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116026, China
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Abstract

Attribute reduction (AR) plays an important role in reducing irrelevant and
redundant domain attributes, while maintaining the underlying semantics of
retained ones. Based on Earth Mover’s Distance (EMD), this paper presents
a robust AR algorithm from the perspective of minimising the inconsistency
between the discernibility of the reduct and the entire original attribute set.
Due to the susceptibility of the inconsistency gauger to noisy information, a
strategy for instance denoising is also proposed by detecting abnormal local
class distributions with regard to the global class distribution. With such a
pretreatment process for AR, the robustness of the reduct found is signifi-
cantly improved, as testified by systematic experimental investigations. The
experimental results demonstrate that the reduct gained by the proposed
approach generally outperforms those attained by the application of pop-
ular, state-of-the-art AR techniques, in terms of both the size of attribute
reduction and the classification results using the reduced attributes.

Keywords: Attribute reduction, Inconsistency, Earth Mover’s Distance,
Classification, Robustness.

1. Introduction

Attribute reduction (AR) is currently one of the most significant ap-
proaches to data preprocessing. By removing the redundant and irrelevant
attributes in a given problem, AR helps preserve the information of data
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while improving prediction performance in terms of speed and data under-
standing. It may even help increase accuracy in problem-solving through
removing noisy attributes. In general, AR techniques can be divided into
three categories [30]: wrapper, embedded and filter. A wrapper method [17]
usually selects attributes by evaluating the associated predictive ability. An
embedded method is to interlace machine learning algorithms [18] and AR
into one indivisible framework. The key factor of the filter approach is to
design an evaluation function according to certain criteria to evaluate each
attribute and select the attributes that meet the conditions. This evalua-
tion function can be designed from various perspectives, such as information
theory [28], loss function with regularisation [16], discernibility [6] and con-
sistency [7].

A concept that is often addressed in AR techniques, especially for the
consistency-based methods, is data or dataset consistency. A consistent
dataset is one that does not entail a contradiction between its condition
attributes and decision attribute. Consistency in a dataset may be measured
following the principle that no two instances may have the same value on all
predicting attributes if they are associated with a different concept or class
[7]. In practice, consistency is usually evaluated via the differences between
the data partitions over the condition attributes in relation to the decision
attribute. A smaller difference between the distributions of any two parti-
tions will indicate a higher consistency between the discrimination abilities
of the two sets of the conditional attributes regarding the common decision
attribute. The effect of utilising a consistency measure in implementing AR
methods is examined in [9], in conjunction with the application of different
search strategies. Consistency is imposed by finding expressions in the di-
versity of the classes in the conditional attribute set where all samples share
identical attribute values. Also, in [37], consistency-based attribute selec-
tion is developed by the use of greedy least squares regression. Furthermore,
the concept of consistency and its measure have been utilised to determine
the degree of how the decision attribute depends on the set of condition
attributes, within typical algorithms that are based on rough sets [19],

Instead of exploiting consistency, the notion of inconsistency has also
been employed to detect and remove noisy instances or redundant and irrel-
evant attributes from datasets. For example, variable precision rough sets
(VPRS) [32] have been used to reinforce the classic rough set-based AR
techniques via measuring the degree of inconsistency in the dataset. Never-
theless, VPRS only reduces the sensitivity of the model to noise according
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to a given confidence threshold, rather than in response to directly measured
noisy information [12]. In [7], a heuristic is used for selecting neighbouring
inconsistent data pairs and through which, an efficient method for finding a
attribute reduct is introduced. Unfortunately, the existence of noisy samples
may also lead to inaccurate inconsistent sample pairs.

Another technique in the literature is to exploit the inconsistency degree
as the fitness function, thereby enabling a genetic algorithm to perform AR
[8]. Again, since the state of an individual may be disturbed by noise, such
a genetic algorithm may suffer from unstable final optimal solutions. An
efficient AR algorithm is proposed in [5] to evaluate the inconsistency of fea-
ture subsets at group level. However, the stability of the groups of attributes
may also be reduced by noise. By measuring the inconsistency between the
partitions of the dataset induced by attribute subsets, the earth mover’s
distance (EMD) [34, 35] (also known as discrete Wasserstein distance [38])
has been adopted for implement AR. Yet, similar to the other techniques
mentioned above, the partition of the dataset induced by the reduct may be
impeded by the existence of noisy information. In short, whilst a measure of
inconsistency may offer a complementary method to the consistency-based
approach, capable of detecting redundant information, given the nature of
inconsistency, existing algorithms are susceptible to noise. To combat the
potential adverse impact caused by noise, a robust AR method supported
with a preprocessing mechanism of data denoising is presented in this paper,
improving the quality of AR.

Particularly, a metric to measure inconsistency based on EMD is exploited
in this work, in support of the evaluation of an attribute reduct. By using
this EMD-based inconsistency metric, an attribute reduct is expected to be
produced that will have an identical discernibility to the one attainable by
the entire set of the original condition attributes, with regard to the decision
attribute. In developing this work, the mechanism to detect any noisy data
instance is based on the (rational) assumption that a local class distribution
within the neighbourhood [21, 22] of an abnormal sample is allowed to be
inconsistent with the global class distribution in the universe of discourse. As
a result, two indicators for local and global class distributions are proposed
to help determine such noise. With any contradiction amongst the samples
being resolved, the quality of the corresponding reduct generated by the
subsequent AR procedure becomes more robust and reliable than otherwise.

The resulting robust AR approach is fully implemented, supported with
systematic experimental validation and evaluation. To facilitate comparative
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analyses, experimental studies are conducted in reference to state-of-the-art
and powerful attribute selection methods, including: ASNAR [13], VPRS
[32], FKD [35], GBNRS [33], RelieF [31], and SPDTRS [29]. Furthermore,
the resultant reducts are applied by the following four different classifiers:
Logistic [36], SVM [16], Adaboost with J48 (AdaJ48) [14], and random for-
est (RF) [20], respectively. The comparative results demonstrate that the
proposed approach outperforms the rest, returning reducts that ensure a
high classification accuracy across a range of benchmark datasets.

The contribution, innovation and highlights of this work are outlined as
follows.

• Contribution: Based on EMD, an AR algorithm is developed, organ-
ically integrating a data inconsistency measure and a data denoising
strategy to guarantee the robustness of the resulting attribute reduct.
The strengths of this algorithm are verified from both theoretical and
experimental perspectives.

• Innovation: Two novel computational mechanisms are offered: 1) to
evaluate the significance of a set of attributes via the distribution of
the emerging partitions of the universe, and 2) to detect noisy data via
the abnormal distribution in its neighbourhood.

• Highlight : During the process of refining a dataset, the inconsistency
measure in action behaves in the same way as information entropy from
two perspectives: reaching its maximum when the partition induced by
an attribute subset follows a uniform distribution, and showing mono-
tonicity with respect to the number of equally likely events. The signif-
icant effects of the proposed denoising strategy in relieving the impact
of noisy data on AR are empirically demonstrated.

The remainder of this paper is structured as follows. In Section 2, the
concept of EMD is reviewed and a new inconsistency metric based on EMD
is presented. Using the proposed inconsistency metric, Section 3 presents the
strategies and their implementations for denoising data and reducing condi-
tional attributes. In Section 4, experimental results are analysed in compar-
ison with popular, state-of-the-art attribute selection techniques. Section 5
concludes the paper with a brief discussion about further research.
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2. Earth Movers’ Distance and consistency

In this section, a review of EMD and an EMD-based measure to gauge the
inconsistency amongst the samples in a dataset are presented. Particularly,
the concept of consistency discussed herein reflects the agreement of the
decisions with respect to a set of conditional attributes, within certain given
data instances.

2.1. Earth Mover’s Distance

Figure 1: Diagram of Earth mover’s distance

In statistics, Earth Mover’s Distance (EMD) is a measure of the distance
between two discrete probability distributions. The calculation of EMD can
be treated as a transportation problem in linear programming [34, 35]. Let
P = {(p1, wp1), (p2, wp2) . . . (pm, wpm)} andQ = {(q1, wq1), (q2, wq2) . . . (qn, wqn)}
represent two distributions (or signatures in pattern recognition) in Fig. 1,
where pi (i = 1, . . . ,m) is the i-th cluster of P ; qj (j = 1, . . . , n) is the j-th
cluster of Q; and wpi and wqj denote the weight of cluster pi and that of qj
respectively, and dij is the distance (or the dissimilarity degree) between pi
and qj.

As a linear programming problem, EMD measures the distance between
P and Q by finding a flow [fij] in an effort to minimise the total cost of trans-
forming distribution P to distribution Q. Such a problem can be formulated
as the following optimisation problem:

min
m∑
i=1

n∑
j=1

fijdij (1)
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s.t.
fij ≥ 0, i = 1 . . .m, j = 1 . . . n, (2)

n∑
j=1

fij ≤ wpi, i = 1 . . .m, (3)

m∑
i=1

fij ≤ wqi, j = 1 . . . n, (4)

m∑
i=1

n∑
j=1

fij = min{
m∑
i=1

wpi,
n∑
j=1

wqj}. (5)

Constraint (2) guarantees that the flow from pi to qj cannot be negative,
because a negative quantity cannot be moved from P to Q. Constraints (3)
and (4) impose that pi cannot provide more than its weight and qi cannot
accept more than its weight. Constraint (5) means that if the sum of wpi
in distribution P across all i and that of wqi in distribution Q across all j
are not equal, the total amount of movement cannot exceed the amount that
can be provided or accepted. Resolving the above optimisation problem as
stated in expression (1) provides the required EMD measure, denoted by dE
hereafter, which is defined as the work normalised by the total flow:

dE(P,Q) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

. (6)

It has been shown [25] that EMD is a metric that can meet the following
three conditions:

• Nonnegativity: dE(P,Q) ≥ 0;

• Symmetry: dE(P,Q) = dE(Q,P );

• Triangle inequality: dE(P,Q)+dE(Q,R) ≥ dE(P,R), when
∑n

i=1 wpi =∑m
j=1 wqj.

2.2. Measuring inconsistency with EMD

Let I = (U,C, D, V, φ) be an information system, where U is a finite
nonempty set of data instances or objects; C is a finite nonempty set of
nominal condition attributes; D is a decision attribute; V is the value domain
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of a ∈ C ∪ {D}; and φ : U × C ∪ {D} → V is a value mapping. Given a
sample x and an attribute subset A ⊆ C, the agreement of x to each sample
in U with respect to A can be represented as a matrix [sAij(x)] whose cell can
be generically denoted by

sAij(x) =

{
1, φ(x, aj) = φ(xi, aj)

0, otherwise
, i = 1, . . . , |U|, j = 1, . . . , |A|, (7)

where xi is the i-th sample in U and aj is the j-th attribute in A.
Summing up each column of [sAij(x)], namely

sumA
i (x) =

|A|∑
j=1

sAij(x), i = 1, . . . , |U|, (8)

a relation on A can be introduced as follows:

EA = {(x, xi) ∈ U2|sumA
i (x) = |A|}. (9)

Note that if sumA
i (x) = |A| it means that x and xi are identical regarding

the attribute subset A. Thus, EA is an equivalence relation which meets the
following three properties:

• Reflexivity: (x, x) ∈ EA;

• Symmetry: if (x, xi) ∈ EA then (xi, x) ∈ EA;

• Transitivity: if ∃xi and xk, s.t., (x, xi) ∈ EA and (xi, xk) ∈ EA, then
(x, xk) ∈ EA.

Table 1: Exemplar dataset

Objects a b c D
x1 0 2 2 1
x2 1 0 0 2
x3 2 1 0 0
x4 0 1 2 2
x5 2 1 0 0
x6 2 0 0 2
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Importantly, with the use of this equivalence relation EA, U may be par-
titioned into equivalence classes, denoted by U/EA. In particular, for the
empty set ∅, U/∅ is set to U.

Example 1. To illustrate the concepts involved, a simple dataset is given
in Table 1, consisting of three conditional attributes a, b, c, one decision
attribute D, and six objects.

Suppose that A = {a, c}, according to Eqs. (7) and (8), the agreement
matrices per instance can be obtained as follows:

[sAij(x1)] =

[
1 0 0 1 0 0
1 0 0 1 0 0

]T
⇒ (x1, x1), (x1, x4) ∈ EA,

[sAij(x2)] =

[
0 1 0 0 0 0
0 1 1 0 1 1

]T
⇒ (x2, x2) ∈ EA,

[sAij(x3)] =

[
0 0 1 0 1 1
0 1 1 0 1 1

]T
⇒ (x3, x3), (x3, x5), (x3, x6) ∈ EA,

[sAij(x4)] =

[
1 0 0 1 0 0
1 0 0 1 0 0

]T
⇒ (x4, x1), (x4, x4) ∈ EA,

[sAij(x5)] =

[
0 0 1 0 1 1
0 1 1 0 1 1

]T
⇒ (x5, x3), (x5, x5), (x5, x6) ∈ EA,

[sAij(x6)] =

[
0 0 1 0 1 1
0 1 1 0 1 1

]T
⇒ (x6, x3), (x6, x5), (x6, x6) ∈ EA.

Due to the properties of symmetry and transitivity of EA, {x1, x4}, {x2} and
{x3, x5, x6} are three equivalence classes in U regarding the attribute subset
A. Thus, U/EA = {{x1, x4}, {x2}, {x3, x5, x6}}.

Without losing generality, suppose that given two attribute subsets A,B ⊆
C ∪ {D}, the respective partitions generated by A and B are

U/EA = {XA1 , XA2 , . . . , XAi
, . . . , XAm}

and
U/EB = {XB1 , XB2 . . . , XBj

, . . . , XBn}.

Following the knowledge distance measure as introduced in [34], the degree
of inconsistency measured on the basis of EMD between U/EA and U/EB
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can be defined by

dI(U/EA,U/EB) =

∑m
i=1

∑n
j=1 fijdij

|U|
, (10)

where
fij = |XAi

∩XBj
|, i = 1 . . .m, j = 1 . . . n, (11)

dij = 1−
|XAi

∩XBj
|

|XAi
∪XBj

|
, i = 1 . . .m, j = 1 . . . n. (12)

with fij representing the number of samples moved from XAi
to XBj

, and
dij being the Jaccard distance between XAi

and XBj
. Similar to EMD,

dI also fulfills nonnegativity, symmetry and trigonometric inequality as a
metric on U. It indicates the cost of transforming one discrete distribution
into another discrete distribution. A smaller value of dI implies a slighter
difference between the two corresponding discrete distributions. That is,
these two distributions share more information with each other. This can be
illustrated with the following example.

Example 2. Given Table 1, let B = {b}, C = {c} and B′ = B ∪ {D},
C ′ = C ∪ {D}. The respective partitions of U induced by B, B′, C and C ′

are
U/EB = {{x1}, {x2, x6}, {x3, x4, x5}},

U/EB′ = {{x1}, {x2, x6}, {x3, x5}, {x4}},

U/EC = {{x1, x4}, {x2, x3, x5, x6}},

and
U/EC′ = {{x1}, {x2, x6}, {x3, x5}, {x4}}.

From this it can be derived that

dI(U/EB,U/EB′) =
1

6
× (2× 1

3
+ 1× 2

3
) =

2

9
,

and

dI(U/EC ,U/EC′) =
1

6
× (1× 1

2
+ 1× 1

2
+ 2× 2

4
+ 2× 2

4
) =

1

2
.
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The transforming process that this example involves is shown in Fig. 2. It
can be seen that from U/EB to U/EB′ , {x3, x4, x5} is divided into {x3, x5} and
{x4}, and that from U/EC to U/EC′ , {x1, x4} and {x2, x3, x5, x6} are divided
into {x1}, {x4}, and {x2, x6}, {x3, x5}, respectively. This indicates that whilst
U/EB′ and U/EC′ are both refinements of U/EB and U/EC induced by D,
the cost of transforming U/EB to U/EB′ is less than that from U/EC to
U/EC′ . That is, the difference (dI) between U/EB and U/EB′ is less than that
between U/EC and U/EC′ . Such an observation demonstrates the rationality
for introducing dI as defined above.

Figure 2: Example graph of inconsistency degree

Regarding a universe U of the nature as described above, the following
two theorems hold for dI .

Theorem 1. Given an information system I = (U,C, D, V, φ) and ∀B ⊆ C,
max dI(U,U/EB) = 1− 1

|U/EB |
.

Proof: Suppose that U/EB = {XB1 , . . . , XBp}. According to the definition
of dI ,

dI(U,U/EB) =
1

|U|

p∑
i=1

|XBi
|(1− |XBi

|
|U|

). (13)

Then, max dI(U,U/EB) is equal to the quadric programming problem

min
1

|U|

p∑
i=1

|XBi
|( |XBi

|
|U|

− 1), (14)
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s.t.
p∑
i=1

|XBi
| − |U| = 0. (15)

The resulting Lagrangian function is

L(|XB1 |, . . . , |XBp |, λ) =

p∑
i=1

|XBi
|( |XBi

|
|U|

− 1) + λ(

p∑
i=1

|XBi
| − |U|). (16)

By solving{
∇|XBi

|L(|XB1 |, . . . , |XBp |, λ) =
2|XBi

|
|U| − 1 + λ = 0, i = 1, . . . , p,∑p

i=1 |XBi
| − |U| = 0,

(17)

there are |XB1 | = · · · = |XBp | = |U|
p

and max dI(U,U/EB) = 1 − 1
p

=

1− 1
|U/EB |

. �
This property demonstrates that di is related to the classical information

entropy measure, it reaches its maximum when the partition induced by an
attribute subset follows an even distribution. For instance, if |U/EB| = 2,
the graph of dI(U,U/EB) can be shown as per Fig. 3.

Figure 3: Exemplar graph of inconsistency degree

Theorem 2. Given an information system I = (U,C, D, V, φ), U/EB =
{XB1 , . . . , XBp} and U/EB′ = {XB′

1 , . . . , XB′
q} are two partitions of U in-

duced by B and B′ ⊆ C, respectively. If ∀XBj
∈ U/EB, ∃Θj ⊆ {1, . . . , q},

such that |XBj
| =

∑
i∈Θj
|XB′

i
|, where ∪pj=1Θj = {1, . . . , q} and Θj ∩Θl = ∅,

for j 6= l, then dI(U,U/EB) < dI(U,U/EB′).
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Proof: For simplicity, assume that q = p+1, Θ1 = {1, 2} and Θj = {j+1},
i.e., |XB1 | = |XB′

1
| + |XB′

2
| and |XB2 | = |XB′

3
|, . . . , |XBp | = |XB′

q
|. Note that

other more complicated cases can be translated into this one.
According to the definition of dI , it follows that
dI(U,U/EB)− dI(U,U/EB′)

= 1
|U|(|XB1 | ·

|U|−|XB1
|

|U| − |XB′
1
| ·
|U|−|XB′

1
|

|U| − |XB′
2
| ·
|U|−|XB′

2
|

|U| )

= 1
|U|

(
(|XB′

1
|+ |XB′

2
|) ·

|U|−(|XB′
1
|+|XB′

2
|)

|U| − |XB′
1
| ·
|U|−|XB′

1
|

|U| − |XB′
2
| ·
|U|−|XB′

2
|

|U |
)

= 1
|U|

(
(|XB′

1
|(1−

|XB′
1
|+|XB′

2
|

|U| − 1 +
|XB′

1
|

|U| ) + |XB′
2
|(1−

|XB′
1
|+|XB′

2
|

|U| − 1 +
|XB′

2
|

|U| )
)

= 1
|U|(−

|XB′
1
||XB′

2
|

|U| −
|XB′

2
||XB′

1
|

|U| ) < 0 �

This theorem demonstrates that during the process of refining U, the
inconsistency level between U and its refinement is growing monotonically.
This monotonicity of dI is the same as that of information entropy with
respect to the number of equally likely events [27]. Thus, the proposed
metric dI is capable of revealing the inconsistency or uncertainty hidden in
an information system.

3. Robust Attribute Reduction

As dI is able to gauge the transformation degree of a partition of the
universe to its refinement, this metric can be employed to explore the pos-
sibility of using an attribute subset to represent the original entire attribute
set. However, the inconsistency measures amongst the instances may be im-
peded by the existence of noisy information. In order to perform the search
for an effective reduct with noise in the instances diminished, a robust AR
algorithm is proposed in this section.

3.1. Instance denoising

Let I = (U,C, D, V, φ) be an information system. Given a sample x ∈ U,
an attribute subset A ⊆ C and a parameter k, suppose that Θk(x) is the set of
the indices used to represent the k-nearest neighbours of x. The neighbouring
samples concerned may be chosen by the use of a certain metric, such as
Hamming distance. In general, within a set of neighbouring samples it is
possible that more than one sample is of full similarity or identical to x on
their conditional parts. For such neighbouring instances, those in the same
class as the given sample x are of particular interest and are therefore, to
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be found with priority in the process of searching for the neighbourhood of
x. To reflect this intuition, the agreement of x to the instances in the same
class as x can be identified by

sclocal(x) =

∑
i∈Θk(x) sum

A
i (x)

k ∗ |A|
, φ(x,D) = φ(xi, D). (18)

Here, sumA
i (x) is the sum of the i-th column of [sAij(x)];

∑
i∈Θk(x) sum

A
i (x)

(φ(x,D) = φ(xi, D)) denotes the total amount of the attributes, on which x
and its nearest neighbours in the class as x are identical; |A| is the cardinality
of the attribute set A; and k is the number of nearest neighbours of x.

Accordingly, the agreement of x to the instances belonging to any of the
classes that are different from the class of x can be defined by

dclocal(x) =

∑
i∈Θk(x) sum

A
i (x)

k ∗ |A|
, φ(x,D) 6= φ(xi, D). (19)

As such, Eqs. (18) and (19) reflect the local consistency and inconsistency
degree between x and its k-nearest neighbours, respectively. Based on these
two measures, the outlier degree ηlocal of x within its neighbourhood can be
introduced and evaluated by

ηlocal(x) = dclocal(x)− sclocal(x). (20)

The process of calculating the local outlier degree is illustrated in Fig. 4.
In this neighbourhood of x where k = 6, the agreement of x to those instances
within the same class (as x), i.e., class D1, is calculated with the samples in
the dashed box, and the agreement of x to the instances belonging to classes
that are different from the class of x, here, the single class D2, is calculated
with the samples in the black box. As shown in Fig. 4, intuitively, if x has
more neighbours from its own class, it is less likely to be a noise sample.

In contrast to this local outlier degree of x, global distinction between a
class and the others can also be introduced as follows. Given an informa-
tion system I = (U,C, D, V, φ), suppose that U is composed of L classes:
D1, . . . , DL, and that the set of the indices of the instances of Dl is denoted
by Θl. The agreement of Dp to Dq with respect to an attribute subset A ⊆ C
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Figure 4: Local outlier degree

can be defined by

S(Dp → Dq) =

∑
j∈Θp

∑
i∈Θq

sumA
i (xj)

|Dp| ∗ |Dq|
. (21)

This makes intuitive sense because
∑

i∈Θq
sumA

i (xj)

|Dq | reflects the average agree-

ment of a sample in Dq with respect to xj. Then S(Dp → Dq) represents the
average agreement of a sample in Dq with respect to all samples in Dp. In
particular, S(Dq → Dq) indicates the consistency of Dq to itself.

Note that since∑
j∈Θp

∑
i∈Θq

sumA
i (xj) =

∑
i∈Θq

∑
j∈Θp

sumA
i (xj),

it follows that
S(Dp → Dq) = S(Dq → Dp).

Using the above agreement measure, the global agreement degree of those
classes that are distinguished from Dp with respect to an attribute subset
A ⊆ C can be determined by

dcglobal(Dp) =

∑L
q 6=p S(Dq → Dq)

(L− 1) ∗ |A|
, p = 1, . . . L. (22)

That is, it measures the distinction degree from class Dq to class Dp globally.
Similarly, the agreement of other classes to Dp can be defined by

scglobal(Dp) =

∑L
q 6=p S(Dq → Dp)

(L− 1) ∗ |A|
, p = 1, . . . L. (23)
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With the use of Eqs. (21), (22) and (23), the notion of divergence degree
ηglobal of a class Dp to which x belongs can be defined by

ηglobal(Dp) = dcglobal(Dp)− scglobal(Dp). (24)

Following Fig. 4, the process of calculating the global divergence degree is
illustrated in Fig. 5. In particular, Steps (a), (b) and (c) jointly depict the
intermediate example steps of calculating the global agreement with respect
to the class D2 which is distinguished from the class D1; while Steps (d), (e)
and (f) illustrate the course of calculating the class agreement of D2 to D1.

Figure 5: Global divergence degree

Example 3. To explain the calculation process illustrated in Fig. 5 in more
detail, assume that sumA

i (xj), i = 5, 6, 7, j = 1, . . . , 7 and |A| = 2, are given
as listed in Table 2.

Table 2: sumA
i (xj), i = 5, 6, 7, j = 1, . . . , 7 and |A| = 2

x1 x2 x3 x4 x5 x6 x7

x5 0 1 1 1 2 2 1
x6 0 1 1 1 2 2 1
x7 0 0 0 1 1 1 2

According to Eqs. (21), (22), and (23),

dcglobal (D1) =

(2+2+1)+(2+2+1)+(1+1+2)
3×3

(2− 1)× 2
=

7

9
,
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scglobal (D1) =

(0+1+1+1)+(0+1+1+1)+(0+0+0+1)
4×3

(2− 1)× 2
=

7

24
.

Then,

ηglobal (D1) = dcglobal (D1)− scglobal (D1) =
105

216
.

Using the computed local and global divergence degrees, an instance x ∈
Dp will be deemed as a noise data and should therefore be removed from U,
if

ηlocal(x) > ηglobal(Dp). (25)

Summarising the above, the method of removing noise data is constructed
as shown in Alg. 1.

Algorithm 1 Data denoising
Input:

I = (U,C, D, V, φ), an information system;
k, number of nearest neigbours.

Output: U′, denoised dataset.

1: U′ ← ∅;
2: for ∀Dp ⊂ U, p = 1, . . . L
3: for ∀x ∈ Dp

4: if ηlocal(x) > ηglobal(Dp)
5: U′ ← (U− x).
6: end
7: end
8: end
9: Return U′

3.2. Attribute reduction

Following Alg. 1, those instances which suffer from abnormal distribution
in its neighbourhood are removed from U. On such a denoised dataset,
an AR method based on dI can then be constructed by performing two
computational procedures as detailed below.

The first is one for reduct search. Given an information system I =
(U,C, D, V, φ), let A be a subset of C. As the size of A increases, each
item within the partition U/EA tends to become finer. Thus, the inconsis-
tency between the distributions of U/EA and U/EA∪{D}, i.e., the value of
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dI(U/EA,U/EA∪{D}) generally decreases. Although this may not be univer-
sally true, it is often the case and hence, it is taken as the underlying heuristic
to develop the present work. As such, the proposed AR method intuitively
employs the smallest value of dI(U/EA,U/EA∪{D}) at each iteration to guide
the search for a desirable reduct. In particular, given an attribute

r = argmin dI(U/EA∪{r},U/EA∪{r}∪{D}), ∀a ∈ C− A, (26)

if dI(U/EA,U/EA∪{D}) > dI(U/EA∪{r},U/EA∪{r}∪{D}), the process of reduct
search aims to track the greatest inconsistency in a descent manner; else, the
process aims to track the lowest inconsistency in an ascent manner.

The second procedure is to determine when to terminate the process of
reduct search. As discussed previously, dI(U/EA,U/EA∪{D}) reflects the cost
of transforming U/EA into U/EA∪{D}. A small value of dI(U/EA,U/EA∪{D})
indicates that the partition distribution of U/EA and that of U/EA∪{D}
are similar to each other. According to the equivalence relation defined by
Eq. (9), such resemblance implies that U/EA and U/E{D} may share many
common partitions, and that the condition attribute subset A has a compa-
rable discernibility regarding the decision attribute D. From this point of
view, as shown in Eq. (27), the attribute reduct R ⊆ C is therefore deemed
to have an identical discernibility with C, concerning the decision attribute
D, namely,

dI(U/ER,U/ER∪{D}) = dI(U/EC,U/EC∪{D}). (27)

Thus, the search process can be terminated once this is satisfied. Integrating
this procedure with Alg. 1 leads to a robust AR algorithm as presented in
Alg. 2.

Note that the time complexity for calculating the agreement matrices
for the entire information system is O(|C| × |U|2). For data denoising, the
computation is of the complexity O(L × |U|2), and the time complexity of
carrying out the reduction is O(|C|2 × |U|2). Therefore, the overall time
complexity of Alg. 2 is O((|C|+ L+ |C|2)× |U|2).

4. Experimental Evaluation

In this section, the effectiveness of the proposed instance denoising and
AR methods are experimentally investigated. In particular, Section 4.1 de-
scribes the basic set-up for the experimental environment, and Section 4.2
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Algorithm 2 Robust attribute reduction
Input:

I = (U,C, D, V, φ), an information system;
k, number of nearest neighbours in Alg. 1.

Output: R, attribute reduct.

1: U0 ← Alg. 1; //Instance denoise.
2: γ ← dI(U0/EC,U0/EC∪{D})
3: R← ∅;
4: do
5: r ← argmin dI(U0/EA∪{r},U0/EA∪{r}∪{D}), ∀a ∈ C−R;
6: R← R ∪ {r};
7: until dI(U0/ER,U0/ER∪{D}) = γ
8: return R.

examines the effect of using different numbers of the nearest neighbours on
the process of denoising data. In Section 4.3, a range of artificial datasets
are devised to evaluate the robustness of the proposed approach to detect
redundant attributes. Section 4.4 illustrates the changing trend of the value
of dI(U/ER,U/ER∪{D}) as the process of AR progresses. Sections 4.5 and 4.6
present a comparative study of the results on reduced datasets, in terms of
the returned reduct size and run time, respectively. Sections 4.7 and 4.8
further report on the accuracy and F1-measure of employing the resulting
attribute subsets to perform various classification tasks.

4.1. Experimental setup

As shown in Table 3, the experiments are run on 14 datasets taken from
the UCI repository of machine learning databases [3] and Knowledge Extrac-
tion based on Evolutionary Learning (KEEL) [1]. To facilitate the evaluation,
these datasets are discretised using the popular k-means clustering algorithm.
Note that, for simplicity, the experiments in Sections 4.2, 4.4 and 4.3 are con-
ducted on the first 9 datasets in Table 3 with 4 clusters in k-means. However,
Sections 4.5, 4.6, 4.7 and 4.8 are concerned with the results obtained over all
of the datasets in Table 3, with a random number of the clusters in k-means,
ranging from 3 to 9 (to minimise any potential adverse impact of using a
specific discretisation). Moreover, in order to demonstrate the robustness of
the proposed approach, the experiments in the Sections 4.2, 4.3, 4.4 and 4.8
are conducted in the presence of 10% additive random noise to each dataset.
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In Sections 4.5, 4.6 and 4.7, apart from the addition of 10% noise to the data,
the experimental investigations also consider datasets involving 5% and 15%
added noise, to provide a comprehensive evaluation.

Table 3: Evaluation datasets
Dataset Objects Attributes Classes

cleveland 177 13 2
credit 187 15 2

dermatology 366 33 6
forest type 325 27 4
house-vote 435 16 2
ionosphere 351 33 2
promoter 106 58 2

spectfheart 267 44 2
wdbc 569 30 2

colon 62 2000 2
leukemia 72 7129 2

lung 203 3312 5
lymphoma 66 4026 3

segmentation 2100 19 7

Stratified 10×10-fold cross-validation (10×10-FCV) is employed through-
out the experimentation. In each 10-FCV, an original dataset is partitioned
into 10 subsets of data objects. Of these 10 subsets, a single subset is re-
tained as the testing data for the (subsequent) classifier that uses the original
or reduced dataset, and the remaining 9 subsets are used for training. The
cross-validation process is repeated for 10 times. The 10 sets of results are
then averaged to produce a single estimation of classifier accuracy. The ad-
vantage of 10-FCV over random sub-sampling is that all objects are used
for both training and testing, and each object is used for testing only once
per validation. The stratification of the data prior to its division into folds
ensures that each class label (as far as possible) has equal representation in
all folds, thereby helping to alleviate bias/variance problems [2].

4.2. Effect of number of nearest neighbours

The impact of k, the number of the nearest neighbours, upon the results
of instance denoising is examined here (without using Alg. 2 to reduce the
attributes). Particularly, the classification results are obtained using the
Logistic and random forest with 10 trees (RF(10)) methods. The average of
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the classification results on all of those denoised datasets in relation to the
different values of k (ranging from 1 to 20 with a step size of 1) are shown
in Fig. 6, via running the two classifiers using the denoised data.

Figure 6: Average classification results

It can be seen from Fig. 6 that with the increase in k, the overall classi-
fication accuracies show an upward trend. When the value of k is between 1
and 8, a small neighbourhood of samples leads to less effective noise reduc-
tion while revealing a strong volatility. Yet, if the value of k becomes quite
large, the samples from minority classes become regarded as noise with high
probability, because their proportion in the neighbourhood degrades. Both
of these observations are not surprising, meeting the usual expectation that
has long been established in the field of electronic engineering. A balance
is therefore required between the potential noise smoothing power and the
minimisation of the possibility of non-noise data being removed. Recognis-
ing this point, while considering that a very small k typically leads to strong
fluctuations in classification results and a rather large k tends to result in a
time-consuming denoising process, in the following experiments, k is empiri-
cally set to 9 (which entails relatively stable classification results as reflected
by Fig. 6).

4.3. Impact of denoising strategy

To investigate the effect of applying the proposed denosing method, this
set of experiments is carried out on a range of artificially generated datasets.
Recall Table 3, the dermatology dataset contains the greatest quantity of
categories amongst the first 9 datasets listed there. Given its complexity of
data classes this dataset is taken to serve as the foundation upon which to
generate the artificial datasets. Particularly, six new datasets are created,
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(a) Composition of reduct (b) Classification accuracy

Figure 7: Experimental results on artificial datasets

with each containing 366 instances as per the original dermatology dataset
but each with 50, 100, 150, 200, 250 or 300 rather low-quality attributes
added. To construct the low-quality attributes in each artificial dataset, for
every newly added attribute, 90% of its values are set to be of the same
value with the remaining 10% assigned randomly. Clearly, this makes each
artificial attribute (and henceforth, every generated dataset) to be of rather
poor quality, in view of their discriminating power for the classification of the
data instances into one of the six different classes. To enable fair comparison,
four popular classifiers are employed for this investigation: Logistic, SVM,
Adaboost with J48 (AdaJ48), and RF(10).

The composition of the reducts produced by the proposed approach is
illustrated in Fig. 7(a). As can be seen, in the returned reducts, most of
the attributes are from the original dermatology dataset. For example, in
the case with 200 or 300 artificial attributes, the reduct only contains 1 or 3
artificial attributes, respectively. This demonstrates that dI can effectively
detect (and hence, remove) low-quality attributes.

Fig. 7(b) shows the comparison results between the use of the reducts
(against the number of artificial attributes added) and that of the original
dataset on classification accuracy. It can be seen that due to the impact
of the low-quality attributes, the classification accuracies on the unreduced
datasets are all lower than 90%. However, on the reduced datasets by dI ,
all of the accuracies are over 90%. In particular, with the case involving 250
and 300 artificial attributes, the improved accuracies gained by dI are each
over 30%.
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(a) cleveland (b) credit (c) dermatology

(d) forest-type (e) house-votes (f) ionosphere

(g) promoters (h) spectfheart (i) wdbc

Figure 8: Inconsistency measure with respect to dI and size of reduct |R|

4.4. Changes of inconsistency measure during AR process

Fig. 8 shows the results of measuring the inconsistency with the proposed
AR approach across all datasets studied, where the red lines represent the
baseline dI(U/EC,U/EC∪{D}) and the black lines stand for dI(U/ER,U/ER∪{D}).
Note that rather than dI(U/ER,U/ER∪{D}), dI(U/ER,U/ER∪{D}) · |U| for
each dataset is illustrated in relation to the growth of reduct size |R|, in an
effort to highlight the trend of inconsistency measure.

It can be observed that dI(U/ER,U/ER∪{D}) · |U| is monotonically de-
creasing as AR progresses until it equals to dI(U/EC,U/EC∪{D}) · |U|. These
experimental results clearly demonstrate the effectiveness of the proposed AR
mechanism. Moreover, the observed minuscule values of dI(U/EC,U/EC∪{D})
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(or those of dI(U/ER,U/ER∪{D})) imply that the distribution of the parti-
tions of a given dataset does not change much after being refined with respect
to the decision attribute. That is, the corresponding dataset has an entire
(or reduced) set of condition attributes which are highly consistent to the
decision attribute.

4.5. Comparison on reduct size

By summarising the size of the reducts over each dataset as given in
Fig. 8, a comparison is herein made on the reduced dataset size between the
proposed (namely, dI-based) approach and those achieved using either of the
seven existing AR methods: ASNAR [13], FKD [35], GBNRS [33], RelieF
[31], VPRS [32], and SPDTRS [29]. The configuration of these methods are
shown in Table 4. Note that, since RelieF filters attributes by rank and
selects top scoring ones, the reduct size of each dataset returned by RelieF
is set to be identical to that by dI in the following experiments.

Table 4: Configuration of alternative AR methods compared

Methods Parameters

ASNAR δO = 0.9× δI , δI = 0.3

FBD δ(Ã, B̃) =
∑

x∈U µÃ∪B̃
(x)−

∑
x∈U µÃ∩B̃

(x)

|U |
GBNRS purity=1
RelieF k = max{|U|, 100}
VPRS β = 0.3

SPDTRS ζ=0.2

The results in Table 5 collectively show that, with any of the three levels
of added noise, the reduct size obtained by the dI-based approach is smaller
than those attainable with either of the alternative methods, on most of the
14 datasets. For example, on the datasets promoters, colon and leukemia,
dI-based selects only 3, 2 and 2 attributes to form the returned reduct, re-
spectively, whilst the reducts returned by the alternatives are much larger.
Particularly, across all three noise levels, the average size over all 14 datasets
is much smaller than that achievable by any other method compared. Such
strong performance may be attributed to the data denoising procedure that
reduces the inconsistency in the datasets. The following section further in-
vestigates the classification performance of using selected attribute subsets,
showing that the returned reducts by the dI-based AR mechanism also re-
tains sufficient information to entail high discriminating ability.
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Table 5: Reduct sizes
Datasets Ratio dI ASNAR FKD GBNRS RelieF VPRS SPDTRS

cleveland
5% 3 6 7 4 3 11 4
10% 3 7 8 5 3 11 4
15% 5 7 7 5 5 12 7

credit
5% 8 14 10 9 8 11 11
10% 8 14 10 10 8 15 13
15% 11 14 10 10 11 14 13

dermatology
5% 10 11 12 18 10 27 7
10% 10 10 11 13 10 30 7
15% 10 10 11 12 10 31 8

forest type
5% 6 8 5 5 6 11 5
10% 5 9 5 5 5 9 5
15% 6 9 5 4 6 10 5

house-votes
5% 7 12 10 10 7 12 10
10% 5 13 11 9 5 16 12
15% 12 14 12 11 12 16 12

ionosphere
5% 5 7 7 11 5 5 5
10% 5 8 9 10 5 30 7
15% 5 11 10 10 5 28 7

promoters
5% 3 5 4 7 3 10 5
10% 3 5 4 7 3 4 5
15% 4 5 4 6 4 4 6

spectfheart
5% 5 7 5 10 5 7 5
10% 5 7 5 8 5 7 5
15% 5 7 5 9 5 7 5

wdbc
5% 5 9 5 15 5 16 5
10% 4 9 5 10 4 22 5
15% 5 9 5 10 5 23 6

colon
5% 2 4 4 5 2 2 3
10% 2 4 4 5 2 457 3
15% 2 4 4 2 2 479 3

leukemia
5% 2 4 4 5 2 822 3
10% 2 3 5 3 2 1030 3
15% 2 4 5 4 2 2209 3

lung
5% 4 5 5 6 4 286 4
10% 3 6 5 6 3 79 3
15% 3 6 4 5 3 1004 4

lymphoma
5% 2 3 4 2 2 451 2
10% 2 3 5 3 2 423 3
15% 2 4 4 2 2 904 3

segmentation
5% 19 15 11 16 19 19 15
10% 13 15 13 15 13 19 15
15% 19 15 15 16 19 19 15

average
5% 5.8 7.9 6.6 8.8 5.8 120.7 6.0
10% 5.0 8.1 7.1 7.8 5.0 153.4 6.4
15% 6.5 8.5 6.8 7.6 6.5 340.0 6.9
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4.6. Evaluation on runtime cost

In addition to the experimental results on the reduct size, the runtime
consumed to conduct AR is also displayed in Table 6. Note that most algo-
rithms in this paper are programmed in Python, but RelieF is executed via a
software package [11] and SPDTRS is coded in Matlab. Since the platforms
to implement these AR methods are different, the runtime costs incurred by
them are not directly comparable without a unified standard. Nonetheless, it
can be seen that, for the wide range of the datasets employed in the experi-
mental investigations, the time spent to calculate dI is practically acceptable
(being around 10 minutes in the worst case) in general.

4.7. Comparison on classification accuracy

This set of experiments is carried out to provide a systematic comparison
regarding the classification accuracy on the reduced datasets, again amongst
the following methods: dI-based, ASNAR, VPRS, FKD, GBNRS, RelieF
and SPDTRS. This study is also performed in conjunction with the use
of Logistic, SVM, AdaJ48 or RF(10). The respective results are shown in
Tables 7, 8, 9 and 10, where the average classification accuracies gained
using 10-FCV for each of the methods are recorded, with the best results for
each dataset underlined. In addition, the number of the best performances
attained by each AR method is summarised in the bottom row within each
of these tables.

It can be seen that in conjunction with the use of either Logistic, SVM,
AdaJ48, or RF(10), across all different noise level setings (5%/10%/15%), the
classification performance of the proposed method is superior to those attain-
able by the existing methods on 5/8/5, 3/5/7, 4/8/3 or 7/7/5 out of the 14
datasets. Occasionally, with 15% added noise, RelieF generates the best aver-
age accuracy and most of such best results are linked with the use of Logistic
and AdaJ48. Importantly, the overall excellent performance of the dI-based
method is on average, achieved through the use of the smallest attribute sub-
sets returned by it. For those datasets where the use of dI-returned attributes
does not lead to the highest accuracy, the performances remain compatible
to the rest, but mostly involving far less attributes. Moreover, the use of the
proposed approach does not lead to the poorest performance in most cases,
resulting in an accuracy generally well above the average instead.
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Table 6: Results of runtime (s)
Datasets Ratio dI ASNAR FKD GBNRS RelieF VPRS SPDTRS

cleveland
5% 1.8581 6.1623 0.1237 107.3635 0.1257 1.9743 1.8735
10% 1.9817 6.6054 0.1496 113.0802 0.1297 2.1612 1.9471
15% 1.9631 6.7891 0.1397 137.6155 0.1416 2.3815 2.0414

credit
5% 34.5424 88.7223 1.1290 106.2250 0.4787 37.0736 11.9832
10% 36.5814 89.0803 1.2233 183.6076 0.5306 38.3715 13.1349
15% 39.3947 108.8365 1.2995 263.3471 0.5795 42.7083 13.9048

dermatology
5% 21.3398 72.2145 0.8318 143.9442 0.2872 21.3519 13.3359
10% 22.0933 88.0192 0.9380 431.8071 0.2952 23.3616 15.3019
15% 22.4163 89.7175 0.9853 443.7204 0.3241 25.6255 17.0929

forest type
5% 10.7514 41.0641 0.5685 115.5908 0.2414 13.4579 9.4535
10% 11.2143 55.5115 0.6304 250.2127 0.2563 14.7732 11.4191
15% 11.5003 69.9348 0.6662 347.7581 0.2803 16.1233 11.9097

house-votes
5% 14.1368 40.3852 0.5475 226.4088 0.3032 14.6051 8.3987
10% 15.1608 42.4943 0.6413 147.0161 0.3281 15.9749 9.0111
15% 16.4146 52.6708 0.6562 183.3275 0.3521 17.7673 9.2401

ionosphere
5% 16.4975 61.6112 0.8796 143.5376 0.2673 19.4981 15.4189
10% 17.8382 96.3812 0.9923 591.6166 0.2882 21.3827 21.0503
15% 18.2362 99.4010 1.0492 341.5810 0.3072 23.4971 23.0135

promoters
5% 2.3483 12.2303 0.2922 98.5833 0.0838 3.0229 4.2616
10% 2.2650 13.0112 0.3281 145.2164 0.0888 3.2889 4.4805
15% 2.6268 16.1636 0.3341 259.4777 0.0967 3.7011 4.6498

spectfheart
5% 12.7280 46.9105 0.8348 131.4935 0.2284 14.5194 12.2664
10% 12.5938 50.7193 0.9295 346.2840 0.2284 16.3795 14.0960
15% 12.3711 58.8308 0.9525 487.2099 0.2773 18.2677 13.6461

wdbc
5% 44.8893 92.9480 1.7473 126.0470 0.4428 46.7439 22.9993
10% 48.4196 122.0870 1.9398 392.0205 0.4757 51.7120 25.8229
15% 50.6763 136.5664 2.0446 263.7432 0.5057 57.0793 27.5080

colon
5% 22.5079 93.2303 44.7551 1482.2134 0.4198 35.2612 40.9748
10% 23.1776 98.5275 44.1459 3668.5586 0.4098 144.6029 43.3100
15% 26.4958 102.8152 46.6140 5982.7483 0.4498 158.1656 44.8791

leukemia
5% 133.4688 379.2381 630.9751 10621.9400 1.3393 1116.4087 171.1494
10% 142.5839 317.8804 646.8009 10803.9733 1.4292 1351.2185 179.7040
15% 146.8416 439.6555 674.9973 18241.5824 1.4792 2550.8980 189.0943

lung
5% 603.2815 878.0916 566.4605 23936.2678 2.4387 1218.0571 333.4656
10% 577.0184 1119.6728 636.6002 26256.8426 2.4487 831.2887 294.1929
15% 559.3375 1182.3693 633.9602 28635.1598 2.6286 2997.3574 371.4187

lymphoma
5% 81.5365 152.5186 172.7093 4983.5417 0.6696 272.9826 69.0056
10% 86.6313 160.5943 183.6443 9976.1314 0.7596 281.7306 90.5938
15% 87.9231 220.3025 189.3460 11878.773 0.7296 525.2047 96.8955

segmentation
5% 410.6343 991.3292 7.7059 460.1845 2.4387 438.6860 51.9757
10% 430.8801 1112.8319 8.2256 727.6519 2.5386 483.9518 53.3017
15% 436.5172 1265.5772 8.6253 853.9045 2.5086 530.2072 58.8428

average
5% 100.7515 211.1897 102.1115 3169.3175 0.6975 232.4031 54.7544
10% 102.0314 240.9583 109.0849 3859.5728 0.7291 234.2998 55.5262
15% 102.3368 274.9736 111.5479 4879.9963 0.7615 497.7846 63.1526
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Table 7: Classification accuracy by Logistic (%)
Datasets Ratio dI ASNAR FKD GBNRS RelieF VPRS SPDTRS

cleveland
5% 87.35 86.17 86.92 88.06 89.08 85.42 87.25
10% 85.24 81.41 80.99 86.28 85.19 81.55 85.06
15% 82.35 78.46 79.50 80.65 83.56 78.91 82.38

credit
5% 84.54 82.94 83.86 83.03 84.11 83.40 75.83
10% 83.24 80.46 81.55 80.20 82.77 80.55 73.58
15% 78.15 77.19 78.22 77.61 78.63 77.57 78.41

dermatology
5% 87.67 77.3 68.8 89.34 87.07 88.35 66.68
10% 70.50 70.93 58.9 72.42 80.10 69.3 66.56
15% 70.34 62.13 67.53 67.76 75.05 65.58 67.90

forest type
5% 73.25 69.67 32.28 62.69 69.65 69.53 69.69
10% 71.46 66.22 33.38 60.85 63.92 73.02 67.45
15% 68.23 64.34 33.53 42.29 66.32 67.28 62.19

house-votes
5% 94.51 93.35 88.93 93.94 93.79 93.00 94.12
10% 90.69 90.42 91.11 89.84 90.63 90.04 90.29
15% 89.10 84.26 85.04 89.14 88.66 88.46 89.52

ionosphere
5% 86.60 88.35 81.16 81.44 87.24 88.87 87.36
10% 85.75 82.44 79.41 79.61 83.14 67.52 82.40
15% 85.30 82.09 79.3 79.16 82.05 67.01 82.84

promoters
5% 87.45 76.36 56.09 60.91 87.82 70.18 83.82
10% 85.80 85.60 55.58 57.89 82.11 79.35 64.60
15% 81.67 78.67 55.58 55.67 82.67 77.33 74.67

spectfheart
5% 74.09 73.11 73.09 68.21 76.03 72.58 76.92
10% 72.24 70.84 72.67 71.32 71.68 71.34 73.29
15% 69.30 67.03 69.74 64.84 71.26 68.23 69.45

wdbc
5% 92.99 89.95 88.41 88.59 89.45 91.14 90.15
10% 90.91 88.64 86.56 88.74 88.14 85.28 84.40
15% 89.27 86.54 85.07 86.98 86.02 83.58 88.18

colon
5% 75.02 67.93 47.19 59.86 75.98 80.69 64.05
10% 75.62 61.67 48.62 51.74 70.98 56.55 61.79
15% 72.80 64.84 47.45 63.96 69.21 60.07 46.18

leukemia
5% 89.18 84.02 50.59 49.36 90.16 88.59 66.21
10% 89.75 92.23 47.54 45.68 91.20 87.91 65.23
15% 84.44 84.04 52.43 53.08 87.93 79.99 58.44

lung
5% 77.11 77.44 67.45 59.48 83.11 83.58 60.96
10% 84.02 72.16 65.05 59.98 82.40 68.37 68.00
15% 74.1 67.98 64.29 60.30 77.62 62.06 58.70

lymphoma
5% 86.38 80.60 50.81 53.93 85.67 86.10 82.07
10% 87.93 82.79 46.50 55.89 79.27 80.34 65.84
15% 76.75 79.93 51.27 57.93 75.71 82.96 75.57

segmentation
5% 87.73 87.82 81.07 87.93 87.73 87.73 87.82
10% 83.65 83.31 82.64 83.39 83.27 83.04 83.31
15% 80.49 80.75 80.52 80.49 80.49 80.49 80.75

average
5% 84.56 81.07 68.33 73.34 84.78 83.51 78.07
10% 82.63 79.22 66.46 70.27 81.06 76.73 73.70
15% 78.74 75.59 66.39 68.56 78.94 74.25 72.51

best
5% 5 0 0 1 4 2 2
10% 8 1 1 1 1 1 1
15% 5 1 0 0 7 1 1
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Table 8: Classification accuracy by SVM (%)
Datasets Ratio dI ASNAR FKD GBNRS RelieF VPRS SPDTRS

cleveland
5% 88.87 87.95 88.76 87.36 89.04 88.76 88.65
10% 83.39 86.22 85.88 83.13 84.21 86.95 85.05
15% 81.94 79.46 81.14 82.03 84.11 82.78 83.37

credit
5% 84.21 83.72 83.80 83.83 83.94 84.00 75.14
10% 82.65 82.60 82.23 81.73 82.43 82.62 73.46
15% 78.78 78.48 78.76 78.96 79.46 78.85 79.14

dermatology
5% 93.33 87.51 72.07 92.83 91.13 93.98 70.53
10% 87.81 82.82 64.11 88.28 85.83 85.61 71.47
15% 87.11 66.20 77.37 85.22 78.72 80.27 71.48

forest type
5% 76.29 76.43 34.49 66.34 69.59 78.98 71.16
10% 72.58 69.66 34.35 64.53 66.09 75.67 67.92
15% 71.62 67.50 33.45 44.80 69.04 73.67 66.01

house-votes
5% 94.10 93.90 89.11 94.06 94.23 94.10 94.01
10% 90.99 90.78 90.41 90.78 90.92 90.61 90.71
15% 90.14 85.28 84.82 90.16 90.18 90.06 90.16

ionosphere
5% 87.07 90.33 82.09 88.45 87.51 88.87 86.65
10% 85.72 85.46 80.39 81.28 83.64 80.59 83.64
15% 86.70 86.54 79.72 79.04 83.34 82.76 82.92

promoters
5% 84.73 76.82 56.36 63.45 88.82 75.09 85.73
10% 83.23 85.20 54.80 59.77 84.28 76.94 73.83
15% 81.50 80.25 51.17 57.08 83.75 77.50 73.50

spectfheart
5% 76.05 73.87 75.31 71.11 76.71 76.24 75.56
10% 72.33 70.60 72.87 73.64 74.07 72.29 71.28
15% 69.94 70.31 69.16 66.31 71.91 70.37 71.91

wdbc
5% 93.01 91.18 88.04 92.51 89.50 92.25 88.98
10% 90.91 89.47 86.04 91.15 87.68 88.03 85.01
15% 88.31 88.71 85.70 88.27 85.90 88.52 87.29

colon
5% 70.29 59.71 48.40 52.90 67.48 81.05 58.24
10% 75.86 67.90 47.86 58.88 67.48 72.33 62.24
15% 71.68 64.84 48.40 61.11 67.48 66.8 48.43

leukemia
5% 90.91 87.52 56.61 54.14 90.41 91.45 64.52
10% 91.46 89.68 53.73 48.32 88.73 91.73 64.11
15% 89.03 87.83 55.32 55.10 87.93 84.01 57.99

lung
5% 87.53 81.47 68.49 70.95 83.07 86.43 74.50
10% 84.84 77.01 66.64 66.59 81.77 80.31 70.81
15% 77.19 76.76 64.97 65.76 76.44 74.02 65.84

lymphoma
5% 91.17 85.17 65.29 66.00 87.29 94.05 83.88
10% 88.71 90.96 53.57 60.55 78.18 85.71 76.68
15% 86.59 85.00 60.87 63.04 76.82 83.71 81.96

segmentation
5% 88.83 88.78 81.84 88.77 88.83 87.18 88.78
10% 84.41 84.68 83.19 84.68 84.00 84.77 84.68
15% 81.64 81.57 81.29 81.37 81.64 81.64 81.57

average
5% 86.10 83.17 70.76 76.62 84.83 86.72 79.02
10% 83.92 82.36 68.31 73.81 81.10 82.44 75.78
15% 81.58 78.48 67.95 71.30 79.38 79.63 74.40

best
5% 3 1 0 0 5 5 0
10% 5 2 0 2 1 4 0
15% 7 1 0 0 6 2 1
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Table 9: Classification accuracy by AdaJ48 (%)
Datasets Ratio dI ASNAR FKD GBNRS RelieF VPRS SPDTRS

cleveland
5% 86.93 83.91 88.40 87.52 87.68 85.37 88.16
10% 84.67 77.72 77.07 84.95 83.70 80.61 83.56
15% 75.89 74.24 72.96 78.73 81.49 74.03 77.58

credit
5% 79.19 79.62 79.86 78.84 83.00 79.64 70.76
10% 77.42 77.28 76.73 75.94 81.40 77.06 67.49
15% 71.37 71.30 71.76 71.64 75.79 71.40 72.41

dermatology
5% 89.82 84.91 71.10 91.36 87.00 92.49 67.15
10% 82.89 78.53 62.50 84.44 82.81 83.04 69.40
15% 82.32 59.33 73.95 80.43 74.62 79.93 66.63

forest type
5% 73.52 72.16 40.51 61.92 69.63 73.66 70.63
10% 70.94 67.00 37.74 62.29 67.60 75.11 66.15
15% 65.26 60.89 39.60 43.23 67.57 70.27 64.16

house-votes
5% 93.75 92.61 85.93 93.12 92.44 91.82 92.56
10% 91.70 86.44 88.43 87.15 89.98 86.40 87.99
15% 85.70 79.46 79.58 87.20 86.66 85.40 86.48

ionosphere
5% 87.88 88.01 83.3 88.42 86.77 91.27 86.80
10% 83.93 80.30 77.38 77.96 81.72 80.83 81.23
15% 83.85 82.44 77.81 79.33 81.00 81.89 81.60

promoters
5% 89.45 81.18 56.91 61.00 86.91 75.09 81.45
10% 87.86 81.43 56.48 56.58 83.55 76.33 62.33
15% 81.58 77.33 55.42 57.75 82.17 75.83 72.92

spectfheart
5% 71.91 71.29 70.98 68.99 73.79 71.40 73.32
10% 71.77 71.64 72.45 71.81 68.35 68.97 74.15
15% 67.43 65.03 68.59 64.59 68.01 64.81 65.87

wdbc
5% 91.29 89.84 86.07 90.57 89.26 90.86 88.07
10% 88.68 84.99 81.89 86.66 87.36 86.53 83.97
15% 86.42 81.36 82.21 84.00 84.86 83.72 84.37

colon
5% 78.90 80.29 57.57 60.62 73.71 80.71 61.05
10% 71.19 65.48 54.60 52.98 69.31 64.48 64.12
15% 67.48 72.98 53.02 69.09 65.89 62.46 48.07

leukemia
5% 91.16 90.14 54.25 54.32 92.00 87.75 60.71
10% 91.43 95.13 51.52 48.79 89.14 85.36 60.54
15% 87.40 87.29 56.03 61.53 89.76 80.33 55.17

lung
5% 84.65 78.63 63.81 61.32 81.45 80.99 69.07
10% 84.16 75.47 62.29 59.95 79.24 75.34 69.00
15% 70.42 69.09 61.29 56.97 74.20 69.34 59.69

lymphoma
5% 87.1 88.43 61.83 67.62 89.67 87.71 84.88
10% 84.48 83.73 58.93 64.25 76.20 79.75 76.79
15% 79.57 82.18 65.11 65.11 80.25 78.05 77.64

segmentation
5% 88.83 88.98 83.39 88.78 88.83 88.83 88.98
10% 84.4 84.17 83.79 84.10 84.21 84.45 84.17
15% 81.65 81.35 81.14 81.77 81.65 81.65 81.35

average
5% 85.31 83.57 70.28 75.31 84.44 84.11 77.40
10% 82.54 79.24 67.27 71.28 80.33 78.88 73.64
15% 77.60 74.59 67.03 70.10 78.14 75.65 71.00

best
5% 4 1 0 1 5 3 1
10% 8 1 0 2 1 1 1
15% 3 2 1 1 6 1 0
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Table 10: Classification accuracy by RF(10)(%)
Datasets Ratio dI ASNAR FKD GBNRS RelieF VPRS F-score

cleveland
5% 86.44 87.04 88.10 87.95 88.44 86.67 87.36
10% 83.59 77.94 77.94 84.1 84.98 79.32 81.61
15% 75.16 72.35 72.55 75.57 80.70 73.58 73.89

credit
5% 80.46 80.88 80.51 80.18 82.74 80.78 70.14
10% 77.52 77.94 77.53 76.71 80.15 78.21 67.53
15% 71.26 71.89 71.1 70.83 74.57 72.03 72.68

dermatology
5% 89.27 84.89 71.15 90.79 88.25 91.05 67.78
10% 81.85 77.64 62.69 83.44 81.72 84.16 68.88
15% 80.55 59.66 70.51 78.73 73.42 80.31 63.56

forest type
5% 73.64 72.95 35.87 60.75 69.16 74.52 67.56
10% 69.17 67.35 34.72 59.54 67.94 74.31 63.92
15% 64.18 61.99 34.12 37.28 62.31 67.28 58.60

house-votes
5% 93.86 93.16 86.54 93.38 92.79 92.28 92.96
10% 91.57 87.09 88.85 87.18 89.84 87.46 88.49
15% 86.56 80.86 80.38 86.82 87.08 86.58 86.90

ionosphere
5% 88.23 88.69 83.69 87.93 86.44 90.84 86.03
10% 84.01 81.05 78.68 80.06 81.78 82.42 81.26
15% 83.23 82.72 78.98 79.58 80.30 82.64 81.30

promoters
5% 89.09 82.09 53.55 61.27 85.45 74.36 81.45
10% 87.11 81.28 55.58 56.30 82.25 76.30 60.51
15% 79.17 76.08 52.58 53.00 78.42 71.25 72.50

spectfheart
5% 74.81 73.27 69.87 71.47 70.54 71.11 71.9
10% 71.33 72.19 69.86 74.15 67.67 69.6 73.84
15% 65.59 65.22 64.17 66.71 63.37 64.71 62.92

wdbc
5% 91.62 89.99 86.39 91.11 89.43 92.13 88.34
10% 88.47 86.32 81.76 87.97 87.57 87.42 83.49
15% 86.45 83.48 80.63 85.21 85.09 85.42 84.46

colon
5% 76.74 77.02 54.52 57.86 72.10 83.43 61.98
10% 73.48 63.67 48.86 51.38 70.90 60.24 56.02
15% 67.75 65.37 47.27 67.45 67.86 59.25 56.02

leukemia
5% 91.70 86.36 53.93 57.46 90.68 78.09 61.00
10% 92.36 94.88 54.95 48.96 90.25 80.80 61.54
15% 88.88 88.18 53.82 61.38 88.67 72.31 54.17

lung
5% 85.09 79.90 63.37 66.49 82.27 79.90 65.65
10% 84.34 74.92 60.66 60.63 80.95 66.96 65.78
15% 69.69 69.39 58.92 55.72 77.71 67.06 52.73

lymphoma
5% 89.55 89.33 57.21 58.79 87.50 85.38 84.29
10% 85.73 84.45 49.68 56.05 77.34 80.91 69.21
15% 80.88 82.82 50.59 49.09 75.52 77.79 66.93

segmentation
5% 88.14 88.05 81.63 88.06 88.14 88.14 88.05
10% 82.77 82.56 83.53 82.49 82.70 82.42 82.56
15% 79.02 78.98 79.53 79.29 79.02 79.02 78.98

average
5% 85.62 83.83 69.02 75.25 83.85 83.48 76.75
10% 82.38 79.23 66.09 70.64 80.43 77.90 71.76
15% 77.03 74.21 63.94 67.62 76.72 74.23 68.97

best
5% 7 0 0 0 3 6 0
10% 7 1 1 1 2 2 0
15% 5 1 0 2 5 1 0
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4.8. Comparison on F1 measure

In this experiment, F1 measure is used to evaluate the performance of the
dI-based method on problems involving class imbalance. The results given
in Table 11 demonstrate that the proposed approach is ranked first in terms
of the overall count of the best values of F1 measure. In addition, the use of
this approach does not lead to the poorest performance in most case, except
for the cleveland dataset that is classified with SVM.

Together, all of the above results illustrate that the present work en-
tails an overall stronger performance in terms of robustness, reduct size,
classification accuracy and F1 measure. Although, occasionally, the use of
dI-based returns lower classification accuracies than the use of RelieF, its
overall superiority in F1 measure shows the ability of dI in relieving data im-
balance. In particular, compared to FKD, another EMD-based AR method,
the outstanding performance of the present work demonstrates the benefit
of utilising the proposed denoising strategy.

5. Conclusion

This paper has presented an EMD-based inconsistency measure to help
evaluate the discernibility of an attribute subset with respect to the deci-
sion attribute. Particularly, in order to enhance the robustness of attribute
reduction, the work utilises a denoising strategy to detect noisy instances.
The effectiveness of the proposed instance denoising and AR procedures has
been verified with systematic experiments, in the context of being utilised
to support performing classification tasks, via testing against popular, state-
of-the-art AR methods. Comparative results have demonstrated in general
that the proposed AR approach can detect attribute subsets of much smaller
in size than state-of-the-art methods, while leading to the achievement of
a higher classification accuracy and F1 measure. The runtime cost to pro-
duce the reducts following this approach has been shown to be practically
reasonable. Overall, the proposed AR approach can effectively overcome the
adverse impact caused by noisy data and redundant attributes.

Whilst promising, the work also opens up an interesting avenue for further
development. For instance, it would be useful to investigate how it may be
extended to handling more complicated large-scale datasets [26], e.g. those
requiring higher-order [21, 23] or ensemble [10] classification, or involving
multi-label [24] and unsupervised [4, 15] learning. Also, in the present work,
datasets are discretised using the popular k-means clustering algorithm. No
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Table 11: Results of F1 measure
Datasets Ratio dI ASNAR FKD GBNRS RelieF VPRS SPDTRS

cleveland

Logistic 0.92 0.89 0.89 0.92 0.89 0.92 0.92
SVM 0.91 0.92 0.92 0.91 0.91 0.93 0.92

AdaJ48 0.91 0.87 0.91 0.86 0.91 0.89 0.91
RF 0.91 0.87 0.87 0.91 0.92 0.88 0.90

credit

Logistic 0.83 0.79 0.80 0.79 0.82 0.79 0.69
SVM 0.83 0.83 0.82 0.82 0.83 0.83 0.66

AdaJ48 0.75 0.75 0.74 0.73 0.80 0.75 0.64
RF 0.76 0.76 0.76 0.75 0.79 0.76 0.63

dermatology

Logistic 0.80 0.82 0.89 0.81 0.90 0.81 0.88
SVM 0.92 0.92 0.94 0.93 0.94 0.92 0.91

AdaJ48 0.90 0.90 0.91 0.92 0.92 0.91 0.90
RF 0.91 0.91 0.93 0.93 0.92 0.93 0.89

forest type

Logistic 0.69 0.66 0.28 0.63 0.66 0.73 0.70
SVM 0.71 0.68 0.28 0.70 0.70 0.75 0.73

AdaJ48 0.68 0.66 0.25 0.66 0.71 0.74 0.68
RF 0.65 0.64 0.37 0.62 0.71 0.73 0.65

house-votes

Logistic 0.88 0.88 0.89 0.88 0.88 0.88 0.88
SVM 0.89 0.89 0.89 0.89 0.89 0.88 0.89

AdaJ48 0.90 0.83 0.86 0.84 0.88 0.83 0.85
RF 0.89 0.84 0.86 0.84 0.87 0.85 0.86

ionosphere

Logistic 0.89 0.86 0.84 0.84 0.87 0.73 0.86
SVM 0.89 0.89 0.85 0.85 0.88 0.84 0.87

AdaJ48 0.87 0.84 0.82 0.82 0.86 0.85 0.85
RF 0.87 0.85 0.83 0.84 0.86 0.86 0.85

promoters

Logistic 0.87 0.86 0.54 0.56 0.82 0.80 0.65
SVM 0.84 0.86 0.55 0.58 0.85 0.77 0.74

AdaJ48 0.90 0.80 0.57 0.59 0.87 0.73 0.81
RF 0.90 0.81 0.54 0.59 0.86 0.73 0.81

spectfheart

Logistic 0.36 0.34 0.43 0.44 0.05 0.37 0.36
SVM 0.29 0.23 0.34 0.44 0 0.31 0.09

AdaJ48 0.41 0.44 0.42 0.45 0.11 0.38 0.48
RF 0.39 0.41 0.40 0.46 0.19 0.34 0.49

wdbc

Logistic 0.93 0.91 0.89 0.91 0.91 0.88 0.87
SVM 0.93 0.92 0.89 0.93 0.90 0.90 0.87

AdaJ48 0.91 0.88 0.85 0.89 0.90 0.89 0.87
RF 0.91 0.89 0.85 0.90 0.90 0.90 0.87

colon

Logistic 0.66 0.50 0.22 0.36 0.56 0.33 0.44
SVM 0.63 0.55 0.14 0.64 0.51 0.55 0.43

AdaJ48 0.58 0.52 0.11 0.30 0.54 0.50 0.47
RF 0.61 0.51 0.33 0.28 0.56 0.39 0.38

leukemia

Logistic 0.93 0.94 0.57 0.57 0.93 0.90 0.73
SVM 0.93 0.92 0.65 0.62 0.91 0.91 0.72

AdaJ48 0.93 0.96 0.61 0.61 0.92 0.88 0.71
RF 0.94 0.96 0.66 0.58 0.93 0.86 0.70

lung

Logistic 0.90 0.81 0.78 0.74 0.89 0.78 0.79
SVM 0.90 0.84 0.79 0.79 0.88 0.85 0.81

AdaJ48 0.89 0.52 0.74 0.73 0.86 0.83 0.80
RF 0.89 0.82 0.72 0.73 0.88 0.83 0.78

lymphoma

Logistic 0.65 0.86 0.11 0 0.36 0.87 0.21
SVM 0.66 0.90 0.02 0 0.36 0.70 0.12

AdaJ48 0.60 0.90 0.01 0 0.26 0.57 0.16
RF 0.65 0.90 0 0 0.35 0.47 0.16

segmentation

Logistic 0.91 0.91 0.91 0.91 0.91 0.91 0.92
SVM 0.92 0.92 0.92 0.92 0.92 0.92 0.92

AdaJ48 0.90 0.90 0.91 0.90 0.91 0.90 0.90
RF 0.88 0.88 0.91 0.88 0.89 0.87 0.88

best 29 10 7 8 14 8 7
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optimisation is carried out in clustering, simply in order to provide a fair
ground upon which to compare different methods (as certain techniques may
benefit more from any optimisation than others). Nevertheless, it may be
of interest to investigate exactly how a discretisation method may affect the
proposed AR algorithm. Moreover, the proposed inconsistency degree dI may
be constructed using one of the many alternative distance measures. Thus,
how to efficiently integrate an innovative form of distance measure remains
another piece of interesting research.
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