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Abstract

Knowledge transfer across several streaming processes remain challenging prob-

lem not only because of different distributions of each stream but also because of

rapidly changing and never-ending environments of data streams. Albeit grow-

ing research achievements in this area, most of existing works are developed

for a single source domain which limits its resilience to exploit multi-source do-

mains being beneficial to recover from concept drifts quickly and to avoid the

negative transfer problem. An online domain adaptation technique under multi-

source streaming processes, namely automatic online multi-source domain adap-

tation (AOMSDA), is proposed in this paper. The online domain adaptation

strategy of AOMSDA is formulated under a coupled generative and discrim-

inative approach of denoising autoencoder (DAE) where the central moment

discrepancy (CMD)-based regularizer is integrated to handle the existence of

multi-source domains thereby taking advantage of complementary information

sources. The asynchronous concept drifts taking place at different time periods

are addressed by a self-organizing structure and a node re-weighting strategy.

Our numerical study demonstrates that AOMSDA is capable of outperforming

its counterparts in 5 of 8 study cases while the ablation study depicts the ad-

vantage of each learning component. In addition, AOMSDA is general for any

number of source streams. The source code of AOMSDA is shared publicly in

https://github.com/Renchunzi-Xie/AOMSDA.git.
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Classification, Domain Adaptation

1. Introduction

Multistream classification problem is a research area studying knowledge

transfer across many streaming processes [1]. It is seen as an extension of

conventional transfer learning problem [2] where knowledge transfer approach

is undertaken from continuously sampled data points calling for special treat-

ment. In addition to the covariate shift problem, the multistream classification

problem is complicated by rapid information flow having to be handled with low

memory footprint and changing environments happening independently in each

stream. This problem exists in daily scenario where data samples are contin-

uously captured in real time. In realm of machine health monitoring problem,

data samples stream continuously from sensors. Although data collection is

a trivial issue, the labelling process solicits constant operator attention being

quite demanding and difficult because it often requires visual inspection leading

to frequent stoppages of a manufacturing process. This problem becomes even

more problematic than that in the complex manufacturing process involving a

number of machines because of possible repetitions of a model building phase

across these machines. A plausible solution is to deploy a multistream solution

where a model is flexibly transferred across different machines while possessing

online and adaptive working principles.

Several research efforts have been devoted to resolve the issue of multistream

classification using a combination of online domain adaptation methods and

drift handling techniques [1, 3, 4]. Most of which are crafted for a single source

domain setting where its performance depends on the quality of a single in-

formation source. Multi-source domains configuration is capable of attracting

advantages in dealing with a concept drift where model’s performance can be

quickly recovered as well as in avoiding the issue of negative transfer [5]. Model’s

development for the multi-source domains problem is challenging to fully ex-

ploit complementary information of each source domain because it features the
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problem of varying relevance. That is, relevance of each source domain

to target domain is dynamic in nature. This issue worsens in the streaming

environments because concept drifts might change the relevance of each source

domain. A model is supposed to be selective for an irrelevant source domain

while maximizing relevant information of different source domains.

Several works have been proposed to address the multi-source domains prob-

lems [6, 7, 8] but they are not compatible in the streaming environments. To

the best of our knowledge, [5] is the only work in the literature addressing the

multi-source domains issue in the streaming environments. Nonetheless, this

approach incurs considerable computational and memory burdens because it is

based on an ensemble approach. That is, it creates an ensemble classifier for

both source and target domains. A new ensemble classifier is created if a drift is

detected. Furthermore, this work does not possess a specific domain adaptation

strategy thus suffering from limited accuracy in the case of high discrepancy

between source and target domains. In a nutshell, multistream classification

problem under multi-source streams feature four major issues which have to be

tackled simultaneously: 1) covariate shift, which refers to different data dis-

tributions of each source stream as well as target stream; 2) lack of labelled

samples which happens because labels are only available for source streams

while being absent for target stream; 3) asynchronous drift which can be

found because concept drifts are independent and take place at different time

periods; 4) varying relevance which exists due to changing relationship of

source streams to target stream.

An automatic multi-source domain adaptation (AOMSDA) algorithm is pro-

posed in this paper to settle the multistream classification problem under multi-

source streams. AOMSDA is designed using the framework of denoising autoen-

coder (DAE) where the domain adaptation step for the covariate shift issue is

developed using shared parameters adjusted in the generative phase minimizing

the reconstruction error and in the discriminative phase minimizing the classi-

fication error [9, 10, 4]. The unsupervised domain adaptation is performed here

where there does not exist any labelled samples of the target domain while rely-
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ing solely on labelled samples of source domains. The central moment discrep-

ancy (CMD)-based regularizer is put forward to address the problem of varying

relevance in the smooth manner where the domain’s discrepancy is measured in

the embedding space, transformed space. That is, it determines the confidence

degree of a source stream where an irrelevant stream is ignored while accepting

those of relevant ones. AOMSDA features a self-organizing structure coping

with the asynchronous drift problem. That is, its hidden nodes are grown and

pruned in respect to varying distributions of source streams. The node reweight-

ing strategy based on the smoothness concept is applied to address the concept

drift in the target domain.

This paper puts forward four major contributions: 1) this paper resolves mul-

tistream classification problem under multi-source streams via algorithmic devel-

opment of AOMSDA; 2) this paper offers the notion of CMD-based regularizer to

handle the varying relevance problem where it sets the confidence degree of each

source stream based on its closeness degree to the target stream. It is capable of

mixing the complementary information of multi-source domains rather than only

a single source domain; 3) the concept of node re-weighting strategy is integrated

to handle concept drifts of the target stream; 4) the source code of AOMSDA is

shared publicly in https://github.com/Renchunzi-Xie/AOMSDA.git to allow

convenient reproduction of our numerical results and further study. AOMSDA’s

performance has been numerically validated via numerical study in eight prob-

lems and comparisons with recently published algorithms. AOMSDA is capable

of outperforming other algorithms in five of eight problems with noticeable mar-

gin. Furthermore, the advantage of AOMSDA is confirmed further with ablation

study and analysis of the number of source domains where each learning com-

ponent contributes positively to the overall performance of AOMSDA and it is

general for any number of source streams.

The remainder of this paper is structured as follows: Section II discusses

related works, Section III introduces the problem setting, Section IV outlines

the details of our method, Section V presents our numerical study, and Section

VI concludes our paper.
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2. Related Works

Single Source Domain Adaptation: the area of unsupervised domain adap-

tation (UDA) has been an active research topic where it assumes the label

availability only in the source domain while leaving the target domain unla-

belled. The goal of domain adaptation is to address the issue of covariate shift

where there exists a gap between source and target distributions [2]. The com-

mon approach of domain adaptation makes use of domain discrepancy measure

minimized to generate a common feature space of the source and target do-

mains. [11] utilizes the maximum mean discrepancy approach, [12] utilizes the

Kullback-Leibler (KL) divergence approach and [13] puts forward the central

moment discrepancy (CMD) taking into account high order moments. Another

approach lies in the adversarial training scenario to establish a domain-invariant

representation [14]. It involves the use of a domain classifier classifying the ori-

gin of data samples, source or taget while a feature generator aims to fool the

domain classifier. The idea of multistream classification aims to enhance the do-

main adaptation technique in handling streaming data where the covariate shift

and the asynchronous drift are handled simultaneously. MSC [1] is a pioneer-

ing work in this area where it is driven by the kernel mean matching (KMM)

approach. A concept drift detector is integrated for each source and target

domain where a new classifier is added if a drift is signalled. MSC imposes

considerable computational complexity. To correct this shortcoming, FUSION

[3] is proposed where it utilizes the KLIEP technique for domain adaptation

while the asynchronous drift is alarmed by a density ratio between source and

target domain. A deep learning solution of multistream classification problem,

namely ATL, is proposed in [4]. A domain-invariant network is attained by

the parameter sharing strategy in the generative and discriminative phases of

autoencoder (AE) and the KL divergence approach. AOMSDA differs from

ATL in the multi-source domains facet where ATL is designed only for the sin-

gle domain scenario. Furthermore, AOMSDA is equipped by the CMD-based

regularizer to address the issue of varying relevance and the node re-weighting
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strategy to cope with the concept drifts of the target stream.

Unlike a single source case, the multi-source domain adaptation takes advan-

tage the existence of several source domains which improves the generalization

power and prevents the negative transfer problem. Such approach has been

proven to be effective in recovering from concept drifts quickly [5]. Nonetheless,

handling several source domains are not easy because of changing relationship

between each source domain and the target domain. In addition, each source

domain should be combined properly because it might convey complementary,

mutually exclusive or even included information. This problem is even more

challenging in the streaming environment than in the static case because the

asynchronous drift problem might alter the source-to-target relationship.

Multi-Source Domains Adaptation: multi-source domains adaptation ben-

efits from the existence of multi-source domains allowing it to recover from the

concept drift quickly and to avoid the negative transfer problem [5]. Each source

domain might convey complementary, mutually exclusive or included meaning

that the underlying challenge lies on how to select or to combine information

sources maximizing the performance of target domain suffering from the ab-

sence of any labelled samples. One approach is to utilize the weighting strategy

[6] where every source domain is weighted in accordance with its relevance to

source domain. Another approach is via the adversarial training approach [7, 8].

As with the single domain setting, a domain classifier is deployed to identify the

source of information under a multi-class classification problem. The gradient

reversal strategy is implemented along with the normal gradient strategy thus

guiding the feature generator to induce a common feature distribution of the

target and source domains. [5] offers a solution of multi-source domains in the

streaming context using the idea of ensemble classifiers. It generates a pool of

classifiers for every domain and a new pool of classifiers is added if a drift is

detected. However, this approach suffers from high computational and memory

demands because of the use of ensemble classifiers for different subsets of every

domain. Moreover, this approach is not equipped by a specific domain adapta-

tion strategy thus suffering from performance degradation in the case of high
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discrepancy between source and target domains.

3. Problem Formulation

3.1. Problem Definition

Label scarcity Problem: Label scarcity exists in the multistream classifica-

tion problem [1] because labelled samples are only offered to the source stream

while leaving the target stream completely unlabelled. Hence, the underlying

challenge is to arrive at decent accuracy in the target stream where no labelled

samples exist. This requires an unsupervised domain adaptation strategy taking

into account the absence of any labelled samples in the target domain.

Covariate shift problem: The issue of covariate shift occurs because source

and target domains follow different distributions PS(X) 6= PT (X). Here, we still

assume that source and target domains share the same feature space XS , XT ∈

<u but have different distributions. This issue calls for a domain adaptation

strategy such that different distributions can be aligned.

Asynchronous drift problem: The asynchronous drift problem exists in the

multistream classification problem as the nature of data stream. Unlike a single

stream case, both source stream and target stream are subject to an independent

concept drift occurring at different time periods. A concept drift is defined as

the change of conditional distributions where the point of change in the source

and target domain is unique: PS(X,Y )t1 6= PS(X,Y )t1+1 and PT (X,Y )t2 6=

PT (X,Y )t2+1 where t1 6= t2. This issue requires drift handling mechanism

in both source and target domains while still retaining the domain-invariant

property. Note that the target domain has no labelled samples.

Varying Relevance Problem: The varying relevance problem happens be-

cause of the dynamic relationship between each source domain and target do-

main. That is, each source domain might contain complementary, mutually-

exclusive or included information. This issue is complicated by the asynchronous

drift problem which alters the relationship of each source and target domain.
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3.2. Simulation Procedure

Multistream classification problem under multi-source domains concerns on

a classification problem across many streaming processes running in parallel and

independently. All of them except one serve as source streams BSi
1 , BSi

2 , ..., BSi

KSi

while one stream is designated as a target stream BT1 , B
T
2 , ..., B

T
KT

. Si stands

for the i− th source stream and there are in total Ns source streams of interest.

KSi
,KT denote the number of data batches seen thus far KS = KT . Only source

streams are labelled BSi

ks
= {xn, yn}Ni

n=1 while the target stream suffer from the

absence of any labelled samples BTkt = {xn}Nt
n=1, the label scarcity problem.

Ni, Nt respectively denote the size of source and target streams. xn ∈ <u is

an input vector while yn ∈ {l1, l2, ..., lm} is a target vector. u,m respectively

label the number of input and output dimensions. The source streams and tar-

get stream share the same feature space but feature different distributions, i.e.,

XSi
, XSj

, XT ∈ <u, PSi
(X) 6= PSj

(X) 6= PT (X), i 6= j known as the covari-

ate shift problem. Data streams are generated in non-stationary environ-

ments leading to the asynchronous drift problem. That is, concept drifts

occur at different time indexes PSi
(X,Y )t1 6= PSi

(X,Y )t1+1, PSj
(X,Y )t2 6=

PSj
(X,Y )t2+1, PT (X,Y )t3 6= PT (X,Y )t3+1, t1 6= t2 6= t3. There exists two

types of drifts: virtual drift and real drift [15, 16]. The virtual drift refers to

changes of the marginal distribution while the real drift pinpoints changes of

the conditional distribution. Non-stationary environments also affect the rela-

tionship of a source stream and a target stream, i.e., the varying relevance

problem. The connection of source streams and a target stream are not con-

stant.

4. Learning Policy of AOMSDA

AOMSDA is developed to handle the multistream classification problem un-

der multi-source domains condition having four bottlenecks: the covariate shift,

the asynchronous drift, the varying relevance and the label’s scarcity. The

issue of covariate shift is handled by utilizing the shared parameters be-
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Figure 1: AOMSDA Learning Policy and Network Evolution.

tween the generative and discriminative phases of denoising autoencoder (DAE).

AOMSDA features an open structure in processing multi-source data streams

where it copes with any concept drifts of source streams. On the other

hand, the concept drift of the target domain is addressed using the node

reweighting concept under smoothness assumption. The CMD-based regular-

izer is put forward to handle the issue of varying relevance where the CMD

concept identifies the confidence degree of each source domain. Hence, it mimics

the weighting strategy controlling the regularization magnitude as the relevance
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Algorithm 1 AOMSDA’s Learning Policy

Input: Source data streams BS = [B
Sj

1 , B
Sj

2 , ..., B
Sj

N ], target data stream
BT = [BT1 , B

T
2 , ...B

T
N ], probability density function ps = N(µS , σS) , initial

network parameters W = [Wenc, benc,Wdec, bdec,Wout, bout]
Output: Predicted labels of target data stream Yt.
for i = 1 to N do

Update (Source): ps = N(µS , σS)
for j = 1 to Ns do

Test: Predict both B
Sj

i , BTi
Train (Source): Generative Parameter Learning based on L(X̂Sj , XSj )
Structural Evolution (Source): Structural Learning Mechanism in the
discriminative phase using ps
Train (Source): Discriminative Parameter Learning based on L(ŶSj

, YSj
)

end for
Train (Target): Generative Parameter Learning based on L(X̂T , XT )
Train (Target): Node Re-weighting based on L2 (8)
for j = 1 to Ns do

Train (Source)&(Target): CMD-based Regularization based on

CMD(f
Sj
enc, fTenc)

end for
end for

degree of each source domain. AOMSDA learning strategy works with the

assumption of no label of the target domain while only sourcing for labelled

samples of source streams.

The learning policy of AOMSDA is visualized in Fig. 1. The training pro-

cess commences with the estimation of probability density function assumed to

follow the Gaussian distribution p(x) = N(µ, σ2). This process proceeds to the

generative phase of the source domains and the target domain minimizing the

reconstruction loss. The discriminative phase of the source domain is carried out

under shared parameters and minimizes the classification error. The discrmina-

tive process makes use of a self-organizing mechanism enabling the node growing

and pruning mechanism guided by the probability density function p(x) while

the generative phase adopts a fixed structure. The node re-weighting mecha-

nism is carried out afterward. Last but not least, the CMD-based regularizer is

carried out to provide the implicit weighting step of each source domain based

on the closeness degree of each source stream to the target stream. The simula-
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tion protocol of AOMSDA follows the prequential test-then-train protocol

where a model is supposed to predict unlabelled samples of the target stream

before utilizing them for model updates in an unsupervised fashion. Algorithm

1 offers an overview of AOMSDA’s learning policy.

4.1. Network Structure of AOMSDA

AOMSDA is constructed from the autoencoder (AE) [17, 9, 10] consisting

of two learning phases: generative and discriminative learning phases. The

two learning phases are fully coupled where network parameters are shared

in the two phases and executed in the lifelong fashion to handle never-ending

data streams. The generative phase extracts robust features of original input

attributes X and projects it into a low dimensional embedding space f(.) via the

encoding mechanism. The decoding mechanism maps the latent features back

to the reconstructed space and assures that the original input representation

can be reconstructed. The encoding and decoding mechanisms are written as

follows:

fenc = s(XtWenc + benc) (1)

X̂t = s(fencWdec + bdec) (2)

where Wenc ∈ <u×R, benc ∈ <R respectively denote the connective weight and

bias of the encoder while Wdec ∈ <R×u, bdec ∈ <u respectively label the connec-

tive weight and bias of the decoder. R is the number of hidden nodes automat-

ically generated during the structural learning of AOMSDA and s(.) stands for

the sigmoid activation function.

The discriminative phase also known as the classification phase is to map

the latent space f(.) to the target space. It is achieved by using the softmax

operation as follows:

ŷ = softmax(s(XtWenc + benc)Wout + bout) (3)
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where Wout ∈ <R×m, bout ∈ <m respectively denote the connective weight and

bias of the softmax layer while softmax(xi) = exp (xi)∑m
o=1 exp (xo)

. It is seen that the

encoder weight and bias, Wenc, benc, are shared across the discriminative and

generative phases.

4.2. Parameter Learning Strategy of AOMSDA

The parameter learning strategy of AOMSDA is devised to resolve the four

aforementioned issues of the multistream classification problem under multi-

source domains. A joint optimization problem is formulated as follows

Lall =

Ns∑
i=1

Li1 + L2 + αCMD(fSi
enc, f

T
enc)||W ||2 (4)

where the first loss function Li1 aims to handle the issue of covariate shift, the

second loss function L2 aims to cope with the issue of asynchronous drift and

the last term aims to overcome the issue of varying relevance. α is the regu-

larization constant controlling the influence of regularization. All of which are

an unconstrained loss function which can be solved directly using the stochastic

gradient descent approach. Furthermore, an alternate optimization framework

is carried out here where every loss function is minimized alternately.

Generative and Discriminative Loop: the issue of covariate shift is

handled using the generative and discriminative training phases using shared

parameters. This strategy also addresses the problem of label’s scarcity

since the domain adaptation technique is carried out with the absence of any

labelled samples of the target stream. The first loss function of (4) is formulated

as follows:

Li1 = L(xSi , x̂Si)︸ ︷︷ ︸
L1,1

+L(ySi
, ŷSi

)︸ ︷︷ ︸
L1,2

+L(xT , x̂T )︸ ︷︷ ︸
L1,3

(5)

where the first term, L1,1, the second term, L1,2, and the third term L1,3 respec-

tively stand for the generative phase of i− th source stream, the discriminative

phase of i− th source stream and the generative phase of the target stream. It

aims to produce a domain-invariant network handling both the source streams
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and the target stream equally well. The generative phase of source domains and

target domain are driven to minimize the gap between the source and target

domains while the discriminative phase of the source domains aims to represent

an ideal discriminative representation of the target domain suffering from the

absence of any labelled samples.

The same strategy is also applied in [12, 18] where the domain adaptation

strategy is formulated as the generative and discriminative training phases of

source domain and target domain. The key difference of our approach lies in

the extension of this method for streaming context as well as the multi-source

domains. Although no direct distance minimization of the two domains exists

in the loss function, a domain invariant network is established here because it

constructs a feature mapping containing overlapped information between the

source and target domains. In other words, the discriminative representation of

the source domain where labelled samples exist is retained in the target domain

by sharing network parameters in each phase.

L(ySi
, ŷSi

) stands for the discriminative loss function of the source domain.

It aims to guarantee a high accuracy of the source domain while preparing for the

ideal discriminative representation of the target domain. It can be expressed:

L(ySi , ŷSi) = −
∑Ni

n=1

∑m
o=1 1(o = yin)log(ŷin)

Ni
(6)

where yin denotes the target vector represented as the one-hot vector, ŷin labels

the predictive target vector. 1() return 1 only when the inside logic value is

true, m is the number of class labels, and Ni is the size of i− th source stream.

(6) is known as the cross entropy loss function.

L(xSi
, x̂Si

) and L(xT , x̂T ) refer to the generative loss function of the i− th

source domain and the target domain respectively. It minimizes the recon-

struction error of the original input representation xSi , xT from their corrupted

version x̃Si , x̃T as per denoising autoencoder (DAE) [19]. That is, the mask-

ing noise is applied here to partially destroy the original input representation

xSi
, xT and in turn robust features f(xSi

), f(xT ) can be extracted. In addi-
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tion to extract robust features, the noise injecting mechanism functions as the

regularization mechanism preventing the overfitting problem. L(xSi,T x̂Si,T ) is

derived as follows

L(xSi,T , x̂Si,T ) =

∑Ni,T

n=1 (xnSi,T
− x̂nSi,T

)2

Ni,T
(7)

The MSE loss function is applied here. Using the shared parameters across the

generative and discriminative phases allows to resolve the covariate shift prob-

lem. That is, previously dissimilar marginal distribution PSi
(X) 6= PSj

(X) 6=

PT (X) can be mapped similarly PSi
(f(X)) ≈ PSj

(f(X)) ≈ PT (f(X)).

Node Re-weighting Strategy: the drift handling mechanism of the target

stream is difficult due to the absence of any labelled samples. The node re-

weighting strategy is integrated here to overcome concept drifts of the target

stream where the parameters of encoder is readjusted to arrive at fine-grained

feature representation in respect to the concept drift. The node re-weighting

mechanism is derived from the smoothness assumption where the predictive

outputs should be smooth for similar samples [20]. That is, it should output

similar outputs for adjacent data samples. The second loss function of (4) is

written:

L2 =

Nt∑
i,j=1,i6=j

(ŷTi − ŷTj )2Wi,j (8)

where Wi,j = exp(− ||xi−xj ||2
2σ ) portrays the similarity of the two samples while

Nt is the size of the target stream. (8) can be modified to speed up computation:

L2 = I
′
Ŷ T

′
LtŶ

T I (9)

where I is a c×1 vector only containing 1, Y T is a Nt×m matrix in which each

row is ŷi
T , and Lt is the graph Laplacian that can be given by Lt = D−W . In

that equation, W ∈ RNt×Nt is the similarity matrix which every value denotes

the similarity of two samples from the target domain. D is the diagonal matrix,

satisfying Di,i =
∑n
j=1Wi,j . Note that the self-organizing mechanism is not
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carried out during the generative phase of target stream as in [4] because of the

absence of labelled samples. A predictive output does not represent the ground

truth which cannot be set as a basis of structural evolution.

CMD-based regularization: this module functions as an implicit weighting

strategy of the source domain where the CMD technique [13] finds out the di-

vergence of the i − th source stream and the target stream. The CMD index

steers the regularization intensity where low regularization intensity, i.e. ac-

cepted, is returned if a source domain is relevant to the target domain whereas

high regularization intensity, i.e., rejected, is given to a source domain having

low relevance to the target domain. In other words, it mixes source domain in-

formation to address the classification problem of the target domain. The CMD

technique is performed in the embedding space, the transformed space and

is combined with L2 regularization. CMD(fSi
enc, f

T
enc) is expressed:

CMD(fSi
enc, f

T
enc) =

||E(fSi
enc)− E(fTenc)||2
|b− a|

+

K∑
k=2

||Ck(fSi
enc)− Ck(fTenc)||
|b− a|k

(10)

where [a, b] is the boundary of activation function, E(X) = 1
|X|

∑
x∈X x, and

Ck(X) = E((x−E(X))k), representing the vector of all k−th order sample cen-

tral moments. The advantage of CMD as a probabilistic distance measurement

of two domains is perceived in the use of high order moments. The dynamic rela-

tionship across multi source domains are considered here rather than one source

domain. That is, each source stream provides complementary information. It

is also worth noting that the CMD measures the relationship of two domains

in the embedding space rather than in the original feature space. The CMD

regularization strategy is applied to tackle the issue of varying relevance.

4.3. Structural Learning Strategy of AOMSDA

AOMSDA features an open structure where its hidden nodes are self-organized

from data streams. This procedure takes place in the discriminative phase of

source domains where the access of ground truth is available. In other words,

this mechanism is used to address the concept drift issue in the source
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stream. Note that the generalization performance of the target domain is up-

per bounded by the empirical error of the source domain [21]. This mechanism

is governed by the network significance (NS) method [22, 23] derived from the

bias-variance decomposition. The network significance estimates the network

generalization power under a particular probability density function following

the normal distribution NS =
∫ +∞
−∞ (ySi

− ŷSi
)2p(x)dx; p(x) = N(µ, σ2). The

NS formula is derived as follows:

NS = (E(ŷSi)
2 − E(ŷ2Si

)) + (E(ŷSi
)− ySi

)2 = V ar +Bias2 (11)

The key in deriving the bias and variance expression lies in E[ŷSi ] which comes

from E[ŷSi
] = softmax(

∫ +∞
−∞ s(XSi

Wenc + benc)p(x)dxWout + bout). It is seen

that it depends on the integral operation over sigmoid function which does not

have an exact integral solution. The sigmoid function is approachable using the

probit function and the integral of probit function is another probit function

[24]. This aspect leads to the final expression of E[ŷSi
] as follows

E[ŷSi
] = softmax(s(

Wencµ√
1 + πσ2/8

+ benc)Wout + bout) (12)

where µ, σ are the mean and standard deviation of the normal distribution

N(µ, σ2) which can be recursively calculated. The same strategy is applicable

to the variance expression where under the i.i.d condtion E[ŷ2Si
] = E[ŷSi

].E[ŷSi
].

The hidden node growing and pruning conditions are signalled by the sta-

tistical process control (SPC) approach [15] adapting to the concept drifts of

the source domain and used frequently in the context of anomaly detection. A

node is added in the case of high bias indicating the underfitting situation while

the pruning condition is triggered by a high variance condition signifying the

overfitting condition. The node growing and pruning conditions are formulated:

µtbias + σtbias ≥ µminbias + πσminbias → Growing (13)
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Table 1: Properties of the datasets

Dataset F C SS TS CP(%) Char
Weather 3 2 4.5K 4.5K [31.38, 68.62] Non-Stationary

Sea 3 2 25K 25K [63.04, 36.96] Non-Stationary
Hyperplane 4 2 30K 30K [50.06, 49.94] Non-Stationary
KDDCup 41 2 125K 125K [80.09, 19.91] Non-Stationary

Kitti 55 8 6.25K 6.25K

[74.57, 8.30,
1.75, 7.77,
0.93, 3.85,
1.63, 1.19]

Non-Stationary

Susy 18 2 1.25M 1.25M [54.24, 45.76] Stationary
Hepmass 27 2 2.6M 2.6M [50.00, 50.00] Stationary

OQC 48 3 5.75K 5.75K [37.5, 26.11, 36.38] Non-Stationary

F: The dimensions of features; C: The number of classes; SS: The number of
samples from one of the three source domains, all three source domains

contain the same number of samples; TS: The number of samples from the
target domain; CP: Class proportion; Char: Characteristics

µtvar + σtvar ≥ µminvar + 2χσminvar → Pruning (14)

where the confidence level of SPC is controlled by π = 1.3exp(−(Bias(ŷ))2)+0.7

and χ = 1.3exp(−(V ar(ŷ))) + 0.7. This strategy is meant to assure that the

growing and pruning mechanisms are carried out when the bias and the variance

are high. In particular, the confidence degree of the node growing condition re-

volves around 68.3% to 95.2% while the pruning condition is in the range of

95.2% to 99.99%. µbiasmin, σ
bias
min are reset if (13) is satisfied. On the other hand,

µbiasmin, σ
bias
min are reset if (14) is observed. The term 2 is inserted in (14) to

avoid the direct-pruning-after adding situation impeding the structural evolu-

tion. Furthermore, (13) sets a high bias condition leading to the introduction of

a new node. A new node is created and initialized using the Xavier’s initializa-

tion strategy. The high variance condition is alarmed by (14) where the node

pruning process is applied to the least-contributing node having the lowest sta-

tistical contribution [22]. Although the area of evolving intelligent system (EIS)

for data streams has been an active research topic for many years as surveyed

in [25], to the best of our knowledge, the issue of multistream classification

problem remains an uncharted territory.
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Table 2: Hyperparameters of consolidated algorithms

Melanie ATL MDAN AOMSDA
Learning Rate ζ Nan 0.01 0.01 0.01

Network Structure Nan Nan [1000 500 100] Nan
Tradeoff Parameters α Nan Nan Nan 1.0

Time forgetting factor θ 0.9 Nan Nan Nan
Performance index λ 0.05 Nan Nan Nan

Gamma γ Nan Nan 10 Nan

5. Numerical Study

This section outlines our numerical validation where AOMSDA is tested in

eight problems and compared against state-of-the art algorithms. The efficacy

of AOMSDA is examined using an ablation study demonstrating the advantage

of each learning component of AOMSDA. In addition, the effect of the number

of source streams is also studied where AOMSDA’s learning performance is

evaluated under varying numbers of source streams.

5.1. Simulation Protocol

Our numerical study is simulated in respect to the prequential test-then-

train protocol where a model is supposed to predict a data stream first before

exploiting it for model updates. That is, the whole dataset is partitioned into

a number of data batches where an initial model is crafted from the first data

batch to address the cold start problem. A data batch is split in respect to the

Gaussian distribution where 3 source streams and 1 target stream are arranged

[1]. Note that AOMSDA is general for any number of source streams and the

effect of source streams is also studied in this paper. The Gaussian distribution

is referred here to induce the issue of covariate shift. That is, the probability

of each sample is calculated as exp (x−µ)2
2σ2 where data samples are sorted in a

descending order. The first source stream is built upon the top Ni samples

followed by the second source stream, the third source stream and so on up to

the NS source streams while the target stream is arranged as the remainder

of data samples. For simplicity, every stream is set to be an equal size N1 =
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Table 3: Numerical Results of Consolidated Algorithm

Melanie ATL MDANs15 MDANs1 MDANh15 MDANh1 AOMSDA

Weather
CR 77.74 74.26 75.32 63.95 74.47 75.44 76.55
Trt 2.81 41.08 7.09 1.27 19.53 1.28 34.69
HN Nan 129.00 1000, 500, 100 1000, 500, 100 1000, 500, 100 1000, 500, 100 18.20

Sea
CR 89.18 88.59 88.93 71.10 87.32 81.24 90.23
Trt 5.89 161.57 112.41 7.29 113.40 7.73 195.77
HN Nan 54.67 1000, 500, 100 1000, 500, 100 1000, 500, 100 1000, 500, 100 19.60

Hyperplane
CR 86.38 86.01 89.11 84.36 89.21 87.61 88.03
Trt 7.40 133.59 128.73 8.97 204.63 9.01 236.18
HN Nan 26.67 1000, 500, 100 1000, 500, 100 1000,500,100 1000, 500, 100 24.30

KDDCup
CR 95.24 99.49 97.27 94.73 97.32 92.19 99.76
Trt 43.13 8446.46 574.36 36.41 550.36 36.56 1176.99
HN Nan 195.44 1000, 500, 100 1000, 500, 100 1000, 500, 100 1000, 500, 100 32.00

Kitti
CR 50.29 52.88 74.89* 5.28 74.89* 8.40 67.79
Trt 24.15 309.25 27.88 1.77 26.65 1.87 54.89
HN Nan 1599.50 1000,500,100 1000, 500, 100 1000,500,100 1000, 500, 100 33.30

Susy
CR 72.94 62.48 59.85 58.62 62.72 60.24 79.41*
Trt 420.00 138512.21 15000.43 375.93 9058.22 367.47 10094.66
HN Nan 745.00 1000, 500, 100 1000, 500, 100 1000, 500, 100 1000, 500, 100 14.30

Hepmass
CR 72.01 74.18 71.34 83.06 71.29 83.74 86.21*
Trt 6074.00 346407.74 50452.89 3097.022 13840.07 798.69 21816.93
HN Nan 2968.00 1000, 500, 100 1000, 500, 100 1000, 500, 100 1000, 500, 100 16.80

OQC
CR 33.33 49.47 36.92 33.49 35.44 31.14 68.56*
Trt 3.21 1060.62 21.67 1.62 21.52 1.35 28.75
HN Nan 5497.56 1000, 500, 100 1000, 500, 100 1000, 500, 100 1000, 500, 100 32.20

CR: Classification accuracy rate; Trt: Training time; HN: The number of
hidden nodes; MDANs15: MDAN soft version with 15 epochs; MDANh15:
MDAN hard version with 15 epochs; MDANs1: MDAN soft version wiht 1

epoch; MDANh1: MDAN hard version with 1 epoch;*: Statistically
significant compared with other algorithms.

N2 = Ni = ... = NS = NT . Only source streams contain labelled samples

while the target stream is left unlabelled - scarcity of labelled samples. The

numerical evaluation is performed independently per a data batch to reflect the

performance under drifts where the overall numerical results are averaged across

all data batches.

5.2. Datasets

Eight datasets, namely, Weather [26], Sea [27], Hyperplane [28], KDDCUP

[29], SUSY [30], Forest Cover[31], Kitti [32] and Online Quality Classification

(OQC) [33], are used to numerically validate the advantage of our algorithm. All

datasets except susy and hepmass contain concept drifts leading to the issue

of asynchronous drift and the issue of varying relevance. The properties

of datasets are summarized in Table 1. The characteristics of eight datasets are

elaborated as follows:

Weather: This dataset describes one-step-ahead prediction whether or not rain
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Table 4: Recall and Precision of AOMSDA

Recall Precision
Weather 0.49 0.24

Sea 0.91 0.91
Hyperplane 0.89 0.85
KDDCup 0.99 0.99

Kitti
[0.80, 0.07, 0.15, 0.48,
0.01, 0.003, 0.11, 0]

[0.78, 0.11, 0.19, 0.37,
0.08, 0.005, 0.04, 0]

Susy 0.61 0.82
Hepmass 0.74 0.76

OQC [0.50, 0.66, 0.81] [0.66, 0.57, 0.69]

Table 5: Ablation study

Original A B C D

Weather
CR 76.55 75.27 75.52 75.19 74.44
Trt 34.69 41.08 28.07 34.25 38.58
HN 18.20 15.20 10 16.80 20.22

Sea
CR 90.23 90.15 89.98 90.08 89.37
Trt 195.77 176.36 152.73 189.04 188.65
HN 19.60 18.40 10 24.70 126.53

Hyperplane
CR 88.03 88.14 86.91 88.15 86.69
Trt 235.18 224.26 183.91 223.92 239.04
HN 24.30 25.30 10 23.50 100.11

KDDCup
CR 99.76 99.77 99.75 99.69 99.76
Trt 1176.99 968.36 895.96 1047.07 5112.98
HN 32.60 33.40 10 28.90 37.84

Kitti
CR 67.79 68.69 67.84 66.48 62.61
Trt 54.89 47.74 46.32 54.54 230.33
HN 33.30 31.20 10 34.60 378.48

Susy
CR 79.41 79.42 80.40 78.58 81.98
Trt 10094.66 9156.43 8737.89 10463.14 59795.05
HN 14.30 12.80 10 23.40 397.62

Hepmass
CR 86.21 86.14 86.30 87.22 85.65
Trt 21816.93 19851.13 13452.13 21996.33 253451.03
HN 16.80 16.90 10 18.90 497.34

OQC
CR 68.56 67.23 56.53 69.36 69.37
Trt 29.75 19.48 20.04 21.96 256.13
HN 32.20 34.91 10 35.46 749.64

Mean CR 82.07 81.58 80.40 81.84 81.23

CR: Classification accuracy rate; Trt: Training time; HN: The number of
hidden nodes; Original: Original experiments; A: Experiments without Node

re-weighting strategy; B: Experiments without structural learning strategy; C:
Experiments without CMD regularization; D: Replace Gaussian distribution

with AGMM.
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Table 6: The influence of the number of source domains

1 source 3 sources 5 sources 7 sources

Weather
CR 72.21 76.55 75.89 79.73
HN 8.20 18.25 23.60 27.20

Sea
CR 88.17 90.23 89.32 88.49
HN 17.40 19.60 26.40 33.60

Hyperplane
CR 86.30 88.03 87.73 87.75
HN 6.00 24.30 37.40 50.40

KDDCup
CR 99.76 99.76 99.69 99.69
HN 14.60 32.60 45.20 66.40

Kitti
CR 53.59 67.79 68.31 58.76
HN 27.80 33.30 45.00 46.80

Susy
CR 75.70 79.41 81.21 84.50
HN 9.40 14.30 24.20 49.20

Hepmass
CR 80.83 86.21 88.45 89.44
HN 13.60 16.80 31.00 49.80

OQC
CR 67.35 68.56 77.05 79.36
HN 32.58 32.20 50.14 57.37

CR: Classification accuracy rate; HN: The number of hidden nodes

occurs. It records the weather data over 50 years containing the yearly seasonal

change as well as the long-term climate change.

SEA: this problem is a synthetic dataset having both recurring and abrupt

concept drift. The binary classification satisfies f1 + f2 ≥ θ, where θ changes

three times as θ = 4→ 7→ 4→ 7, which causes concept drift.

Hyperplane: this problem is designed to predict the position of d− th dimen-

sional hyperplane satisfying
∑d
j=1 ωjxj > ω0. The transition period when the

second distribution replaces the first one causes the gradual drift in this dataset.

Kitti: this dataset constitutes a real-world computer vision problem derived

from the autonomous driving problem in the city of Kalsruhe, Germany. The

underlying goal is to perform 3D object detection where the object is captured

by two high-resolution color and grayscale video cameras.

KDDCUP: this dataset describes a network intrusion detection problem where

the simulation of various network attacks results in the non-stationary charac-

teristic.

SUSY: it is a popular big dataset containing 5 million instances, which presents
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a signal process causing super-symmetric particles. Although it is stationary,

this dataset has a big characteristic thereby being able to test the algorithm’s

characteristic in overcoming a large-scale problem.

Hepmass: this dataset describes the separation of particle-producing collisions

from a background with a big size that contains more than 10 million samples.

As with the susy dataset, this dataset is deployed to examine the algorithm’s

performance in the large-scale setting.

Online Quality Classification (OQC): this problem features a quality detec-

tion problem of a transparent part of scent-emitting USB device manufactured

by an injection-molding machine [33]. There are two common defects of the

transparent part: short-forming and weaving rendering it a three-class classi-

fication problem. Moreover, this dataset is non-stationary in nature because

the injection speed and the holding pressure are varied during the production

phase. The quality prediction problem is guided by 48 input attributes recording

different machine parameters.

5.3. Baseline

AOMSDA is compared against three algorithms: Melaine [5], ATL [4] and

MDAN [34, 7] where their detailed characteristics are discussed:

Melanie is a multistream classification method under multi-source domains. It

is developed from the ensemble concept and features the drift handling aptitude.

ATL is akin to Melaine where it is designed to solve the multistream classifica-

tion problem but under a single source domain environment. Because it is not

designed for the multi-source domains, ATL regards multi-source streams as a

single source stream while the evaluation phase is drawn from its performance in

the target stream. Compared to AOMSDA, ATL is not equipped by the CMD

regularizer and the node reweighting strategy.

MDAN is an offline domain adaptation technique for multi-source domains set-

ting. This work adopts the idea of adversarial domain adaptation and is seen as

a state-of-the art algorithm for multi-source domains adaptation. MDAN is set

into four configurations here: hard-max for 15 epochs, hard-max for 1 epoch,
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soft-max for 15 epochs, soft-max for 1 epoch. Note that MDAN is an offline

algorithm having significant advantage compared to AOMSDA because of its

iterative nature.

All algorithms are simulated under the same computational environments

by running their published codes which can be easily adapted to the same sim-

ulation environments. Direct comparison with reported results are not possible

to be done because of different simulation and computational environments. To

the best of our knowledge, the multi-stream classification problem under multi-

source domain is also an uncharted territory in the existing literature making

direct comparison with the reported results of the three algorithms difficult to

be done.

5.4. Hyper-parameters

The learning rates of ATL, MDAN and AOMSDA are set the same to ensure

fair comparisons ζ = 0.01 while the tradeoff parameter of AOMSDA is set as

α = 1.0. MDAN’s structure is configured as a three hidden layer network with

1000 nodes of the first layer, 500 nodes of the second layer and 100 nodes of the

third layer as per their default setting in their codes while γ of MDAN is fixed at

10. On the other hand, the time forgetting factor θ and the performance index

λ of MELANIE are respectively selected at 0.9 and 0.05. The hyperparameters

of all algorithms are displayed in the Table 2. These hyper-parameters are

fixed throughout all our numerical studies to ensure fair comparison and to

demonstrate that AOMSDA is non-adhoc. Note that AOMSDA and ATL run

fully in the one-pass training scenario with a single epoch.

5.5. Numerical Results

Numerical results of benchmarked algorithms are reported in Table 3 where

the algorithm’s performance is evaluated in three facets: classification rates

(CR), training time (Trt) and the number of hidden nodes (HN). The classifica-

tion rate of an algorithm is measured by an average accuracy of all data batches,

23



while the training time is obtained from the total training time during the train-

ing process and the hidden node is taken from the final number of hidden nodes.

All algorithms are simulated under the same computational environments and

executed five times. The numerical results in Table 3 are reported as an average

across five runs. Since the benchmarked algorithms are developed from different

languages: MDAN (Python), Melanie (JAVA), ATL and AOMSDA (Matlab),

AOMSDA’s execution time is directly comparable to only ATL.

AOMSDA outperforms other algorithms in five of eight problems: Sea, KD-

DCup, Susy, Hepmass and OQC. AOMSDA beats other algorithms with no-

ticeable margins in two big data problems: Hepmass (3%) and Susy (5%). Our

method is inferior to Melanie by around 1% in the Weather problem, but it is

well-known that the performance of neural-network based algorithm compro-

mises in this problem due to the uncertainty issue of the Weather problem as

also depicted in the ATL and MDAN numerical results. AOMSDA is also in-

ferior to MDAN with 15 epochs in the Hyperplane and Kitti problems by 1%

and 7% difference. This result should be interpreted carefully because MDAN

is run through many epochs, 15 epochs due to an offline algorithm. MDAN per-

formance is compromised if it undergoes a one-pass training as with AOMSDA.

AOMSDA also outperforms other algorithms with significant margin (10%) in

the OQC problem. Our numerical results are confirmed with a statistical test,

the t-test, where AOMSDA produces statistically superior results in the Susy,

Hepmass and OQC problems (P < 0.05). Furthermore, it is observed that

Melanie does not deliver statistically significant results compared to AOMSDA

in the Weather problem.

Table 4 reports the precision and recall of AOMSDA across 8 datasets. It

is observed that the gap between precision and recall are not high except for

the weather problem where three exists about 20% gap. This problem is known

to be challenging for NN-based algorithms. Low gap between precision and

recall means unbiased prediction toward one of the classes. Another interesting

finding is in the KDDCup problem where AOMSDA delivers the same precision

and recall although this problem has skewed class proportion. Nevertheless, we
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acknowledge that the class imbalance issue still requires in-depth study and is

beyond the scope of this paper.

Since ATL does not have any mechanism to mix the multi-source streams,

the performance of ATL drops significantly. In the context of execution time,

AOMSDA demonstrates an improved performance compared to ATL. Note that

the runtime of AOMSDA is only comparable to ATL because both are devel-

oped under MATLAB environments. Slow computation time of ATL is mostly

caused by the use of AGMM in calculating the network bias and variance. This

approach incurs expensive computational burden and is often unstable in the

case of high input dimension.

Although Melanie is developed to solve the multi-source streams, it is only

capable of surpassing other algorithms in the Weather problem well-known to be

difficult to handle by NN-based algorithms. The numerical results of MDAN is

not directly comparable to AOMSDA because it gains a full access of the whole

dataset before process runs as well as it performs iterative training across many

epochs. Albeit these advantages, MDAN outperforms AOMSDA in only two

cases: Kitti and Hyperplane where these results are achieved using 15 epochs.

AOMSDA consistently beats MDAN with a single epoch in all cases.

Fig. 2 presents the trace of hidden node and classification rate of AOMSDA

in the SEA problem. It is seen that AOMSDA is capable of dynamically insert-

ing its hidden nodes from data streams addressing concept drifts of the source

streams. Note that concept drifts might occur in both source and target streams

in different time points. On the other hand, it is also seen that the dynamic of

classification rate is relatively stable. This finding implies that concept drifts do

not undermine model’s generalization. Performance losses due to the concept

drifts can be recovered quickly.

5.6. Ablation Study

This section studies the influence of each learning component on the final

performance of AOMSDA. AOMSDA is configured into four versions: (A) the

absence of the node re-weighting mechanism; (B) the absence of structural learn-

25



ing mechanism; (C) the absence of CMD-based regularizer; (D) the integration

of AGMM [4] into AOMSDA. The ablation study is carried out with all datasets

to arrive at solid conclusions. The numerical results are presented in Table 5

where the average of classification rates across all problems is put forward at

the bottom of the Table.

It is evident from Table 5 that the current configuration of AOMSDA deliv-

ers the best-performing results on average. The absence of node re-weighting

strategy decreases the numerical results in Weather, Sea, Hepmass and OQC

problems. That is, the node re-weighting approach is capable of refining the

numerical results. On the other hand, the absence of structural learning mech-

anism deteriorates the numerical results in the Weather, Sea, KDDCup, Susy

and OQC problems significantly. This finding confirms the efficacy of structural

learning in handling the concept drifts. AOMSDA’s performance is compro-

mised with significant margins if the CMD-based regularizer is deactivated. Its

performance drops in the Weather, Sea, KDDCup, Kitti and Susy problems.

This fact portrays the importance of CMD-based regularizer in weighting the

multi-source streams. The use of AGMM in model D does not improve the

performance of AOMSDA. The accuracy worsens in most of the cases while the

complexity significantly mounts in all of the cases. This is caused by the fact

that multiple hidden nodes are directly added if the node growing condition is

triggered. The use of AGMM also imposes expensive computational complexity

as depicted in the training time of Model D. Note that the deactivation of a

learning module only leads to minor performance’s increases in some cases. On

the contrary, it results in substantial performance losses in other cases.

5.7. The number of Source Streams

The effect of the number of source streams is analyzed here. It answers

two fundamental questions whether multi-source streams improves the learning

performance of the single-source stream and AOMSDA is general for any number

of source streams. AOMSDA’s learning performance is examined using 1, 3, 5

and 7 source streams respectively where our numerical study is undertaken with
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all datasets to arrive at valid conclusion. Numerical results are reported in the

Table 6.

The advantage of multi-source domains is obvious in Table 6. That is, the

accuracy of AOMSDA under multi-source streams setting improves from its

single-source stream version in all problems. On the other hand, the learning

performance of AOMSDA is stable across any number of source streams. It

is perceived that the classification accuracy of AOMSDA consistently increases

as the increase of the number of source streams in weather, SUSY, Hepmass

and OQC. Different numbers of source streams do not change the accuracy

significantly in other four problems but remains better than the accuracy of

single source stream configuration. In realm of complexity, the increase of the

number of source streams causes model’s structural complexity to grow. This

issue emerges as a result of the structural learning strategy of AOMSDA taking

place in the discriminative phase of the source domain.

6. Conclusion

This paper offers a solution of multi-stream classification problem under

multi-source domains with algorithmic development of automatic online multi-

source domain adaptation (AOMSDA). AOMSDA combines the domain adap-

tation technique and the drift handling mechanism while featuring the mixing

strategy of multi-source streams. The domain adaptation strategy relies on a

generative and discriminative loop of DAE discovering an overlapped region of

the source streams and the target stream thus addressing the covariate shift

problem. The idea of CMD-based regularization is integrated to cope with the

varying relevance of source domains to the target domain. It functions as some

sort of weighting mechanism to every source domain where it controls the reg-

ularization intensity when learning a source stream. The asynchronous drift

problem is overcome by the node re-weighting strategy under the smoothness

assumption. That is, a model should output similar prediction for adjacent sam-

ples. Last but not least, AOMSDA features a self-organizing structure where
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Figure 2: (A) trace of hidden nodes in the SEA problem; (B) trace of classification rates in
the SEA problem
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the hidden nodes are dynamically grown and pruned from data streams when

learning source domain in the discriminative fashion. Our numerical study

demonstrates that AOMSDA performs favourably compared to the state-of-the

art algorithms in five of eight study cases. It is also confirmed with the ablation

study where the current configuration of AOMSDA delivers better performance

than other four configurations on average. Furthermore, the advantage of multi-

source streams is depicted where it delivers an improved performance compared

to the single source stream configuration and AOMSDA is general for any num-

ber of source streams. Our future works will be devoted to study the problem

of cross-domain transfer learning.
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