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Enhanced Linguistic Computational Models and Their similarity 

with Yager’s Computing with Words  
 

Prashant K. Gupta1, Deepak Sharma1, Javier Andreu-Perez*1,2 

Highlights 

• A formal discussion about the links and similarities between Yager’s Computing with Words (CWW) 

framework, the linguistic computational models based on the extension principle and, the symbolic 

method. 

• An augmented version of extension principle based linguistic computational model is proposed to 

solve the problem of unequally weighted linguistic information. 

• Two new CWW methodologies are proposed: intuitionistic fuzzy sets based CWW methodology and 

rough sets based CWW methodology. 

• Step-by-step numerical examples are provided for each proposed method to allow reproducibility of 

the presented methodologies. 

Abstract- A generalized computational framework for Computing with Words (CWW) using linguistic 

information (LI) was proposed by Prof. Yager. This framework is based on three steps: translation, 

manipulation and retranslation. Other works have independently proposed the Linguistic Computational 

Model (LCM) to express the semantics of LI using Type-1 Fuzzy Sets and Ordinal term sets. The former is 

called the extension principle, and the latter, the symbolic method. We found that a high degree of similarity 

can be drawn between these methodologies and Yager’s CWW framework, but no discussion exists in the 

literature of the similarity drawn between them. Further, the extension principle has a drawback: it considers 

LI to be equally weighted in the aggregation phase. Also, Intuitionistic fuzzy sets (IFSs) and rough sets have 

gained popularity to model semantics of LI, but no CWW methodologies have been proposed using them. 

Thus, the novel contributions of this work are twofold. Firstly, showing the similarity of the linguistic 

computational models based on extension principle and symbolic method, to the Yager’s generalized CWW 

framework. Secondly, proposing a new augmented flexible weighting for LCM based on the extension 

principle and two novel CWW methodologies based on IFS and rough sets. 

 

Keywords- Computing with Words, Extension principle, Intuitionistic Fuzzy Sets, Rough Sets, Symbolic 

method, Type-1 Fuzzy Sets. 
 

1. Introduction 

 

Computing with Words (CWW) [5-8], [13], [20-22], [30], was conceptualized by Prof. Zadeh in his seminal 

work [41]. According to Prof. Zadeh, CWW [41], [43], [45] is a novel data processing methodology that aims 

to impart the machines with a capability, such that machines can process the linguistic information (LI) 

seamlessly like human beings do. LI is subjective in nature as “words can mean different things to different 

people” [13], [15], [19], [23-26], [32-36], [45]. Perhaps the subjectivity of the LI is a reason for its 

imprecision and vagueness. However, humans communicate, process, and make decisions seamlessly using 

the LI. This rational process is possible because human cognition has a tolerance for imprecision and 
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vagueness [42], [44]. Prof. Zadeh premised that the use of CWW is justified in situations where there is 

tolerance for imprecision and the use of LI, instead of numbers, is suitable in the circumstances.  

 

Motivated by Prof. Zadeh’s works on CWW, Prof. Yager proposed a generalized framework (for the CWW) 

in [37]. This generalized framework is shown in Fig. 1. It consists of three steps viz., translation, 

manipulation, and retranslation. In translation, the LI is converted to numeric form. In manipulation, the 

numeric information is aggregated, and in the retranslation step, the aggregated numeric information from 

the previous step is converted back to linguistic form. The input to Yager’s generalized framework is the LI 

(as humans naturally express themselves linguistically). Further, humans also naturally understand the LI. 

Therefore, the output from this Yager’s generalized framework is also the LI. 

 

Apart from this Yager’s work [37], several literary works have been published which propose 

methodologies to manipulate the LI. These methodologies represent the semantics of LI using T1 Fuzzy Sets 

(FSs) [39], [40] and Ordinal term sets [12]. Further, the methodology based on T1 FSs and ordinal term sets 

are called the extension principle based linguistic computational model (EPLCM) [12] and symbolic method 

based linguistic computational model (SMLCM) [12], respectively. 

 
 

 

 

 

 

Fig 1. Computing with words methodology [37] 
 

Apart from this Yager’s work [37], a number of different literary works have been published which propose 

methodologies to manipulate the LI. These methodologies represent the semantics of LI using Type-1(T1) 

Fuzzy Sets (FSs) [39], [40] and Ordinal term sets [12]. The methodology based on T1 FSs and ordinal term 

sets is respectively called the extension principle based linguistic computational model (EPLCM) [12] and 

symbolic method based linguistic computational model (SMLCM) [12]. 

 

Through the study of the EPLCM and SMLCM, we found that a high degree of similarity can be established 

between these models and Yager’s generalized CWW framework. By similarity, both linguistic 

computational models process the LI in three steps. In Step 1, a mapping is performed from the linguistic 

information to numeric. Step 2 involves aggregating the numeric information received from Step 1. Finally, 

the last step consists of converting the aggregated numeric information from Step 2 to the linguistic form. 

Thus, the three steps of the EPLCM and the SMLCM process the LI similar to the respective translation, 

manipulation and retranslation steps of Yager’s generalized CWW framework. Thus, it can be inferred that 

both the EPLCM and SMLCM use the CWW as an underlying methodology to deal with the LI. However, 

no proof exists in the literature where an attempt has been made to draw a similarity between these two 

linguistic computational models and Yager’s CWW framework. Thus, we have presented the similarity of 

the EPLCM and the SMLCM to the Yager’s generalized CWW framework in this paper (a detailed discussion 

to draw the similarity of the EPLCM and the SMLCM to the Yager’s generalized framework is given in 

Section 5). 

 

Also, a limitation of the EPLCM is that it does not aggregate the LI, which is differentially weighted. 

Equally weighted LI may not always be present in an application domain. For example, in [46-48], authors 

have proposed methodologies to deal with differentially weighted LI through the use of unbalanced linguistic 

term sets (ULTS). In these works, either the nature of linguistic variables or higher information granularity 

justifies ULTS use. Information granularity has a direct relation to the amount of information conveyed by 
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the linguistic term. However, certain situations demand that, though the information conveyed by all the 

linguistic terms is the same, some linguistic terms carry more importance than others. To exemplify, consider 

the investment judgement advisor presented in [25]. Here, it was considered that an investor had a moderate 

amount of capital to invest in a certain number of alternatives based on specific criteria. It could be assumed 

that the investment choice depended on the trade-off between the amount of profit to be earned and the risk 

of losing capital, one measure of which could be the amount of importance attached to the investment criteria. 

Thus, for modelling such situations, we need differentially weighted LI, and hence we propose an augmented 

LCM based on the extension principle that aggregates differentially weighted LI. Further discussions and 

important findings on the augmented EPLCM are given in Section 5. 

 

Recently, novel uncertainty modelling concepts like intuitionistic fuzzy sets (IFSs) [1] and rough sets [29], 

have been proposed. However, no CWW methodologies have been proposed based on these concepts. There 

are various research problems or scenarios where the T1 FS based CWW methodology falls short in 

modelling the semantics of LI. In such cases, we can use the IFS or rough set based CWW methodology. We 

have explained these in greater detail in Section 5.  

 

Therefore, all these above factors: 1) the non-existence of literary works on the similarity of the EPLCM 

and SMLCM to the Yager’s CWW framework; 2) the inability of the EPLCM to process the differentially 

weighted LI; and 3) the absence of CWW methodologies on IFS and rough sets, motivated us to improve 

these shortcomings through the scientific contributions presented in this paper. Thus, the contributions of this 

work are threefold: 

 

1) showing the similarity of the linguistic computational models based on extension principle and 

symbolic method, to the Yager’s generalized CWW framework;  

2) proposing an augmented linguistic computational model based on the extension principle that has the 

capability to compute using the differentially weighted LI and;  

3) presenting novel CWW methodologies based on IFS and rough sets.  

 

It is pertinent to mention that CWW methodology based on IFS is motivated by EPLCM. Further, the CWW 

methodology based on rough sets is inspired by the SMLCM. 

 

The rest of the paper is organized as follows: Section II discusses the details of the EPLCM as well as 

SMLCM and shows their similarity to Yager’s generalized CWW framework; Section III proposes an 

augmented version of the EPLCM to process unequally weighted LI and linguistic computational models 

based on IFS and rough sets; Section IV illustrates their working using a suitable example as well as 

experimental results; Section V provides essential discussions on the research work presented in this paper 

and finally, Section VI concludes this work as well as throws some light on its future scope.  

 

2. Linguistic Computational Models based on Extension Principle and Symbolic Method  
 

In this section, we discuss the detailed step by step methodology adopted by the EPLCM and SMLCM to 

process the LI. We will also show the similarity of these respective steps to those of translation, manipulation, 

and retranslation steps with respect to Yager’s generalized CWW framework (please see Fig. 1). These 

similarities are listed in Table I. 

 

The EPLCM or SMLCM has an associated linguistic term set containing a collection of linguistic terms or 

labels. Let the term set be denoted as 𝑇, and contains 𝑔 + 1 linguistic terms represented as: 

 

𝑇 = {𝑡0, 𝑡1, … 𝑡𝑔}                                                                (1) 
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Here 𝑡0, 𝑡1, … 𝑡𝑔 are the linguistic terms.  

 

The EPLCM represents the semantics of these linguistic terms using the T1 FSs. The linguistic terms 

𝑡0, 𝑡1, … 𝑡𝑔 are assumed to be distributed equally on an information representation scale with bounds 𝑝 and 

𝑞, and represented as uniform triangular T1 FSs, called the T1 membership functions (MFs). This is shown 

in Fig. 2. Generally used values of the information representation scale bounds are 𝑝 = 0 and 𝑞 = 10. 

 
 

  

 

 

 

 

 
 

 

 

 

 

Fig 2. Individual terms of the term set represented on the scale [14], [16], [28] 

 

The SMLCM, on the other hand, represents the semantics of the linguistic terms, constituting the term set 

𝑇 in Eq. (1), using the ordinal term sets. By ordinal term sets, we mean that there is a semantic order in the 

indices of the terms. The SMLCM can process the differentially weighted LI. However, an improvement for 

such a scenario is proposed for the EPLCM in Section 3.  

 
TABLE I 

SIMILARITIES OF YAGER’S GENERALIZED CWW FRAMEWORK’S STEPS TO EPLCMa AND SMLCMa  

Steps of Yager’s Generalized framework EPLCM SMLCM 

Translation: 

Convert linguistic information to numeric form 

Using tri-tuple representation of 

T1 FS membership functions 

Using indices corresponding to 

linguistic terms 

Manipulation:  

Aggregate the numeric information 
Arithmetic mean of tri-tuples Recursive combination of indices 

Retranslation:  

Convert numeric information to linguistic form 

Linguistic approximation to 

closest linguistic term 

Index of the recommended 

linguistic term 
a EPLCM= Extension principle based linguistic computational model, SMLCM= Symbolic method based linguistic computational model 

 

2.1. Linguistic Computational model based on Extension Principle [10], [12] 

 

Let us consider a scenario pertaining to feedback collection from 𝑖 number of subjects, using linguistic 

terms taken from term set 𝑇 of Eq. (1). Let the collective preference vector related to the feedbacks of these 

users be given as: 

 

{𝑡𝑗1, 𝑡𝑗2, . . . 𝑡𝑗𝑖}                                                                     (2) 

where 𝑗 = 0 𝑡𝑜 𝑔 and each 𝑡𝑗𝑘 ∈ 𝑇; 𝑘 = 1 𝑡𝑜 𝑖.  

 

2.1.1. Translation 

 

In EPLCM, the semantics of these linguistic terms are represented by T1 FSs (Please see Fig. 2). For the 

translation step, each of these linguistic terms given in Eq. (2), are represented in the tri-tuple form as 

(𝑙𝑗𝑖 , 𝑚𝑗𝑖 , 𝑟𝑗𝑖). Each value in the tuple corresponds to the left, middle and right end, respectively, of the 

triangular T1 MF. Therefore, the modified collective preference vector of Eq. (2) is given in Eq. (3) as: 

𝒕𝟎 𝒕𝟏 𝒕𝒈 … 

𝒑 𝒒 (𝒒 − 𝒑) × 𝟐

𝒈
 
… 𝒒 − 𝒑

𝒈
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{(𝑙𝑗1, 𝑚𝑗1, 𝑟𝑗1), (𝑙𝑗2, 𝑚𝑗2, 𝑟𝑗2), . . . (𝑙𝑗𝑖 , 𝑚𝑗𝑖 , 𝑟𝑗𝑖)}                                            (3) 

where 𝑗 = 0 𝑡𝑜 𝑔. 

 

2.1.2. Manipulation 

 

For the manipulation, the left, middle and right ends of the tri-tuples from Eq. (3) are aggregated by 

performing calculations as shown in Eq. (4), to obtain the collective preference vector 𝐶 shown in Eq. (5) as: 

 

𝑙𝑐 =
𝑙𝑗1 + 𝑙𝑗2 +⋯+ 𝑙𝑗𝑖

𝑖
, 𝑚𝑐 =

𝑚𝑗1 +𝑚𝑗2 +⋯+ 𝑚𝑗𝑖
𝑖

 , 𝑟𝑐 =
𝑟𝑗1 + 𝑟𝑗2 +⋯+ 𝑟𝑗𝑖

𝑖
         (4) 

 

𝐶 = (𝑙𝑐 , 𝑚𝑐 , 𝑟𝑐) = (
1

𝑖
∑ 𝑙𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑𝑚𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑𝑟𝑗𝑘

𝑖

𝑘=1

)                                     (5) 

2.1.3. Retranslation 

 

The collective preference vector in Eq. (5) is also a tri-tuple, and it generally does not match any linguistic 

terms in the term set 𝑇 of Eq. (1). Thus, to generate a linguistic output for the collective preference vector 

given in Eq. (5), the Euclidian distance of this collective preference vector is calculated from the tri-tuples 

corresponding to each linguistic term in 𝑇 of Eq. (1). Note, in this work; we adopt Euclidean distance [12], 

which is a symmetrical metric of equivalence. However, the choice of equivalence depends on the CWW 

problem to model, and more meticulous measures of equivalence between terms could be used, for example, 

based on support or cardinality.  

 

Let each linguistic terms in 𝑇 of Eq. (1) is represented in the tri-tuple form as 𝑡𝑝 = (𝑙𝑞, 𝑚𝑞, 𝑟𝑞), 𝑞 = 0 𝑡𝑜 𝑔. 

Then the term with maximum similarity or minimum distance is recommended as the linguistic term 

corresponding to the collective preference vector, 𝐶 = (𝑙𝑐 , 𝑚𝑐 , 𝑟𝑐), of Eq. (5), as:  

 

𝑑(𝑡𝑞, 𝐶) = √𝑃1(𝑙𝑞 − 𝑙𝑐)
2
+ 𝑃2(𝑚𝑞 −𝑚𝑐)

2
+ 𝑃3(𝑟𝑞 − 𝑟𝑐)

2
                                  (6) 

 

where the 𝑃𝑖 , 𝑖 = 1,2,3 are the weights, with values 0.2, 0.6 and 0.2 respectively. We have used the 

respective values 0.2, 0.6 and 0.2 of 𝑃𝑖′𝑠, 𝑖 = 1,2,3, to emphasize a fact, stated in [12], that the centre value 

of tri-tuple from a triangular MF has more importance than the two other ends. To change this notion, 

different values for respective 𝑃𝑖′𝑠 can be used. Thus, the recommended linguistic term from Eq. (6) is 𝑡b
∗ ∈

𝑇, such that 𝑑(𝑡𝑏
∗ , 𝐶) ≤ 𝑑(𝑡𝑞, 𝐶), ∀𝑡𝑞 ∈ 𝑇. 

 

2.2. The linguistic computational model based on the Symbolic method [10], [12] 

 

The linguistic computational model based on the Symbolic method uses ordinal sets to represent the 

semantics of LI. Further, each of these pieces of LI may have an associated weight.  

 

2.2.1. Translation 

 

A linguistic preference vector containing the user preferences is the starting point of the symbolic method 

based linguistic computational model. Consider the linguistic preference set from Eq. (2). Each of these 

linguistic preferences may have an associated weight, given in the form of a weight vector as:  
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𝑊 = [𝑤1, … , 𝑤𝑖]                                                  (7) 
 

where each 𝑤𝑝 ∈ [0,1]; 𝑝 = 1 𝑡𝑜 𝑖, is the associated weight of the respective linguistic preference 𝑡𝑗𝑘 given 

in Eq. (2). Further, a condition exists on all the 𝑤𝑝 that ∑ 𝑤𝑝
𝑖
𝑝=1 = 1.  

 

2.2.2. Manipulation 

 

In this step, the linguistic preference vector from Eq. (2), is aggregated according to the weight vector given 

in Eq. (7). Initially, the linguistic preference vector from Eq. (2), is ordered according to the indices of the 

linguistic terms drawn from 𝑇 of Eq. (1). Thus, after ordering, the linguistic preference vector may be given 

as: 

 

{𝑇𝑗1, 𝑇𝑗2, . . . 𝑇𝑗𝑖}                                                        (8) 

 

where 𝑇𝑗𝑘 ∈ 𝑇, 𝑘 = 1,… , 𝑖. Further, each of the 𝑇𝑗𝑘 may or may not be equal to respective 𝑡𝑗𝑘. The linguistic 

preference vector from Eq. (8), are aggregated recursively, using the recursive function (𝐴𝐺𝑖), by performing 

the computations shown in Eq. (9) as: 

 

𝐴𝐺𝑖 {𝑤𝑝, 𝐼𝑇𝑗𝑝 , 𝑝 = 1,… , 𝑖|𝑖 > 2, 𝑖 ∈ ℤ} = (𝑤1⨀ 𝐼𝑇𝑗1)⊕ ((1 − 𝑤1) ⊙ 𝐴𝐺𝑖−1 {𝛿ℎ, 𝐼𝑇𝑗ℎ , ℎ = 2,… , 𝑖})  (9) 

 

where 𝐼𝑇𝑗𝑝 , 𝑝 = 1,… , 𝑖, 𝐼𝑇𝑗ℎ , ℎ = 2,… , 𝑖 are the indices3 of the linguistic terms given in Eq. (8) and 𝛿ℎ =
𝑤ℎ

∑ 𝑤𝑙
𝑖
𝑙=2

⁄ ; ℎ = 2, 3, … , 𝑖. It is pertinent to mention that Eq. (9) is used for aggregating the linguistic 

preference vector from Eq. (8), as long as the number of terms to be aggregated are more than 2. For the 

number of terms reduced to 2, the boundary condition is met. It is shown in Eq. (10) as:  

 

𝐴𝐺2 {{𝑤𝑖−1, 𝑤𝑖}, {𝐼𝑇𝑗𝑖−1 , 𝐼𝑇𝑗𝑖} |𝑖 = 2} = (𝑤𝑖−1⨀ 𝐼𝑇𝑗𝑖−1) ⊕ (𝑤𝑖⨀ 𝐼𝑇𝑗𝑖)                   (10) 

 

where 𝐼𝑇𝑗𝑖−1 and 𝐼𝑇𝑗𝑖 are the respective indices of the last two terms from the preference vector Eq. (8), and 

𝑤𝑖−1 and 𝑤𝑖 are the respective weights.  

 

2.2.3. Retranslation 
 

The Eq. (10) recommends the index of a linguistic term. This index can be matched to one of the terms 

from Eq. (1), to find out the recommended linguistic term. This recommended index value is given as:   

 

𝐼𝑟 = 𝑚𝑖 𝑛 {𝑖, 𝐼𝑇𝑗𝑖 + 𝑟𝑜𝑢𝑛𝑑 (
𝑤𝑖−1 − 𝑤𝑖 + 1

2
. (𝐼𝑇𝑗𝑖−1 − 𝐼𝑇𝑗𝑖))}               (11) 

 

here 𝑟𝑜𝑢𝑛𝑑() is the round function, given as 𝑟𝑜𝑢𝑛𝑑 (𝑥) = ⌊𝑥 + 0.5⌋, 𝑥 ∈ ℝ, ⌊ ⌋ being the floor function.  

 

Thus, before reaching Eq. (10) from Eq. (9) in a top-down manner, we get a series of 𝑖 − 2 intermediate 

recursive equations. From Eq. (10), an index of the linguistic term is recommended using Eq. (11). This index 

 
3 The original equations in [12] use the linguistic labels. However the actual aggregation is performed on the indices of the linguistic 

labels. So, we have chosen to show directly the indices of the linguistic terms in the Eq. (9)-(10). 
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is then given as an input to the preceding recursive equation. Thus, the combination process then follows a 

bottom-up approach. Therefore, at each step of the bottom-up combination process, there will be two indices 

of the linguistic terms to combine. The index of the recommended linguistic term can be found by performing 

computations similar to Eq. (11).  

 

Further, it has been observed that in an equation where only two indices need to be combined, similar to 

Eq. (10), 𝑤𝑖−1 = 𝑤 and 𝑤𝑖 = 1 − 𝑤, for some value of the weight 𝑤, obtained through weight aggregation 

in Eq. (9). Thus, putting indices also in a generalized form viz., 𝐼𝑇𝑗𝑖−1 = 𝐼𝑙 and 𝐼𝑇𝑗𝑖 = 𝐼𝑞, Eq. (10) and Eq. 

(11) can be written in generalized form in Eq. (12) and Eq. (13), respectively as: 
 

𝐴𝐺2 {{𝑤, 1 − 𝑤}, {𝐼𝑙 , 𝐼𝑞}} = (𝑤⨀ 𝐼𝑙) ⊕ ((1 − 𝑤)⨀ 𝐼𝑞)                                       (12) 

 

𝐼𝑟 = 𝑚𝑖𝑛 {𝑖, 𝐼𝑞 + 𝑟𝑜𝑢𝑛𝑑(𝑤. (𝐼𝑙 − 𝐼𝑞))}                                      (13) 

 

Finally, the recommended value is a unique index of the term belonging to the term set 𝑇 of Eq. (1).  

 

3. An Augmented Extension Principle based Linguistic Computational with Flexible Weighting 

Scheme and New CWW methodologies based on Intuitionistic and Rough Sets  

 

Here, we propose an augmented EPLCM that permits aggregating differentially weighted linguistic terms 

as well as novel CWW methodologies based on IFS and rough sets. We will also show the similarity of the 

respective steps of augmented EPLCM and novel CWW methodologies based on IFS and rough sets to those 

of translation, manipulation and retranslation steps, respectively of Yager’s generalized CWW framework, 

of Fig. 1. These similarities are listed in Table II. Further, we will demonstrate the working of these proposed 

methodologies using a suitable example in Section 4. 
 

TABLE II 

SIMILARITIES OF YAGER’S GENERALIZED CWW FRAMEWORK’S STEPS TO AUGMENTED EPLCMa, IFS BASED CWW 

METHODOLOGY AND ROUGH SET BASED CWW METHODOLOGY  

Steps of Yager’s 

Generalized framework 

Augmented  

EPLCM 
IFS based CWW methodology 

Rough Set based CWW 

methodology 

Translation: 

Convert linguistic 

information to numeric 

form 

Using tri-tuples of T1 FS 

MFs of linguistic terms 

and weights 

Using tri-tuples of T1 FS membership 

and non-membership functions of 

linguistic terms and weights 

Division of linguistic 

terms into equivalence 

classes and weight 

assignment 

Manipulation: 

Aggregate the numeric 

information 

Product of T1 MFs of 

respective linguistic terms 

and weights followed by  

the arithmetic mean of tri-

tuples of products 

Product of T1 MFs of membership 

and non-membership functions of 

respective linguistic terms and weights 

followed by the arithmetic mean of 

respective tri-tuples of products 

Recursive combination 

of indices of linguistic 

terms and respective 

weights 

Retranslation: 

Convert numeric 

information to linguistic 

form 

Linguistic approximation 

to closest linguistic term 

Linguistic approximation to the 

closest linguistic term for membership 

and non-membership functions 

Index of the 

recommended linguistic 

term 

a EPLCM= Extension principle based linguistic computational model 
 

3.1. Proposed Augmented EPLCM Methodology 

 

We now discuss the details of our proposed augmented EPLCM. The augmented EPLCM can process the 

linguistic preferences, which are differentially weighted. The existing EPLCM (discussed in Section 2.1) 
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aggregates the LI, which is equally weighted, and equally weighted LI may not be present in a number of 

scenarios [11], [19], [25], [26], [34-36]. Thus, we felt the need to incorporate the differential weighting in 

the EPLCM and hence propose the augmented EPLCM.  

 

As pointed out in Section 2.1, the EPLCM represents the semantics of LI using T1 MFs, as shown in Fig. 

2. For processing, each piece of LI is represented as a tri-tuple {𝑙, 𝑚, 𝑟}, where 𝑙, 𝑚, 𝑟 correspond respectively 

to the left, middle and right end of the T1 MFs.  

 

3.1.1. Translation 

 

Consider the scenario of feedback collection from 𝑖 number of subjects, using linguistic terms taken from 

term set 𝑇 of Eq. (1). The collective preference vector about these users' feedback is given in Eq. (2). In the 

augmented EPLCM, each linguistic user' feedback is assigned a different linguistic weight. Let the weight 

matrix be given in Eq. (7). However, the semantics of each of these linguistic weights are also represented 

by T1 MFs (similar to Fig. 2) and hence also represented as tri-tuples (like the respective terms of LI from 

linguistic preference vector, please see Eq. (3)). 

 

Thus, the vectors containing linguistic preference (given in Eq. (2)), and the associated weights (given in 

Eq. (7)), are initially converted to the tri-tuple form. These are given in Eq. (14) and Eq. (15) as:  

 

{(𝑙𝑗1, 𝑚𝑗1, 𝑟𝑗1), (𝑙𝑗2, 𝑚𝑗2, 𝑟𝑗2), . . . (𝑙𝑗𝑖 , 𝑚𝑗𝑖, 𝑟𝑗𝑖)}                                             (14) 

 

{(𝑙𝑤1 , 𝑚𝑤1 , 𝑟𝑤1), (𝑙𝑤2 , 𝑚𝑤2 , 𝑟𝑤2), . . . (𝑙𝑤𝑖 , 𝑚𝑤𝑖 , 𝑟𝑤𝑖)}                                       (15) 

 

where 𝑗 = 0 𝑡𝑜 𝑔. Each (𝑙𝑗𝑘, 𝑚𝑗𝑘, 𝑟𝑗𝑘), 𝑘 = 1,… , 𝑖 are left, middle and right end, respectively of the 

triangular MF pertaining to user preferences. (𝑙𝑤𝑘 , 𝑚𝑤𝑘 , 𝑟𝑤𝑘), 𝑘 = 1,… , 𝑖 are the corresponding values for 

the respective linguistic weights. 

 

3.1.2. Manipulation 

 

Now, we perform the weighted aggregation of the linguistic preference vector and associated linguistic 

weights given in Eq. (14) and Eq. (15), using the concept of 𝛼-cuts. Consider, tri-tuples of any arbitrary 

linguistic preference from Eq. (14) and its associated weight from Eq. (15) are given respectively as 𝐿𝑘 =

(𝑙𝑗𝑘, 𝑚𝑗𝑘, 𝑟𝑗𝑘), 𝑘 = 1,… , 𝑖 and 𝑊𝑘 = (𝑙𝑤𝑘 , 𝑚𝑤𝑘 , 𝑟𝑤𝑘), 𝑘 = 1,… , 𝑖. For simplicity of notation, let's denote 

𝐿𝑘 by {𝑎, 𝑏, 𝑐} and 𝑊𝑘 by {𝑑, 𝑒, 𝑓}. The 𝛼-cuts of the T1 MFs of 𝐿𝑘 and 𝑊𝑘 are shown in Fig. 3. The 𝛼-cuts 

of 𝐿𝑘 and 𝑊𝑘 are intervals and respectively given as (𝐿𝑘)𝛼 and (𝑊𝑘)𝛼 in the following equations: 

 

(𝐿𝑘)𝛼 = [𝑎 + (𝑏 − 𝑎)𝛼, 𝑐 − (𝑐 − 𝑏)𝛼]                                       (16) 
 

(𝑊𝑘)𝛼 = [𝑑 + (𝑒 − 𝑑)𝛼, 𝑓 − (𝑓 − 𝑒)𝛼]                                       (17) 
 

Thus, the product of (𝐿𝑘)𝛼 and (𝑊𝑘)𝛼 is obtained by using interval arithmetic as: 

 

(𝐿𝑘)𝛼⊗ (𝑊𝑘)𝛼 = [𝑚𝑖𝑛(𝑝𝑟𝑜𝑑),𝑚𝑎𝑥 (𝑝𝑟𝑜𝑑)]                                           (18)  
 

where the quantity 𝑝𝑟𝑜𝑑 is given as: 
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𝑝𝑟𝑜𝑑 =

{
 

 
{𝑎 + (𝑏 − 𝑎)𝛼} × {𝑑 + (𝑒 − 𝑑)𝛼},
{𝑎 + (𝑏 − 𝑎)𝛼} × {𝑓 − (𝑓 − 𝑒)𝛼},
{𝑐 − (𝑐 − 𝑏)𝛼} × {𝑑 + (𝑒 − 𝑑)𝛼},
{𝑐 − (𝑐 − 𝑏)𝛼} × {𝑓 − (𝑓 − 𝑒)𝛼} }

 

 
                              (19) 

 

From Eq. (19), it can be seen that 𝑝𝑟𝑜𝑑 has squared quantities, and so do the 𝑚𝑖𝑛(𝑝𝑟𝑜𝑑) and 𝑚𝑎𝑥(𝑝𝑟𝑜𝑑). 
Thus, the product of (𝐿𝑘)𝛼 and (𝑊𝑘)𝛼 is not a linear function, rather parabolic. Fig. 4 shows these two 

parabolic curves viz., the 𝑚𝑖𝑛(𝑝𝑟𝑜𝑑) and 𝑚𝑎𝑥 (𝑝𝑟𝑜𝑑), respectively. The parabolic curves 𝑚𝑖𝑛(𝑝𝑟𝑜𝑑) and 

𝑚𝑎𝑥(𝑝𝑟𝑜𝑑) can be linearly approximated to arrive at the values of the two legs for the T1 MF. Dashed lines 

in Fig. 4 show the linear approximations.  

 

 

 

 

 
 

 

Fig. 3 𝛼-cuts of T-1 MF of 𝐿𝑘 and 𝑊𝑘                 Fig. 4 Product of (𝐿𝑘)𝛼 and (𝑊𝑘)𝛼 and its approximation to T1 MFs 

 

Theorem 1: The product of the 𝛼-cuts of two triangular T1 MFs will always converge to the two legs of the 

resulting T1 MF. 

 

Proof: Let us consider the product of the 𝛼-cuts of the linguistic preferences and the associated weights 

shown in Fig. 4. The linguistic preferences and the associated weights are represented as triangular T1 MFs, 

as shown in Fig. 3. We will assume that the linguistic preferences and the associated weights are represented 

on a positive information representation scale, as this the most common form of data representation in almost 

all the research problems. Thus, it directly follows that 𝑎 < 𝑏 < 𝑐 and 𝑑 < 𝑒 < 𝑓. Consequently, from Eqs. 

(18) and (19) we get: 𝑚𝑖𝑛(𝑝𝑟𝑜𝑑) = {𝑎 + (𝑏 − 𝑎)𝛼} × {𝑑 + (𝑒 − 𝑑)𝛼} and 𝑚𝑎𝑥(𝑝𝑟𝑜𝑑) = {𝑐 − (𝑐 −
𝑏)𝛼} × {𝑓 − (𝑓 − 𝑒)𝛼}.  

 

Consider 𝑚𝑖𝑛(𝑝𝑟𝑜𝑑) = {𝑎 + (𝑏 − 𝑎)𝛼} × {𝑑 + (𝑒 − 𝑑)𝛼}. As the minimum value of 𝛼 = 0 and 

maximum value of 𝛼 = 1, ∴ 𝑚𝑖𝑛(𝑝𝑟𝑜𝑑)𝜖[𝑎 × 𝑑, 𝑏 × 𝑒]. Therefore, looking at Fig. 4, it follows that the 

lower and upper end points of the left leg of the linearly approximated T1 MF are given as (𝑎 × 𝑑, 0) and 

(𝑏 × 𝑒, 1), respectively.  

 

Thus, the equation of the line joining these two points is given as 𝑥 = 𝑎𝑑 + (𝑏𝑒 − 𝑎𝑑)𝛼. Here, for 

simplicity of notation, we have written 𝑎 × 𝑑 = 𝑎𝑑 and 𝑏 × 𝑒 = 𝑏𝑒. Similarly, the equation of the curve 

𝑚𝑖𝑛(𝑝𝑟𝑜𝑑) is given as 𝑥 = 𝑎𝑑 + {𝑎(𝑒 − 𝑑) + 𝑑(𝑏 − 𝑎)}𝛼 + {(𝑏 − 𝑎)(𝑒 − 𝑑)}𝛼2. The distance between 

this line and the curve is given as 𝑑𝑖𝑠𝑡 = {(𝑏 − 𝑎)(𝑒 − 𝑑)}𝛼 − {(𝑏 − 𝑎)(𝑒 − 𝑑)}𝛼2. On differentiating 𝑑𝑖𝑠𝑡 

with respect to 𝛼 and equating it to 0, gives that maximum value of 𝑑𝑖𝑠𝑡 occurs at 𝛼 =
1

2
. Thus, the maximum 

value of 𝑑𝑖𝑠𝑡 =
(𝑏−𝑎)(𝑒−𝑑)

4
, which is the maximum distance between the 𝑚𝑖𝑛(𝑝𝑟𝑜𝑑) and the left leg of T1 

MF.  

 

Proceeding similarly (and looking at Fig. 4), it follows that the lower and upper end points of the right leg 

of the linearly approximated T1 MF are given as (𝑐 × 𝑓, 0) and (𝑏 × 𝑒, 1), respectively. Thus, the maximum 

𝑳𝒌 

𝒂 𝒄 
 

𝒃 
 

𝑾𝒌 

𝒅 𝒇 
 

𝒆 
 

𝜶 

𝟏 
(𝑳𝒌)𝜶⊗ (𝑾𝒌)𝜶 

𝒎𝒊𝒏(𝒑𝒓𝒐𝒅) 𝒎𝒂𝒙 (𝒑𝒓𝒐𝒅) 

Linear 

Approximation

s 
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distance between the curve 𝑚𝑎𝑥(𝑝𝑟𝑜𝑑) and the right leg of the linearly approximated T1 MF (shown in Fig. 

4) is given as: 𝑑𝑖𝑠𝑡′ =
(𝑐−𝑏)(𝑓−𝑒)

4
. 

 

As it can be seen that the products of the linguistic preferences with the respective weights using 𝛼-cuts 

involve lots of computations. These computations can be reduced by considering the particular case of 

theorem 1. We present this special case in Theorem 2. 

 

Theorem 2: The product of 𝐿𝑘 and 𝑊𝑘 can be approximately assumed to be a triangular MF, if the 

information representation scale for both the 𝐿𝑘 and 𝑊𝑘 is positive (as shown in Fig. 2). 

Proof: It directly follows from the proof of Theorem 1, that the product of the 𝛼-cuts of the linguistic 

preferences and their respective associated weights converges to the two legs of the T1 MF. Thus, if the 

information representation scale is positive, the triangular MFs for the 𝐿𝑘 and 𝑊𝑘, as shown in Fig. 3, will 

have all the tri-tuples as positive. In such scenarios, the product of 𝐿𝑘 and 𝑊𝑘 can be approximately assumed 

to be a triangular MF, which can be represented in the tri-tuple form as (and pictorially shown in Fig. 5): 
 

𝐿𝑘 ⨂ 𝑊𝑘 = {𝑙, 𝑚, 𝑟} =  {𝑎 × 𝑑, 𝑏 × 𝑒, 𝑐 × 𝑓}                                             (20) 
 

 

 

 

 

 

 

 
 

Fig. 5 Product of 𝐿𝑘 and 𝑊𝑘 and its resulting T1 MF 

 

Algorithm 1: Augmented Extension principle based Linguistic Computational Model 

Step 1. Input:  

i. 𝑇 = {𝑡0, 𝑡1, … 𝑡𝑔}, Linguistic term set of cardinality 𝑔 + 1  

ii. {𝑡𝑗1, 𝑡𝑗2, . . . 𝑡𝑗𝑖}, 𝑗 = 0 𝑡𝑜 𝑔, ∀𝑡𝑗𝑘 ∈ 𝑇; 𝑘 = 1 𝑡𝑜 𝑖, Linguistic preferences of 𝑖 stakeholders 

iii. 𝑊 = [𝑤1, … , 𝑤𝑖], Weight Matrix with respective weights for each linguistic preferences 𝑡𝑗𝑘 

Step 2. Compute Tri-tuples of each:  

i. Linguistic preferences:{(𝑙𝑗1, 𝑚𝑗1, 𝑟𝑗1), (𝑙𝑗2, 𝑚𝑗2, 𝑟𝑗2), . . . (𝑙𝑗𝑖 , 𝑚𝑗𝑖 , 𝑟𝑗𝑖)} 

ii. Respective weights: {(𝑙𝑤1 , 𝑚𝑤1 , 𝑟𝑤1), (𝑙𝑤2 , 𝑚𝑤2 , 𝑟𝑤2), . . . (𝑙𝑤𝑖 , 𝑚𝑤𝑖 , 𝑟𝑤𝑖)} 

Step 3. Obtain:  

Tri-tuples by product of 𝑘𝑡ℎ linguistic term to its respective weight using 𝛼-cut decomposition: 𝐿𝑘  ⨂ 𝑊𝑘 =
{𝑙,𝑚, 𝑟} = {𝑙𝑗𝑘 , 𝑚𝑗𝑘 , 𝑟𝑗𝑘}. 

Step 4. Aggregate:  

Tri-tuples to obtain the collective preference vector: 𝐶 = (𝑙𝑐 , 𝑚𝑐 , 𝑟𝑐) = (
1

𝑖
∑ 𝑙𝑗𝑘
𝑖
𝑘=1 ,

1

𝑖
∑ 𝑚𝑗𝑘
𝑖
𝑘=1 ,

1

𝑖
∑ 𝑟𝑗𝑘
𝑖
𝑘=1 ) 

Step 5. Perform: 

Linguistic approximation: 𝑑(𝑡𝑞 , 𝐶) = √𝑃1(𝑙𝑞 − 𝑙𝑐)
2
+ 𝑃2(𝑚𝑞 −𝑚𝑐)

2
+ 𝑃3(𝑟𝑞 − 𝑟𝑐)

2
, 𝑃𝑖 , 𝑖 = 1,2,3 have 

values 0.2, 0.6 and 0.2 respectively, 𝑡p = (𝑙𝑞 , 𝑚𝑞 , 𝑟𝑞) ∈ 𝑆, 𝑞 = 0 𝑡𝑜 𝑔 is the linguistic term from 𝑇. 

Step 6. Recommended linguistic term is: 

𝑡b
∗ ∈ 𝑇, such that 𝑑(𝑡𝑏

∗ , 𝐶) ≤ 𝑑(𝑡𝑞 , 𝐶), ∀𝑡𝑞 ∈ 𝑇. 

 

𝑳𝒌 

𝒂 𝒄 
 

𝒃 
 

𝑾𝒌 

𝒅 𝒇 
 

𝒆 
 

⊗ 
≡ 

𝑳𝒌⊗𝑾𝒌 

𝒂 × 𝒅 𝒃 × 𝒆 
 

𝒄 × 𝒇 
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Thus, in this manner, the products of all the linguistic preferences and their associated weights are 

performed. These products are then approximated to the triangular MFs and aggregated using the Eq. (5) to 

arrive at a collective preference vector. 

 

3.1.3. Retranslation 

 

To generate a linguistic term corresponding to the collective preference vector, resulting in the above step, 

(which generally does not match any linguistic terms in the term set 𝑇), we calculate the Euclidian distance 

of this collective preference vector from the tri-tuples corresponding to each of the linguistic terms given in 

𝑇, using Eq. (7). Thus, the recommended linguistic term is the one with maximum similarity or minimum 

distance. 

 

The working of the augmented extension principle based linguistic computational model is summarized in 

Algorithm 1. 

 

3.2. IFS based CWW methodology 

 

IFSs are a more generalized version of the FSs [1], [2], [4], [27]. Consider a T1 FS. In a T1 FS, each set 

element is a twin tuple with the values as ordered pair {(set element, its membership value)}. An IFS 

generalizes this concept by introducing a third dimension in each set element viz., the degree of non-

membership. Thus, an IFS (A) is defined on a universe say 𝑋 in the following manner: 

 

𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)| 𝑥 ∈ 𝑋}                                                (21) 
 

where 𝜇𝐴(𝑥) is called the degree of membership and 𝜈𝐴(𝑥) is called the degree of non-membership. The 

condition on 𝜇𝐴(𝑥), 𝜈𝐴(𝑥) is as: 0 ≤ 𝜇𝐴(𝑥), 𝜈𝐴(𝑥) ≤ 1, and 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1. 

 

For a T1 FS, 𝜈𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) and it also satisfies the law of excluded middle. However, this is not true 

for an IFS. Graphically, the 𝜈𝐴(𝑥) and 𝜇𝐴(𝑥) are shown in Fig. 6. 

 
 
 

 

 

 

 
 

 

 

 

Fig. 6 Degree of membership and non-membership in IFS 

 

3.2.1. Translation 

 

In the design of CWW approach based on IFS, consider again the scenario where the linguistic preferences 

of the users are given by Eq. (2). Each linguistic preference of the user has an associated weight also, given 

in Eq. (7).  

 

As considered in Section 2.1, the linguistic preferences and the weights are represented by the T1 MFs, as 

shown in Fig. 2. Now, in the IFS-based CWW methodology, which we build on the idea of EPLCM, 

difference comes in the fact that every value of the linguistic preference as well as the respective weight is 

𝝂𝑨(𝒙) 𝝁𝑨(𝒙) 

𝒑 𝒒 
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represented by a membership value and the non-membership value. The non-membership values are taken 

as the average of the tri-tuples of multiple linguistic terms other than the respective linguistic term from the 

term set.  

 

To explain this concept, consider the linguistic preference of the first user from term set of Eq. (2) and its 

associated weight from Eq. (7), given in tri-tuple form be as: 𝑡𝑗1 = (𝑙𝑗1, 𝑚𝑗1, 𝑟𝑗1) and 𝑤1 = (𝑙𝑤1 , 𝑚𝑤1 , 𝑟𝑤1). 

It is pertinent to mention that we have assumed that 𝑡𝑗1, 𝑤1 ∈ 𝑇, 𝑇 being given in Eq. (1). Therefore, ∃ 𝑡𝑝 ∈

𝑇, 𝑝 = 0,… , 𝑔, such that 𝑡𝑗1 = 𝑡𝑝. Also ∃𝑡𝑞 ∈ 𝑇, 𝑞 = 0,… , 𝑔, such that 𝑤1 = 𝑡𝑞. Further, 𝑡𝑝 can be equal or 

unequal to 𝑡𝑞. Therefore, the degree of non-membership for 𝑡𝑗1 is given by the average of tri-tuples of all 

linguistic terms from 𝑇 other than 𝑡𝑝. Similarly, the degree of non-membership for 𝑤1 is given by the average 

of tri-tuples of all linguistic terms from 𝑇 other than 𝑡𝑞. This is given in Eq. (22) for 𝑡𝑗1 and Eq. (23) for 𝑤1 

as: 

 

(𝑙′𝑗1, 𝑚
′
𝑗1, 𝑟

′
𝑗1) = (

1

𝑔
∑ 𝑙𝑘

𝑔

𝑘=0,𝑘≠𝑝

,
1

𝑔
∑ 𝑚𝑘

𝑔

𝑘=0,𝑘≠𝑝

,
1

𝑔
∑ 𝑟𝑘

𝑔

𝑘=0,𝑘≠𝑝

)                               (22) 

 

(𝑙′𝑤1 , 𝑚
′
𝑤1 , 𝑟

′
𝑤1) = (

1

𝑔
∑ 𝑙𝑘

𝑔

𝑘=0,𝑘≠𝑞

,
1

𝑔
∑ 𝑚𝑘

𝑔

𝑘=0,𝑘≠𝑞

,
1

𝑔
∑ 𝑟𝑘

𝑔

𝑘=0,𝑘≠𝑞

)                               (23) 

 

The degree of membership in tri-tuple form for the 𝑡𝑗1 and 𝑤1 being given by (𝑙𝑗1, 𝑚𝑗1, 𝑟𝑗1) and 

(𝑙𝑤1 , 𝑚𝑤1 , 𝑟𝑤1), respectively.  

 

Similarly, the degree of membership and non-membership can be found for all the Eq. (2) linguistic 

preferences and their associated weights in Eq. (7). When putting together the degrees of memberships and 

non-memberships for linguistic preferences and the associated weights for all the users together, similar to 

Eqs. (14) and (15), we obtain Eqs. (24) and (25), respectively as:  

 

{[(𝑙𝑗1, 𝑚𝑗1, 𝑟𝑗1), (𝑙
′
𝑗1, 𝑚

′
𝑗1, 𝑟

′
𝑗1)], … , [(𝑙𝑗𝑖, 𝑚𝑗𝑖, 𝑟𝑗𝑖), (𝑙

′
𝑗𝑖, 𝑚

′
𝑗𝑖, 𝑟

′
𝑗𝑖)]}                      (24) 

 

{[(𝑙𝑤1 , 𝑚𝑤1 , 𝑟𝑤1), (𝑙
′
𝑤1 , 𝑚

′
𝑤1 , 𝑟

′
𝑤1)], … [(𝑙𝑤𝑖 , 𝑚𝑤𝑖 , 𝑟𝑤𝑖), (𝑙

′
𝑤𝑖 , 𝑚

′
𝑤𝑖 , 𝑟

′
𝑤𝑖)]}                (25) 

 

where 𝑗 = 0 𝑡𝑜 𝑔. Each (𝑙𝑗𝑘, 𝑚𝑗𝑘, 𝑟𝑗𝑘), 𝑘 = 1,… , 𝑖 are left, middle and right end, respectively of the 

triangular MF about user preferences corresponding to the degree of membership and (𝑙′𝑗𝑘, 𝑚
′
𝑗𝑘, 𝑟

′
𝑗𝑘) are 

left, middle and right end, respectively, of the triangular MF pertaining to user preferences corresponding to 

the degree of non-membership. (𝑙𝑤𝑘 , 𝑚𝑤𝑘 , 𝑟𝑤𝑘), 𝑘 = 1,… , 𝑖 are the corresponding values for the membership 

degree of the respective associated weights and (𝑙′𝑤𝑘 , 𝑚
′
𝑤𝑘 , 𝑟

′
𝑤𝑘) are the corresponding values for the non-

membership degree of the respective associated weights.  

 

3.2.2. Manipulation 

 

Here, the aggregation is performed similarly to Section 2.1.2, using 𝛼-cuts or using the approximation 

techniques. In either case, we multiply the tri-tuples corresponding to the degree of memberships (non-

memberships) of the linguistic preferences and the respective weights given in Eqs. (24)-(25), to obtain the 

respective tri-tuples for the associated degree of memberships (non-memberships) for the respective user.  
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Then we aggregate the weighted preferences of the users to obtain the twin tuple collective preference 

vector: one corresponding to the membership and one corresponding to the non-membership. This is given 

in Eq. (26) as: 

𝐶 = {(𝑙𝑐 , 𝑚𝑐 , 𝑟𝑐), (𝑙
′
𝑐 , 𝑚

′
𝑐 , 𝑟

′
𝑐)} = {(

1

𝑖
∑𝑙𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑𝑚𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑𝑟𝑗𝑘

𝑖

𝑘=1

) , (
1

𝑖
∑𝑙′𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑𝑚′

𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑𝑟′𝑗𝑘

𝑖

𝑘=1

)} (26) 

 

 

Algorithm 2: IFS based CWW methodology 

Step 1. Input:  

i. 𝑇 = {𝑡0, 𝑡1, … 𝑡𝑔}, Linguistic term set of cardinality 𝑔 + 1  

ii. {𝑡𝑗1, 𝑡𝑗2, . . . 𝑡𝑗𝑖}, 𝑗 = 0 𝑡𝑜 𝑔, ∀𝑡𝑗𝑘 ∈ 𝑇; 𝑘 = 1 𝑡𝑜 𝑖, Linguistic preferences of 𝑖 stakeholders 

iii. 𝑊 = [𝑤1, … , 𝑤𝑖], Weight Matrix with respective weights for each linguistic preferences 𝑡𝑗𝑘 

Step 2. Compute Tri-tuples of (here each value of set containing one term for membership and non-membership):  

i. Linguistic preferences:{[(𝑙𝑗1, 𝑚𝑗1, 𝑟𝑗1), (𝑙
′
𝑗1, 𝑚

′
𝑗1, 𝑟

′
𝑗1)], … , [(𝑙𝑗𝑖 , 𝑚𝑗𝑖 , 𝑟𝑗𝑖), (𝑙

′
𝑗𝑖 , 𝑚

′
𝑗𝑖 , 𝑟

′
𝑗𝑖)]}  

ii. Respective weights: {[(𝑙𝑤1 , 𝑚𝑤1 , 𝑟𝑤1), (𝑙
′
𝑤1 , 𝑚

′
𝑤1 , 𝑟

′
𝑤1)], … [(𝑙𝑤𝑖 , 𝑚𝑤𝑖 , 𝑟𝑤𝑖), (𝑙

′
𝑤𝑖 , 𝑚

′
𝑤𝑖 , 𝑟

′
𝑤𝑖)]} 

iii. Linguistic preference non-memberships: (l′j1, m
′
j1, r

′
j1) = (

1

g
∑ lk
g
k=0,k≠p ,

1

g
∑ mk
g
k=0,k≠p ,

1

g
∑ rk
g
k=0,k≠p ) 

iv. Respective weight non-memberships: (𝑙′𝑤1 , 𝑚
′
𝑤1 , 𝑟

′
𝑤1) = (

1

𝑔
∑ 𝑙𝑘
𝑔
𝑘=0,𝑘≠𝑞 ,

1

𝑔
∑ 𝑚𝑘
𝑔
𝑘=0,𝑘≠𝑞 ,

1

𝑔
∑ 𝑟𝑘
𝑔
𝑘=0,𝑘≠𝑞 ) 

Step 3. Obtain:  

Tri-tuples by product of 𝑘𝑡ℎ linguistic term to its respective weight using 𝛼-cut decomposition for memberships 

and non-memberships: {(𝐿𝑘  ⨂ 𝑊𝑘), (𝐿
′
𝑘 ⨂ 𝑊

′
𝑘)} = {(𝑙𝑗𝑘 , 𝑚𝑗𝑘 , 𝑟𝑗𝑘), (𝑙

′
𝑗𝑘 , 𝑚

′
𝑗𝑘 , 𝑟

′
𝑗𝑘)}. 

Step 4. Obtain collective preference vector by aggregation of tri-tuples: 

𝐶 = {(𝑙𝑐 , 𝑚𝑐 , 𝑟𝑐), (𝑙
′
𝑐 , 𝑚

′
𝑐 , 𝑟

′
𝑐)} = {(

1

𝑖
∑ 𝑙𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑𝑚𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑ 𝑟𝑗𝑘

𝑖

𝑘=1

) ,(
1

𝑖
∑ 𝑙′𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑𝑚′

𝑗𝑘

𝑖

𝑘=1

,
1

𝑖
∑ 𝑟′𝑗𝑘

𝑖

𝑘=1

)} 

Step 5. Perform Linguistic approximation for membership and non-membership respectively as: 

𝑑(𝑡𝑞, 𝐶) = {(√𝑃1(𝑙𝑞 − 𝑙𝑐)
2
+ 𝑃2(𝑚𝑞 −𝑚𝑐)

2
+ 𝑃3(𝑟𝑞 − 𝑟𝑐)

2
) , (√𝑃1(𝑙𝑞 − 𝑙

′
𝑐)
2
+ 𝑃2(𝑚𝑞 −𝑚

′
𝑐)
2
+ 𝑃3(𝑟𝑞 − 𝑟

′
𝑐)
2
)} 

𝑃𝑖 , 𝑖 = 1,2,3 have values 0.2, 0.6 and 0.2 respectively, 𝑡p = (𝑙𝑞 , 𝑚𝑞 , 𝑟𝑞) ∈ 𝑆, 𝑞 = 0 𝑡𝑜 𝑔 is the linguistic term 

from 𝑇. 

Step 6. Recommended linguistic term for membership and non-membership respectively are 𝑡b
∗ ∈ 𝑇 and t∗′b ∈ T: 

Such that 𝑑(𝑡𝑏
∗ , 𝐶) ≤ 𝑑(𝑡𝑞 , 𝐶), ∀𝑡𝑞 ∈ 𝑇 and 𝑑(𝑡∗′𝑏 , 𝐶) ≤ 𝑑(𝑡𝑞 , 𝐶), ∀𝑡𝑞 ∈ 𝑇 

 

3.2.3. Retranslation 

 

Here, the retranslation enables the mapping of the numeric collective preference vector back to the linguistic 

form. The mapping is done similar to Section 2.1.3. The difference is that the mapping is done separately for 

membership and non-membership components of the collective preference vector given in Eq. (26). 

Therefore assuming, that each of the linguistic term in 𝑇, given in Eq. (1) is represented in the tri-tuple form 

as 𝑡𝑝 = (𝑙𝑞 , 𝑚𝑞, 𝑟𝑞) ∈ 𝑇, 𝑞 = 0 𝑡𝑜 𝑔. The term with maximum similarity or minimum distance is 

recommended as the linguistic term corresponding to the membership degree in the collective preference 

vector of Eq. (26), as:  

𝑑(𝑡𝑞 , 𝐶) = √𝑃1(𝑙𝑞 − 𝑙𝑐)
2
+ 𝑃2(𝑚𝑞 −𝑚𝑐)

2
+ 𝑃3(𝑟𝑞 − 𝑟𝑐)

2
              (27) 
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where the 𝑃𝑖 , 𝑖 = 1,2,3 are the weights, with values 0.2, 0.6 and 0.2 respectively. The recommended 

linguistic term is 𝑡b
∗ ∈ 𝑇, such that 𝑑(𝑡𝑏

∗ , 𝐶) ≤ 𝑑(𝑡𝑞, 𝐶), ∀𝑡𝑞 ∈ 𝑇.  

 

Similarly, the term with maximum similarity or minimum distance is recommended as the linguistic term 

corresponding to the non-membership degree in the collective preference vector of Eq. (26), as:  

 

𝑑′(𝑡𝑞, 𝐶) = √𝑃1(𝑙𝑞 − 𝑙
′
𝑐)
2
+ 𝑃2(𝑚𝑞 −𝑚

′
𝑐)
2
+ 𝑃3(𝑟𝑞 − 𝑟

′
𝑐)
2
               (28) 

 

where the 𝑃𝑖 , 𝑖 = 1,2,3 are the weights, with values 0.2, 0.6 and 0.2 respectively. The recommended 

linguistic term is 𝑡∗′𝑏 ∈ 𝑇, such that 𝑑(𝑡∗′𝑏, 𝐶) ≤ 𝑑
′(𝑡𝑞, 𝐶), ∀𝑡𝑞 ∈ 𝑇.  

 

Therefore, we get two recommended linguistic terms, one corresponding to the membership and other 

corresponding to the non-membership. 

 

The IFS based CWW methodology is summarized in the form of Algorithm 2. 

 

3.3. Rough set based CWW methodology 

 

Rough sets [9], [17], [18], [29], [38] are a formal approximation of a crisp set. This approximation is given 

in terms of sets called the lower and the upper approximation of the original set. We are using the 

indiscernibility property of rough sets and the concepts of SMLCM to build the rough set based CWW 

methodology. Let us briefly review some of the associated definitions of the rough sets, which will be 

required for building the rough set based CWW methodology. 

 

Consider an information representation system 𝐼 consisting of a collection of attributes given by the universe 

of discourse 𝑈 and a non-empty finite set of attributes 𝐴 is defined on 𝑈. Therefore, 𝐼 = (𝑈, 𝐴) or more 

formally put, 𝐼 is a mapping defined as follows: 𝐼: 𝑈 → 𝑉𝑎, where 𝑉𝑎 is the set of values that the attribute 𝑎 

may take and 𝑎 ∈ 𝐴. There exists an information table in the system that assigns a value 𝑎(𝑥) from 𝑉𝑎 to each 

attribute 𝑎 and object 𝑥 in the universe 𝑈.  

 

A 𝑃-indiscernibility relation or property, denoted as 𝐼𝑁𝐷(𝑃), is defined on the rough set in the following 

manner: 

𝐼𝑁𝐷(𝑃) = {(𝑥, 𝑦) ∈ 𝑈2 |∀𝑎 ∈ 𝑃, 𝑎(𝑥) = 𝑎(𝑦)}                         (29) 
 

where 𝑃 ⊆ 𝐴, is called an associated equivalence relation. The universe 𝑈 can be partitioned into a family of 

equivalence classes 𝐼𝑁𝐷(𝑃) denoted by 𝑈/𝐼𝑁𝐷(𝑃) or 𝑈/𝑃. We use the concept of 𝑃-indiscernibility to 

develop our rough set based CWW linguistic computational model. 

 

3.3.1 Translation 

 

In the design of CWW methodology based on rough sets, we consider again the linguistic preferences of 

the users, contained in the preference vector, in Eq. (2). The important step here is to partition these linguistic 

preferences into equivalence classes using the indiscernibility criteria. Thus, the linguistic preference vector 

of Eq. (2) changes to a collection of equivalence classes given in Eq. (30) as: 

 
{𝐶1, 𝐶2, . . . 𝐶𝑛}                                                          (30) 
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where 𝐶𝑖 , 𝑖 = 1,… , 𝑛 are the equivalence classes obtained by grouping the same linguistic preferences of 

users from Eq. (2) into one class. Thus, each equivalence class is a set given by a collection of linguistic 

preferences as 𝐶𝑖 = (𝑡𝑗1, 𝑡𝑗2, . . . 𝑡𝑗𝑝), where each 𝑡𝑗𝑞 ∈ 𝑇; 𝑞 = 1 𝑡𝑜 𝑝, 𝑡𝑗1 = 𝑡𝑗2 =. . . = 𝑡𝑗𝑝. It is pertinent to 

mention that the number of linguistic preferences in any two equivalence classes can be the same or different. 

We can refer to the number of linguistic preferences in a class as the class cardinality, denoted as |𝐶𝑖|, 𝑖 =
1,… , 𝑛. 

 

From Section 2.2.1, we have that the sum of all the weights for the corresponding linguistic preferences is 

1. In Eq. (30), we have 𝑛 equivalence classes. Thus, each class can be assigned a weight equal to 1/𝑛. Further, 

since each class contains |𝐶𝑖|, 𝑖 = 1,… , 𝑛 number of terms, therefore within each class, each linguistic term 

can be assigned a weight of 1/(𝑛 ∗ |𝐶𝑖|). In this way, we have decided the weights for each of the linguistic 

preferences given in Eq. (2) and arrived at a new weight matrix, which is given in Eq. (31) as: 

𝑊 = [𝑤′
1, … , 𝑤

′
𝑖]                                                           (31) 

 

where each 𝑤′
𝑝 ∈ [0,1]; 𝑝 = 1 𝑡𝑜 𝑖, corresponds to the associated weight of the respective linguistic 

preference 𝑡𝑗𝑘 given in Eq. (2). Further, a condition exists on all the 𝑤′
𝑝 that ∑ 𝑤′

𝑝
𝑖
𝑝=1 = 1.  

 

3.3.2 Manipulation 

 

Now we need to aggregate the linguistic preferences of the users according to the weight matrix given in 

Eq. (31). We first convert the linguistic preferences to a sorted order, similar to Eq. (8), which is given as:  

 
{𝑇1, 𝑇2, . . . 𝑇𝑖}                                                 (32) 

 

where 𝑇𝑘 ∈ 𝑇, 𝑘 = 1,… , 𝑖. Further, each of the 𝑇𝑘 may or may not be equal to respective 𝑡𝑗𝑘. These linguistic 

preferences from Eq. (32), are aggregated according to the weight vector given in Eq. (31), recursively, using 

the recursive function (𝐴𝐺′
𝑖
), by performing the computations shown in Eq. (33) as:   

 

𝐴𝐺′
𝑖
{𝑤′

𝑝, 𝐼𝑇𝑝 , 𝑝 = 1,… , 𝑖|𝑖 > 2, 𝑖 ∈ ℤ} = (𝑤
′
1⨀ 𝐼𝑇1) ⊕ ((1 − 𝑤′

1) ⊙ 𝐴𝐺′
𝑖−1
{𝛿ℎ, 𝐼𝑇ℎ , ℎ = 2,… , 𝑖}) (33) 

 

where 𝐼𝑇𝑝 , 𝑝 = 1,… , 𝑖, 𝐼𝑇ℎ , ℎ = 2,… , 𝑖 are the indices4 of the linguistic terms given in Eq. (32) and 𝛿ℎ =

𝑤′
ℎ

∑ 𝑤′
𝑙

𝑖
𝑙=2

⁄ ; ℎ = 2, 3, … , 𝑖.   

Eq. (33) proceeds in a top-down fashion performing the successive aggregations until the number of terms 

is reduced to 2, referred to as the boundary condition. For the boundary condition, the aggregation is 

performed as:  

 

𝐴𝐺′
2
{{𝑤′

𝑖−1, 𝑤
′
𝑖}, {𝐼𝑇𝑖−1 , 𝐼𝑇𝑖}| 𝑖 = 2} = (𝑤

′
𝑖−1⨀ 𝐼𝑇𝑖−1) ⊕ (𝑤′

𝑖⨀ 𝐼𝑇𝑖)                       (34) 

 

where 𝐼𝑇𝑖−1 and 𝐼𝑇𝑖 are the respective indices of the last two terms from the preference vector Eq. (32), and 

𝑤′
𝑖−1 and 𝑤′

𝑖 are the respective weights. 

 

3.3.3 Retranslation 

 

Eq. (34) recommends the index of a linguistic term. This recommended index value is given as:   

 
4 The original equations in [12] use the linguistic labels. However, the actual aggregation is performed on the indices of the 

linguistic labels. So, we have chosen to show directly the indices of the linguistic terms in the Eq. (33)-(34). 
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𝐼𝑟 = 𝑚𝑖 𝑛 {𝑖, 𝐼𝑇𝑖 + 𝑟𝑜𝑢𝑛𝑑 (
𝑤′

𝑖−1 − 𝑤
′
𝑖 + 1

2
. (𝐼𝑇𝑖−1 − 𝐼𝑇𝑖))}                    (35) 

 

where 𝑟𝑜𝑢𝑛𝑑()is the round function. 

 

Thus, before reaching Eq. (34) from Eq. (33) in a top-down manner, we get a series of 𝑖 − 2 intermediate 

recursive equations. From Eq. (34), an index of the linguistic term is recommended using Eq. (35). This index 

is then given as an input to the preceding recursive equation. Thus, the combination process then follows a 

bottom-up approach. Therefore, at each step of the bottom-up combination process, there will be two indices 

of the linguistic terms to combine. The index of the recommended linguistic term can be found by performing 

computations similar to Eq. (35).  

 

Thus, finally, we reach Eq. (33), or the original equation, where the index of the recommended linguistic 

term is matched to one of the terms from Eq. (1), to find out the final recommended linguistic value. 

 

Algorithm 3: Rough Set based CWW methodology 

Step 1. Input:  

i. 𝑇 = {𝑡0, 𝑡1, … 𝑡𝑔}, Linguistic term set of cardinality 𝑔 + 1  

ii. {𝑡𝑗1, 𝑡𝑗2, . . . 𝑡𝑗𝑖}, 𝑗 = 0 𝑡𝑜 𝑔, ∀𝑡𝑗𝑘 ∈ 𝑇; 𝑘 = 1 𝑡𝑜 𝑖, Linguistic preferences of 𝑖 stakeholders 

Step 2. Compute 𝑛 Equivalence Classes by grouping same linguistic terms into one class: 
{𝐶1, 𝐶2, . . . 𝐶𝑛} 

Step 3. Compute weight matrix, 𝑊 = [𝑤′
1, … , 𝑤

′
𝑖] for each linguistic term in Equivalence Classes:  

i. Each class can be assigned a weight equal to 1/𝑛.  

ii. Each class contains |𝐶𝑖|, number of terms, therefore weight assigned to each linguistic term is 1/(𝑛 ∗ |𝐶𝑖|).  

Step 4. Sort the linguistic preferences to obtain a new preference vector as: 
{𝑇1, 𝑇2, . . . 𝑇𝑖} 

Step 5. Aggregate linguistic preferences using weight matrix using recursive function as: 

i. 𝐴𝐺′𝑖 {𝑤′
𝑝, 𝐼𝑇𝑝 , 𝑝 = 1,… , 𝑖|𝑖 > 2, 𝑖 ∈ ℤ} = (𝑤

′
1⨀ 𝐼𝑇1)⊕ ((1 − 𝑤′

1) ⊙ 𝐴𝐺′
𝑖−1
{𝛿ℎ, 𝐼𝑇ℎ , ℎ = 2,… , 𝑖}) 

ii. 𝐴𝐺′
2
{{𝑤′

𝑖−1, 𝑤
′
𝑖}, {𝐼𝑇𝑖−1 , 𝐼𝑇𝑖}|𝑖 = 2} = (𝑤

′
𝑖−1⨀ 𝐼𝑇𝑖−1) ⊕ (𝑤′

𝑖⨀ 𝐼𝑇𝑖) 

Step 6. Recommend the index of Linguistic term as: 

𝐼𝑟 = 𝑚𝑖 𝑛 {𝑖, 𝐼𝑇𝑖 + 𝑟𝑜𝑢𝑛𝑑 (
𝑤′

𝑖−1 − 𝑤
′
𝑖 + 1

2
. (𝐼𝑇𝑖−1 − 𝐼𝑇𝑖))} 

Step 7. Use Step 6 in a bottom up manner to recommend an index of the linguistic term from 𝐴𝐺′
𝑖
{𝑤′

𝑝, 𝐼𝑇𝑝 , 𝑝 =

1,… , 𝑖}. Thus, the recommended linguistic term is the one whose index matched the term set 𝑇 in Step 1.i. 

 

 

It has been observed that in an equation where only two indices need to be combined, similar to Eq. (34), if 

𝑤′
𝑖−1 = 𝑤 and 𝑤′

𝑖 = 1 − 𝑤, for some value of the weight 𝑤, then putting indices also in a generalized form 

viz., 𝐼𝑇𝑖−1 = 𝐼𝑙 and 𝐼𝑇𝑖 = 𝐼𝑞, Eq. (34) and Eq. (35) can be written (in generalized form) as in Eq. (36) and Eq. 

(37), respectively as: 

 

𝐴𝐺′
2
{{𝑤, 1 − 𝑤}, {𝐼𝑙 , 𝐼𝑞}} = (𝑤⨀ 𝐼𝑙) ⊕ ((1 − 𝑤)⨀ 𝐼𝑞)                         (36) 

 

𝐼𝑟 = 𝑚𝑖𝑛 {𝑖, 𝐼𝑞 + 𝑟𝑜𝑢𝑛𝑑(𝑤. (𝐼𝑙 − 𝐼𝑞))}                                         (37) 
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Finally, the recommended value is a unique index of the term belonging to the term set 𝑇, in Eq. (1). 

 

It is pertinent to mention that in case the inputs are weighted, the rough set based CWW methodology will 

behave exactly like the Symbolic method based linguistic computational model of Section 2.2. 

 

The working of the rough set based CWW methodology is summarized in the form of Algorithm 3. 

 

4. Demonstration by Numerical Example and Experimental Results 

 

In this section, we demonstrate the working of the augmented extension principle based linguistic 

computational model, IFS based CWW methodology and rough sets based CWW methodology, using a 

suitable example, in the first three subsections. Then in the fourth subsection, we present the experimental 

results on 30 datasets of five users, obtained by the application of 1) EPLCM, 2) SMLCM, 3) augmented 

extension principle based linguistic computational model, 4) IFS based CWW methodology, and 5) rough 

sets based CWW methodology. 

 

The problem definition of these users, linguistic inputs and weights are as follows: consider a group of five 

users (User 1…5), where we capture their linguistic preferences on a determined scenario. Their linguistic 

preferences are elicited using a term set 𝑇, containing three linguistic terms, and is given in Eq. (38) (similar 

to Eq. (1)) as: 

 

𝑇 = {𝑡0: 𝐿𝑜𝑤 (𝐿), 𝑡1:𝑀𝑒𝑑𝑖𝑢𝑚 (𝑀), 𝑡2: 𝐻𝑖𝑔ℎ (𝐻)}                                (38) 
 

T1 MFs represent the semantics of the linguistic terms in the term set of Eq. (38) on a scale of 0 to 10, 

shown in Fig. 7.  
 

  

 

 

 

 

 
 

 

 

 

 

Fig 7. Individual terms of the linguistic term set 

 

Let the users' preferences be given as User 1 and User 2: 𝐿𝑜𝑤, User 3:𝑀𝑒𝑑𝑖𝑢𝑚, User 4 and User 5: 𝐻𝑖𝑔ℎ. 
Thus, the preference vector containing the users' preferences is given in Eq. (39) (similar to Eq. (2)) as: 

 

{𝑡01: 𝐿, 𝑡02: 𝐿, 𝑡13:𝑀, 𝑡24: 𝐻, 𝑡25: 𝐻}                                                      (39) 
 

here 𝑡𝑗𝑘, 𝑗 = 0,1,2, 𝑘 = 1,2,3,4,5 denotes the linguistic preference of the 𝑘𝑡ℎ user occurring at 𝑗𝑡ℎ index in 

the term set given in Eq. (38). Now, let us illustrate the working of each of the linguistic computational 

models proposed in Section 3 one by one. 

 

 

 

 

 

𝒕𝟎: 𝑳𝒐𝒘 (𝑳) 𝒕𝟏:𝑴𝒆𝒅𝒊𝒖𝒎 (𝑴) 𝒕𝟐: 𝑯𝒊𝒈𝒉 (𝑯) 

𝟎 𝟏𝟎 𝟓 
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4.1. Example using proposed augmented EPLCM  

 

Let the weights to be assigned to the linguistic preferences of the users be taken from the vector given in 

Eq. (40), and its semantics be represented using the T1 MFs, shown in Fig 8. 

 

𝑊𝑊 = {𝑤0: 𝐿𝑒𝑠𝑠 (𝐿𝑊),𝑤1: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝐴𝑊),𝑤2:𝑀𝑜𝑟𝑒 (𝑀𝑊)}                      (40) 
 

Let the weight vector, similar to Eq. (7), corresponding to the linguistic preferences of the users from Eq. 

(39), is given as: 

𝑊 = [𝑤1: 𝐿𝑊,𝑤2: 𝐴𝑊,𝑤3:𝑀𝑊,𝑤4: 𝐿𝑊,𝑤5: 𝐴𝑊]                                                (41) 
 

Thus, now we aggregate the linguistic preferences of the users along with the respective weights. 

 
  

 

 

 

 

 
 

 

 

 

Fig 8. Individual terms of the weight term set 
 

4.1.1. Translation 

 

We convert the linguistic preferences of the users from Eq. (39) and respective weight vector from Eq. (41) 

to tri-tuple form using Fig. 7 and Fig. 8 respectively, to arrive at Eq. (42) and Eq. (43), similar to Eq. (14) 

and Eq. (15), respectively as: 

 
{(0,0,5), (0,0,5), (0,5,10), (5,10,10), (5,10,10)}                                           (42) 

 
{(0,0,5), (0,5,10), (5,10,10), (0,0,5), (0,5,10)}                                            (43) 

 

4.1.2. Manipulation 

 

Since the information representation scale is positive viz., 0 to 10, we multiply the respective linguistic 

preference of the user with its associated weight to derive the respective tri-tuples corresponding to the 

weighted preferences of individual users using Eq. (20). Thus, the new matrix corresponding to the weighted 

preferences of the users is given as:  

 
{(0,0,25), (0,0,50), (0,50,100), (0,0,50), (0,50,100)}                              (44) 

 

Thus, the collective preference vector corresponding to weighted preferences of all the users is obtained by 

aggregating the terms of Eq. (44), using Eq. (5), as: 

 

𝐶 = (0,20,65)                                                                (45) 
 

 

 

 

𝒘𝟎: 𝑳𝒆𝒔𝒔 (𝑳𝑾) 𝒘𝟏:𝑨𝒗𝒆𝒓𝒂𝒈𝒆 (𝑨𝑾) 𝒘𝟐:𝑴𝒐𝒓𝒆 (𝑴𝑾) 

𝟎 𝟏𝟎 𝟓 
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4.1.3. Retranslation  

 

Now, we calculate the distance of the collective preference vector of Eq. (45) from all the linguistic terms 

of the term set in Eq. (38), using Eq. (6). The linguistic term with minimum distance is 𝐻𝑖𝑔ℎ (𝐻). Therefore, 

𝐻𝑖𝑔ℎ is the recommended linguistic term. 

 

4.2. Example using IFS based CWW methodology 

 

Let us illustrate the working of IFS based CWW methodology for the linguistic preferences of the users 

given in Eq. (39) and the associated weight matrix given in Eq. (41). Now the task here is to consider two 

quantities associated with each linguistic preference and weight, viz., degree of membership and degree of 

non-membership. 

 

4.2.1. Translation 

 

Consider linguistic preference of the first user from Eq. (39) as 𝑡01: 𝐿𝑜𝑤 (𝐿). Therefore, the 𝑡01 belongs to 

𝐿𝑜𝑤 (𝐿) and does not belong to 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 (𝑀) and 𝐻𝑖𝑔ℎ (𝐻). Therefore, the tri-tuple corresponding to the 

degree of membership of 𝑡01 is (0,0,5) and tri-tuple corresponding to the degree of non-membership of 𝑡01 

is (
0+5

2
,
5+10

2
,
10+10

2
) = (2.5, 7.5, 10).  

 

Similarly, the associated weight to the linguistic preference of the first user from Eq. (41) is given as: 

𝑤1: 𝐿𝑊. Therefore, 𝑤1 belongs to 𝐿𝑒𝑠𝑠 (𝐿𝑊) and does not belong to 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝐴𝑊) and 𝑀𝑜𝑟𝑒 (𝑀𝑊). 
Therefore, the tri-tuple corresponding to the degree of membership of 𝑤1 is (0,0,5) and tri-tuple 

corresponding to the degree of non-membership of 𝑤1 is (
0+5

2
,
5+10

2
,
10+10

2
) = (2.5, 7.5, 10). 

 

Proceeding similarly, we find out the tri-tuples corresponding to the memberships and non-memberships 

for linguistic preferences of the users and respectively associated weights. These are given in Eq. (46) and 

Eq. (47), similar to Eq. (24) and Eq. (25), respectively as: 

 

 

{
[(0,0,5), (2.5, 7.5, 10)], [(0,0,5), (2.5, 7.5, 10)], [(0,5,10), (2.5, 5, 7.5)],

[(5,10,10), (0,2.5, 7.5)], [(5,10,10), (0,2.5, 7.5)]
}               (46) 

 

 

{
[(0,0,5), (2.5, 7.5, 10)], [(0,5,10), (2.5, 5, 7.5)], [(5,10,10), (0,2.5, 7.5)],

[(0,0,5), (2.5, 7.5, 10)], [(0,5,10), (2.5, 5, 7.5)]
}              (47) 

 

4.2.2. Manipulation 

 

Here, again the information representation scale is positive (0 to 10); we multiply the tri-tuples 

corresponding to the membership (non-membership) degree of the respective linguistic preference of the 

user, with the tri-tuples corresponding to the membership (non-membership) degree of the associated 

weights. We finally derive the respective tri-tuples corresponding to the membership (non-membership) of 

the weighted preferences of individual users using Eq. (20). Thus, the new matrix corresponding to the tri-

tuples for membership and non-membership of the users’ weighted preferences is given as: 

 

{
[(0,0,25), (6.25, 56.25, 100)], [(0,0,50), (6.25, 37.5, 75)], [(0,50,100), (0,12.5, 56.25)],

[(0,0,50), (0,18.75, 75), [(0,50,100), (0,12.5, 56.25)]]
}       (48) 
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Therefore, the collective preference vector, containing the tri-tuples corresponding to the membership as 

well as non-membership similar to Eq. (26), is given as: 

 

𝐶 = {(0,20,65), (2.5, 27.5, 72.5)}                                          (49) 
 

4.2.3. Retranslation 

 

Now, the components of the collective preference vector of Eq. (49), corresponding to the degree of 

membership as well as non-membership, are converted to linguistic form using Eq. (27) and Eq. (28), 

respectively. Thus, the linguistic output corresponding to both the membership and non-membership is found 

to be 𝐻𝑖𝑔ℎ (𝐻).  
 

4.3. Example using Rough set based CWW methodology 

 

With the rough set based CWW methodology, the first task is to convert the linguistic preferences of the 

users into equivalence classes.  

 

4.3.1. Translation 

 

Consider again the linguistic preferences of the users, given in Eq. (39). We partition them into equivalence 

classes. Thus, we obtain the matrix similar to Eq. (30) as: 

 

{𝐶1, 𝐶2, 𝐶3}                                                    (50) 
 

where 𝐶1 = (𝑡01, 𝑡02) = (𝐿, 𝐿), 𝐶2 = (𝑡13) = (𝑀), 𝐶3 = (𝑡24, 𝑡25) = (𝐻,𝐻). Each of the 𝐶1, 𝐶2, 𝐶3 are 

assigned a weight of 1/3. Therefore, the weight of individual terms inside each of 𝐶1, and 𝐶3 is 1/6, whereas 

that inside 𝐶2 is 1/3. Therefore, the weight matrix similar to Eq. (31) is given as: 

 

𝑊 = [
1

6
,
1

6
,
1

3
,
1

6
,
1

6
]                                              (51) 

4.3.2. Manipulation 

 

Now we order the linguistic preference term set of the users given in Eq. (39), to arrive at a term set similar 

to Eq. (32) as: 

 

{𝑡2, 𝑡2, 𝑡1, 𝑡0, 𝑡0}                                                (52) 
 

Now we combine the indices of the linguistic preferences of the Eq. (52) according to the weight matrix 

given in Eq. (51) using the recursive function given in Eq. (33) as: 

 

𝐴𝐺′
5
{[
1

6
,
1

6
,
1

3
,
1

6
,
1

6
] , [2,2,1,0,0]} = (

1

6
⨀2)⊕ (

5

6
⊙ 𝐴𝐺′

4
{[ 
1

5
,
2

5
,
1

5
,
1

5
] , [2,1,0,0]})                 (53) 

 

 

𝐴𝐺′
4
{[ 
1

5
,
2

5
,
1

5
,
1

5
] , [2,1,0,0]} = (

1

5
⨀2)⊕ (

4

5
⊙ 𝐴𝐺′

3
{[ 
1

2
,
1

4
,
1

4
] , [1,0,0]})              (54) 
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𝐴𝐺′
3
{[ 
1

2
,
1

4
,
1

4
] , [1,0,0]} = (

1

2
⨀1)⊕ (

1

2
⊙ 𝐴𝐺′

2
{[ 
1

2
,
1

2
] , [0,0]})                   (55) 

 

4.3.3. Retranslation 

 

Thus, for calculation of the 𝐴𝐺′
2
{[ 

1

2
,
1

2
] , [0,0]}, we have arrived at the boundary condition. Therefore, we 

use Eq. (34) and Eq. (35) (or Eq. (36) and Eq. (37)) to calculate the values as: 

 

𝐴𝐺′
2
{[ 
1

2
,
1

2
] , [0,0]} = (

1

2
⨀ 0)⊕ (

1

2
⊙ 0)                               (56) 

 

𝐼𝑟 = min {5,0 + 𝑟𝑜𝑢𝑛𝑑 (
1

2
× (0 − 0))} = 0                          (57) 

 

Thus, putting 𝐼𝑟 = 0 from Eq. (57), in Eq. (55), we get Eq. (58) as: 

 

𝐴𝐺′
3
{[ 
1

2
,
1

4
,
1

4
] , [1,0,0]} = (

1

2
⨀1)⊕ (

1

2
⊙ 0)                       (58) 

 

Here, the value of the R.H.S of Eq. (58) is found by performing computations similar to Eq. (56) as: 

 

𝐼𝑟 = min {5,0 + 𝑟𝑜𝑢𝑛𝑑 (
1

2
× (1 − 0))} = 1                          (59) 

 

Thus, putting 𝐼𝑟 = 1 from Eq. (59), in Eq. (54), we get Eq. (60) as: 

 

𝐴𝐺′
4
{[ 
1

5
,
2

5
,
1

5
,
1

5
] , [2,1,0,0]} = (

1

5
⨀2)⊕ (

4

5
⊙ 1)                     (60) 

 

Here, the value of the R.H.S of Eq. (60) is found by performing computations similar to Eq. (56) as: 

 

𝐼𝑟 = min {5,1 + 𝑟𝑜𝑢𝑛𝑑 (
1

5
× (2 − 1))} = 1                   (61) 

 

Thus, putting 𝐼𝑟 = 1 from Eq. (61), in Eq. (53), we get Eq. (62) as: 

 

𝐴𝐺′
5
{[
1

6
,
1

6
,
1

3
,
1

6
,
1

6
] , [2,2,1,0,0]} = (

1

6
⨀2)⊕ (

5

6
⊙ 1)                (62) 

 

Here, the value of the R.H.S of Eq. (62) is found by performing computations similar to Eq. (56) as: 

 

𝐼𝑟 = min {5,1 + 𝑟𝑜𝑢𝑛𝑑 (
1

6
× (2 − 1))} = 1                        (63) 

 

Therefore, the index of the recommended linguistic term is 1. Therefore, the recommended linguistic term 

is 𝑡1 or 𝑀𝑒𝑑𝑖𝑢𝑚 (𝑀) from Eq. (38). 
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TABLE III 

LINGUISTIC INPUTS OF USERS, ASSOCIATED WEIGHTS AND GENERATED LINGUISTIC RECOMMENDATIONS  

S.No. Linguistic Inputs of Usersa Linguistic Weights associated to linguistic inputs of usersb Linguistic recommendation by 

Users→ 1 2 3 4 5 1 2 3 4 5 EPLCMc SMLCMd A-EPLCMe IFSf RSg 

              mh nmi  

1 𝐻 𝐻 𝑀 𝐻 𝐻 𝐴𝑊 𝐿𝑊 𝐴𝑊 𝐻𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 
2 𝑀 𝐿 𝐿 𝑀 𝑀 𝐴𝑊 𝐻𝑊 𝐻𝑊 𝐿𝑊 𝐿𝑊 𝑀 𝐿 𝑀 𝑀 𝐻 𝐿 
3 𝐻 𝐻 𝑀 𝐻 𝐻 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
4 𝑀 𝐻 𝐻 𝑀 𝐻 𝐴𝑊 𝐴𝑊 𝐴𝑊 𝐴𝑊 𝐴𝑊 𝐻 𝑀 𝐻 𝐻 𝐻 𝐻 
5 𝐻 𝐻 𝐻 𝐿 𝐻 𝐻𝑊 𝐿𝑊 𝐴𝑊 𝐴𝑊 𝐿𝑊 𝐻 𝑀 𝐻 𝐻 𝐻 𝑀 
6 𝐿 𝐻 𝐻 𝑀 𝐿 𝐴𝑊 𝐻𝑊 𝐴𝑊 𝐴𝑊 𝐻𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝐿 
7 𝑀 𝐻 𝐻 𝐻 𝐻 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
8 𝐿 𝐻 𝐻 𝑀 𝐻 𝐴𝑊 𝐿𝑊 𝐿𝑊 𝐻𝑊 𝐻𝑊 𝑀 𝑀 𝐻 𝐻 𝐻 𝑀 
9 𝑀 𝐻 𝐻 𝐻 𝐻 𝐿𝑊 𝐿𝑊 𝐻𝑊 𝐿𝑊 𝐴𝑊 𝐻 𝑀 𝐻 𝐻 𝐻 𝐻 

10 𝐻 𝐻 𝐻 𝐻 𝐻 𝐴𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
11 𝐻 𝐿 𝐻 𝐿 𝐻 𝐴𝑊 𝐿𝑊 𝐻𝑊 𝐿𝑊 𝐴𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝐿 
12 𝑀 𝐿 𝑀 𝐻 𝐿 𝐿𝑊 𝐻𝑊 𝐿𝑊 𝐻𝑊 𝐿𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝐿 
13 𝐻 𝑀 𝐻 𝐻 𝐻 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
14 𝐻 𝐻 𝐻 𝑀 𝐻 𝐿𝑊 𝐴𝑊 𝐿𝑊 𝐿𝑊 𝐴𝑊 𝐻 𝑀 𝐻 𝐻 𝐻 𝐻 
15 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐴𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
16 𝐿 𝐻 𝐻 𝑀 𝐿 𝐿𝑊 𝐻𝑊 𝐴𝑊 𝐿𝑊 𝐴𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝐿 
17 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻𝑊 𝐴𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
18 𝑀 𝐿 𝑀 𝐿 𝑀 𝐴𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝐿 
19 𝑀 𝐿 𝐿 𝐿 𝐻 𝐿𝑊 𝐻𝑊 𝐴𝑊 𝐴𝑊 𝐴𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝐿 
20 𝐻 𝐻 𝐻 𝑀 𝐻 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
21 𝑀 𝐿 𝐿 𝑀 𝐿 𝐴𝑊 𝐴𝑊 𝐿𝑊 𝐻𝑊 𝐴𝑊 𝐿 𝐿 𝐻 𝐻 𝐻 𝐿 
22 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐴𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
23 𝑀 𝐻 𝐿 𝑀 𝑀 𝐻𝑊 𝐻𝑊 𝐿𝑊 𝐴𝑊 𝐻𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝑀 
24 𝐿 𝑀 𝑀 𝐿 𝐻 𝐻𝑊 𝐴𝑊 𝐻𝑊 𝐻𝑊 𝐴𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝐿 
25 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
26 𝑀 𝐻 𝐻 𝐿 𝑀 𝐿𝑊 𝐻𝑊 𝐻𝑊 𝐿𝑊 𝐴𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝑀 
27 𝐿 𝐻 𝑀 𝐻 𝐿 𝐴𝑊 𝐻𝑊 𝐿𝑊 𝐿𝑊 𝐿𝑊 𝑀 𝐿 𝐻 𝐻 𝐻 𝐿 
28 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻𝑊 𝐻𝑊 𝐴𝑊 𝐻𝑊 𝐻𝑊 𝐻 𝐻 𝐻 𝐻 𝑀 𝐻 
29 𝑀 𝐿 𝐿 𝐿 𝐿 𝐿𝑊 𝐻𝑊 𝐿𝑊 𝐻𝑊 𝐻𝑊 𝐿 𝐿 𝑀 𝑀 𝐻 𝐿 
30 𝐿 𝑀 𝑀 𝐻 𝐻 𝐿𝑊 𝐻𝑊 𝐿𝑊 𝐻𝑊 𝐴𝑊 𝑀 𝑀 𝐻 𝐻 𝐻 𝑀 

 

a 𝐿= Low, 𝑀= Medium, 𝐻= High, b 𝐿𝑊= Less, 𝐴𝑊= Average, 𝑀𝑊= More, c EPLCM= Extension principle based linguistic computational model, d SMLCM= Symbolic method based linguistic 

computational model, e A-EPLCM= Augmented Extension principle based linguistic computational model, f IFS= IFSbased CWW methodology, g RS= Rough Set based CWW methodology, h 

m= Linguistic term for degree of membership (𝐿= Low, 𝑀= Medium, 𝐻= High), i nm= Linguistic term for degree of non-membership (𝐿= Low, 𝑀= Medium, 𝐻= High) 
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4.4. Experimental Results 

 

We compare the results obtained by applying EPLCM, SMLCM, Augmented extension principle based 

linguistic computational model, IFS based CWW methodology, and rough sets based CWW methodology on 

30 datasets of the five users, Users 1,..,5. Their linguistic preferences are described using the linguistic terms 

given in Eq. (38), and the semantics of these linguistic terms are represented by T1 MFs in Fig. 7. Further, 

the linguistic weights corresponding to the linguistic inputs in the respective data sets are described using 

linguistic terms given in Eq. (40) and the semantics of these linguistic terms are represented by T1 MFs in 

Fig. 8. These data sets are presented at S.No. 1 to 30, in the rows 4 to 33 in Table III.  

 

In Table III, Columns 2 to 6 (rows 4 to 33) give the linguistic preferences of the five users, and columns 7 

to 11 (rows 4 to 33) provide the corresponding linguistic weights of the respective linguistic preferences of 

the users. These linguistic preferences of the users are processed by using the EPLCM technique (discussed 

in Section 2.1) to give linguistic recommendations. The linguistic recommendations are given in column 12 

(rows 4 to 33).  

 

Further, the users' linguistic preferences and the associated linguistic weights are processed using the 

SMLCM, Augmented-EPLCM, IFS based CWW methodology, and the rough set based CWW methodology, 

which is discussed in Section 2.2,  Section 3.1, Section 3.2 and Section 3.3, respectively. The linguistic 

recommendation obtained respectively by SMLCM, Augmented-EPLCM, IFS based CWW methodology 

and the rough set based CWW methodology are given respectively in column 13, 14, 15-16 and 17 (rows 4 

to 33). The IFS based CWW methodology provides two linguistic recommendations, one corresponding to 

the degree of membership and another to the degree of non-membership, as seen in columns 15 and 16, rows 

4 to 33, of Table III. 

 

5. Discussions 

 

In this Section, we will bring out important findings as well as throw light on various aspects that have 

emerged from the research work presented in this paper.  

 

1). We have shown the similarity of the EPLCM and the SMLCM to Yager’s generalized CWW 

framework. In [49], authors stated that ever since Prof. Zadeh proposed the concept of CWW in his 

work [41], various literary works have presented discussions and extensions on it. Thus, according to 

the authors, all such research literature points out that the CWW itself has subjective interpretations, 

but all such interpretations require fuzzy logic to implement them.  

 

Since EPLCM represents the semantics of LI using T1 FSs, therefore, showing the similarity of the 

EPLCM to Yager’s CWW framework affords us the use of T1 FSs for the CWW (in the form of the 

EPLCM). Further, by showing the similarity of the SMLCM to Yager’s generalized CWW framework, 

we put forth the idea that it is also possible to achieve CWW by methodologies other than fuzzy logic, 

viz., use of ordinal term sets (as done in the SMLCM). However, it is pertinent to mention that the 

emphasis lies on using the correct uncertainty model for achieving CWW. Higher order FSs have also 

been used to achieve the CWW [11], [19], [24], [26], [28], [33], [36], and they do perform better than 

the T1 FSs or the ordinal term sets. However, this improvement in the performance is accompanied by 

additional computational complexity. It may happen that the decision-making scenario at hand does 

not warrant the performance improvement at additional computational complexity, because the 

information granularity may be represented sufficiently by the T1 FSs or the ordinal term sets. Such 

scenarios can easily employ the EPLCM or the SMLCM. 
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2). We have proposed a novel augmented linguistic computational model based on the extension 

principle, which enables the processing of LI, which is differentially weighted. By processing, we mean 

that the LI is operated on by using the principles of CWW viz., translation, manipulation and 

retranslation. The differential weighting means that, out of the individual pieces of LI, which have been 

referred to as the linguistic preferences from individual stakeholders, one or more linguistic preferences 

may be assigned the same or different weights. These weights are also represented in the linguistic 

form (crisp or equal weights are a special case of linguistic weights). Numerous works in the literature 

support our claim that LI is seldom uniformly or equally weighted. More often than not, LI is 

differentially weighted (Please see [11], [19], [27], [26], [34-36] for details).  

 

Further, we support our claims using the numerical example discussed in Section 4 above. Consider 

the case of 5 users discussed in the numerical example of Section 4. These users may belong to the 

same management department within an organization in a real-life scenario. This organization wants 

to decide with respect to the implementation of policies for changing its supply chain operations. These 

five users are in managerial executive positions and have been asked to provide their preferences (in 

linguistic form) on this decision. Based on the inputs received from the users, a collective decision will 

be taken for policy implementation for the change of supply chain operations. These users may have 

joined the organizations at different times. Their work experience within the organization is taken as a 

measure of their expertise in providing their linguistic inputs. Thus, their inputs are differentially 

weighted. Say, User 3 is the oldest in the organization, and therefore his preferences attract 𝑀𝑜𝑟𝑒 

weight. Users 2 and 5 may have joined the organization at almost the same time, so their preferences 

are assigned a weight of 𝐴𝑣𝑒𝑟𝑎𝑔𝑒. Further, Users 1 and 4 may have joined the organization recently; 

therefore, their preferences are assigned 𝐿𝑒𝑠𝑠 weight. 

 

3). We have also proposed a novel CWW methodology based on IFS. T1 FSs represent the semantics of 

LI as a collection of points (or elements) which are twin values viz., consider a T1 FS 𝐴, where each 

element is given as 𝐴 = {(𝑥, 𝜇𝐴(𝑥))|∀𝑥 ∈ 𝑋}, 𝑥 being the set element, 𝜇𝐴(𝑥) its degree of membership 

and 𝑋 is the universe of discourse. Here, an element 𝑥 belongs to T1 FS 𝐴 with a degree of membership 

𝜇𝐴(𝑥) and does not belong to 𝐴 with a degree of non-membership as 1 − 𝜇𝐴(𝑥).  
 

IFS, on the other hand, represent each element as tri-tuples viz., 𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥))|∀𝑥 ∈ 𝑋}, 
where the added term 𝜈𝐴(𝑥) is called the degree of non-membership. For an IFS, the sum of 

membership and non-membership degrees do not necessarily add to 1 viz., 0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1. 

Further, 𝜈𝐴(𝑥) may or not be equal to 1 − 𝜇𝐴(𝑥). IFS also define a term called hesitation given as 

𝜋(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥). 
 

In [3], the author stated that IFSs could be applied in all the scenarios where the T1 FSs, however not 

vice versa. The author described a scenario in [3] to show the usefulness of IFS over T1 FSs, regarding 

the direct election of governments in different countries. The support offered to the parliament in each 

of these countries was the ratio of the number of the Members of Parliament (MPs) from the ruling 

party to their total number. If this ratio does not change then, T1 FSs are useful for this case. However, 

suppose the attitudes of the MPs towards the parties keep changing. In that case, this will impact two 

ratios: (1) the number of MPs who strongly support the government compared to the total number of 

MPs, and (2) the number of MPs who are firmly against the government to the total number of MPs. 

Thus, IFS are useful in such scenarios. This is just one example of a scenario where IFS find more 

utility over the T1 FSs. More such applications can be found in [3]. 

 

4). We have also proposed a novel CWW methodology based on Rough Sets. Originally, the Rough Sets 

were defined as a formal overlap of two crisp sets viz., lower and upper. However, currently, the lower 



 

 
 

25 

and upper sets of a Rough Set may be defined as the Fuzzy Sets [9], [17], [18], [29], [38]. The most 

significant advantage of the Rough Sets is that they do not require any a priori knowledge about the 

data like the grade of membership needed in the FS theory [31]. Rough Sets use the boundary of a set 

to represent the vagueness in concepts. Thus, the expert defining the research problem is free to choose 

any means to represent the semantics of LI while using rough sets, hence providing greater flexibility 

compared to T1 FSs.  

 

Furthermore, we have proposed the Rough Sets based CWW methodology as an extension to the 

SMLCM. One of the greatest advantages of the Rough Set based CWW methodology compared to the 

SMLCM is how weights are assigned to the linguistic terms. In the Rough Set based CWW 

methodology, all the equivalence classes are assigned equal weights (1 𝑛⁄ ), 𝑛 being the number of 

equivalence classes. Then all the linguistic terms within an equivalence class are assigned an equal 

weight of this 1 𝑛⁄  value viz., 1 𝑛⁄ |𝐶𝑖|, |𝐶𝑖| being the number of linguistic terms in 𝑖𝑡ℎ equivalence class 

(Please see Section 3). This is a more realistic approach in a real-life scenario on decision-making. 

Multiple users with the same level of expertise can be grouped into one equivalence class and assigned 

weights accordingly. This is quite difficult to achieve with SMLCM. 

 

5). The similarity between the augmented EPLCM, IFS-based CWW methodology and Rough Set-based 

CWW methodology is that each of these approaches processes differentially weighted LI according to 

the steps in Yager’s generalized CWW framework (Please see Fig. 1) and generates linguistic output. 

However, the difference lies in the way semantics of LI are represented and the application at hand. 

Thus, if the semantics of LI is known to be represented using T1 FSs and the preferences of users don’t 

change with time, then the augmented EPLCM can be used. The representation of LI semantics using 

T1 FSs and changing users’ preferences enable the use of IFS based CWW methodology. Further, if 

there is no clarity about the methodology used to represent the semantics of LI, then the Rough Set 

based CWW methodology can prove to be quite valuable. 

 

6. Conclusions and Future Work 

 

In this paper, we have studied the linguistic computational models based on extension principle and 

symbolic method. We have shown that the data processing steps (to process LI) adopted by these two 

linguistic computational models bear a lot of similarity to Yager’s generalized CWW framework. However, 

no proof exists in the literature of the similarity being drawn between these linguistic computational models 

and Yager’s generalized CWW framework. We have established this similarity. So, our finding is that these 

two linguistic computational models can be called the Extension principle based CWW methodology and 

Symbolic method based CWW methodology, respectively. 

 

We have also found a limitation of the linguistic computational model based on the extension principle that 

it cannot process linguistic terms with differential weighting. Therefore, we have proposed an augmented 

linguistic computational model based on the extension principle, which can compute with differentially 

weighted LI. 

 

Recently, novel concepts like IFSs and rough sets have been proposed. However, no CWW methodologies 

exist for these two. Therefore, we have proposed two novel CWW methodologies based on IFS and rough 

sets.  

 

We have demonstrated the working of augmented extension principle based linguistic computational, CWW 

methodology based on IFS and CWW methodology based on rough sets using a suitable example.  
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We feel that the present work will enable future researchers to see the various linguistic computational 

methodologies in the framework of CWW. They will be able to improve the existing and develop novel 

CWW methodologies. Also, it is mentioned here that the two CWW methodologies proposed in this paper, 

viz., based on IFS and rough sets, are motivated by the linguistic models based on extension principle and 

symbolic method, respectively. Recent work has been proposed by Labella et al. [50], where both the 

extension principle and symbolic method are combined to handle the complex linguistic expressions. 

Therefore, connecting the extension principle and symbolic method can motivate a new CWW methodology 

based on the combination of IFS and rough sets.  
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