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Abstract

In multi-target prediction, an instance has to be classified along multiple target

variables at the same time, where each target represents a category or numerical

value. There are several strategies to tackle multi-target prediction problems:

the local strategy learns a separate model for each target variable independently,

while the global strategy learns a single model for all target variables together.

Previous studies suggested that the global strategy should be preferred because

(1) learning is more efficient, (2) the learned models are more compact, and

(3) it overfits much less than the local strategy, as it is harder to overfit on

several targets at the same time than on one target. However, it is unclear
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whether the global strategy exploits correlations between the targets optimally.

In this paper, we investigate whether better results can be obtained by learning

multiple multi-target models on several partitions of the targets. To answer this,

we determined alternative partitions using an exhaustive search and a genetic

algorithm strategy.

We used decision trees and random forests as base models. The results show

that it is possible to outperform global and local approaches, but finding a good

partition without incurring in overfitting remains a challenging task.

Keywords: multi-target regression, multi-label classification, predictive

clustering trees, random forests, genetic algorithms

1. Introduction

Traditional prediction problems deal with a set of instances that have a sin-

gle target value associated with them. This target attribute can be nominal

(classification problem) or numeric (regression problem). Several real-life prob-

lems, however, have a set of target attributes: instead of a single property, one5

is interested in predicting multiple properties. This setting is known as multi-

target prediction. Applications include the prediction of river water quality

parameters from bioindicator data [1], olfaction prediction in molecules [2], and

estimation of energy performance in residential buildings [3]. A very related

setting is multi-label learning, where multiple class labels are to be predicted10

for the instances. A multi-label prediction problem can be viewed as a bi-

nary multi-target prediction problem [4, 5], where each possible label becomes

a target. Applications include protein function prediction [6, 7], subcellular

localization [8], document annotation [9], and audio classification [10].

Generally, there are two approaches to tackle multi-target problems [11, 4].15

In the first approach, called local, one converts the problem into a set of single-

target problems, and applies a standard prediction model. In the global ap-

proach, one keeps the multi-target structure and applies a multi-target predic-

tion model to deal with all targets simultaneously, possibly exploiting relation-
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ships between the targets. Several machine learning techniques have been ex-20

tended to multi-target problems, such as decision trees [11], neural networks [7],

support vector machines [12], and novel deep learning approaches [13] for image

classification problems.

Typically, global-based methods are preferred in terms of efficiency and

model size, while local-based methods benefit from their simplicity. In terms25

of predictive performance, the global approach has typically reported equal or

better results than the local approach [14, 4]. However, it is unclear how this

strategy is exploiting the relationships between targets.

Most studies in multi-target learning apply a global or local learning ap-

proach. However, it is not clear whether these strategies are optimal. As some30

targets may be more similar than others, it may well be that models learned on

a different partitioning than the global or local approach have a better perfor-

mance. These correlations can be useful for exploring different patterns across

different partitions of the targets. This is exactly what we investigate in this

study. The few recent studies that have addressed the same topic [15, 16, 17]35

have investigated it in a randomized ensemble setting. Here, we want to answer

the following question:

Is there a partitioning of targets that, when each subset in this parti-

tion is treated as a separate prediction problem, outperforms the two

extremes of global and local learning?40

To answer this question, we perform an empirical study over 16 multi-target

prediction datasets. For this, we have to rely on methods that have global

and local-based versions. That is why we have chosen the Clus framework [11],

which includes decision tree-based local and global variations implemented as

Predictive Clustering Trees (PCTs) [18]. Recall that any other predictor that45

has local and global versions could be used, however our focus is not on the

predictors themselves but on how to maximize a given predictor’s performance

by finding a suitable “in-between” local and global partitioning for it. An in-

between local and global partitioning can be solved by a combination of local and
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global-based predictors. The predictors are used only to evaluate the partitions50

found. Note that, since different models explore the target space differently, an

in-between local and global partitioning for a model X can be different from an

in-between local and global partitioning for a model Y. However, rather than

trying to find the best overall partition, considering different models from the

literature, the goal of this paper is to show that it is possible to maximize a55

given predictor’s performance by finding a suitable in-between local and global

partition for it.

The main idea is that the learning technique and experimental methodology

(e.g., parameter optimization) stays exactly the same, while only the partition-

ing strategy is different. In order to find the optimal partition, when possible,60

we perform an exhaustive search (ES) over all partitions of targets. However,

the number of possible partitions rapidly grows with the number of targets.

As an example, a dataset with 20 targets already leads to a search space of

5,832,742,205,057 partitions. If the dataset has too many targets, making an

ES unfeasible, we employ a genetic algorithm (GA) that we created in order65

to efficiently search in a population of partitions for the optimal one. As GAs

have been successfully applied to many non-convex combinatorial optimization

problems [19], are relatively easy to code and have built-in mechanisms to avoid

arriving in local optima, they are our preferred learning method here.

Our results show that, in most cases, models based on different partitions70

of targets that the ones used in global and local learning obtain better results.

However, it turns out that, in the same way as the local strategy may over-

fit on the target variables, trying to tune the optimal partitioning may lead

to overfitting.

The main contributions of this paper are the following: (1) an experi-75

mental analysis over 16 multi-target datasets, showing that in some cases, the

in-between strategy obtains superior results, (2) the introduction of a genetic

algorithm that can search for the optimal partition, which is less prone to over-

fitting than the exhaustive search, and (3) it sheds new light on approaches

between global and local learning, showing that this is an area worth investi-80
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gating further. Our focus is thus, rather than introducing a novel multi-target

predictor, to show that it is possible to use the existing predictors with different

partitions of the target space. While trying to find relationships between dif-

ferent targets is not new in the multi-target learning literature, the exploration

of new ways of partitioning the target space to better represent the target re-85

lationships has never been done before in the literature. As the number of

partitions is exponential in the number of target variables, this is an extremely

challenging task.

The remainder of this paper is organized as follows. Section 2 describes

recent multi-target methods from the literature. Section 3 formally defines the90

multi-target task, and describes how to solve it using global and local-based de-

cision tree methods. Section 4 describes all methods and the proposed method-

ology. Section 5 presents the experimental settings and Section 6 provides all

experiments performed and a detailed discussion about the results. Finally,

Section 8 summarizes the main conclusions and future research directions.95

2. Related Work

Multi-target prediction methods can be divided into classification and regres-

sion problems. In multi-target classification, an instance is classified along many

targets simultaneously, and each target can have multiple categorical values. If

the targets are binary, then the problem is called multi-label classification, which100

is the most widely studied setting in the related work (Section 2.1). In the case

the targets have continuous values, the problem is called multi-target regression

(Section 2.2). Section 2.3 addresses multi-task learning.

2.1. Multi-label classification

As previously stated, multi-label classification can be considered as an in-105

stantiation of multi-target prediction, where each target is binary. According to

Tsoumakas et al. [20], multi-label classification methods can be divided in prob-

lem transformation methods and algorithm adaptation methods, depending on

how the methods treat the classification problem.
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A well-known and often used problem transformation method is binary rele-110

vance (BR), where a separate classifier is trained for every label independently.

BR corresponds exactly to what we call a local model in this paper, dividing

the original problem into multiple binary ones. The final prediction is given

by the combination of the binary classifiers associated to each label. On the

other hand, algorithm adaptation methods solve multi-label classification prob-115

lems directly by predicting all labels together, possibly exploiting the fact that

certain labels are correlated. This corresponds exactly to what we call a global

model in this paper. While local methods allow the use of any conventional clas-

sification algorithm as base classifier, global methods require to use classifiers

specifically designed to predict multiple classes simultaneously.120

In the multi-label classification literature, quite some attention has been

given towards exploiting label relationships, given that this is a key factor to

good multi-label prediction models. Some studies exploit label relationships

that are given by the problem domain, such as in hierarchical multi-label clas-

sification. In this setting, a hierarchical taxonomy of labels is given, typically125

representing an ‘is-a’ relationship. Barutcuoglu et al. [21] use a local approach

to make predictions for each label separately, and then use a Bayesian network

modeling the hierarchical relations to make the predictions consistent with the

constraints implied by the hierarchy. Vens et al. [11] propose a global approach

based on predictive clustering trees. The leaf nodes return a numerical vector130

of predictions, where a higher value indicates more confidence to predict a par-

ticular label. The vector automatically fulfills the hierarchical constraint as it is

obtained by averaging the label vectors of the training instances falling into the

given leaf. Cerri et al. [7] proposed a local approach using neural networks, where

a multi-layer perceptron was assigned to each hierarchical level, and trained to135

predict classes from its associate level. Predictions made in one level were used

to augment the feature vectors of the instances from the next level, trying to

incorporate label relationships during training. Masera et al. [22] use a global

approach based on neural networks. Their method Adjacency Wrapping matriX

(AWX) employs a single model where the underlying hierarchy is mapped onto140
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the loss function.

In the absence of a given set of label relations, several studies use data mining

techniques to extract a set of relations from the training label vectors, and then

exploit these relations in the learning phase. In this direction, Madjarov et

al. [23] construct a hierarchical clustering over the label space, and use this145

hierarchy to model the learning task as a hierarchical multi-label classification

problem, solved by global or local models. Papagiannopoulou et al. [24] use

an Apriori-like algorithm to extract label dependencies and then improve the

local model by encoding the label correlations into a Bayesian network. Abreu

et al. [25] try to extract relations from label vectors considering the distances150

between instances in the feature space. The label vectors of similar instances are

then used to obtain a prototype vector, which in turn augments the instances’

feature space used for training. Prati et al. [26] used a biclustering algorithm,

where each bicluster was considered a new binary feature. These were then used

to augment the instances’ feature vectors.155

Still trying to extract relations from the label vectors, Cherman et al. [27],

Read et al. [28] and Dembczynski et al. [29] used the instances’ classes to comple-

ment feature vectors, aiming at incorporating label dependencies in the learning

process. Huang and Zhou [30] clustered the instances and calculated similarities

within each cluster. These were used to augment the original feature vectors.160

Yu et al. [31] used neighborhood rough sets to find the possibly related labels for

an instance, excluding all unrelated ones. Label pairwise correlation was used

by Spolaôr et al. [32] to construct new binary labels to augment the original

feature vectors. Huang and Zhou [33] proposed an algorithm to try to explore

local correlations. By local, the authors mean that label correlation may be165

shared by only a subset of instances. They encoded this information into a

vector, used to augment the original feature space for each instance.

Joly [15] and Breskvar [16] learn an ensemble of multi-target decision trees,

where each tree uses only a random projection, resp. random subspace, of the

original output space. Both studies show a decreased learning time in combi-170

nation with predictive performance gains, when compared to a global method.
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Breskvar et al. also extended their work towards multi-target regression [17].

While these studies share with us the idea of working in between the global and

local approaches, they do so in an ensemble way. In contrast, in this article,

we are interested in learning a single partition of the labels, which is more in-175

terpretable and can yield more insights in the problem domain. Szymanski et

al. [34] create a single partition of labels by constructing a label co-occurrence

graph and applying community detection methods on them. The label subsets

are subsequently used in a label powerset approach, and hence this approach

can be seen as a data driven strategy to select label subsets in the random180

k-labelsets (RAkEL) method [35]. Since the method builds on the label co-

occurrence graph, it is not applicable to multi-target regression problems.

2.2. Multi-target regression

Considering multi-target regression tasks, Spiroumitros-Xioufis et al. [36]

adapted two multi-label classification methods proposed by Read et al. [28],185

and Godbole and Sarawagi [37], to be applied to the context of multi-target re-

gression. The first proposal is called Multi-Target Regressor Stacking (MTRS).

The method is divided into two stages: the first one trains m single-target mod-

els, one for each target, and the second one trains a set of m meta-models. Each

meta-model is trained on a transformed training set, consisting of the original190

feature vectors augmented by predictions. These predictions are obtained from

the m models on the first stage. A second proposal is called Regressor Chains

(RC), based on the popular Classifier Chains (CC) method [28]. Similar to CC,

RC trains a single model for the first target obtained from an ordered set of

targets. The subsequent models are trained into a transformed dataset, where195

the instance vectors contain the original features, augmented by the previous

targets in the chain.

Spiroumitros-Xioufis et al. [36] also pointed out a problem in CC and RC,

violating the independent and identically distributed assumption. Particularly

in RC, the distribution of the actual target values used in training can diverge200

radically from the distribution of the predicted values used in the testing phase.
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Thus, the authors proposed Regression Chains Corrected (RCC) which uses the

predictions of the previous regression models in the chain instead of the true

values of the target variables.

A number of studies have also tried to include target correlations in the205

local approach. Tsoumakas et al. [5] replaced the target space by a (typically

increased) space that is obtained by taking random linear combinations of the

original target attributes. Afterwards, they constructed a local classifier on the

newly constructed targets. Spiroumitros-Xioufis et al. [38] increased the feature

space by applying a stacking or chaining strategy. In the stacking strategy, a210

two-level approach is used. First, a set of single-target models is constructed.

Then, instead of using them directly to make predictions, their predictions are

added to the training set as extra features, and a second set of single-target

models is constructed on the augmented feature set. In the chaining strategy,

first a random chain (permutation) of the targets is fixed. Then the targets215

are treated in this order and for each target a single-target classifier is learned,

using the original features augmented with the predictions for the previously

seen targets.

Piccart et al. [39] learn which is the optimal set of targets to use in a multi-

target model in order to obtain an optimal prediction of a particular target.220

They learn this optimal set by using a greedy search method estimated from

data and show improvement on a number of multi-target regression methods.

2.3. Multi-task learning

Jacob et al. [40] present an optimization procedure for linear models that

partitions tasks together in the context of multi-task learning. They show that225

this procedure outperforms a global model on two synthetic and one real-life

datasets.

Inspired by the methods proposed by Spiroumitros-Xioufis et al. [36], Melki

et al. [41] proposed two methods to exploit correlations among target vari-

ables. The authors proposed to build single-target soft-margin non-linear sup-230

port vector regressors (NL-SVR) for each target variable. Then, similarly to
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Spiroumitros-Xioufis et al., they proposed to construct a series of random chains

of base-line SVR, creating an ensemble model named SVR Random Chains

(SVRRC). Because the number of possible chains can factorially increase, a

second proposal creates a single chain, maximizing the correlations among the235

target variables. These correlations were imposed on the order of the chain, en-

suring that each appended target provides additional knowledge when training

on the next one.

3. Multi-target Learning

In this section, we provide a formal definition of the multi-target learning240

task, and also present how to build local and global models using the predictive

clustering trees (PCTs) framework [11].

3.1. Formal Problem Description

Formally, a multi-target prediction task can be defined as follows [4]:

Given:245

• a feature space X consisting of tuples of discrete and/or continuous-valued

features, i.e., ∀Xi ∈ X,Xi = (xi1, xi2, . . . , xiD), with D the size of a tuple

(number of features);

• a target space Y , consisting of tuples of discrete or continuous-valued

target variables, i.e., ∀Yi ∈ Y, Yi = (yi1, yi2, . . . , yiT ), with T the size of a250

tuple (number of targets);

• a set of instances E, each instance being a pair of tuples from the feature

and target spaces, i.e., E = (Xi, Yi)|Xi ∈ X,Yi ∈ Y, 1 ≤ i ≤ N , with N

the number of instances;

• a quality criterion q, usually rewarding models with high prediction per-255

formance and low complexity;
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Find: a function
ffl

: X → Y such that
ffl

maximizes q.

When the targets Y are discrete, the task is called multi-target classification,

and when they are continuous, it is called multi-target regression. Multi-label260

classification can be seen as an instance of multi-target prediction, where the

target variables are binary. In this article, the function
ffl

is based on decision

trees from the predictive clustering trees (PCT) framework. The use of PCTs

makes it easy to evaluate partitions since it has local and global versions. Given

that an in-between local and global partition can be solved by a combination265

of local and global-based predictors, it is important to have a predictor with

both local and global-based versions. If a given predictor does not have, for

example, a global version, we cannot evaluate a partition having a subgroup

composed of more than two targets. As alternatives to PCTs, we could use

any method having local and global versions, such as KNN [42]. In this case,270

we would probably find an in-between local and global partition different from

the one found when using Predictive Clustering Trees. This does not affect our

main conclusion, which is stating that an in-between local and global partition

can lead to better results than the conventional local and global ones.

3.2. Learning a Global Decision Tree Model with the PCT Framework275

Multi-target prediction tasks can be handled by the predictive clustering

trees (PCTs) framework [11, 14]. This framework views a decision tree as a

hierarchy of clusters: the top-node corresponds to one cluster containing all

data, which is recursively partitioned into smaller clusters while moving down

the tree. The PCT framework is implemented in the Clus system, which is280

freely available for download at https://dtai.cs.kuleuven.be/clus.

PCTs can be induced with a standard top-down induction of decision trees

(TDIDT) algorithm. It takes as input a set of instances and outputs a decision

tree. The heuristic that is used for selecting the tests to be put in a tree node is

the reduction in variance caused by partitioning the instances. By maximizing285

the variance reduction, the cluster homogeneity is maximized and the predictive

11
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performance is improved.

The main difference between the algorithm for learning PCTs and a standard

decision tree learner is that the former considers the variance function and the

prototype function, that computes a label for each leaf, as parameters that can290

be instantiated for a given learning task, such as multi-label classification or

multi-target regression.

In order to instantiate the PCT algorithm for predicting multiple targets,

first, each instance is instantiated with a vector of target values. The vector

contains nominal, numeric or binary values for multi-target classification, multi-295

target regression, or multi-label tasks, respectively. The ith component of the

vector contains the instance’s value for the ith target. The variance of a set of

instances E with numeric or binary targets is defined as the averaged squared

distance between each instance’s class vector and the set’s mean class vector:

V ar(E) =
1

|E|
∑
Ei∈E

d(Li, L)2

with d the Euclidean distance. In case of nominal targets, the variance is com-300

puted as the sum of the Gini indices or entropies of the target variables.

The prototype function computes the mean (or majority class for nominal

targets) of the target vectors of the instances in the leaf.

3.3. Learning a Local Decision Tree Model with the PCT Framework

The local approach we investigate here divides the multi-target problem305

into T single-target problems, with T being the number of targets in the original

problem. Individual decision trees are generated for each target, and predictions

are obtained combining all individual outputs.

4. Beyond Learning Global and Local models

The local learning strategy is simple and can be done with any standard pre-310

dictive machine learning method. It allows each model to focus on one specific

target. In contrast, global strategies learn a single model that needs to address

12



all targets at once, which seems a more difficult learning task. However, the

literature suggests that global models have a predictive performance advantage

over local models [11]. In addition, they are computationally more efficient to315

learn and make predictions, and the size of the global model is usually much

smaller than the sum of the sizes of the local models [11]. In this article, we hy-

pothesize that in practice, approaches in-between the global and local ones may

be preferable in terms of predictive performance and model size. Consider the

example in Fig. 1. It shows eight instances with two features and four targets.320

Labels A and B perfectly correlate (coincide) with each other and with feature

X1, the same holds for targets C, D and feature X2. There is no correlation

between the two groups of targets. A local learning strategy will fit four models,

it will not consider the existing correlation between the targets. Any noise in

the target space will be hard to detect and may easily lead to overfitting. The325

global approach constructs a single model, with three internal nodes in total.

However, it also has some weaknesses: it contains a repetition of the subtree

rooted in X2. As a consequence, each of these subtrees is constructed on a

smaller training set than necessary, leading to a smaller number of samples per

leaf to compute the prototype, and hence to a reduced predictive performance.330

The last strategy shown constructs two trees, each making predictions for two

targets. It detects the correlation in the target space and exploits this to build a

model with only two internal nodes. This approach can be situated in between

global and local models.

x1 x2 A B C D
1  0 
1  1
1  0
1  1
0  0
0  1
0  0
0  1

1 1 0 0 
1 1 1 1
1 1 0 0
1 1 1 1
0 0 0 0
0 0 1 1
0 0 0 0
0 0 1 1

Features Targets (a) Local-based models

x1A:
1 0

1 0

x1B:
1 0

1 0

x2C:
1 0

1 0

x2D:
1 0

1 0

(b) Global-based model

x1
1

x2 x2
1 0 1 0

0

1111 1100 0011 0000

(c) Beyond global and local

x1A,B:
1 0

11 00

x2C,D:
1 0

11 00

Figure 1: The global, local, and partition-based model on a toy dataset.
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In this paper we want to empirically study whether the partition approach,335

i.e. partitioning the targets and learning a (global) model for each subset, can

improve the predictive performance over the purely global or local models. This

allows us to explore alternative/feasible partitions of the output space which

may be more appropriate for a given problem. In order to find the best parti-

tioning, we use an exhaustive approach where possible. When the number of340

targets is too high, we need to use a heuristic approach. One possibility would

be to cluster the target space if one knows the number of clusters in advance.

Here, we want to learn this number as part of the search process and, therefore,

we propose to use a genetic algorithm.

4.1. Exhaustive Search345

A difficulty in finding the optimal partition from the target set is that the

number of possible partitions of a set (also called the Bell number) grows very

quickly with the number of elements in the set. For instance, a set of 10 elements

has 115,975 possible partitions, while a set of 16 elements has 10,480,142,147

partitions. However, noting that a set of n elements has 2n possible subsets, this350

means that the 10,480,142,147 partitions are composed of 65,536 subsets only,

which makes it possible to conduct an exhaustive search over all partitions.

More precisely, we propose to train a multi-target classifier on each of the

2n possible subsets of targets and store the predictions made for these targets

on a hold-out validation set. Then, in our implementation, we perform an355

efficient generation of all set partitions using the procedure outlined in [43],

and for each partition combine the corresponding predictions. The partitioning

that gives the best predictive performance over the validation set is returned.

Using this partitioning, we learn a model using both training and validation

sets together, and obtain predictions for the test set. Nevertheless, when the360

number of targets n is too large, learning 2n models might not be feasible in

terms of runtime. In the experiments of Section 5, we perform an exhaustive

search for n ≤ 16 targets.
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4.2. A Genetic Algorithm to find the optimal partition

Searching for the best partitioning of target outputs amongst a great num-365

ber of potential combinations can be seen as a combinatorial optimization prob-

lem. GAs have successfully been applied in these problems for many years [19].

Moreover, GAs are easy to code and more suitable than other meta-heuristics

for discrete optimization problems. Another advantage of using GAs here is

that they are very suitable for problems with many local optima. This is our370

case since we can have different in-between partitions resulting in better results

than the traditional local and global-based models.

In this section we propose a GA to solve the problem of finding an optimal

partitioning of target outputs. In what follows, we present the components of

the GA, such as individual representation, population initialization, simulated375

annealing, genetic operators and fitness function employed.

4.2.1. Individual Representation

Figure 2 illustrates how we code the individuals in the GA. Each individual

is represented as a vector where each position (gene) corresponds to a target,

and receives a number corresponding to a partition subset (gene value). In the380

example, we have three subsets (target groups): 1, 2 and 3. Targets at positions

1, 3, and 4 are assigned to groups 2, 1 and 3, respectively. For each group

of targets, a Decision Tree model learning those targets simultaneously is then

induced.

n targets: each position of the chomosome
represents a specific target, and receives gene values

1 2 1 1 3 2 1 23 1 13 2 3

gene values: each value represents
a group of targets. Each target is assigned

to the group (gene value) associated 
with its corresponding position in the chromosome

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2: Genetic Algorithm: individual representation for 14 target variables and three

target subsets.
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4.2.2. Population Initialization385

Although a totally random individual generation based on a Normal Dis-

tribution is the most common way for generating the initial population in GA

applications, we believe that by incorporating task-specific knowledge for multi-

target learning we can derive better solutions, or at least equally good solutions

in less generations. Our strategy for incorporating task-specific knowledge into390

the GA is described as follows.

For each individual, a number of groups g is randomly generated according

to a Poisson distribution [44]. This integer number g ranges from 2 to n − 1,

where n is the number of targets. Then, the numbers from 1 to g are randomly

distributed to the individual’s genes, ensuring that the individual represents a395

solution with g groups. It is important to mention that a Poisson distribution is

essential to increase the diversity of the population since there are many more

ways to combine groups of n/2 targets than 2 or n targets. By using a Poisson

distribution, most of the random numbers are generated from n
3 to 2n

3 , which

is not necessarily true when using Normal distribution. Finally, also the global400

(g = 1) and local (g = n) solutions are included in the initial population.

4.2.3. Selection of Individuals and Genetic Operators

The proposed GA uses tournament selection, a popular and effective selec-

tion method. In tournament selection, individuals are first ranked according to

their fitness. Then, they are selected based on the value of their rank positions.405

This method overcomes the scaling problems of fitness-proportional assignment,

e.g., premature convergence when few individuals with very high fitness values

dominate the rest of the population. It also implements the elitism technique,

which means it preserves a number of individuals based on their fitness values.

To obtain off-spring the method performs a parameterized uniform crossover,410

where every gene is crossed over independently with a certain probability. It

is important to note that this probability is the per-gene crossover probability,

not the probability that the entire individual will be crossed over.

After the crossover, a uniform mutation (uniform gene randomization) is ap-
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plied, simply setting a gene to a random value between its minimal and maximal415

allowed values. Uniform operators will create groups that will be very different

from their parents if their parents are not similar, contributing to the diversity.

If its parents are similar, the offspring will be similar to its parents, encouraging

the convergence.

4.2.4. Fitness Function420

We use two different fitness functions, depending on whether regression or

classification is being performed. These fitness functions are computed on a

separate validation set. For regression we use the mean absolute error (MAE),

and for classification we use the area under the ROC curve (AUROC). The

MAE is presented in Equation 1, where yij and ŷij are, respectively, the desired425

and predicted outputs for target j given instance i, and N and T denote the

number of instances and number of targets.

MAE =
1

N

N∑
i

T∑
j

|yij − ŷij
T

| (1)

A ROC curve is produced applying threshold values in the interval [0, 1] to

the (real valued) outputs of the classifiers. This results in different true positive

rates (TPR) and false positive rates (FPR), one pair of values for each threshold430

used. The combination of these points forms a ROC curve, and the area under

the curve (AUROC) is calculated. The FPR and TPR are macro-averaged over

the targets. This allows to store and efficiently combine the AUROC values for

each target.

4.2.5. Simulated Annealing Procedure435

In order to improve the quality of our best solution generated so far, we

apply a Simulated Annealing (SA) strategy [45] on the best individual of the

population.

The SA strategy works with a single solution and performs a global search by

evaluating neighboring solutions. If a neighbor is better than the current solu-440

tion, it replaces the latter. On the other hand, a worse solution can be accepted
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according to an acceptance function. Such behavior allows the SA to escape

from non-promising regions and explore the search space by moving to worse

neighborhoods. The acceptance probability function considers a parameter T ,

named temperature, which decreases through the SA iterations. At high tem-445

peratures, the probability tends also to be high, while low temperatures usually

result in a low acceptance probability, turning the SA into a hill-climbing local

search approach. Thus, this cooling factor must be tuned, so that, the SA has

enough iterations to explore the search space.

Our SA strategy (Algorithm 1 line 11) is applied at each SAgen generations.450

It makes a copy of the best individual of the population and applies random

mutations to it, trying to avoid local optima. We perform SAmax iterations of

the SA, decreasing the number of mutated genes as a temperature parameter

t is decreased. After SAmax iterations of the SA procedure, the generated

individual replaces the worst individual in the current population.455

4.2.6. Evolutionary Process

Algorithm 1 presents the main procedure implemented by the GA in order

to find the best target partition. The procedure implements a standard evo-

lutionary strategy, with the previously described elitism, tournament selection,

mutation and crossover operators.460

The algorithm initially obtains the number of targets from the training

dataset. It then randomly generates a population of size p, where each indi-

vidual represents a partition of the targets. For each subset of the partition, a

multi-target decision tree model is induced, or the corresponding result is taken

from stored results, if a model has already been induced for that subset earlier.465

The fitness of an individual is then calculated based on the performance of the

combined models for the complete partition on a hold-out validation set. In

order to generate a new population, the genetic operators are applied.
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Algorithm 4.1: Genetic algorithm to search for the best target partition.

input : Xtrain: train dataset

Xvalid: validation dataset

p: population size

gMax: maximum number of generations

gBest: max number of generations without changing the best individual

t: tournament size

e: elitism size

pc: crossover rate

pu: gene crossover rate

pm: mutation rate

pg: gene mutation rate

SAgen: each SAgen generations, apply Simulated Annealing

SAmax: max number of iterations in SA algorithm

output: best: best partition

1 Function: Evolution(Xtrain, Xvalid, p, gMax, gBest, t, e, pc, pu, pm, pg, SAgen,

SAmax)

2 numTargets← getNumTargets(Xtrain)

3 currentPopulation← generatePopulation(numTargets, p)

4 calculateF itness(currentPopulation,Xvalid)

5 best← getBestPartition(currentPopulation)

6 lastBest← best

7 g ← 1

8 gLast← 0

9 while g ≤ gMax and gLast ≤ gBest do

10 if p mod SAgen = 0 then

11 simulatedAnnealing(best, SAmax)

12 parental← tournamentSelection(currentPopulation, t)

13 offspring ← uniformCrossover(parental, pc, pu)

14 offspring ← mutation(offspring, pm, pg)

15 currentPopulation←

replacementWithElitism(currentPopulation ∪ offspring, p, e)

16 calculateF itness(currentPopulation,Xvalid)

17 best← getBestPartition(currentPopulation)

18 if best is better than lastBest then

19 lastBest← best

20 gLast = 0

21 else

22 gLast← gLast + 1

23 g ← g + 1

24 return { best }
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5. Experimental framework

This article presents a thorough experimental analysis considering both clas-470

sification and regression settings. In particular, we aim to answer the following

research questions:

Q1 Is it possible to outperform the global or local models by considering other

partitions of target variables?

Q2 How close does the GA come to the optimal solution (exhaustive ap-475

proach)?

The first question has been addressed by Breskvar et al. [16, 17] for the

ensemble setting, where a forest of trees is constructed, each tree focusing on a

random subset of targets. Here, we rather focus on a single partition. As base

classifiers we consider decision trees and random forests, however, in contrast480

to Breskvar et al., the forests were constructed with a single target partition.

First, the datasets used in the experiments are explained. The measures

employed to evaluate the performance of the algorithms, and the statistical

tests conducted to contrast the results are also presented, together with the

configurations used in the GA and decision trees. All the code and datasets used485

in this study are available at https://github.com/rcerri/Clus-Hyper-Code.

5.1. Datasets

To evaluate the performance of the proposed approach, we are interested

in multi-target datasets with a relatively high number of outputs, in which

correlations between target outputs can make a difference in comparison with490

local and global approaches. Thus, we have selected a total of 16 datasets

(seven for classification, and nine for regression) with at least six output labels,

that come from different domains such as audio, images, music, bioinformatics

and human perception. The number of examples in these datasets ranges from

a few hundreds ('200) up to more than 40 thousands examples. In terms495

of features, the used datasets contain a number in the [16-4884] interval. All
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these datasets, with the exception of the human olfactory perception one [2], are

publicly available and can be downloaded from the Mulan website2. Tables 1 and

2 show the main properties of the datasets used. The exact training, validation

and test partitions are available on our github.500

All these datasets, except for olfaction, have been split into training (8 folds),

validation (1 fold) and test (1 fold) sets, following a 10-fold cross validation

strategy. The partitions were created using the iterative stratification strat-

egy proposed by Sechidis et. al. [46]. After calculating the desired number

of instances in each subset, this strategy iteratively examines each instance in505

order to select an appropriate subset for distribution. The strategy is imple-

mented within the “utiml” R Package [47]. For the olfaction dataset, we used

the original train/test split as used in the corresponding data challenge [2].

Table 1: Classification datasets properties: number of instances |N |, number of features |D|,

number of targets |T |.

Dataset domain |N | |D| |T |

birds audio 645 260 19

corel5k images 500 499 374

emotions music 593 72 6

flags images 194 19 7

genbase biology 662 1186 27

mediamill video 43907 120 101

yeast biology 2417 103 14

5.2. Evaluation Measures

Following the same evaluation measure used in the fitness function of the510

proposed GA, we evaluate the results on the multi-label classification datasets

with the area under the ROC curve (AUROC). This measure allows us to eval-

uate the methods independently from a particular prediction threshold, since

the choice of an “optimal” value for the threshold is a difficult task. Low val-

ues lead to many predictions for each instance, while large values lead to very515

2http://mulan.sourceforge.net/datasets.html
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Table 2: Regression dataset properties: number of instances |N |, number of features |D|,

number of targets |T |.

Dataset domain |N | |D| |T |

water-quality ecology 1060 16 14

oes10 employment survey 403 298 16

oes97 employment survey 334 263 16

rf1 ecology 9125 64 8

rf2 ecology 9125 576 8

scm1d supply chain mgmt. 9803 280 16

scm20d supply chain mgmt 8966 61 16

osales sales 639 413 12

olfaction human olfactory perception 476 4884 1029

few predictions. To evaluate the regression datasets, we use the mean absolute

error (MAE). We use the macro-averages of these measures, which means that

we average them over every label.

5.3. Parameters and algorithms

Decision trees and random forests were used with their default parameter520

values. We used 50 trees in the random forest. To find the best partition to

be used by the prediction algorithms, we used the GA as well as the proposed

exhaustive search (when possible).

The GA was implemented within the Java-based Evolutionary Comptuation

Research System (ECJ) framework3, which supports multi-threads. The exper-525

iments were executed using 64 threads (the maximal number of cores available

in our machines). This means that 64 individuals were evaluated in parallel.

Table 3 presents the parameter values used in the GA. An optimization

method could be used to tune the parameters, but it would be very time-

consuming for this application, since we would need a search/optimization530

method (greedy search, for example) to optimize another search/optimisation

method (GA). Then, the parameters were set based on the authors’ experience

with GA and Clus, ensuring that it would converge to good solutions in a fea-

3https://cs.gmu.edu/~eclab/projects/ecj/
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sible time. By choosing p = 100 and gMax = 100, the user previously knows

that the GA will run Clus up to 10, 000 times. By using gBest = 30 as a535

stop criterion we allow the GA to stop the evolution earlier, avoiding unnec-

essary iterations after it has converged. The other parameters, namely t = 2,

e = 1, pc = 0.70, pu = 0.25, pm = 0.40, pg = 0.20, and SAgen = 10, do not

have a lot of influence in the final results besides increasing/decreasing the time

to converge.540

After termination of the GA or ES, the classifier is trained again with the

best partitioning considering the entire dataset (training + validation). The

induced model is then applied to the test set.

Table 3: Parameter values used in the Genetic Algorithm.

p 100

gMax 100

gBest 30

t 2

e 1

pc 0.70

pu 0.25

pm 0.40

pg 0.20

SAgen 10

SAmax 50

The exhaustive search is also used to validate the performance of the GA,

comparing the performance of the partitions found by the GA against the opti-545

mal partitions.

In addition, the exhaustive approach is used as an “Oracle” to determine

if there exists a better target partition than the best partition returned by the

compared methods. To do this, training and validation sets are combined to

build a model, and the partition that provides the best results on the test set is550

output by the Oracle. The aim of including this Oracle is two-fold: (1) this will

help us to answer the first research question, is there any better partition beyond

global and local?; (2) this will also allow us to analyze whether the proposed

framework is capable of achieving such partitioning using only training and

23



validation sets.555

To provide statistical support for our experimental results, we applied the

Friedman and Nemenyi non-parametric statistical tests, as suggested in [48, 49].

The Friedman test ranks the algorithms in terms of their performances, such

that, the lower the rank is for an algorithm, the better it is. If the Friedman

test detects statistically significant differences in the performances of the algo-560

rithms, we apply the Nemenyi post hoc test. In this test, the performances of

two classifiers are statistically significantly different only if their average ranks

differ by a certain critical difference (CD). The critical difference depends on

the number of algorithms, the number of datasets, and the critical value for a

significance level provided by a Studentized range statistic. The result from the565

Nemenyi post hoc test is interpreted with a critical difference diagram. In the

diagram, algorithms connected by a line do not present statistically significant

differences, since their average rank values differ less than the critical difference.

6. Results

6.1. Regression results570

Table 4 shows the results obtained with single decision trees. This table

includes the results for global and local approaches, the proposed exhaustive

search (ES) when possible, the GA-based search and the Oracle. The best

result for each dataset is highlighted in bold (discarding the Oracle that always

obtains the highest performance).575

Looking at this table, the experiments suggest that in-between local and

global partitions are preferred, since both the GA and the exhaustive search

were able to find partitions that led the decision tree to obtain better results in

the majority of the datasets than the global and local approaches. The results

of the Oracle also support that there are indeed partitions different from local580

and global that could greatly reduce the prediction error. It is noticeable that

the GA outperformed the exhaustive search in most datasets. This suggests

that the exhaustive search overfits the validation data and does not general-
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Table 4: Regression datasets: Test MAE results with Decision Tree as base classifier

Dataset global local ES GA Oracle

oes10 335.52 335.54 294.20 293.05 218.81

oes97 507.86 480.96 504.25 477.02 356.12

rf1 5.04 0.60 0.61 0.60 0.56

rf2 5.04 0.62 0.61 0.61 0.57

scm1d 79.87 68.37 – 68.19 –

scm20d 93.22 85.27 84.92 84.20 79.74

water-quality 0.90 0.86 0.87 0.87 0.83

osales 2987.28 3270.13 3086.70 2955.83 2363.77

olfaction 10.44 10.87 – 10.28 –

Ranking 2.67 2.17 – 1.17 –

ize better than the GA, providing worse results on the test partitions. This

highlights the difficulty of determining the best partitioning in practice, as the585

best output partitioning for training/validation partitions may not always be

the most suitable solution in test data.

Table 5: Average number of partitions found by the methods for regression datasets, using

single decision trees. The number of partitions of the global approach is always 1, while for

local it is |T |.

Dataset |T | (local) ES GA Oracle

oes10 16 6.2 8.68 6.2

oes97 16 7.1 8.92 7.3

rf1 8 4.6 4.90 4.7

rf2 8 4.8 4.50 4.6

scm1d 16 – 10.24 –

scm20d 16 7.3 9.12 7.7

water-quality 14 7.8 8.74 7.7

osales 12 4.0 5.20 3.9

olfaction 1029 – 336.00 –

To further illustrate the differences between global, local and alternative

partitionings, Table 5 shows the average number of partitions found by the ES,

the GA and the Oracle. We also include the original number of target outputs590

|T |, which corresponds to the number of targets used by the local approach. The

global approach always uses only one partition. As before, the results confirm
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that there are better partitionings than local and global, as witnessed by the

Oracle column. We can observe how the number of partitions found by the ES

seems to be quite similar to the Oracle. The GA usually provided a slightly595

higher number of partitions, although still substantially lower than the local

method. This may also imply that, apart from the predictive performance gain

over the local method, the GA and ES methods end up creating less models,

which could help interpret the results more easily.

Table 6: Regression datasets: Test MAE results with Random Forest as base classifier

Dataset global local ES GA Oracle

oes10 240.69 227.76 234.89 229.99 210.04

oes97 395.10 379.34 389.45 385.13 349.56

rf1 0.43 0.41 0.42 0.42 0.40

rf2 0.87 0.72 0.71 0.77 0.69

scm1d 53.59 49.56 – 49.74 –

scm20d 66.07 64.81 – 64.86 –

water-quality 0.83 0.83 0.83 0.82 0.80

osales 2959.88 2938.13 2963.47 2945.42 2684.33

olfaction 9.74 10.05 – 9.83 –

Ranking 2.72 1.39 – 1.89 –

Table 6 summarizes the results in terms of MAE obtained when a Random600

Forest is considered as base classifier. This table suggests that global methods

are rarely preferred, since they obtained better results in only one dataset.

Furthermore, the results suggest that, differently from decision trees, random

forests generalize better when a model was built for each target separately (local

approach). This may be explained by the robustness of the ensemble, which605

dealt better with many individual single-target problems, not considering target

relationships. Conversely with the previous results, both search strategies (GA

and ES) seem to overfit when Random Forest is used as base classifier.

Figure 3 presents the critical difference diagrams comparing the results from

Local, Global, and GA approaches, after a Nemenyi’s statistical test. Ap-610

proaches connected by a line do not present statistically significant differences,

since their average rank values differ less than the critical difference. The results
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confirm that using smaller target partitions is preferred over using one singleton

global partition. No statistically significant differences were found comparing

local and GA approaches. However, using in-between local and global partitions615

led to statistically superior results in comparison with the global approach when

using decision trees.

CD

1 2 3

GA Global
Local

(a) MAE: decision trees

CD

1 2 3

Local Global
GA

(b) MAE: random forests

Figure 3: Critical difference diagrams showing average MAE ranks and Nemenyi’s critical

difference (CD) for the three methods.

6.2. Classification results

Table 7 shows the results obtained with single decision trees. Again, this

table includes all the comparison algorithms, while the best result for each620

dataset is highlighted in bold. From this table we can see that the best results are

more spread among local and global partitions. However, it is worth mentioning

that the GA or the exhaustive search was able to find some in-between local

and global partitions that led to the best results for some datasets.

As before, we also analyse the average number of partitions found by each625

method. Table 8 presents these results. As for the regression case, the Ora-

cle results confirm that there are better partitions than global and local. For
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Table 7: Classification datasets: Test AUROC results with Decision Tree as base classifier

Dataset global local ES GA Oracle

birds 0.7601 0.6586 – 0.6900 –

corel5k 0.5093 0.5469 – 0.4973 –

emotions 0.7720 0.7173 0.7469 0.7469 0.8035

yeast 0.6035 0.5754 0.6066 0.5954 0.6807

flags 0.6703 0.6589 0.6843 0.6701 0.7658

genbase 0.8470 0.8482 – 0.8476 –

mediamill 0.7502 0.6185 – 0.7502 –

Ranking 1.57 2.50 – 1.93 –

the three datasets where the Oracle provides results, the number of partitions

returned by ES and GA is very close to that of the Oracle.

Table 8: Average number of partitions found by the methods for classification datasets, using

single decision trees. The number of partitions of the global approach is always 1, while for

local it is |T |.

Dataset |T | (local) ES GA Oracle

birds 19 – 6.80 –

corel5k 374 – 187.40 –

emotions 6 2.5 2.50 2.1

yeast 14 4.2 5.44 3.5

flags 7 3.5 3.56 3.7

genbase 27 – 10.50 –

mediamill 101 – 1.00 –

Table 9 presents the results when Random Forest is used as base classi-630

fier. The results suggest that, given the existence of relationships among labels,

global-based models seem to be more suitable to take these relationships into

consideration. Thus, using a singleton partition to induce models seems to be

preferred. However, it is worth mentioning that the GA or exhaustive approach

could also find some in-between partitions where the results obtained were bet-635

ter than or very similar to those obtained by the global approach. In particular,

in 5 of the 7 datasets, the difference between the GA and the best method’s

AUROC is less than 1%. For the other datasets, it is less than or equal to 2%.

With both base classifiers, on those datasets in which we were able to run the
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Table 9: Classification datasets: Test AUROC results with Random Forest as base classifier

Dataset global local ES GA Oracle

birds 0.8830 0.8853 – 0.8652 –

corel5k 0.6766 0.6707 – 0.6711 –

emotions 0.8562 0.8547 0.8524 0.8514 0.8755

yeast 0.6959 0.7013 0.6955 0.6871 0.7624

flags 0.7783 0.7736 0.7742 0.7838 0.8319

genbase 0.8421 0.8380 – 0.8326 –

mediamill 0.8289 0.8191 – 0.8257 –

Ranking 1.29 2.07 – 2.64 –

Oracle, we can see that none of the approaches was able to provide a solution640

with AUROC close to that optimal partitioning, suggesting that overfitting may

be occurring in these cases.

CD

1 2 3

Global Local
GA

(a) AUROC: decision trees

CD

1 2 3

Global GA
Local

(b) AUROC: random forests

Figure 4: Critical difference diagrams showing average AUROC ranks and Nemenyi’s critical

difference (CD) for the three methods.

Although using a singleton partition led to better results, Figure 4 shows that

no statistically significant differences were found among the results of the local,

global and GA approaches when using single decision trees as base classifiers.645

Thus, if the objective is to obtain a more interpretable model, the use of the

global approach can be recommended. This is reasonable given that the use of
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a singleton partition results in the induction of only one decision tree, which

results in less rules than a set of decision trees. Considering random forests, the

use of a singleton global partition led to statistically better results in comparison650

with the use of the partitions found by the GA.

7. Discussion

In both classification and regression problems, we have observed that the Or-

acle was consistently able to find partitions different from the local and global

that improved the performance. To further illustrate the existence of partitions655

beyond global and local, we have applied the Oracle to rank all potential parti-

tions in terms of MAE and AUROC, respectively. Figure 5 plots the position (as

a percentage) of global and local approaches against the potential partitions in

2 classification and 2 regression problems, using Decision Tree as base classifier.

Note that the higher the percentage the worse is the solution found by global660

or local. Thus, this figure allows us to see how many solutions are between the

global or local and the best result found by the Oracle, giving a rough idea of

how difficult it is to find a partitioning better than global or local.

In these datasets, we can see how the rankings of global and local vary

considerably depending on the the dataset. On rf1, the local is a top solution665

very close to the one found by the Oracle. However, in datasets such as flags,

more than 40% of the partitions outperform both global and local.

This analysis shows that there is a good number of partitions that perform

better than the global and local models. However, the search algorithms we

used (both ES and GA) were not always capable of providing a solution better670

than the global or the local (especially in classification problems). This suggests

that searching for the best partitioning using training and validation sets does

not generalize sufficiently well in all cases, and as mentioned before they suffer

from overfitting. This is illustrated in Table 10 for the classification results. The

table reports the difference in AUROC between validation and test set results,675

for the global approach and the GA approach. This difference is statistically
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Figure 5: Position (as a percentage) of the Global and Local solutions in 2 classification and

2 regression datasets (Decision Tree as base classifier). Note that higher percentages indicate

worse solutions.

significantly larger for the GA than for the global approach (p=0.036 according

to a Wilcoxon signed rank test). For the global approach, all differences between

validation and test set AUROC are less than 0.2%, sometimes even slightly

negative. For the GA, apart from the mediamill dataset, all differences are680

positive, and can be as high as 10% for the birds dataset. To further illustrate

the overfitting phenomenon, we have taken datasets flags and emotions. For

these datasets, the GA (using Decision Trees) runs in each fold evolve to the

same optimal partition as the exhaustive search for the corresponding fold.

Figure 6 plots the position (normalized as a percentage) of these 10 optimal685

partitions in the corresponding test fold. Ideally, the partition optimized on the

validation set should appear as a top ranked partition in the test set, but as

displayed in the figure, this is not the case. We see that for the dataset flags,

in one fold the partition found by the exhaustive search, or equivalently, by the

GA, is also the top partition in the corresponding test set. However, the median690

position is at 34% and for one fold the partition is only at the 80% position.

Similar observations hold for emotion, with a median position at 29%.
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Table 10: Classification datasets: difference between validation and test AUROC for the

global model and for the GA (decision trees).

Dataset global GA

validation test difference validation test difference

birds 0.7621 0.7601 0.0020 0.7870 0.6900 0.0990

corel5k 0.5084 0.5093 -0.0009 0.5077 0.4973 0.0104

emotions 0.7713 0.7720 -0.0007 0.8044 0.7469 0.0575

flags 0.6718 0.6703 0.0015 0.7524 0.6701 0.0823

genbase 0.8467 0.8470 -0.0003 0.8523 0.8476 0.0047

mediamill 0.7468 0.7502 -0.0034 0.7468 0.7502 -0.0034

yeast 0.6043 0.6035 0.0008 0.6532 0.5954 0.0578

Average diff. -0.00014 0.04404

Figure 6: Position (as a percentage) for each fold of the exhaustive search or GA solutions

(optimized on validation set) in their corresponding test set (Decision Tree as base classifier).

Note that higher percentages indicate worse solutions.

8. Conclusions

In this study we have investigated the task of finding a partition in the target

space of multi-target classification and regression problems, which could lead to695

better results than the traditional global an local approaches, when each subset

is treated as a separate prediction problem.

We designed a genetic algorithm to search for the best partition in the tar-
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get space, and used Predictive Clustering Trees and random forests as base

classifiers to evaluate our partitions.700

Given our experiments, complemented with an Oracle method, we can con-

clude that it is possible to obtain superior performances with partitions in-

between global and local. For some datasets, there is even a high percentage of

partitions that outperform both global and local approaches. However, using

a hold-out validation set to select the best partition - even with an exhaustive705

search - seems to lead to overfitting. The best approach to find such partition

is still an open question at this point.

We believe that this study can encourage future research to propose multi-

target models in-between the traditional global and local approaches, which have

received the most attention in the literature. As future work, we are considering710

using various strategies to reduce the overfitting problem. In particular, we will

be exploring the use of a windowing approach, such as [50], which has proven

to reduce overfitting when search algorithms are used in machine learning .

A limitation of our study, but that can be certainly overcome in future

research, is that we did not explore many possibilities on how to use target715

correlations in order to build the in-between local and global partitions. We

could investigate strategies to use similarity measures such as Jaccard index or

label conditional probabilities in order to find groups of correlated targets.

We also plan to include a detailed analysis concerning the distur-

bances/uncertainties of data that intrinsically have noise. This could be per-720

formed by using a multi-objective GA considering information about the noise

as an additional objective to improve the quality of the partitions.
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