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Abstract 

Attribute reduction is one of the most important research topics in the theory 

of rough sets, and many rough sets-based attribute reduction methods have 

thus been presented. However, most of them are specifically designed for dealing 

with either labeled data or unlabeled data, while many real-world applications 

come in the form of partial supervision. In this paper, we propose a rough sets-

based semi-supervised attribute reduction method for partially labeled data. 

Particularly, with the aid of prior class distribution information about data, we 

first develop a simple yet effective strategy to produce the proxy labels for 

unlabeled data. Then the concept of information granularity is integrated into 

the information-theoretic measure, based on which, a novel granular conditional 

entropy measure is proposed, and its monotonicity is proved in theory. Further-

more, a fast heuristic algorithm is provided to generate the optimal reduct of 

partially labeled data, which could accelerate the process of attribute reduction 

by removing irrelevant examples and excluding redundant attributes simultane-

ously. Extensive experiments conducted on UCI data sets demonstrate that the 

proposed semi-supervised attribute reduction method is promising and even 

compares favourably with the supervised methods on labeled data and 

unlabeled data with true labels in terms of classification performance. 

Keywords: Rough sets, semi-supervised attribute reduction, conditional 

entropy, information granularity, proxy label. 
 

1. Introduction 

In many real-world applications, such as image classification, text mining, 

and gene analysis, the data to be processed is described by hundreds and 

thousands of attributes, which poses a substantial challenge for conventional 
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data analysis [2]. Attribute reduction [17, 21] (a.k.a feature selection) has been 

proved to be an effective process of selecting the most informative attributes 

and removing the irrelevant or redundant attributes from data. Due to the 

merit of enhancing learning performance, increasing computational efficiency, 

improving interpretability, and alleviating over-fitting, attribute reduction has 

become an important pre-processing step in machine learning, pattern recogni-

tion, and data mining [1]. 

The theory of rough sets [29] is a representative soft computing methodology 

for dealing with vague, uncertain, or imprecise data. Since the pioneering work 

of Pawlak [28], it has been witnessed rapid development in both theory and 

application [45, 47]. Attribute reduction [11, 16, 35] is one of the most important 

research issues in rough sets. The objectiveness of attribute reduction based on 

rough sets is to find an attribute subset that keeps the same discriminative 

ability as the original attribute set. In terms of the measure to evaluate the 

informativeness of attributes, attribute reduction based on rough sets can be 

roughly categorized into the positive region [9, 32], discernibility matrix [24, 43], 

and information-theoretic methods [6, 23, 30]. In positive region-based methods, 

all examples under the entire set of condition attributes are classified into 

positive and boundary examples, and the objectiveness of attribute reduct-ion 

is to search for an attribute subset that could hold the number of positive 

examples unchanged. Discernibility matrix-based methods first construct a 

matrix to describe the discernible attributes between each pair of examples, and 

the attribute subset that has a non-empty intersection with each non-empty 

element within the matrix is considered as a reduct. Information entropy is an 

efficient measure for uncertainty, and the information-theoretic-based methods 

aim to select a set of informative attributes that preserves the overall uncertain-

ty of data as the original attribute set. Besides, to obtain the reduct with 

minimum cost/risk [39, 40, 41, 44], many optimization-based attribute 

reduction methods [5, 12, 31, 42] have also been proposed.  

The methods mentioned above are often used to deal with either labeled 

data or unlabeled data. However, many real-world applications, such as web-

page categorization, medical diagnosis, and defect detection [3, 49, 50], involve 

both labeled and unlabeled data. Therefore, semi-supervised attribute reduction 

based on rough sets is worthy of in-depth study. To tackle the data with partial 

supervision (referred to as partially labeled data hereafter), the concepts of 

semi-supervised discernibility matrix [22, 46] and discernibility pair [4] have 

been developed to yield the reduct of partially labeled data with categorical 

attributes since the discernibility matrix can be used to extract the discernible 

information of both labeled and unlabeled data. Instead of equivalence relation 

for categorical data, fuzzy dependency [10], neighbourhood approximate quality 

[19], neighbourhood decision error [20], neighbourhood granulation [15] have 

been provided to handle the partially labeled data with numerical attributes. 

Additionally, many other rough sets-based methods have been proposed for 

semi-supervised classification [13, 25, 26, 27, 34, 37] and semi-supervised 

clustering [18, 38]. 

The aforementioned works present some semi-supervised attribute reduction 

methods, but these methods have their limitations. On the one hand, to obtain 
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the semi-supervised reduct, some of the existing methods use the carefully 

designed and complicated mechanism to generate the labels for unlabeled data, 

which severely limits their applicability to real-world tasks. On the other hand, 

the efficiency in search algorithm is also an important factor for attribute 

reduction method, while the process of generating the semi-supervised reduct 

in existing methods is still time-consuming. To tackle these limitations, in this 

paper, we propose an effective semi-supervised attribute reduction method for 

partially labeled data. The main contribution of this paper is threefold. 

(1) To avoid the complex mechanism to annotate unlabeled data, a labelling 

strategy is designed, in which the class distribution information about the whole 

partially labeled data is considered as prior knowledge and is used along with 

the distribution of labeled data to determine the proxy label of unlabeled data. 

This strategy is very simple yet effective and has better adaptation for practical 

application. 

(2) To better evaluate attributes, a novel information-theoretic measure is 

proposed for attribute reduction, which incorporates information granularity 

with conditional entropy. Furthermore, the monotonicity of the proposed 

measure is theoretically proved.  

(3) To quicken the process of attribute reduction, we develop a strategy to 

accelerate the search algorithm by excluding unnecessary examples and filtering 

redundant attributes simultaneously. Moreover, extensive experiments are 

performed to verify the effectiveness of the proposed model, and very promising 

results are achieved. 

The rest of the paper is organized as follows. Section 2 presents the 

preliminaries on rough sets and semi-supervised attribute reduction. Section 3 

elaborates on the proposed semi-supervised attribute method for partially 

labeled data. Experimental analysis is conducted in Section 4. Finally, Section 

5 concludes the paper and indicates the future work.  

2. Preliminaries 

This section will briefly review the basic concepts related to rough sets and 

semi-supervised learning. More details about these theories could refer to [3, 28, 

29, 36, 50]. 

2.1. Rough sets 

In rough sets, the data of interest is called an information system [29] and 

is denoted as 𝐼𝑆 = (𝑈,𝐴), where 𝑈 is the set of examples, called the universe, 

and 𝐴 is the set of attributes to describe the examples. To be more specific, the 

information system is also called a decision information system or decision table 

if 𝐴 = 𝐶 ∪ 𝐷, where 𝐶 is the set of condition attributes and 𝐷 is the decision 

attribute [29].  

Given an attribute subset 𝐵 of 𝐴, the universe 𝑈  is partitioned into a 

family of equivalence classes 𝑈/𝐵. An equivalence class containing 𝑥 is denoted 

as [𝑥]գ and is referred to as 𝐵-elementary granule [29]. Let 𝑋 be a subset of 

the universe 𝑈 . Then, the lower and upper approximations of 𝑋 with respect 

to 𝐵 are defined as [29]: 
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𝐵(𝑋) = ૐ{𝑥 ∈ 𝑈: [𝑥]

𝐵
⊆ 𝑋} ,

𝐵࣓࣒࣒࣑(𝑋) = ૐ{𝑥 ∈ 𝑈: [𝑥]
𝐵

∩ 𝑋 ≠ ∅} .
 (1) 

The 𝐵-lower approximation of 𝑋 is the set of examples whose 𝐵-elementary 

granules belong to 𝑋, whereas the 𝐵-upper approximation of 𝑋 is the set of 

examples whose 𝐵-elementary granules have a non-empty intersection with 𝑋. 

𝑋 is called a rough set with respect to 𝐵 if 𝐵(𝑋) ≠ 𝐵࣓࣒࣒࣑(𝑋); otherwise 𝑋 is a 

crisp set. 

Let 𝐼𝑆 = (𝑈, 𝐴 = 𝐶 ∪ 𝐷) be a decision table and 𝑈/𝐷 = {𝑌φ, 𝑌ϵ,… , 𝑌|ն/ե|} 

be the partition induced by the decision attribute 𝐷 over 𝑈 . Then, the positive, 

boundary, and negative regions of 𝐷 with respect to 𝐶 are defined as [29]: 

 
𝑃𝑂𝑆դ(𝐷) = ૐ 𝐶(𝑌ք)

պՎ∈ն/ե

𝐵𝑁𝐷դ(𝐷) = ૐ ि𝐶(𝑌ք) − 𝐶(𝑌ք)ी
պՎ∈ն/ե

𝑁𝐸𝐺դ(𝐷) = 𝑈 − ૐ 𝐶(𝑌ք)
պՎ∈ն/ե

 (2) 

Let MES be a measure to quantify the correlation between the condition 

attributes and the decision attribute. Then, for an attribute subset 𝑃  of 𝐶, 𝑃  

is a reduct of C with respect to D if and only if [29]: 

(I) 𝑀𝐸𝑆ձ (𝐷) = 𝑀𝐸𝑆դ(𝐷), and 

(II) ∀𝑎 ∈ 𝑃 ∧ 𝑃 ∗ = 𝑃 − {𝑎},  𝑀𝐸𝑆ձ ∗(𝐷) ≠ 𝑀𝐸𝑆դ(𝐷). 

The condition (I) is to guarantee the data after attribute reduction has the 

same descriptive ability as the original data, and the classification ability is 

thus preserved. While the condition (II) is to keep the attribute subset with the 

minimum redundancy. In other words, each attribute in the reduct is 

individually necessary. In rough sets, the measure MES could be positive 

region[29], information entropy[23], discernibility preservation [43], etc. 

2.2. Semi-supervised learning 

Semi-supervised learning is an efficient methodology for partially labeled 

data. Generally, partially labeled data 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁, 𝐴 = 𝐶 ∪ 𝐷)  is a 

combination of two sets of examples: the labeled set 𝐿 = {𝑥ք, 𝑦ք}ք=φ
և  and the 

unlabeled set 𝑁 = {𝑥ք, ? }ք=և+φ
 և+։, where 𝑙 is the number of labeled examples, 𝑛=֐

is the number of unlabeled examples and 𝑙 ≪ 𝑛 . In the context of semi-

supervised learning, the label information of labeled data can be used to enhance 

the results of unsupervised clustering, called semi-supervised clustering [50]. 

Also, the geometric structure of unlabeled data can be captured to improve the 

performance of supervised method trained only on the labeled data, called semi-

supervised attribute reduction, semi-supervised classification, or semi-super-

vised regression [36]. The detailed description of these methods could refer to 

[3, 49, 50]. In this paper, we only focus on semi-supervised attribute reduction. 
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a)  b) 

Figure 1. Semi-supervised learning. a) decision boundary using only labeled data; b) decision 

boundary using both labeled and unlabeled data 

Semi-supervised attribute reduction is to employ a large amount of 

unlabeled data to aid the selection of informative attributes when the labeled 

data at hand are scarce. Like traditional supervised attribute reduction, semi-

super-vised attribute reduction can be categorized into filter, wrapper, and 

embedded methods [33]. However, most of the existing methods are developed 

to cater for partially labeled data with numerical attributes. Little attention 

has paid to partially labeled data with categorical attributes. 

3. Semi-supervised attribute reduction for partially labeled data 

In this section, we first describe the strategy to generate proxy labels for 

unlabeled data. An improved information-theoretic measure is then developed, 

and a heuristic semi-supervised attribute reduction algorithm is proposed for 

partially labeled data with proxy labels. 

3.1. Proxy label generation guided by prior knowledge 

Traditional attribute reduction methods in rough sets are developed for 

labeled data or unlabeled data. When facing partially labeled data, attribute 

reduction operated on only labeled data may be insufficient since a large 

number of unlabeled data are available. While unsupervised attribute reduction 

performed on unlabeled data and labeled data without labels results in the 

waste of valuable label information. A promising way is to use both labeled and 

unlabeled data to carry out the process of attribute reduction. In this paper, 

we consider a strategy of annotating unlabeled data with proxy labels. 

In practical semi-supervised application, there is domain-specific knowledge 

that can be utilized to facilitate the learning process. For example, in the 

detection of lung cancer, a large number of medical images can be easily 

collected in routine diagnosis, but only a few representative images may be 

labeled by medical experts since labelling all images is expensive and time-

consuming. However, the occurrence probability of disease is generally known 

by domain experts in advance. Therefore, we could use this prior information 

to aid the learning of partially labeled data. More specifically, the distribution 

of different classes in practical tasks is regarded as the domain prior knowledge, 

while the distribution of initially labeled data in partially labeled data is used 

as the explicitly intrinsic information. Then the two information is integrated 

to determine the proxy labels of unlabeled data in partially labeled data. 
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Formally, we assume partially labeled data 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁, 𝐴 = 𝐶 ∪ 𝐷) 

has labeled data 𝐿 with 𝑙 examples and unlabeled data 𝑁  with 𝑛 examples, 

where 𝑢 = 𝑙 + 𝑛. Without loss of generality, we consider that the partially 

labeled data only have two classes, namely binary classification problem. 

Among the initially labeled data 𝐿, the sets of positive and negative examples 

are denoted as 𝐿֋֊֎ and 𝐿։րւ, respectively, and the ratio of positive examples 

over negative examples is denoted as 𝛾 = |𝐿֋֊֎| |𝐿։րւ|⁄ . The prior probability 

of positive examples over all examples is denoted as 𝑃֋֊֎(𝑈) = |𝑈֋֊֎|/|𝑈|.  

Considering the prior information 𝑃֋֊֎(𝑈) of partially labeled data and the 

class distribution of initially labeled data, the unlabeled examples in partially 

labeled data are determined to the proxy label 𝑦֋֍֊֓֔ by the following formula: 

 
𝑦֋֍֊֓֔ = ছ

𝑦֋֊֎, 𝜆 ≤ 0.5

𝑦։րւ, 𝜆 > 0.5
 (3) 

where 𝜆 = 𝑃ք։ք֏(𝛿, 𝜀) ∗ 𝑃֋֍ք֊֍(𝜀) and 

 
𝑃ք։ք֏(𝛿, 𝜀) = ঱

𝛾(φ+ր− ᆭᆘ|Է|), |𝐿| ≤ 𝛿

1, |𝐿| > 𝛿
 (4) 

  
𝑃֋֍ք֊֍(𝜀) = ৓

𝑚𝑖𝑛(𝑃֋֊֎(𝑈) ∗ (1 + 𝜀)|ն|, 0.5), 𝑃֋֊֎(𝑈) ≤ 0.5

1 − 𝑚𝑖𝑛((1 − 𝑃֋֊֎(𝑈)) ∗ (1 + 𝜀)|ն|, 0.5), 𝑃֋֊֎(𝑈) > 0.5
 (5) 

Formally, the determination of proxy labels for unlabeled data involves two 

correlative parts. The first part is closely related to the distribution of initially 

labeled data. When the number of initially labeled data is small, the ratio 𝛾 of 

positive examples over negative examples is of great influence on the 

determination of proxy labels. When 𝛾 < 1 , it means that the number of 

positive labeled examples is smaller than that of negative labeled examples. In 

other words, the class distribution is unbalanced, which usually brings an 

adverse effect on the building of learning model. Therefore, the initial part 𝑃ք։ք֏ 

tries to strengthen this unbalanced problem and make the labelling strategy 

assign positive proxy labels for unlabeled data. The smaller the number of 

initially labeled data, the greater the imbalance and the higher probability of 

labelling positive class for unlabeled data. And vice versa. On the case that the 

ratio 𝛾 = 1, the distribution of different classes is relatively balanced. The 

learning model will not suffer from class imbalance and the labelling strategy 

thus does not need to consider this part. However, the effect of the ratio 𝛾 will 

gradually weaken as the number of initially labeled data increases since the 

adverse effect in class imbalance could partly remedy by enlarging the scale of 

examples. Therefore, we use a truncation function to suppress the effect of 

initially labeled data on the determination of proxy labels. Figure 2 shows the 

effect of the first part on the labelling strategy under different parameters. 
The second part embodies the combined effect of prior knowledge and the 

scale of data. The prior probability is very useful information to conduct the 

assignment of proxy labels. When the prior probability of positive class is 

smaller than 0.5, initially labeled data will contain fewer positive examples. The 

labelling strategy should assign a positive proxy label to unlabeled data to 

enrich the set of positive examples. And vice versa. Further, the scale of data 
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is also of great importance. The labelling strategy relies heavily on the prior 

probability when the scale of data is small. However, as the scale of data 

increases, the prior part 𝑃֋֍ք֊֍ tends to 0.5. In other words, the proxy label can 

be arbitrarily assigned when the scale of data is very large and initially labeled 

data has a certain number of examples. Figure 3 demonstrates the effect of the 

second part on the labelling strategy under different parameters. 

Figure 2. The effect of class distribution of initially labeled data on the labelling strategy. a) 

𝑃ք։ք֏ when 𝛿 = 500 and 𝜀 = 0.0001; b) 𝑃ք։ք֏ when 𝛿 = 500 and 𝜀 = 0.0002 

Figure 3. The effect of prior knowledge on the labelling strategy. a) 𝑃֋֍ք֊֍ when 𝜀 = 0.0001; b) 

𝑃֋֍ք֊֍ when 𝜀 = 0.0002 

The labelling strategy concerns the scale of data |𝑈|, the number of initially 

labeled data |𝐿|, the prior probability 𝑃֋֊֎(𝑈), the class ratio 𝛾, the boosting 

factor 𝜀, and the truncation threshold 𝛿. As a matter of the fact, there are only 

two parameters 𝜀 and 𝛿 that need to be set because the other parameters are 

automatically determined when a partially labeled data and prior knowledge 

are given. In the following, the two parameters are empirically set to  𝜀 = 0.0002 

and 𝛿 = 500, respectively, since they could trade off the effect of data scale, 

prior probability, and initially labeled data on the labelling strategy. 

a)  b) 

a)  b) 
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3.2. Semi-supervised attribute reduction based on granular conditional 

entropy 

Information entropy is an efficient measure for uncertainty and is thus often 

used to estimate the correlation or redundancy between attributes. In this paper, 

we propose granular conditional entropy to evaluate the importance of attri-

butes in partially labeled data with proxy labels. Formally, the partially labeled 

data after adopting the proposed labelling strategy is denoted as 𝑃𝑆 = (𝑈 =

𝐿 ∪ 𝑁′,𝐴 = 𝐶 ∪ 𝐷). 

Definition 1. Let 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁′,𝐴 = 𝐶 ∪ 𝐷) be a partially labeled 

data with proxy labels and 𝑈/𝐵 = {𝑋φ, 𝑋ϵ, . . ., 𝑋|ն/գ|}  be the partition 

induced by the condition attribute subset 𝐵 ⊆ 𝐶. Then, the entropy of 𝐵 over 

𝑈 is defined as [30]: 

 
𝐻(𝐵) = − ం 𝑃(𝑋ք)

|ն/գ|

ք=φ

log 𝑃 (𝑋ք), (6) 

where 𝑃(𝑋ք) = |𝑋ք| |𝑈|⁄  and | ⋅ | denotes the cardinality of a finite set.  

Definition 2. Let 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁′,𝐴 = 𝐶 ∪ 𝐷) be a partially labeled 

data with proxy labels, 𝑈/𝐵 = {𝑋φ,𝑋ϵ, . . . , 𝑋|ն/գ|} and 𝑈/𝐷 = {𝑌φ, 𝑌ϵ, . . .,

𝑌|ն/ե|} be the partitions induced by the condition attribute subset 𝐵 ⊆ 𝐶 and 

the decision attribute D, respetively. Then, the conditional entropy of D given 

B is defined as [30]: 

 𝐻(𝐷|𝐵) = − ం ం 𝑃(𝑋ք, 𝑌օ)log𝑃(𝑌օ|𝑋ք)
|ն/ե|

օ=φ

|ն/գ|

ք=φ

, (7) 

where 𝑃(𝑋ք, 𝑌օ) = 𝑃(𝑌օ|𝑋ք)/𝑃(𝑋ք) and 𝑃(𝑌օ|𝑋ք) = |𝑋ք ∩ 𝑌օ| |𝑋ք|⁄ . 

Definition 3. Let 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁′,𝐴 = 𝐶 ∪ 𝐷) be a partially labeled 

data with proxy labels and 𝑈/𝐵 = {𝑋φ, 𝑋ϵ, . . ., 𝑋|ն/գ|}  be the partition 

induced by the condition attribute subset 𝐵 ⊆ 𝐶. Then, the granularity of B 

over 𝑈 is defined as [14]: 

 𝐺(𝐵) = − ం 𝑃(𝑋ք)
ϵ

|ն/գ|

ք=φ

. (8) 

Definition 4. Let 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁′,𝐴 = 𝐶 ∪ 𝐷) be a partially labeled 

data with proxy labels, 𝑈/𝐵 = {𝑋φ,𝑋ϵ, . . . , 𝑋|ն/գ|} and 𝑈/𝐷 = {𝑌φ, 𝑌ϵ, . . .,

𝑌|ն/ե|} be the partitions induced by the condition attribute subset 𝐵 ⊆ 𝐶 and 

the decision attribute D, respetively. Then, the granular conditional entropy of 

D given B is defined as: 

 𝐺𝐻(𝐷|𝐵) = − ం 𝑃(𝑋ք)
ϵ ం 𝑃(𝑌օ|𝑋ք)log𝑃(𝑌օ|𝑋ք)

|ն/ե|

օ=φ

|ն/գ|

ք=φ

. (9) 

Compared with the measure of conditional entropy, granular conditional 

entropy incorporates the granularity of attributes, while the granularity 

information essentially reflects the discriminability of attributes. The finer the 

granularity of attributes, the stronger the discriminating power. Therefore, the 
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reduct with more informative attributes could be obtained by the proposed 

granular conditional entropy. 

Proposition 1: Let 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁′,𝐴 = 𝐶 ∪ 𝐷)  be a partially labeled 

data with proxy labels. Then, for any attribute subset 𝐵 ⊆ 𝐶, 0 ≤ 𝐺𝐻(𝐷|𝐵) ≤

log|𝑈|. 

Proof. Granular conditional entropy attains the minima when the decision 

attribute 𝐷 is completely dependent on the condition attribute subset 𝐵. In 

other words, each equivalence class induced by the condition attribute subset 𝐵 

has only one decision, while the conditional probability of 𝐷 given 𝐵 is 0 and the 

overall granular conditional entropy is thus minimized to 0. The granular 

conditional entropy arrives at the maxima when the decision attribute 𝐷 is 

conditionally independent of the condition attribute subset B, namely 
𝐺𝐻(𝐷|𝐵) = 𝐻(𝐷). While 𝐻(𝐷) achieves the maximum value log|𝑈| when the 

probability distribution is uniform. Thus  𝐺𝐻(𝐷|𝐵) ≤ log|𝑈|. The proposition is 

proved.  

Proposition 2: Let 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁′,𝐴 = 𝐶 ∪ 𝐷)  be a partially labeled 

data with proxy labels, and 𝑃 , 𝑄  be the subsets of C. If 𝑃 ⊂ 𝑄 , then 
𝐺𝐻(𝐷|𝑃)  𝐺𝐻(𝐷|𝑄). 

Proof. Without loss of generality, assume 𝑄 = 𝑃 ∪ {𝑎}  and only the 

equivalence class 𝑋քօ under 𝑃  is divided into the equivalence classes 𝑋ք and 𝑋օ 

under 𝑄  after adding the attribute 𝑎 . Namely, 𝑈/𝑃 = {𝑋φ,𝑋ϵ, . . . ,𝑋քօ, . . .,

𝑋։} and 𝑈/𝑄 = {𝑋φ,𝑋ϵ, . . . , 𝑋ք, 𝑋օ, . . . ,𝑋։}. The proof is presented in the 

appendix. 

Proposition 2 guarantees that granular conditional entropy is monotonically 

decreasing as adding attributes. Thus, it can be considered as a measure for 

attribute reduction. 

Definition 5. Let 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁′,𝐴 = 𝐶 ∪ 𝐷) be a partially labeled data 

with proxy labels, and let 𝑃 ⊂ 𝐶. Then, for a condition attribute 𝑎(𝐶 − 𝑃), the 

relative significance for 𝐷 given 𝑃  is defined as: 

 𝑆𝑖𝑔(𝑎, 𝑃 , 𝐷) = 𝐺𝐻(𝐷|𝑃) − 𝐺𝐻(𝐷|(𝑃 ∪ {𝑎})). (10) 

Definition 6. Let 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁′,𝐴 = 𝐶 ∪ 𝐷) be a partially labeled data 

with proxy labels. Then, for an attribute subset 𝑃  of 𝐶, 𝑃  is a reduct of 𝐶 with 

respect to 𝐷 if and only if: 

(I) 𝐺𝐻(𝐷|𝑃) = 𝐺𝐻(𝐷|𝐶), and 

(II) ∀𝑎 ∈ 𝑃 ∧ 𝑃 ∗ = 𝑃 − {𝑎},  𝐺𝐻(𝐷|𝑃 ∗) ≠ 𝐺𝐻(𝐷|𝐶). 

Attribute reduction is highly related to the measure for evaluating the 

significance of attributes and also involves the strategy of finding the reduct. It 

is well-known that finding the minimum reduct or all reducts is NP-hard so 

that the heuristic method is preferred. While the existing heuristic methods can 

be further divided into the strategies of forward adding, backward deleting, and 

bi-directional adding-deleting. Considering the efficiency, we use the strategy 
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of forward adding to conduct the process of attribute reduction for partially 

labeled data. 

In terms of the characteristics of the proposed granular conditional entropy, 

we further design two tactics to accelerate the process of attribute reduction. 

On the one hand, granular conditional entropy is monotonically decreasing as 

adding attributes to the reduct. During the process of attribute reduction, if a 

condition equivalence class has granular conditional entropy 0 at one stage, its 

granular conditional entropy is always 0 in the following stages. Therefore, this 

kind of examples in the condition equivalence class can be removed without 

further consideration. On the other hand, to find the informative attributes for 

the reduct, the attribute reduction algorithm will examine the relative 

significance of each candidate attribute and select the optimal attributes to the 

reduct. Considering that attributes are correlated with each other, and there 

may be some attributes whose granular conditional entropy with respect to the 

selected optimal attributes is 0, which means the attributes are redundant to 

the decision attribute given the selected attributes. Thus, this kind of attributes 

can also be excluded from the list of candidate attributes for the reduct. The 

overall granular conditional entropy-based attribute reduction algorithm 

embedded with acceleration strategy can be depicted by Algorithm 1. 

Algorithm 1 An accelerated semi-supervised attribute reduction algorithm 

based on granular conditional entropy 

Input: 
A partially labeled data 𝑃𝑆 = (𝑈 = 𝐿 ∪ 𝑁, 𝐴 = 𝐶 ∪ 𝐷) , the prior 

probability of positive class 𝑃֋֊֎(𝑈), and the threshold parameters 𝛿 and 𝜀.

 

Output: 

An optimal semi-supervised reduct 𝑅𝐸𝐷; 

1: Compute the class ratio 𝛾 within the initially labeled data 𝐿; 
2: Determine the proxy labels of unlabeld data 𝑁 by the prior probability 

𝑃֋֊֎(𝑈), the class ratio 𝛾, and the threshold parameters 𝛿 and 𝜀; //refers 

to Formula (3) 

3: Compute the overall granular conditional entropy 𝐺𝐻(𝐷|𝐶); 

4: Evaluate each attribute by the granular conditional entropy 𝐺𝐻(𝐷|{𝑎ք}), 

and add the attribute 𝑎֊֋֏ = 𝑎𝑟𝑔𝑚𝑖𝑛ռՎ∈դ{𝐺𝐻(𝐷|{𝑎ք})} to 𝑅𝐸𝐷;  

5: While 𝐺𝐻(𝐷|𝑅𝐸𝐷) ≠ 𝐺𝐻(𝐷|𝐶) Do 
6:    Compute the relative significance of each attriubte 𝑎ք for D given 𝑅𝐸𝐷  

and the granular conditional entropy 𝐺𝐻({𝑎ք}|𝑅𝐸𝐷); 

7:    Select an attribute 𝑎֊֋֏ whose significance is maximal and remove the 

attributes whose 𝐺𝐻({𝑎ք}|𝑅𝐸𝐷) is 0; //Acceleration in attribute  

8:  𝑅𝐸𝐷 ← 𝑅𝐸𝐷 ∪ {𝑎֊֋֏}  and remove the examples whose granular 

conditional entropy under 𝑅𝐸𝐷 is 0; //Acceleration in example 

9: End While 

10: Return The semi-supervised reduct RED. 

The algorithm first label all unlabeled examples with the proxy labels 

determined by the prior probability and the class distribution of initially labeled 

data (line 1 and line 2). The overall granular conditional entropy under all 

conditional attributes is then computed and is considered as the stopping condi-
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tion for the algorithm. In the first round of attribute selection, the algorithm 

evaluates each attribute only by its granular conditional entropy with respect 

to the decision attribute and the attribute whose granular conditional entropy 

is minimal is selected as the optimal attribute. In the following rounds of 

attribute selection, the algorithm iteratively adds the optimal attributes with 

the maximum significance into the reduct until the granular conditional entropy 

of the selected attributes reaches the stopping value (line 5 to line 9). Wherein, 

two acceleration strategies are embedded into the algorithm, thus resulting in 

higher efficiency for attribute reduction.  

The main cost of Algorithm 1 lies in the iterative selection of the optimal 

attributes. Assume that a partially labeled data has |𝑈| examples described by 

|𝐶| attributes. In each iteration, the time cost for determining an optimal 

attribute is 𝑂(|𝐶||𝑈|ϵ). In the worst-case, the algorithm is terminated after |𝐶| 

rounds of selection. Therefore, the time cost for computing an optimal reduct 

of a given partially labeled data is at most 𝑂(|𝐶|ϵ|𝑈|ϵ) and the total space cost 

is at most 𝑂(|𝐶||𝑈|). Considering the acceleration strategy, the overall cost of 

Algorithm 1 is much lower in time and space.  

4. Empirical analysis 

In this section, we first verify the effectiveness of the proposed method for 

semi-supervised attribute reduction. Then we compare the proposed method 

with other classic methods in terms of classification accuracy. All experiments 

were carried out on a computer with Windows 10 operating system, Intel Xeon 

(R) CPU E5-2650 v4@2.20 GHz processor, and 128 GB Memory. 

4.1. Investigated data sets and experiment design 

Twelve UCI data sets1  are used in the experiments, and the details are 

shown in Table 1. Note that some of the data sets are multi-classification tasks. 

The criterion of “1-vs-all” is employed to convert them into binary classification 

task. Specifically, the class that has the highest probability is considered as 

positive class and the remaining classes are grouped into negative class. 

Table 1: The experimental data sets 

Data set |𝑈| |𝐶| |𝑈/𝐷| (𝑃֋֊֎(𝑈), 𝑃։րւ(𝑈)) 

cardiotocography-FHR pattern(cardio) 2126 21(21) 10 (0.2723, 0.7277) 

frogs calls-species(frog) 7195 22(22) 8 (0.5768, 0.4232) 

gesture-phase-a3va3(gesture1) 1830 32(32) 5 (0.3595, 0.6405) 

gesture-phase-b1va3(gesture2) 1069 32(32) 5 (0.3854, 0.6146) 

kdd-synthetic-control(kdd) 600 60(0) 6 (0.1667, 0.8333) 

kr-vs-kp(krvskp) 3196 36(0) 2 (0.5222, 0.4778) 

landsat(landsat) 6435 36(0) 6 (0.2382, 0.7618) 

libras movement(libras) 360 90(90) 15 (0.0667, 0.9333) 

musk2(musk) 6598 166(0) 2 (0.8458, 0.1542) 

spambase(spam) 4601 57(57) 2 (0.6060, 0.3940) 

vehicle(vehicle) 846 18(18) 4 (0.2577, 0.7423) 

wine(wine) 178 13(13) 3 (0.3989, 0.6011) 

Avg. 2919.50 48.58(23.75) 5.67 (0.3914, 0.6086) 

 
1. http://archive.ics.uci.edu/ml/index.php  
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In Table 1, the number of examples is shown in the second column. The 

number of condition attributes is presented in the third column, where the 

number of numerical attributes is also listed in the brackets. The number of 

classes in the original data set is given in the fourth column. While the last 

column denotes the class distribution after applying the “1-vs-all” criterion, 

which is considered as the prior knowledge to guide the determination of proxy 

labels. 
In the experiments, each numerical attribute is discretized into categorical 

one using the technique of equal frequency binning with three bins. To fully 

examine the semi-supervised reduct of partially labeled data, the experiments 

were performed on different label rates 𝛼 ∈ [0.01, 0.3]. Under a given label rate 

𝛼, each data set is first partitioned into a set of labeled examples 𝐿 and a set 

of unlabeled data 𝑁 . Then, the prior class probability and the class ratio of 

initially labeled data 𝐿 are used to determine the proxy labels of unlabeled 

examples 𝑁 . To deeply gain insight the labelling strategy, the experiments were 

further performed on the data partition with different positive ratios. More 

specifically, under a given label rate 𝛼, the positive ratio 𝛽 of initially labeled 

data varies from 0.5 to 1.5. For example, given a partially labeled data with 

1000 examples, the prior probability 𝑃֋֊֎(𝑈) = 0.5 and a labeled rate 𝛼 = 10%, 

a labeled set 𝐿 with 25 positive examples (|𝐿֋֊֎| = 𝛽 ∗ 𝑃֋֊֎(𝑈) ∗ 𝛼 ∗ |𝑈|) and 

75 negative examples (|𝐿։րւ| = 𝛼 ∗ |𝑈| − |𝐿֋֊֎|) is randomly generated when 

the positive ratio 𝛽 = 0.5, and then the remaining 900 examples is grouped into 

a set of unlabeled examples. To guarantee the effectiveness of experimental 

results, we repeated the data partition for 10 times at each pair of label rate 𝛼 

and positive ratio 𝛽, and the performance is finally averaged. 

4.2. Attribute reduction for partially labeled data 

To test the effectiveness of the proposed attribute reduction algorithm for 

partially labeled data, we conducted an experiment on all examples of each data 

set under a label rate 𝛼 = 10%, but the positive ratio 𝛽 varies from 0.5 to 1.5. 

The reduct information is shown in Table 2. 

Table 2: The results of attribute reduction on the selected data sets (label rate 𝛼 = 10%) 

Data set Raw 
Only labeled data Ours Ground-

truth 

Approximate 

rate  Min Max Avg. Min Max Avg. 

cardio 21 6 11 8.04 17 20 19.19 17 0.89 

frog 22 7 11 8.85 21 22 21.32 14 0.66 

gesture1 32 7 13 9.21 19 27 22.35 21 0.94 

gesture2 32 5 8 6.33 12 21 17.05 16 0.94 

kdd 60 2 4 2.55 8 10 8.81 5 0.57  

krvskp 36 10 18 13.59 29 33 31.49 29 0.92 

landsat 36 7 18 12.18 36 36 36.00 29 0.81 

libras 90 2 3 2.25 10 17 12.73 5 0.39 

musk 166 2 14 8.07 37 72 57.86 24 0.41 

spam 57 7 18 12.9 33 48 42.66 38 0.89 

vehicle 18 3 7 4.90 12 16 14.09 10 0.71 

wine  13 1 3 1.89 6 10 7.51 5 0.67 

Avg. 48.58 4.91 10.67 7.56 20.00 27.67 24.26 17.75 0.73 
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In the table, the statistical information, including the minimum, the 

maximum, and the average numbers of attributes in the obtained reducts across 

different positive ratios, are listed in the third to eighth columns. Besides, we 

also record the ground-truth reduct information for comparison, namely the 

optimal reduct of data set under a label rate 𝛼 = 100%. The last column 

“Approximate rate” indicates the similarity between the semi-supervised reduct 

and the ground-truth reduct, which can be computed by the value of “gound-

truth” over that of “Avg.” in the proposed method. 

By observing the experimental results, we find that, on the one hand, the 

class distribution of initially labeled data has a great influence on the obtained 

reduct of partially labeled data. The more balanced the class distribution, the 

fewer attributes the reduct will have. On the other hand, the completely 

irrelevant attributes are always excluded from the obtained reducts, whereas 

different weakly relevant attributes will be removed from the reducts when 

different labeled examples are available. The reducts induced only from labeled 

data seems to attain the best attribute reduction rate, but they could only 

discern the labeled data rather than overall partially labeled data and these 

reducts are thus not good enough to classification, which will be confirmed by 

the following experiments. To discern both labeled and unlabeled data, the 

semi-supervised method has to select more informative attributes so that more 

discriminative ability is preserved. On all selected data sets, the proposed 

method achieves a reduction rate of 50.08% over raw data and an approximate 

rate of 73.18% with respect to ground-truth. It is worth mentioning that, on 

data sets “cardio”, “gesture1”, “gesture2”, “krvskp”, and “spam”, the minimum 

number of attributes in the semi-supervised reduct is equal or even smaller than 

that of ground-truth, which further validates the potential of the proposed 

attribute reduction method for partially labeled data. 

4.3. The effectiveness of the proposed method 

To evaluate the quality of the reducts obtained by the proposed method, 

we further conducted performance experiments under a label rate 𝛼 = 10%. 

Specifically, a supervised or semi-supervised reduct is first generated under the 

given label rate 𝛼 = 10%  and a specific positive ratio 𝛽 ∈ [0.5, 1.5] . The 

redundant attributes that are not contained in the obtained reduct are then 

removed from each data set, and the 10-fold cross-validation is performed on 

the reduced data set to realize performance evaluation. In the experiments, the 

classifiers of 𝑘 -Nearest Neighbors with 𝑘 = 3  and SVM with radial basis 

function are utilized, and the results are shown in Tables 3 and 4, respectively. 

Note that we shuffled each data set 10 times and performed 10-fold cross-

validation on the shuffled data in order to avoid the impact of the order of 

samples on performance.  

In Tables 3 and 4, we report the average performance over 10 run times of 

10-fold cross-validation. At each positive ratio 𝛽, the columns “initial” and 
“final” denote the performance of the reduct obtained from initially labeled data 

and that of the semi-supervised reduct further refined by unlabeled data with 

proxy labels. The highest performance across different positive ratios is 

boldfaced and the average performance over all data sets is shown in the last 

row “Avg. ”. 
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Table 3: The performance of the proposed method under different positive ratios (KNN with a label rate 𝛼 = 10%) 

Data set 
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

initial final initial final initial final initial final initial final initial final initial final initial final initial final initial final initial final 

cardio 0.8557  0.8861  0.8539  0.8876  0.8591  0.8874  0.8601  0.8863  0.8679  0.8863  0.8622  0.8871  0.8615  0.8860  0.8637  0.8869  0.8674  0.8868  0.8660  0.8867  0.8611  0.8869  

frog 0.9679  0.9862  0.9696  0.9863  0.9706  0.9863  0.9707  0.9861  0.9696  0.9857  0.9681  0.9858  0.9667  0.9859  0.9645  0.9858  0.9654  0.9858  0.9663  0.9858  0.9645  0.9858  

gesture1 0.7899  0.8528  0.7996  0.8570  0.8035  0.8563  0.8173  0.8560  0.8066  0.8507  0.8086  0.8512  0.8015  0.8528  0.8045  0.8610  0.8067  0.8524  0.8117  0.8592  0.8076  0.8570  

gesture2 0.7009  0.7845  0.7033  0.7711  0.6900  0.7712  0.6985  0.7780  0.6966  0.7662  0.6942  0.7670  0.6955  0.7734  0.6952  0.7659  0.6976  0.7723  0.6931  0.7455  0.6919  0.7575  

kdd 0.9048  0.9815  0.9203  0.9783  0.9412  0.9760  0.9427  0.9752  0.9443  0.9808  0.9230  0.9783  0.9212  0.9743  0.9385  0.9833  0.9357  0.9782  0.9305  0.9817  0.9325  0.9793  

krvskp 0.9344  0.9473  0.9308  0.9479  0.9299  0.9473  0.9329  0.9464  0.9298  0.9460  0.9355  0.9449  0.9311  0.9493  0.9349  0.9489  0.9333  0.9493  0.9400  0.9479  0.9283  0.9491  

landsat 0.9501  0.9769  0.9571  0.9769  0.9582  0.9769  0.9557  0.9766  0.9604  0.9770  0.9607  0.9771  0.9605  0.9772  0.9609  0.9770  0.9594  0.9770  0.9623  0.9771  0.9633  0.9767  

libras 0.8603  0.9672  0.8997  0.9664  0.8475  0.9608  0.8658  0.9664  0.8594  0.9611  0.8617  0.9631  0.8800  0.9714  0.8875  0.9625  0.8903  0.9617  0.8667  0.9614  0.8389  0.9683  

musk 0.9179  0.9453  0.9239  0.9492  0.9228  0.9509  0.9249  0.9490  0.9174  0.9517  0.9178  0.9511  0.9050  0.9508  0.7661  0.9502  0.7729  0.9513  0.7956  0.9509  0.8063  0.9513  

spam 0.8911  0.9249  0.8854  0.9228  0.8894  0.9189  0.8940  0.9206  0.8853  0.9249  0.8911  0.9229  0.8876  0.9218  0.8860  0.9227  0.8782  0.9192  0.8835  0.9221  0.8633  0.9251  

vehicle 0.9123  0.9490  0.9019  0.9507  0.8903  0.9476  0.9126  0.9491  0.9115  0.9450  0.9079  0.9455  0.9214  0.9472  0.9211  0.9512  0.9123  0.9473  0.9119  0.9475  0.9084  0.9455  

wine  0.7551  0.9029  0.7999  0.9104  0.8266  0.9067  0.8146  0.9234  0.7697  0.9133  0.8425  0.9178  0.7845  0.9239  0.7616  0.9166  0.8016  0.9234  0.8249  0.9126  0.8094  0.8729  

Avg. 0.8700  0.9254  0.8788  0.9254  0.8774  0.9239  0.8825  0.9261  0.8766  0.9241  0.8811  0.9243  0.8764  0.9262  0.8654  0.9260  0.8684  0.9254  0.8710  0.9232  0.8646  0.9213  

Table 4: The performance of the proposed method under different positive ratios (SVM with a label rate 𝛼 = 10%) 

Data set 
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

initial final initial final initial final initial final initial final initial final initial final initial final initial final initial final initial final 

cardio 0.8306  0.8697  0.8374  0.8744  0.8438  0.8702  0.8475  0.8743  0.8502  0.8738  0.8465  0.8721  0.8444  0.8672  0.8490  0.8744  0.8455  0.8753  0.8421  0.8717  0.8398  0.8676  

frog 0.9313  0.9486  0.9314  0.9486  0.9368  0.9485  0.9349  0.9484  0.9368  0.9482  0.9310  0.9482  0.9344  0.9482  0.9315  0.9482  0.9279  0.9482  0.9302  0.9482  0.9329  0.9482  

gesture1 0.7322  0.7570  0.7367  0.7603  0.7314  0.7589  0.7308  0.7570  0.7374  0.7563  0.7365  0.7480  0.7328  0.7580  0.7411  0.7548  0.7290  0.7541  0.7478  0.7675  0.7433  0.7674  

gesture2 0.6458  0.6522  0.6355  0.6504  0.6373  0.6542  0.6351  0.6492  0.6473  0.6488  0.6261  0.6500  0.6481  0.6622  0.6475  0.6549  0.6460  0.6625  0.6314  0.6485  0.6387  0.6504  

kdd 0.9262  0.9803  0.9167  0.9765  0.9345  0.9772  0.9530  0.9813  0.9392  0.9833  0.9433  0.9755  0.9342  0.9712  0.9520  0.9818  0.9432  0.9753  0.9397  0.9823  0.9420  0.9780  

krvskp 0.9465  0.9587  0.9445  0.9588  0.9479  0.9585  0.9483  0.9586  0.9467  0.9585  0.9472  0.9589  0.9462  0.9589  0.9485  0.9589  0.9450  0.9592  0.9473  0.9588  0.9465  0.9591  

landsat 0.9299  0.9663  0.9334  0.9663  0.9407  0.9663  0.9369  0.9663  0.9410  0.9663  0.9397  0.9663  0.9372  0.9663  0.9374  0.9663  0.9357  0.9663  0.9392  0.9663  0.9435  0.9663  

libras 0.9333  0.9547  0.9333  0.9508  0.9333  0.9494  0.9333  0.9489  0.9331  0.9514  0.9333  0.9597  0.9389  0.9589  0.9333  0.9533  0.9333  0.9531  0.9344  0.9467  0.9333  0.9589  

musk 0.8572  0.9007  0.8591  0.9074  0.8626  0.9134  0.8547  0.9092  0.8607  0.9157  0.8548  0.9149  0.8528  0.9141  0.8459  0.9176  0.8459  0.9161  0.8459  0.9159  0.8459  0.9122  

spam 0.8918  0.9403  0.8912  0.9380  0.8952  0.9375  0.8988  0.9388  0.8942  0.9395  0.8937  0.9389  0.8936  0.9401  0.8901  0.9394  0.8850  0.9395  0.8823  0.9400  0.8673  0.9393  

vehicle 0.8561  0.9119  0.8519  0.9122  0.8266  0.9101  0.8353  0.9216  0.8476  0.9091  0.8488  0.9059  0.8531  0.9166  0.8544  0.9197  0.8454  0.9082  0.8391  0.9098  0.8325  0.8983  

wine  0.8461  0.9125  0.8388  0.9170  0.8068  0.9276  0.8406  0.9315  0.8971  0.9193  0.8875  0.9249  0.8478  0.9292  0.8613  0.9327  0.8380  0.9276  0.8470  0.9125  0.7989  0.8622  

Avg. 0.8606  0.8961  0.8592  0.8967  0.8581  0.8976  0.8624  0.8988  0.8693  0.8975  0.8657  0.8969  0.8636  0.8992  0.8660  0.9002  0.8600  0.8988  0.8605  0.8974  0.8554  0.8923  
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From Tables 3 and 4, we can see that the quality of attribute reduction is 

significantly improved by unlabeled data. Since the scarcity of label information 

in partially labeled data, the attribute evaluation only on labeled data may not 

really reflect the importance of attributes such that the supervised attribute 

reduction method generates low-quality reducts with few attributes and the 

mediocre performance is consequently obtained. Essentially, the semi-super-

vised reduct takes into consideration both labeled and unlabeled data. Moreover, 

the attribute selection is guided by the proxy labels of unlabeled data, which is 

jointly determined by prior knowledge and the class information of initially 

labeled data. As a result, the selected attributes are more representa-tive and 

informative and higher performance is achieved by the resulting semi-supervised 

reduct. On each data set, the supervised reduct gains different performance 

when varying the positive ratio from 0.5 to 1.5, while the performance of the 

obtained semi-supervised reduct is relatively stable and high. One possible 

reason for this might be that the balance of class distribution has great effect 

on the performance, and the semi-supervised reduct could weaken this adverse 

effect by utilizing the proxy labels of unlabeled data. By averaging all results 

across different data sets, the proposed method using KNN and SVM achieves 

a maximum improvement of 7.01% (𝛽 = 1.2) and 4.61% (𝛽 = 0.7), over the 

supervised method, respectively. Interestingly, the proposed method reaches the 

highest performance when the positive ratios 𝛽 = 1.1  (KNN) and 𝛽 = 1.2 

(SVM), respectively, at which the class ratio on initially labeled data is close to 

0.5 (𝛽 ∗ 𝑃֋֊֎(𝑈)). In other words, the proposed method is likely to gain the 

highest performance when the class distribution of initially labeled data is 

balanced. These results clearly indicate that the proposed method is effective and 

could benefit from the proxy labels of unlabeled data to improve the quality of 

attribute reduction. 

To further verify the effectiveness of the proposed method, it is compared 

to other attribute reduction methods, including supervised Fisher score (FS) [7], 

unsupervised Laplacian score (LS) [8], the proposed granular conditional 

entropy with only labeled data (GCE-L), the proposed granular conditional 

entropy with all data labeled (GT), and the raw data without attribute 

reduction (Raw). The settings for all selected methods are shown in Table 5. 

The experiments were performed under different label rates, and the results are 

shown in Figures 4 and 5. Note that the performance of the selected GCE-L, 

FS, and our method is averaged across different positive ratios. 

As shown in Figures 4 and 5, it is obvious that the proposed method 

significantly outperforms the supervised methods with only initially labeled 

data on almost all data sets. Although Fisher score (FS) and granular 

conditional entropy (GCE-L) are effective measures for attribute reduction, the 

important attributes evaluated only on labeled data do not necessarily mean 

the attributes are informative on the whole partially labeled data, thus resulting 

in poor performance. Surprisingly, the performance of the selected supervised 

methods with only labeled data seems rather unstable on some data sets such 

as “libras” and “wine”, where the methods with higher label rates result in worse 

performance. This inconsistency could be attributed to the scale of initially 

labeled data. Generally, the smaller the number of training examples, the lower  
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Table 5: Settings for all selected methods. 

Method Attribute evalution  Attribute subset 

Granular conditional entropy  

with labeled data only (GCE-L) 
𝑆𝑖𝑔(𝑎, 𝑃 ,𝐷) Attribute reduction 

Fisher score  

with labeled data only (FS) 
𝐹֎վ֊֍ր(𝑎) = 𝑆գ(𝑎) 𝑆ո (𝑎)⁄  Top 𝑘 attbitues 

Laplacian score  

with all data without labels (LS) 
𝐿֎վ֊֍ր(𝑎) = ం (𝑎(𝑖) − 𝑎(𝑗))ϵ𝑆քօ

քօ
𝑉𝑎𝑟(𝑎)⁄  Top 𝑘 attbitues 

Granular conditional entropy  

with labeled data and unlabeled data 

with proxy label (Ours) 

𝑆𝑖𝑔(𝑎, 𝑃 ,𝐷) Attribute reduction 

Granular conditional entropy  

with all data labeled (GT) 
𝑆𝑖𝑔(𝑎, 𝑃 ,𝐷) Attribute reduction 

Data without attribute redution(Raw) - - 

 

the quality of the reduct and thus the less stable the performance. Laplacian 

score (LS) is an effective unsupervised attribute reduction method so that all 

examples in partially labeled data can be utilized. On data sets “gesture1” and 
“gesture2”, FS gains slightly better performance over the proposed method. But 

on other data sets, the performance of FS is much worse than that of the 

proposed methods and even signficantly lower than that of the selected 

supervised method with only labeled data. Different from the supervised and 

unsupervised methods, the proposed method (Ours) capitalizes on both labeled 

and unlabeled data, and the unlabeled data are labeled with proxy labels, which 

are determined by carefully considering the prior information of the whole data 

and the class distribution of initially labeled data. Moreover, the proposed 

measure for attribute reduction integrates conditional entropy with information 

granularity, and the reduct with more discriminant ability could thus be yielded. 

Over all data sets, the proposed method is maximally improved over GCE-L, 

FS, and LS by 32.31% (“gesture2” under a label rate 𝛼 = 1% ), 32.80% 

(“gesture2” under a label rate 𝛼 = 1%), and 14.47% (“vehicle” under a label 

rate 𝛼 = 30% ), respectively, when using KNN classifier, and maximally 

improved over GCE-L, FS, and LS by 22.30% (“krvskp” under a label rate 𝛼 =

1%), 29.10% (“landsat” under a label rate 𝛼 = 5%), and 18.11% (“kdd” under a 

label rate 𝛼 = 25%), respectively, when using KNN classifier. These results 

illustrates the effectiveness of the proposed method for partilly labeled data. 

It is worth mentioning that, on data sets “cardio”, “frog”, and “vehicle”, the 

proposed method outperforms the performance of the original data set without 

attribute reduction (Raw). This is probably a consequence of attribute 

reduction and felicitously confirms the fact that attribute reduction could 

alleviate over-fitting and improve performance. Additionally, on data sets  

“gesture1”, “musk”, and “vehicle”, the proposed method is improved over the 

supervised method on the whole data set with true labels (GT), i.e. the data 

set with a label rate 𝛼 = 100%, by 1.89% (KNN under a label rate 𝛼 = 30%), 

4.05% (SVM under a label rate 𝛼 = 25%), and 5.41% (KNN under a label rate 

𝛼 = 25%), respectively. These results may be due to the proposed method 

selects more informative and discriminative attributes after balancing data set 
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through the labelling strategy for unlabeled data. These findings further 

demonstrate the proposed method has considerable potential for partially 

labeled data. 

 

a) cardio b) frog  c) gesture1 

d) gesture2 e) kdd f) krvskp  

g) landsat h) libras  i) musk  

j) spam k) vehicle  l) wine  

Figure 4. The performance of the selected methods under different label rates (KNN classifier). 
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a) cardio b) frog  c) gesture1 

d) gesture2 e) kdd f) krvskp  

g) landsat h) libras  i) musk  

j) spam k) vehicle  l) wine  

Figure 5. The performance of the selected methods under different label rates (SVM classifier). 

5. Conclusions 

In many real-world tasks, labelling a large number of data is exceptionally 

costly and practically infeasible so that the data available usually comes with 

only a few labeled data but a large amount of unlabeled data. In this paper, we 

propose a simple yet effective strategy to generate the proxy labels for unlabeled 

data, which not only incorporates the prior knowledge about the whole data, 
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and also considers the class distribution of initially labeled data. To gain the 

high-quality reduct of partially labeled data with proxy labels, we integrate 

information granularity into conditional entropy and develop a novel granular 

conditional entropy, which is theoretically proved to be a monotonic attribute 

reduction measure. Moreover, a heuristic algorithm based on the proposed 

granular conditional entropy is designed to quickly induce the optimal reduct 

of partially labeled data. The experimental results on several benchmark data 

sets show that the proposed method is effective in dealing with partially labeled 

data and even performs better than the supervised method on the whole data 

with true labels. It should be noted that, to deal with numerical attributes, a 

discretization pre-processing process is involved, an extended method that could 

directly handle both categorical and numerical attributes is thus expected. 

Another possible direction is to explore an iterative labelling strategy with the 

technique of fuzzy clustering [48] to further improve the quality of proxy labels. 
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Appendix 

Proof of Proposition 2. 

∆𝐺𝐻 = 𝐺𝐻(𝐷|𝑃) − 𝐺𝐻(𝐷|𝑄) 

= 𝑃(𝑋ք)
ϵ ం 𝑃(𝑌ֆ|𝑋ք)𝑃(𝑌ֆ|𝑋ք)

|ն/ե|

ֆ=φ

+ 𝑃ि𝑋օी
ϵ ం 𝑃ि𝑌ֆੵ𝑋օी𝑃ि𝑌ֆੵ𝑋օी

|ն/ե|

ֆ=φ

 

= −𝑃ि𝑋քօी
ϵ ం 𝑃ि𝑌ֆੵ𝑋քօी𝑃ि𝑌ֆੵ𝑋քօी

|ն/ե|

ֆ=φ

 

=
1

|𝑈|ϵ
ం ভ|𝑋ք|

ϵ |𝑋ք ∩ 𝑌ֆ|

|𝑋ք|
log

|𝑋ք ∩ 𝑌ֆ|

|𝑋ք|
+ ੵ𝑋օੵ

ϵ
ੵ𝑋օ ∩ 𝑌ֆੵ

ੵ𝑋օੵ
log

ੵ𝑋օ ∩ 𝑌ֆੵ

ੵ𝑋օੵ

|ն/ե|

ֆ=φ

 

= −ੵ𝑋քօੵ
ϵ
ੵ𝑋քօ ∩ 𝑌ֆੵ

ੵ𝑋քօੵ
log

ੵ𝑋քօ ∩ 𝑌ֆੵ

ੵ𝑋քօੵ
ম 

Let 𝜃ք = |𝑋ք ∩ 𝑌ֆ|/|𝑋ք|, 𝜃օ = ੵ𝑋օ ∩ 𝑌ֆੵ/ੵ𝑋օੵ, 𝜃քօ = ੵ𝑋քօ ∩ 𝑌ֆੵ/ੵ𝑋քօੵ. We have  

∆𝐺𝐻 =
1

|𝑈|ϵ
ం (|𝑋ք|

ϵ𝜃քlog𝜃ք + ੵ𝑋օੵ
ϵ𝜃օlog𝜃օ − ੵ𝑋քօੵ

ϵ𝜃քօlog𝜃քօ)
|ն/ե|

ֆ=φ

 

and ੵ𝑋քօੵ𝜃քօ = |𝑋ք|𝜃ք + ੵ𝑋օੵ𝜃օ  for any decision 𝑌ֆ. 

Let 𝑓ֆ = |𝑋ք|
ϵ𝜃քlog𝜃ք + ੵ𝑋օੵ

ϵ𝜃օlog𝜃օ − ੵ𝑋քօੵ
ϵ𝜃քօlog𝜃քօ. Then, we have 

∆𝐺𝐻 =
1

|𝑈|ϵ
ం 𝑓ֆ

|ն/ե|

ֆ=φ

. 

For any 𝑘, we have 

𝑓ֆ = |𝑋ք|
ϵ𝜃քlog𝜃ք + ੵ𝑋օੵ

ϵ𝜃օlog𝜃օ − ੵ𝑋քօੵ
ϵ𝜃քօlog𝜃քօ 

= |𝑋ք|
ϵ𝜃քlog𝜃ք + ੵ𝑋օੵ

ϵ𝜃օlog𝜃օ − ੵ𝑋քօੵि|𝑋ք|𝜃ք + ੵ𝑋օੵ𝜃օीlog ভ
|𝑋ք|𝜃ք + ੵ𝑋օੵ𝜃օ

ੵ𝑋քօੵ
ম 
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≥ |𝑋ք|
ϵ𝜃քlog𝜃ք + ੵ𝑋օੵ

ϵ𝜃օlog𝜃օ − ि|𝑋ք|
ϵ𝜃ք + ੵ𝑋օੵ

ϵ𝜃օीlog ভ
|𝑋ք|𝜃ք + ੵ𝑋օੵ𝜃օ

ੵ𝑋քօੵ
ম 

= |𝑋ք|
ϵ𝜃ք

⎝

⎜⎛log𝜃ք − log ভ
|𝑋ք|𝜃ք + ੵ𝑋օੵ𝜃օ

ੵ𝑋քօੵ
ম

⎠

⎟⎞ 

= +ੵ𝑋օੵ
ϵ𝜃օ

⎝

⎜⎛log𝜃օ − log ভ
|𝑋ք|𝜃ք + ੵ𝑋օੵ𝜃օ

ੵ𝑋քօੵ
ম

⎠

⎟⎞ 

= |𝑋ք|
ϵ𝜃քlog ভ

|𝑋ք|𝜃ք + ੵ𝑋օੵ𝜃ք

|𝑋ք|𝜃ք + ੵ𝑋օੵ𝜃օ

ম + ੵ𝑋օੵ
ϵ𝜃օlog ভ

|𝑋ք|𝜃օ + ੵ𝑋օੵ𝜃օ

|𝑋ք|𝜃ք + ੵ𝑋օੵ𝜃օ

ম 

Let the right side of the above formula be 𝑓ֆ
  and 𝑚 = |𝑋ք|, 𝑛 = ੵ𝑋օੵ, 𝜇 =

|𝑋ք|𝜃ք, 𝜈 = ੵ𝑋օੵ𝜃օ, and 𝜆 = 𝜃ք/𝜃օ. We have 

𝑓ֆ
 (𝜇, 𝜈, 𝜆) = 𝑚𝜇log গ

𝜇 + 𝜆𝜈

𝜇 + 𝜈
ঘ + 𝑛𝜈log গ

𝜇/𝜆 + 𝜈

𝜇 + 𝜈
ঘ. 

𝑓ֆ
 (𝜇, 𝜈, 𝜆) is an explicit function of the variables 𝜇, 𝜈, and 𝜆. The partial 

derivative of 𝑓ֆ
 (𝜇, 𝜈, 𝜆) with respect to the variable 𝜆 is 

𝜕𝑓ֆ
 (𝜇, 𝜈, 𝜆)

𝜕𝜆
= 𝑚𝜇গ

𝜇 + 𝜈

𝜇 + 𝜆𝜈
ঘ𝜈log2 − 𝑛𝜈 গ

𝜇 + 𝜈

𝜇/𝜆 + 𝜈
ঘ

𝜇

𝜆ϵ
log2 

= log2ৃ𝜇𝜈(𝜇 + 𝜈)গ
𝜆𝑚 − 𝑛

𝜆(𝜇 + 𝜈𝜆)
ঘৄ

⎩৖
⎨
৖⎧

< 0, 0 < 𝜆 < 𝑛/𝑚

= 0, 𝜆 = 𝑛/𝑚

> 0, 𝜆 > 𝑛/𝑚

. 

𝑓ֆ
 (𝜇, 𝜈, 𝜆) arrives at the minima when 𝜆 = 𝑛/𝑚. Namely, |𝑋ք|𝜃ք = ੵ𝑋օੵ𝜃օ. In 

this case, 𝑓ֆ
 (𝜇, 𝜈, 𝜆) = 0 𝑎𝑛𝑑 ∆𝐺𝐻 = 0 . Thus, ∆𝐺𝐻 ≥ 0  holds for every 

possible case. The proposition is proved. 
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