length. Subsequently, Chen [7] proposed a novel data structure called UpDown Directed Acyclic Graph
(UDDAG), which results in fewer levels of recursion and faster pattern growth when constructing projected
databases. UDDAG scales up much better than PrefixSpan and can be extended to applications with large
search spaces. More details on SPM can be found in literature reviews [15, 19].

2.2. High-Utility Sequential Pattern Mining

The most important metric of SPM algorithms is frequency. However, frequency does not directly
correspond to significance under any circumstances. To address this problem, SPM was generalized to
HUSPM [4], whose goal is to find all HUSPs in a quantitative sequential database with respect to a user-
defined minimum utility threshold. With not only a utility attached to each item but also a timestamp,
HUSPM has played a key role in various applications [3, 27, 46]. Up to now, multiple HUSPM algorithms
have been developed [4, 27, 38, 41], and it has become easy to obtain HUSPs using various optimization
methods, such as efficient pruning strategies and highly compressed data representations. Ahmed et al. [4]
were the first to incorporate the concept of utility into SPM. Along with defining the problem, they designed
a new mining framework to find a complete set of HUSPs, where both internal and external utilities are
considered. Furthermore, they proposed two two-phase algorithms called Utility Level (UL) [4] and Utility
Span (US) [4] based on candidate generation and pattern growth approaches, respectively, adopting an
upper bound called SWU. Compared to the straightforward UL algorithm, US generates no candidates in
the mining process.

There are two main drawbacks to the aforementioned algorithms. One is that algorithms generate many
sequences with high SWU values, which consumes considerable main memory in the first phase. The other
is that scanning the database to calculate the utility of candidates incurs very high computational costs. To

4



address these problems, subsequent studies [38, 34] have adopted a prefixed tree, where each node denotes
a candidate sequence (except the root, which is null), and its child nodes can be extended from it by one
extension operation. One exception to this is the one-phase algorithm UM-Span [27], which is applied in
the real-life situation of planning mobile commerce environments. Due to the high complexity of sequential
mobile transactions, tree-based algorithms have poor performance in such a scenario because they must
construct a complex tree structure. UM-Span improves efficiency and can overcome the bottleneck of utility
mining because it avoids additional scans to identify HUSPs by using a projected database-based approach.

All aforementioned HUSPM algorithms adopt the upper bound SWU, which is very loose and still gen-
erates a large number of candidate sequences. In view of this, Yin et al. [38] designed a generic pattern
selection framework and introduced an efficient algorithm called USpan, which utilizes two pruning strate-
gies (width and depth) and a tree-based structure called the lexicographic q-sequence tree (LQS-Tree) to
represent the search space. The width pruning strategy uses SWU to remove unpromising items, whereas
the depth pruning strategy uses the SPU upper bound to stop USpan from going deeper by identifying tree
nodes. However, USpan may miss some HUSPs because SPU sometimes filters promising candidates. The
HuspExt [5] and HUS-Span [34] algorithms are extensions of USpan devised to improve the mining efficiency.
The HuspExt algorithm adopts a tight upper bound CRoM to eliminate candidate items early. In HUS-
Span, Wang et al. [34] designed two tighter utility upper bounds, PEU and RSU, to remove unpromising
patterns early and significantly reduce the search space. Recently, for further performance improvement,
several algorithms have been proposed for HUSPM. For example, HUS-UT [43] adopts an efficient data
structure called a utility table to facilitate the utility calculation; a parallel version called HUS-Par was also
proposed. In addition, the novel data structures of utility-array and UL-list were proposed for ProUM [20]
and HUSP-ULL [21], respectively, to quickly discover HUSPs.

Currently, there is an emergence of interesting extensions generalized from HUSPM. For example, Dinh
et al. [10] designed a post-processing algorithm called PHUSPM, which can discover HUSPs periodically
appearing in a quantitative sequential database. Adopting the special PBS and TSWU strategies, an efficient
algorithm called MHUH [42] was proposed for extracting high-utility hierarchical sequential patterns. In the
domain of privacy preservation, Zhang et al. [44] developed a hiding HUSPs algorithm called FH-HUSP,
which can protect personal private data based on dynamic programming and several efficient strategies.
More recent HUSPM works are referenced in related surveys [17, 29].

2.3. Top-k Utility Pattern Mining

Although aforementioned algorithms can efficiently find patterns, it is difficult for users to specify a proper
minimum utility threshold. Top-k-based algorithms [31, 33, 34, 35] address this problem by providing users
an opportunity to determine the desired number of patterns directly rather than considering the threshold.

Wu et al. [35] first proposed an top-k HUIM algorithm for mining top-k high-utility itemsets without
setting the minimum utility threshold. They also incorporated several novel strategies for pruning the search
space to achieve high efficiency. The study inspired a lot of works focusing on top-k HUIM. Heungmo et
al. [26] developed an efficient algorithm REPT with highly decreased candidates. For further efficiency,
Vincent et al. [30] designed the first two-phase algorithm TKU with five strategies and the first one-phase
algorithm TKO integrating the novel strategies. After that, kHMC [11] relying on a novel co-occurrence
pruning technique named EUCPT to avoid performing costly join operations for calculating the utilities of
itemsets was designed. Moreover, several extension problem were proposed, such as discovering top-k HUIs
over data streams [45] and identifying top-k on-shelf HUIs [9].

There are only a few top-k HUSPM algorithms that dealing with sequence data. TUS [39] is the first
algorithm for top-k HUSPM, and it discovers patterns without the minimum threshold by extending on their
preliminary work of USpan. With the purpose of raising the minimum utility threshold quickly to reduce
the search space as much as possible, TUS adopts three strategies in different stages of the mining process.
As with the USpan algorithm [38] utilizing the SPU upper bound and corresponding pruning strategy,
TUS is clearly also an incomplete algorithm, which means that it may miss some top-k HUSPs under some
circumstances. Besides, Wang et al. [34] further developed the TKHUS-Span algorithm, which has three
versions: BFS strategy-based, DFS strategy-based, and hybrid search strategy-based, based on the HUS-
Span algorithm. TKHUS-Span adopting the BFS strategy has better performance than other algorithms,
including TUS, whereas that with the hybrid search strategy performs the best with limited memory space.
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Applying top-k HUSPM to a realistic scenario, Zihayat et al. [46] formulated a new problem as an
extension of top-k HUSPM: extracting the top-k gene regulation-related patterns over time from a microarray
dataset. They developed a novel utility model referring to a series of a priori professional knowledge on a
specific disease from a biological investigation. They also designed a novel and problem-specific algorithm
called TU-SEQ for mining the top-k high-utility gene regulation sequential patterns with the ItemUtilList
vertical data structure and PES strategy. The development of top-k HUSPM is not yet mature. In particular,
the only complete top-k HUSPM method without missing any top-k HUSPs, TKHUS-Span [34], has much
room for improvement, particularly in terms of efficiency. This motivates us to develop the more suitable
data structure and more effective pruning strategies to address the problem of top-k HUSPM.

3. Preliminaries and Problem Formulation

In this section, we briefly introduce the basic definitions and principles required for the remainder of
the paper. We also adopt some definitions from prior research for clearer expression of the research issue.
Finally, the problem definition of top-k HUSPM is formalized.

3.1. Notations and Concepts

Table 1: Example quantitative sequence database

SID Quantitative sequence
S1 <{(a:2) (c:3)}, {(a:3) (b:1) (c:2)}, {(e:3)}>
S2 <{(a:3) (d :2)}, {(a:1) (e:3)}, {(b:5) (c:2) (d :1) (e:1)}, {(b:1) (d :5)}>
S3 <{(d :2) (e:2)}, {(a:1) (b:3)}, {(a:2) (d :4) (e:1)}, {(f :1)}>
S4 <{(f :2)}, {(a:1) (d :3)} {(d :2)} {(a:2)}>

Table 2: Example utility table

Item a b c d e f
External utility $5 $4 $2 $1 $3 $5

Let I = {i1, i2, · · · , iN} be a set of possibly appearing and distinct items. An itemset X is a nonempty
set containing one or more items of I, that is, X ⊆ I. The size of itemset X is represented by |X |. A
sequence S = <X1, X2, · · · , Xn> is an ordered list of itemsets. Note that each element (i.e., itemset) can
be unordered and satisfies Xk ⊆ I, where 1 ≤ k ≤ n. Without loss of generality, all items in one itemset
are sorted alphabetically. The length of S is l =

∑n

k=1 |Xk|, called an l-sequence, and the size of S is n.
We say that T : <Y1, Y2, ..., Ym> is the subsequence of S, denoted as T ⊆ S, if there exists m integers
1 ≤ k1 < k2 < ... < km ≤ n such that ∀1 ≤ v ≤ m,Yv ⊆ Xkv

. For example, a sequence s = <{c}, {a b}>
is the subsequence of <{a c}, {a b c d}, {b}>, and s is called a 3-sequence because its length and size are
three and two, respectively.

To illustrate the following concepts, we show examples of them in Tables 1 and 2.

Definition 1 (quantitative sequence). A quantitative item (q-item) is a tuple (i:q) consisting of an item
i (i ∈ I) and a positive number q representing the internal utility value (e.g., quantity) of i. A quantitative
itemset (q-itemset) with n q-items is denoted as {(i1:q1) (i2:q2)· · · (in:qn)}, which can be regarded as an
itemset with quantities. A quantitative sequence (q-sequence), denoted as <Y1, Y2, ..., Ym>, is an ordered
list of m q-itemsets, where Yi ⊆ I.

For example, <{c}, {a b}> is a sequence, while <{(e:6)}, {(f :1) (c:3)}> is a q-sequence, where each
item is assigned a quantity.

Definition 2 (quantitative sequence database). A q-sequence database D contains a set of pairs (SID,
QS ), where SID is the unique identifier of a q-sequence QS. Moreover, each kind of item in D is associated
with an external utility value (e.g., profit), all of which compose a utility table.
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Consider the example shown in Table 1, where the q-sequence database has four q-sequences and six
kinds of items, whose external utility values are provided in Table 2. As a rule, the utility table is generated
by decision makers according to prior knowledge of analogous users or contents.

3.2. Utility Calculation

In this subsection, we define a series of utility calculation functions. The q-item utility, denoted as
q(i, j, s), which is the quantitative measure for (i:q) within the jth q-itemset of a q-sequence s, is defined
as u(i, j, s) = q(i, j, s) × eu(i), where q(i, j, s) and eu(i) are the corresponding internal utility in this
occurrence and external utility of the item i, respectively. The q-itemset utility is equal to the sum of the
utilities of the q-items it contains. Analogously, the utility of a q-sequence (q-sequence database) is the sum
of the utilities of the q-itemsets (q-sequences) it contains.

For instance, consider the q-item a within the 1st q-itemset of S1 in Table 1; its utility can be calculated
as q(a, 1, S1) × eu(a) = 2 × $5 = $10. Then, we have that the utility of the 1st q-itemset of S1 is $16
($10 + $6), and the utility of the q-sequence S1, described as u(S1), is $48 (= $16 + $23 + $9); the overall
utility of the q-sequence database D in Table 1 is u(D) = $48 + $68 + $42 + $30 = $188.

Definition 3 (match). Given an itemset X : {i1, i2, · · · , im} and q-itemset Y : {j1:q1) (j2:q2)· · · (jn:qn)},
we say that X matches Y if and only if m = n and ik = jk for 1 ≤ k ≤ n. Similarly, given a sequence S:
<X1, X2, · · · , Xm> and q-sequence Q: <Y1, Y2, ..., Yn>, S matches Q, denoted as S ∼ Q if and only if m
= n and Xk matches Yk, where 1 ≤ k ≤ n.

For example, {a c} matches the 1st q-itemset of S1, and <{a c}, {a b c}, {e}> matches S1.

Definition 4 (contain). Given itemsets (q-itemsets) X and Y , we say that Y contains X (i.e., X is con-
tained in Y ), denoted as X ⊑ Y , if and only if X is a subset of Y . Strictly speaking, the concept of ”contain”
slightly differs between an itemset and q-itemset.

For example, {a b} is contained in {a b c}, whereas {(a:1) (e:2)} is contained in {(a:1) (b:3) (e:2)} and
{(a:1) (e:2) (f :2)} but not in {(a:3) (b:2) (e:2)}. We formalize the calculation of itemset utility as u(X, j, s)
=

∑

∀i∈X u(i, j, s), where X is contained in the jth itemset of a q-sequence s. For example, in Table 1,
u({a c}, 2, S1) = u(a, 2, S1) + u(c, 2, S1) = $15 + $4 = $19.

Definition 5 (instance). Given a sequence S: <X1, X2, · · · , Xm> and q-sequence Q: <Y1, Y2, · · · , Yn>,
where m ≤ n, we say that Q has an instance S, denoted as S ⊑ Q at position p: < k1, k2, ..., km > if and only
if there exists an integer sequence 1 ≤ k1 < k2 < ... < km ≤ n such that Xv ∼ X ′ ∧X ′ ⊑ Ykv

∀1 ≤ v ≤ m,
where X ′ is a q-sequence.

For example, S2 has an instance <{a}, {e}> at positions p1: <1, 3> and p2: <2, 3>. In the remainder
of this paper, for the sake of convenience, S ⊑ Q is used to indicate S ∼ S′ ∧ S′ ⊆ Q.

Definition 6 (sequence utility function). In addition, the utility of a sequence t: <X1, X2, · · · , Xm>

in a q-sequence s: <Y1, Y2, · · · , Yn> at position p: <k1, k2, · · · , km> can be represented as u(t, p, s), where
u(t, p, s) =

∑m

v=1 u(Xv, kv, s). In some cases, a sequence t may appear in s more than once; the set of all
positions of t is denoted as P (t, s). Let u(t, s) denote the utility of t in s, and choose the maximum value
as the utility, which is defined as u(t, s) = max{u(t, p, s)|p ∈ P (t, s)}. The utility of t in a q-sequence
database D can be defined as u(t) =

∑

s∈D∧t⊑s u(t, s).

For example, in Table 1, S1 has an instance <{a}, {b c}> at position: <1, 2>; then, we can calculate
u(<{a}, {b c}>, <1, 2>, S1) = $10 + $8 = $18. For example, in Table 1, S2 has four instances of t: <{a},
{b}>, P (t, S2) = {<1, 3>, <1, 4>, <2, 3>, <2, 4>}; u(t, <1, 3>, S1) = $15 + $20 = $35, u(t, S1) =
max{$35, $19, $25, $9} = $35, and u(t) = $14 + $35 + $0 + $0 = $49. More details on how to calculate
the utility value can be found in Ref. [17].

Definition 7 (top-k high-utility sequential pattern). In a q-sequence databaseD, we define a sequence
s as a top-k HUSP if there exist less than k sequences whose utility values are higher than that of s.
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Problem statement. Given a q-sequence database D and user-defined parameter k in advance, the
goal of top-k HUSPM is to identify the complete set of top-k HUSPs.

Conventional HUSPM aims to find the patterns whose utilities are no less than the minimum utility
threshold minutil in database D. Clearly, we can conclude that top-k HUSPM, where the minimum utility
threshold minutil can be represented as minutil = min{u(t)|t ∈ T }, where T is the complete set of top-k
HUSPs instead of being specified by the user, is an extension of conventional HUSPM.

4. Proposed TKUS Algorithm

Based on the aforementioned concepts, we developed an algorithm called TKUS for efficiently discovering
top-k HUSPs without specifying a minimum utility threshold. Without loss of generality, we formalize the
following definitions and theorems under the context of a number of desired patterns k, a q-sequence database
D including a series of q-sequences, and a utility table.

4.1. Projection and Local Search Mechanism

One of the main problems in the domain of data mining is that fundamental technologies repeatedly
scan the database to discover knowledge. This issue also exists in HUSPM, which requires multiple database
scans to calculate the utility of candidates. This can incur very high costs, especially for large database,
even if some optimizations (e.g., Apriori property [2]) are performed to reduce the cost. To address this
problem, we design a projection and local search mechanism, which only scans the original database once,
and recursively constructs projected databases. This greatly limits the size of the scan space, especially when
calculating the utility value of a long candidate, which contains so many items. To facilitate the presentation
of algorithm, we present the following essential definitions.

Definition 8 (extension). The common operation of ”extension”, which includes I-Extension and S-
Extension, is performed by many pattern mining algorithms. Given an l-sequence t, the I-Extension of
sequence t involves appending an item i belonging to I to the last itemset of t, which becomes a (l+1)-
sequence t′, also denoted as <t

⊕

i>. Similarly, the S-Extension of sequence t involves appending the
itemset only consisting of the item i at the end of t, which also becomes a (l+1)-sequence t′, represented as
<t

⊗

i>.

As an extended version of the lexicographic sequence tree [6], the LQS-Tree structure [38, 20] is widely
used in HUSPM to represent the search space. In this tree structure, the root is a null sequence, denoted
as <>, whereas each of other nodes represents a candidate along with its utility. As its name implies,
all children of a node are arranged in alphabetical order. The parent–child node relationship follows the
regularity that children are either I-Extension or S-Extension sequences of their parent.

As mentioned in Section 3.2, the utility of a sequence t in a q-sequence s is the maximum utility of all
instances. However, the process of utility calculation may lead to long execution time for calculating multiple
instances in one q-sequence. Take a sequence t: <{a}, { b}> and S2 in Table 1 as an example. First, we
must find the positions of all instances of t in S2: P (t, S2) = {<1, 3>, <1, 4>, <2, 3>, <2, 4>}. Then, we
compute the utility of each instance and determine the maximum of the utilities of all instances, represented
as u(t, S1) = max{$35, $19, $25, $9} = $35. Thus, we adopt the utility chain data structure composed of
utility lists to greatly reduce the calculation cost based on Ref. [34]. We discuss the details of utility chain
in the following.

Definition 9 (extension position). Assume a sequence t has an instance at position <k1, k2, ..., km> in
a q-sequence s with the extension position km; the last item in t is called the extension item. Note that
different instances in one q-sequence can have the same extension position.

Assume the set of extension positions of t in s is {p1, p2, . . . , pn}; then, the utility of t at extension position
pi in the current q-sequence, denoted as u(t, pi, s), is defined as u(t, pi, s) = max{u(t, <j1, j2, . . . , pi>,
s)|j1 ≤ j2 ≤ . . . ≤ pi and <j1, j2, . . . , pi>∈ P (t, pi, s)}, where P (t, pi, s) is the set of positions with
extension position pi.
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According to the concept of extension position, we define the remaining utility [38] of t at extension
position pi in s as urest(t, pi, s) =

∑

i′∈s
∧

i′≻t u(i
′), where i′ ≻ t indicates that the position of item i′ is

after the extension position pi.
Consider the example in Table 1, where <{a}, {b}> has instances at positions <2, 4> and <1, 4> in S2;

the extension positions of the two instances are both 4, and b is the extension item. Then, we can calculate
u(<{a}, {b}>, 4, S2) = max{$19, $9} = $19 and urest(<{a}, {b}>, 4, S2) = $4 + $1 + $3 + $4 + $5 =
$17.

Definition 10 (pivot). Assuming that the set of extension positions of a sequence t in a q-sequence s is
{p1, p2, . . . , pn}, p1 is called the pivot of t in s [38].

Based on the pivot concept, the remaining utility of t in s is denoted as urest(t, s) and defined as urest(t, s)
= urest(t, p1, s). The pivot utility of t in s, denoted as up(t, s), is defined as up(t, s) = u(t, p1, s).

For example, consider the sequence <{a}, {b}> and S2 in Table 1. We can calculate the remaining
utility and pivot utility as urest(<{a}, {b}>, S2) = urest(<{a}, {b}>, 3, S2) = $17 and up(<{a}, {b}>,
S2) = u(<{a}, {b}>, 3, S2) = $35, where 3 is the pivot.

According to the concepts defined in this subsection, we designed the projected database to represent
the necessary information of each sequence. As shown by the example in Figure 2, a projected database is
composed of an information table and a utility chain consisting of a head table and multiple utility lists [34].
The information table includes two key pieces of information: the sequence itself and the prefix extension
utility (PEU ) [34] value of the sequence in the projected database. The details are described in Section 4.3,
but here we focus on the utility chain.

To facilitate the introduction of the projected database concept, we suppose a sequence t has multiple
instances at m extension positions PV (t, s) = {pv1, pv2, · · · , pvm} in the q-sequence s, and we assume there
are n q-sequences, including s, containing t in the database D. Each utility list is a set of elements with
size of m, which correspond to m extension positions of t in s. The ith element contains the three following
fields: 1) ItemsetID, which is the ith extension position pvi, 2) Utility, which is the utility value of t at the
ith extension position pvi, and 3) RestUtility, which is the remaining utility of t at the ith extension position
pvi. The head table stores two fields, SID and PEU, which record the identifier of s and PEU value of t in
s, respectively. There are m rows in the head table, each of which corresponds to a utility list.

Figure 2: Example of the projected database of sequence <{a},{e}>

The projected database of the sequence <{a}, {e}> for the example in Table 1 is shown in Figure 2. The
sequence t: <{a}, {e}> is contained in S1, S2, and S3; hence, the head table has three rows that correspond
to three utility lists. In S2, t has multiple instances at extension positions 2 and 3, up(t, 2, S2) = $24,
urest(t, 2, S2) = $37, up(t, 3, S2) = $18, and urest(t, 3, S2) = $9. Therefore, the second utility list is
formed by two elements: (2, $24, $37) and (3, $18, $9).

Clearly, information included in the projected database of the sequence is precise and complete because
the projected database of the (l+ 1)-sequence is built based on the parameter-free local search operation of
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l-sequences instead of a total scan of the whole original database. The TKUS algorithm adopts the projection
and local search mechanism, which limits the scan space recursively by constructing a projected database of
the current candidate and extending it. This divide-and-conquer concept greatly reduces the high costs of
scanning, especially for a large database.

4.2. Sequence Utility Raising Strategy

As discussed in Section 1, to guarantee all top-k patterns are found, TKUS employs a variable minutil,
which is increased from a very low value (close or equal to zero), as the threshold because the minimum utility
threshold is not specified ahead of the mining process, which leads to more candidates being generated and
the performance of the algorithm being degraded. To handle this problem, we propose the novel Sequence
Utility Raising (SUR) strategy to raise the minimum utility threshold as fast as possible.

Definition 11 (SUR strategy). Given a q-sequence database D, let TKList = {s1, s2, . . . , sn} be the set
of all 1-, 2-, and q-sequences contained in D, where si (1 ≤ i ≤ n) is the sequence with the ith highest utility
value in TKList, denoted as ui. We can safely increase the variable minutil to uk, where k is the desired
input number of patterns, before the mining task.

Now, we prove that TKUS will not miss any top-k HUSPs with the SUR strategy.

Proof 1. Let Hminutil be the set of HUSPs when the minimum utility threshold is set to minutil. It is
obvious that Hminutil1 ⊆ Hminutil2 , where minutil1 > minutil2. Suppose we increase the variable minutil to
uk before the mining task; the set of sequences contained in H0 but not contained in Huk

, denoted as R,
will not be discovered as unpromising candidates because their utility values are all lower than uk. For each
sequence s in R, there must be at least k sequences (e.g., k sequences from s1 to sk in TKList) whose utility
values are not lower than the utility of s in database D. Therefore, according to Definition 7, no sequences
in R are top-k HUSPs and neglecting them does not affect the correctness of the results. Thus, TKUS will
not miss any top-k HUSPs with the SUR strategy.

For example, in Table 1, given k = 4, the utility values of all 1-, 2-, and q-sequences can be calculated
easily in one database scan: u(<{a}>) = $50, u( <{b}>) = $36, u <{c}>) = $10, u(<{c}, {d}>) = $9,
u(<{a d}>) = $39, u(<{f }, {a d} {d} {a}> = $30, etc. As a result, we get the four sequences with the
highest utility values u(<{a}, { a}> = $75, u(<{a d}, {a e}, {b c d e}, {b d}> = $68, u(<{a}, {e}>) =
$56, and u(<{a}>) = $50, and minutil increases to 50. It is clear that the SUR strategy generates the least
unpromising candidates possible because it effectively increases the current minimum utility threshold to a
rational level in advance.

4.3. Upper Bounds and Corresponding Pruning Strategies

Due to the monotonicity in the frequency-oriented framework [21], it is computationally infeasible to
reduce the search space by taking advantage of existing SPM upper bounds. In addition, compared with
top-k HUIM [35], top-k HUSPM intrinsically deals with a critical combinatorial explosion of the search
space and computational complexity better. This is because inherent time order embedding in items leads
to various possibilities of concatenation in the q-sequence database. To address this problem, several upper
bounds have been proposed: sequence-weighted utilization (SWU ), sequence-projected utilization (SPU ),
and sequence extension utility (SEU ); details are presented as follows. The basic principle of these upper
bounds is to greatly reduce the search space by following the downward closure property, which is able to
accelerate the mining process.

Suppose t is a sequence andD is a q-sequence database. Here, we briefly introduce the three upper bounds.
SWU, SPU, and SEU of t inD are defined as SWU =

∑

t⊆s∧s∈D u(s) [38], SPU =
∑

t⊆s∧s∈D (up (t, s) + urest(t, s))
[38], and SEU =

∑

t⊆s∧s∈D (u (t, s)+urest(t, s)) [20], respectively. However, SPU in not a true upper bound,
which leads some real HUSPs being eliminated when pruning with it. The proof of this can be found in
Ref. [20]. Therefore, the first top-k HUSPM algorithm TUS [39], which adopts the SPU upper bound, may
miss some top-k HUSPs and return the wrong experimental results. More details of the downward closure
property of an upper bound can also be found in Ref. [20]. SWU and SEU overestimate the utility of
candidates and can limit the search to a reasonable scope. To further speed up the mining process, we adopt
the tighter upper bounds of PEU and RSU, which were proposed in Ref. [34].
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Definition 12 (PEU upper bound [34]). The PEU of a sequence t at position p :< k1, k2, ..., km > in
a q-sequence s, denoted as PEU(t, p, s), is defined as

PEU(t, p, s) =

{

u(t, p, s) + urest(t, km, s), urest(t, km, s) > 0
0 , otherwise

Based on PEU(t, p, s), the PEU of t in the q-sequence is defined as PEU(t, s) = max{PEU (t, pi, s)},
where pi is one position of t in s P (t, s). Moreover, the overall PEU value of the sequence t in a q-sequence
database D is the sum of the PEU s of t in each q-sequence, which is denoted as PEU(t) and defined as
PEU(t) =

∑

t⊑s∧s∈D PEU(t, s).

For example, consider the sequence t: <{a}, {e}> in Figure 2, where t has two instances in S1. PEU (t,
<1, 3>, S1) and PEU (t, <2, 3>, S1) are both equal to $0 because urest(t, 3, S1) is $0. In addition, t
has three instances in S2, and we have PEU (t, S2) = max{$61, $27, $17} = $61. Finally, the PEU of any
sequence extended by t can be calculated as follows: PEU(t) = PEU(t, S1) +PEU (t, S2) +PEU(t, S3) = $0
+ $61 + $13 = $74.

Theorem 1. Given two sequences t and t′ and a q-sequence database D, suppose t′ is a prefix of t. We have
u(t) ≤ PEU(t′) [34].

Proof 2. Because t′ is a prefix of t, let t = t′ • t′′, where |t′′| > 0. Assume t is contained in a q-sequence s.
The utility of t in s can be divided into two parts denoted as u(t, s) = u(t′, p, s) +ulimit(t

′′), where p is one
of the extension positions of t′ in s, and ulimit(t

′′) is the utility of an instance of t′′ in s with the first item
after position p. Clearly, ulimit(t

′′) ≤ urest(t
′, p, s); then, we have

u(t, s) = u(t′, p, s) + ulimit(t
′′)

≤ u(t′, p, s) + urest(t
′, p, s)

≤ max{u(t′, p, s) + urest(t
′, p, s)}

≤ PEU(t′, s)

Because t′ ⊑ t, we have u(t) =
∑

s∈D∧t⊑s u(t, s) ≤
∑

s∈D∧t⊑s PEU (t′, s) ≤
∑

s∈D∧t′⊑s PEU(t
′, s) = PEU(t′)

in a database D.

Based on the aforementioned proof, we can draw the conclusion that the utilities of all sequences that
can be extended from t are lower than a given value if the PEU of t is lower than that value. Thus, we have
the following TDE pruning strategy.

Definition 13 (TDE pruning strategy). In the TKUS algorithm, let t and minutil be a candidate and
the current minimum utility threshold, respectively. Assume that the node N in the LQS-tree denotes the
candidate t. If PEU(t) ≤ minutil, then TKUS need not check its descendants; in other words, TKUS can
terminate the present iteration from node N .

Clearly, the TDE pruning strategy is a depth-based strategy and can prevent scanning deep but un-
promising nodes in the LQS-tree. Significantly, it is a safe strategy because the PEU upper bound has the
downward closure property; hence, any descendant of the node denoting t cannot be a desired top-k HUSP.
Consider the sequence t: <{a}, {e}> for the example in Table 1. We have calculated the PEU value of
t in Figure 2, where PEU(t) = $74. Suppose the minimum utility threshold has already been increased to
80 (i.e., minutil = 80); then, the algorithm terminates at the node representing t and stops searching its
descendants according to the TDE pruning strategy.

Definition 14 (RSU upper bound [34]). Suppose α is a sequence that can be extended to the sequence
t through one I-Extension or S-Extension operation. In other words, the node representing α is the parent
of the node representing t in the LQS-tree. The RSU of t in a q-sequence s, denoted as RSU(t, s), is defined
as

RSU(t, s) =

{

PEU(α, s), t ⊑ s ∧ α ⊑ s

0 , otherwise

Then, the RSU of t in databaseD can be denoted as RSU(t) and defined asRSU(t) =
∑

t⊑s∧s⊑D RSU(t, s).
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Consider the example in Table 1. Suppose t: <{a}, {e}, {f }> and α: <{a}, {e}>. It is clear that
only S2 contains both t and t′. According to Definition 18, we have RSU (t, S1) = RSU (t, S3) = $0, because
S1 and S3 contain α but do not contain t, and RSU (t, S2) = PEU (α, S2) = $61. Finally, the RSU of t is
RSU (t) = $61.

Theorem 2. Given two sequences t and t′ and a q-sequence database D, assume t′ is a prefix of t or t′ = t.
We have u(t) ≤ RSU(t′) [34].

Proof 3. Suppose α is a sequence that can be extended to t′ through one I-Extension or S-Extension
operation. α is also a prefix of t because t′ is a prefix of t or t′ = t. Given a q-sequence s containing
t, we obtain u(t, s) ≤ PEU(α, s) according to the proof of Theorem 1. Based on Definition 13, we have
RSU(t′, s) = PEU(α, s). Finally, we have u(t, s) ≤ RSU(t′, s), so we can conclude that u(t) ≤ RSU(t′) in
database D.

Different from the PEU upper bound, RSU is an overestimation of both its descendant and itself. Now,
we have the following EUI pruning strategy.

Definition 15 (EUI pruning strategy). In the TKUS procedure, let t and minutil be a candidate and
the current minimum utility threshold, respectively. Assume the set I: {i1, i2, . . . , in} consists of all items
that can be extended to t to form t′. Suppose im (1 ≤ m ≤ n) is extended to t forming t′; if RSU(t′) ≤ minutil,
then TKUS can be stopped from exploring node N .

It should be noted that EUI is a width-based pruning strategy, which is able to stop TKUS from scanning
a new branch in the LQS-tree. The EUI strategy is also a safe strategy, ensuring that all top-k HUSPs are
obtained. This is because the RSU upper bound is monotonous, so any descendants of t and itself cannot
be contained in the set of top-k HUSPs. Consider the sequence t: <{a}, {e}> and one of its S-Extension
items f in Table 1 as an instance. We calculated the RSU value of t′ = <t ⊗ f> = <{a}, {e}, {f }> in
Figure 2, where RSU(t′) = $61. Suppose the minimum utility threshold has been increased to $65 (i.e.,
minutil = $65); the algorithm prunes the node representing t′ without calculating its utility value, as well
as its descendants according to the EUI pruning strategy.

4.4. Proposed TKUS algorithm

Based on the data structure and some aforementioned strategies, the proposed TKUS algorithm is de-
scribed as follows. The algorithmic form of the TKUS algorithm is given in Algorithm 1 and Algorithm 2,
which represent the main and recursive procedures, respectively.

In the beginning of the mining process, the TKUS algorithm adopts the variable minutil to store the
current minimum utility threshold (Line 1). It first scans the q-sequence database D to calculate the utility
values of all 1-sequences (i.e., items) and 2-sequences, store the utility values of all q-sequences, and construct
the projected databases of all 1-sequences (Line 2). Then, following the SUR strategy, it increases minutil
to the kth highest utility value from the utility values obtained before (Lines 3–4). In addition, it engages a
sorted list called TKList with a fixed size of k to maintain the top-k HUSPs on-the-fly (Line 5). In addition,
for each 1-sequence, if its utility value is greater than minutil, the TKList data structure is updated (Lines
6–8). After that, adopting the TDE strategy, TKUS recursively builds projected databases and searches
locally by traversing the LQS-tree with the depth-first search strategy (Lines 9–11).

As shown in Algorithm 2, the Projection-TKUS procedure follows a width-first search to enumerate
sequences, which can be generated by the prefix according to the projection and local search mechanism.
The algorithm regards each input sequence t as a prefix and scans the projected database to find items that
can be extended (Line 1). It is worth noting that the RSU value of each extension sequence t′ is calculated
simultaneously during scanning. Items in ilist will be processed in the following way (Lines 2–10). For the
extended sequence t′, TKUS checks whether it could be a top-k HUSP or a prefix of a top-k HUSP using
the EUI strategy (Lines 4–5). Then, TKUS builds the projected database of t′ to reduce the search space
(Line 6). Meanwhile, the utility value of t′ is calculated when searching the space locally. If the utility
value of t′ is greater than minutil, TKUS updates the TKList and minutil because t′ may be a top-k HUSP
(Lines 7–10). Similarly, TKUS addresses each item in slist analogous to the aforementioned procedure (Lines
11–19). After the extension operation, TKUS sorts seqlist, the list of all generated sequences whose RSU
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Algorithm 1 The TKUS Algorithm

Input: D: a quantitive database; k: the number of desired HUSPs; utable: a table containing the external
utility of each item;

Output: Top-k HUSPs in D;
1: initialize minutil = 0;
2: first scan the original database D to: 1). calculate the utility values of all 1-squences and 2-sequences; 2).

store the utility values of all q-sequences; 3). construct projected databases of all 1-sequences; (The
projection and local search mechanism)

3: sort the utility values of 1-sequences, 2-sequences and q-sequences in descending order, and get the k-th
highest utility value minutil0;

4: set minutil = minutil0; (The SUR strategy)
5: initialize TKList = ∅;
6: for t ∈ 1-sequences do
7: if t.utility ≥ minutil then
8: update TKList ;
9: end if

10: end for
11: for t ∈ 1-sequences do
12: if PEU(t) ≥ minutil then
13: call Projection-TKUS(t,DBs); (The TDE strategy)
14: end if
15: end for
16: return TKList ;

values are larger than minutil, in descending order according to PEU (Line 20). This is because the utility
values of a sequence’s descendants are intuitively more likely to be higher than those of lower-utility ones.
Finally, if the PEU of the sequence in seqlist is greater than the minimum utility threshold minutil, then
the Projection-TKUS is applied recursively to discover the top-k HUSPs by considering the descendants of
the sequence (Lines 21–23).

5. Experiments

To assess the performance of the proposed TKUS algorithm, we conducted experiments implemented
in Java and developed in IntelliJ IDEA2019. All experiments were performed on a personal computer
equipped with a 3.8 GHz Intel Core i7-10700K CPU, 32 GB RAM, and 64-bit Windows 10 operating system.
Specifically, the TKUS algorithm was evaluated against the state-of-the-art TKHUS-Span algorithm [34].
The only other existing top-k HUSPM algorithm, TUS [39], was not evaluated because it is incapable of
ensuring the discovery of all top-k HUSPs, as discussed in Section 4.3. Details of the experiments are given
in the following.

5.1. Datasets and Data Preprocessing

To evaluate the performance of the algorithms, we first verified TKUS on six datasets, including five
real-world datasets. We used two publicly available real-world e-commerce datasets, which are generated
from a series of purchase records, in our experiments. In addition, we utilized three linguistic datasets, which
can be easily transformed by an article or a book. These datasets represent the main categories of data with
varied features that are typically encountered in real-world scenarios.

Moreover, we used a synthetic dataset called Syn80K, where each q-itemset contains more q-items on
average. The features of the used datasets are listed in Table 3 and Table 4. Note that the Yoochoose dataset
is available at the RecSys website1, whereas the other four datasets can be obtained from the open-source

1https://recsys.acm.org/recsys15/challenge/
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Algorithm 2 Projection-TKUS

Input: t: a sequence as prefix; DBt: the projected database of t;
1: scan DBt once to: 1). add I-Extension items of t to ilist ; 2).add S-Extension items of t to slist ;
2: for each item i ∈ ilist do
3: t′ ← <t

⊕

i>;
4: if RSU(t′) < minutil then
5: remove i from ilist ; (The EUI strategy)
6: end if
7: construct projection database of t′ DBt′ ; (The projection and local search mechanism)
8: if t′.utility ≥ minutil then
9: update TKList ;

10: update minutil ;
11: end if
12: put t′ to seqlist ;
13: end for
14: for each item i ∈ slist do
15: t′ ← <t

⊗

i>;
16: if RSU(t′) < minutil then
17: remove i from slist (The EUI strategy)
18: end if
19: construct projection database of t′ DBt′ ; (The projection and local search mechanism)
20: if t′.utility ≥ minutil then
21: update TKList ;
22: update minutil ;
23: end if
24: put t′ to seqlist ;
25: end for
26: sort all sequences in seqlist according to PEU in descending order;
27: for each sequence s ∈ seqlist do
28: if PEU(t) ≥ minutil then
29: call Projection-TKUS(s,s.DB); (The TDE strategy)
30: end if
31: end for

data mining library2. More details about datasets we used can be found in Ref. [20].
• Bible is a conversion of the Bible into a dataset, where each word can be seen as an item, while each

sentence is regarded as a sequence.
• Leviathan is a conversion of the novel Leviathan by Thomas Hobbes. The generation method is

similar to that of the previous dataset, where we adopt a digital item to replace a special word.
• Sign is a sign language utterance dataset created by the National Center for Sign Language and

Gesture Resources at Boston University. Each utterance has a connection with a segment of video.
• Yoochoose is a very large dataset from an e-commerce site. Each click-stream of e-commodities is

transformed to a transaction, which sometimes ends in a purchase event. Each record has five fields: Session
ID, Timestamp, Item ID, Price, and Quantity.
• Kosarak is also a click-stream dataset from a Hungarian online news portal. Some records in this

dataset have extremely high lengths, which increases the mining difficulty.

5.2. Effectiveness Analysis

In this subsection, to analyze the effects of several designed mining strategies, the number of candidates
and performance are evaluated in terms of running time and memory consumption of the algorithms. More-

2http://www.philippe-fournier-viger.com/spmf/
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Table 3: Properties of datasets

Feature Description

|D| number of q-sequences
|I| number of different items

AVG(S) average length of q-sequence
MAX(S) maximum length of q-sequence

AVG(Sequence) average number of q-itemsets per q-sequence
AVG(Itemset) average number of q-items per q-itemset

Table 4: Details of features of datasets

Dataset |D| |I| AVG(S) MAX(S) AVG(Sequence) AVG(Itemset)

Bible 36369 13905 21.64 100 17.85 1.0
Leviathan 5834 9025 33.81 100 26.34 1.0

Sign 730 267 52 94 51.99 1.0
Yoochoose 234300 16004 1.13 21 2.11 1.97
Kosarak 10000 10094 8.14 608 8.14 1.0
Syn80K 79718 7584 6.19 18 26.69 4.32

Table 5: Effectiveness of different strategies utilizing by TKUS

Dataset Result TKUS TKUSSUR TKUSTDE TKUSEUI

Bible
k = 200

Time 888 936 / 2,028
Memory 4,247 3,634 / 2,748
Candidate 17,059 18,540 / 19,462

Leviathan
k = 500

Time 339 346 1,090 542
Memory 2,893 3,089 2,963 3,071
Candidate 40,918 42,048 37,348,596 40,918

Sign
k = 500

Time 193 190 3,147 231
Memory 2,682 3,669 2,013 2,846
Candidate 193,477 194,895 164,174,202 193,477

Yoochoose
k = 8000

Time 35 22 23 27
Memory 2,780 3,579 2,146 2,351
Candidate 180,641 281,419 832,550 204,694

Kosarak
k = 9

Time 13 15 / 23
Memory 2,279 3,540 / 2,293
Candidate 2,001 2,470 / 2,001

Syn80K
k = 200

Time 839 936 / 3,267
Memory 5,483 5,982 / 4,184
Candidate 972,569 1,004,164 / 972,569

over, for a fair comparison, we adopted TKUS as the backbone algorithm for effectiveness evaluation. We
investigated the proposed variants to examine the impact of each of SUR, TDE, and EUI. The three variants
TKUSSUR, TKUSTDE, TKUSEUI are the TKUS algorithm without the corresponding pruning techniques.
We conducted the experiments on six datasets with k set to 200, 500, 500, 8000, 9, and 200, respective to
the order they were introduced in. The results are listed in Table 5. To better visualize the results, we also
illustrate the performance of the three variants and TKUS itself in Figure 3. It is clear that the variants of
TKUS cannot achieve very good performance in most cases. On the Yoochoose dataset, the two variants
have a slightly better performance because scanning many small projected databases to calculate the PEU
and RSU values may be time-consuming for frequent disk I/O accesses. It is also clear that TKUS benefits
most from the TDE strategy because TKUSTDE generates the most candidates and could not even return
the top-k HUSPs in the limited running time (i.e., three hours) on the Bible, Kosarak, and Syn80K datasets.
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Figure 3: Effectiveness of different strategies utilizing by TKUS

It is worth noting that we compared the results returned by TKUS and its three variants; as expected,
the results are the same in the same scenarios, which proves that none of the mining strategies result in
missing any top-k HUSPs and ensures the completeness of the TKUS algorithm. In summary, it can be
concluded that the three strategies all contribute to the efficiency of TKUS owing to the proposed method
outperforming each individually.

5.3. Candidate and Minimum Utility Threshold Analysis

Table 6: Number of candidates generated by compared methods

Dataset Result test1 test2 test3 test4 test5 test6

Bible

k 100 200 500 1000 2000 3000
TKHUS-Span 9,091 18,540 45,796 90,824 180,052 274,127

TKUS 8,405 17,059 40,887 80,567 163,659 246,976
SSSR 7.55% 7.99% 10.72% 11.29% 9.10% 9.90%

Leviathan

k 100 200 500 1000 2000 3000
TKHUS-Span 10,921 19,304 42,048 77,281 145,570 216,208

TKUS 10,859 18,972 40,918 74,655 138,846 203,741
SSSR 0.57% 1.72% 2.69% 3.40% 4.62% 5.77%

Sign

k 100 200 500 1000 2000 3000
TKHUS-Span 90,988 125,252 194,895 280,759 458,508 693,456

TKUS 90,759 124,699 193,477 276,074 407,596 524,255
SSSR 0.25% 0.44% 0.73% 1.67% 11.10% 24.40%

Yoochoose

k 2000 4000 6000 8000 10000 12000
TKHUS-Span 4,994 56,299 173,900 281,419 381,123 482,225

TKUS 4,329 47,856 97,820 180,641 314,307 431,406
SSSR 13.32% 15.00% 43.75% 35.81% 17.53% 17.53%

Kosarak

k 9 10 11 12 13 14
TKHUS-Span 2,470 3,358 3,751 4,542 142,502 387,811

TKUS 2,001 2,821 3,123 3,757 5,183 6,022
SSSR 18.99% 15.99% 16.74% 17.28% 96.36% 98.45%

Syn80K

k 100 200 500 1000 2000 3000
TKHUS-Span 355,442 1,004,164 3,133,862 5,836,250 9,584,865 12,783,180

TKUS 341,889 972,569 2,993,034 5,782,992 9,583,074 12,782,996
SSSR 3.81% 3.15% 4.49% 0.91% 0.02% 0.01%

First, the numbers of candidates of the two algorithms are evaluated, which is a crucial measure of the
search space. The results are listed in Table 6. To better visualize the results, we also illustrate related results
in Figure 4 with the final minimum utility thresholds. In particular, we also define a novel metric called
search space shrinkage rate (SSSR) to evaluate how much TKUS can reduce the search space compared to
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Figure 4: Number of candidates and final minimum utility threshold of top-k HUSPs

TKHUS-Span. Given a q-sequence dataset D and desired number of HUSPs k, assume that NumTKHUS-Span

and NumTKUS are the numbers of candidates generated in the mining processes of TKHUS-Span and TKUS,
respectively. The SSSR value is define as SSSR(D, k) =

NumTKHUS-Span−NumTKUS

NumTKHUS-Span
.

From a macro perspective, it is clear that the number of candidates mainly depends on the characters
of the datasets. More specially, the more q-sequences or longer the average q-sequence, the more candidates
will be generated by the algorithms. In addition, the quantity of candidates becomes larger with increasing
k. Moreover, TKUS generates less candidates than TKHUS-Span in all cases because the projection and
local search mechanism as well as the three mining strategies make a vital contribution to reducing the
search space and improving the efficiency. In terms of the SSSR metric, TKUS has better performance
than TKHUS-Span, especially on the Bible, Leviathan, Yoochoose, and Kosarak datasets because the metric
values are all larger than 5%. Surprisingly, our designed TKUS can avoid scanning more than 98 percent of
the search space of TKHUS-Span on the Kosarak dataset when setting k to 14. Furthermore, as shown in
Figure 3, the final minimum utility threshold shows a decline following the increasing of k in all datasets. In
summary, we can conclude that the developed local search mechanism and strategies greatly limit the scope
of scanning and reduce the number of candidates significantly.

5.4. Efficiency Analysis

The efficiency of the algorithm is measured by its execution time considering not only the running time
used by the CPU but also the access time required for disk input/output. The execution times of the
TKHUS-Span algorithm compared to the proposed TKUS under different k on the six datasets are shown
in Figure 5. From the experimental results, it can be seen that the TKUS algorithm performs better overall
for all datasets. In particular, with increasing k on the Kosarak dataset, the execution time of TKHUS-
Span dramatically increases when k becomes greater than 12, whereas that of TKUS remains relatively
stable. This is expected as the proposed strategies help to improve the efficiency of TKUS. However, the two
algorithms take negligible time to finish top-k HUSPM with a comparatively small value of k. Moreover,
TKUS has bad performance on the Yoochoose dataset, and we speculate that the massive calculations of 1-
and 2-sequences ahead of the mining incurred very high computational costs. On the other four datasets, the
execution time increases with increasing k, where the growth curve clearly resembles a logarithmic function.
The difference is that TKHUS-Span requires more running time with the same value of k, and the gap grows
with increasing k. This demonstrates that the developed projection and local search mechanism and several
strategies play a key role in improving the performance.
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Figure 5: Runtime for various k

5.5. Memory Evaluation

Moreover, TKUS outperforms TKHUS-Span generally in terms of memory usage. The results for the
memory usage are illustrated in Figure 6. It can clearly be seen that TKUS has better performance than
TKHUS-Span in terms of memory usage in most cases. As can be seen from the results on Kosarak and
Syn80k, the memory consumed by TKUS is less than that by TKHUS-Span in all instances because the
proposed TKUS is able to avoid handling a large number of candidates in the mining process. In addition,
there are few cases in the first four datasets where TKUS utilizes more memory, which is probably because
TKUS requires more storage space to save the utility and PEU values of all 1- and 2-sequences with the
SUR strategy. In general, the memory consumed becomes larger with increasing k. However, there are some
exceptions. Consider the example in Figure 6; the memory usage on the Yoochoose dataset is only slightly
less than before when setting k = 10000. As another example, on the dataset Sign, the memory consumption
sharply decreases as k passes 1000. On the whole, TKUS adopts efficient strategies to significantly improve
performance in terms of memory usage. Nonetheless, TKUS still has much room for improvement in terms
of memory consumption, especially for large k.

5.6. Scalability

We conducted experiments to evaluate the scalability of TKUS on a synthetic database. We increased its
data size through duplication with the purpose of obtaining a series of datasets with different sizes varying
from 10K to 120K. The experimental results in terms of execution time and memory with k set to 500 are
shown in Figure 7. It is clear that TKHUS-Span has a worse performance than TKUS on the two metrics.
As can be seen, the execution time increases linearly as the number of q-sequences contained in the databases
grows. On the dataset with 120K size, the execution times of the two algorithms are less than those on the
dataset with 80K q-sequences. In terms of memory usage, there is also a slight decrease when the algorithm
addresses the dataset with 120K size because its unique distribution of utility values leads the SUR strategy
to increase the minimum utility threshold significantly. From Figure 7, we can conclude that the TKUS
algorithm is scalable to large-scale datasets because the running time and memory consumption are almost
linearly related to dataset size.

6. Conclusions

In this paper, we first defined some key notations and concepts of SPM and formulated the problem of
top-k HUSPM. To handle top-k HUSPM efficiently, we then proposed a novel algorithm called TKUS. For
further efficiency improvement, TKUS adopts a projection and local search mechanism and follows several
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Figure 7: Scalability of the compared methods when k = 500

strategies, including SUR, TDE, and EUI, which are able to greatly reduce the search space and speed up the
mining process. Finally, we conducted substantial experiments on six datasets with varied characteristics.
The experimental results show that TKUS has good performance in terms of execution time, number of
candidates, scalability, and more. We can conclude that TKUS is able to increase the minimum utility
threshold quickly and extract the top-k HUSPs efficiently. Our future work will apply the proposed TKUS
algorithm to big data. For example, several extensions of the TKUS algorithm can be considered, such as
adopting parallel techniques, such as Hadoop, to increase its speed.
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