
Are Cluster Validity Measures (In)valid?

Marek Gagolewskia,c,1, Maciej Bartoszukb, Anna Cenab

aDeakin University, School of Information Technology, Geelong, VIC 3220, Australia
bWarsaw University of Technology, Faculty of Mathematics and Information Science,

ul. Koszykowa 75, 00-662 Warsaw, Poland
cSystems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland

Abstract

Internal cluster validity measures (such as the Caliński–Harabasz, Dunn,
or Davies–Bouldin indices) are frequently used for selecting the appropriate
number of partitions a dataset should be split into. In this paper we consider
what happens if we treat such indices as objective functions in unsupervised
learning activities. Is the optimal grouping with regards to, say, the Sil-
houette index really meaningful? It turns out that many cluster (in)validity
indices promote clusterings that match expert knowledge quite poorly. We
also introduce a new, well-performing variant of the Dunn index that is built
upon OWA operators and the near-neighbour graph so that subspaces of
higher density, regardless of their shapes, can be separated from each other
better.
Keywords: clustering methodology, cluster validity index, Dunn index, near-
est neighbours (NNs), ordered weighted averaging (OWA) operator, no free
lunch

1. Introduction

An internal cluster validity index (CVI for short; see, e.g., [2, 29, 42,
43, 58]) is – in theory – a measure of how well a given partitioning of a
dataset reflects the underlying structure of the modelled domain. CVIs are
frequently employed as tools for selecting the appropriate number of clusters
a dataset should be segmented into [43]. By re-applying some algorithm (e.g.,

∗1) Corresponding author; email: m.gagolewski@deakin.edu.au

Preprint submitted to Information Sciences August 3, 2022

ar
X

iv
:2

20
8.

01
26

1v
1

 [
st

at
.M

L
]

 2
 A

ug
 2

02
2

k-means or spectral methods), one can determine the splits into 2-, 3-, 4-,
. . . , disjoint and nonempty subsets, compute the corresponding CVIs, and
select the partition that maximises a chosen utility measure.

Here we shall focus on the other popular use case thereof. Some prac-
titioners utilise CVIs to compare the outputs of different algorithms on the
same dataset. Is the partition that the average linkage method returned bet-
ter than that yielded by the DBSCAN algorithm (provided that they are of
equal cardinality)? Similarly, researchers use CVIs for evaluating new clus-
tering algorithms the same way: a new method X++ produces partitions
that have a higher average Caliński–Harabasz indices (on some benchmark
datasets) than procedures X, Y , and Z, thus “proving” its superiority. How-
ever, we would like to call this methodology into question, especially because
CVIs in general constitute an extremely diverse set of measures.

Thus, we shall be interested in determining which of the popular CVIs
are particularly suitable or unsuitable for judging the quality of different
partitions of the same cardinality. Does a high value of a CVI make sense at
all? Can it really be treated as an indicator of a useful clustering result?

To address these questions, we shall find the partitions that yield the
highest possible index values, for a large number of datasets and CVIs. In
other words, we will treat each CVI as an objective function to be maximised
over the whole space of all possible clusterings.

Our assumption here is that a cluster validity measure can only be consid-
ered meaningful whenever it is maximised at the partitions closely resembling
the reference ones. Otherwise stated, good CVIs should promote results that
agree with expert knowledge.

In the course of our study, which we of course detail in the sequel, we have
discovered that this is often very much not the case – see Figures 1 and 2 for
two quite representative graphical examples. It turns out that some CVIs
promote highly overlapping groupings while other ones work better as outlier
detectors. One should thus not uncritically believe that a high value of, e.g.,
a generalised Dunn index GDunn_d2_D1 (see Section 2) is better than a
lower one; at the bottom-right subfigures we see that this index promotes
some rather random partitions as “best”.

2

6 4 2 0 2 4 6 8 10

2

0

2

4

6

8

fcps/engytime.CalinskiHarabasz (n=4096, k=2)

6 4 2 0 2 4 6 8 10

2

0

2

4

6

8

fcps/engytime.DuNN_25_Min_Const (n=4096, k=2)

6 4 2 0 2 4 6 8 10

2

0

2

4

6

8

fcps/engytime.GDunn_d1_D1 (n=4096, k=2)

6 4 2 0 2 4 6 8 10

2

0

2

4

6

8

fcps/engytime.GDunn_d2_D3 (n=4096, k=2)

6 4 2 0 2 4 6 8 10

2

0

2

4

6

8

fcps/engytime.GDunn_d5_D1 (n=4096, k=2)

6 4 2 0 2 4 6 8 10

2

0

2

4

6

8

fcps/engytime.GDunn_d2_D1 (n=4096, k=2)

Figure 1: fcps/engytime dataset: Optimal clusters as seen by 6 different cluster validity
indices (see Section 2 for more details). The reference partitions consist of two (clearly
visible if viewed in colour) Gaussian blobs; the Caliński–Harabasz index (top-left subfigure)
identifies them quite correctly. Some indices promote very peculiar, overlapping groupings
(e.g., GDunn_d2_D1), other ones should rather be employed as outlier detectors (like
GDunn_d1_D1).

3

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fcps/wingnut.GDunn_d1_D1 (n=1016, k=2)

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fcps/wingnut.CalinskiHarabasz (n=1016, k=2)

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fcps/wingnut.DaviesBouldin (n=1016, k=2)

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fcps/wingnut.DuNN_5_Max_Const (n=1016, k=2)

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fcps/wingnut.GDunn_d5_D1 (n=1016, k=2)

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fcps/wingnut.GDunn_d2_D1 (n=1016, k=2)

Figure 2: fcps/wingnut dataset: Optimal clusters as seen by 6 different cluster validity
indices (discussed in Section 2). The two point clouds are well-separable; GDunn_d1_D1
(top-left subfigure) identified them correctly. However, certain CVIs favour some rather
unusual cluster shapes instead.

4

Let us note that papers introducing new CVIs are plentiful and new ones
are being published on a regular basis, see, e.g., [39, 40] for some recent ex-
amples. More often than not, such indices are designed to be “the best” for a
given particular situation and/or they aim to “eliminate” certain deficiencies
with the previous measures. Because of this, the number of CVIs to choose
from can be overwhelming, see Section 2 and, e.g., [56, 58], for up-to-date
overviews.

This is why comprehensive, in-depth comparative studies are so impor-
tant. There are quite a few interesting surveys of various properties of cluster
validity measures in different contexts and settings, but we have only found
[59] somewhat methodologically relevant to the task at hand. There, the per-
formance of 8 CVIs was studied but the authors’ focus seems slightly shifted
towards the analysis of the stability of the solutions generated by what they
call differential-evolution–particle-swarm-optimisation algorithms, which of
course do not necessarily guarantee finding patterns that are optimal in the
eye of a specific cluster validity measure.

Further, in [2] and [42], the authors have shown that most of the CVIs
work well with spherical clusters but fail in other types of data. A CVI may
fail to assign the highest evaluation to the partition that fits the data best,
e.g., the reference one. The conclusion is that there is no single internal clus-
ter validation index that outperforms the other indices everywhere. Similar
conclusions were reached in [7], where a model-based study of the correla-
tions of CVIs with carefully chosen error rates across the outputs of different
clustering algorithms was conveyed. For more studies in similar spirit, see
[14, 33, 38, 43]. Note again that our task is to find the optimal partition
under the guidance of a given CVI (amongst the set of all partitions), and
not to assess a fixed set of particular clusterings.

We are well aware of the fact that the sheer act of optimising of CVIs
is, overall, not a new idea. For instance, the within-cluster sum of squares
(WCSS), which is the basis for the Caliński–Harabasz index is used as the
objective function in the k-means [41] algorithm.

Other algorithms employing some goodness-of-split measures include, e.g.,
fuzzy c-means [5] that features a smoothened variant of WCSS, ITM (Infor-
mation-Theoretic-MST; [46]) which applies a divisive scheme over an Eu-
clidean minimum spanning tree to optimise an information-theoretic crite-
rion, finding Gaussian mixtures via expectation-maximisation, and the gener-
alisation of the Ward linkage in the form of the Lance–Williams formulae [35].

5

Nevertheless, as n data items enjoy Ω(kn) possible k-partitionings (Stir-
ling number of the second kind), the problem of optimising a general CVI
over the whole search space is very difficult computationally (provably hard
in the case of the said WCSS, see [1, 25], amongst many others).

Because of this, many algorithms which are defined as minimisers/maxi-
misers of some CVI, use a variety of simplifications, approximations, or
heuristics, e.g., they optimise the objective over reduced search spaces or
apply some greedy strategies. For instance, to find a partition optimising
the aforementioned WCSS, Ward in [57] suggested to build a hierarchy of
clusters in an agglomerative way, and Edwards and Sforza in [19] as well
as Caliński and Harabasz in [8] proposed to employ some divisive schemes.
However, such heuristics are usually limited to specific CVIs; in this paper
we would like to go far beyond that.

Also notice that in the literature we may of course find numerous tech-
niques constructed as a combination of different metaheuristics-based opti-
misation procedures and chosen cluster validity measures playing the role of
objective functions, see, e.g., [13, 30, 34, 48, 52, 61]. Their respective authors
often claim that this way they create “new” clustering algorithms (e.g., opti-
mise WCSS using particle swarms vs by means of differential evolution), but
it is semantically not quite appropriate. Rather, they should be thought of as
ways to test the performance of the optimisation algorithms themselves (with
CVIs computed over particular datasets serving as benchmark objectives as
in [31]).

Due to the intrinsic difficulty of optimising CVIs, it is no wonder that
such a comprehensive study as the current one has not been performed yet.
Interestingly, it will turn out that the methodology we have employed, despite
its still being based on some approximations, is sufficient for achieving our
goal.

Also it is worth mentioning that, up to date, the variety of studies of the
various aspects of CVIs (which we shall review in the next section), was quite
limited because of the lack of a larger, standardised benchmark set batteries.
Most studies considered few datasets, either synthetic, or inherently difficult
to partition (such as the UCI [17] datasets). Luckily, thanks to the recent
notable efforts by the authors of [21, 28, 55] and our new battery that aggre-
gates and extends them [24], studies such as this one finally become possible.
Furthermore, we propose a unique approach where we account for the fact
that a dataset can exhibit multiple equally valid clusterings (as discussed

6

also in [11]).

Let us cast a glance at the structure of this paper. In Section 2 we review
some of the most notable cluster validity indices. Furthermore, we propose
a new, wide class of CVIs generalising the Dunn index which is based on the
notion of ordered weighted averaging (OWA) operators and near-neighbour
(NN) graphs. In Section 3 we describe the methodology we have applied
in order to answer our main research question, including the description of
the benchmark datasets used, the approach to identify the partitions that
are optimal from the perspective of a given cluster validity measure, and
ways to determine the extent to which they agree with expert knowledge.
In Section 4 we present the results of our empirical study, e.g., explore the
relationship between cluster compactness or separability and what is consid-
ered a good clustering by experts. Also, we perform a cluster analysis of
clustering algorithms to determine which methods are most similar to each
other. We conclude the paper in Section 5.

2. Cluster validity indices

Let X ∈ Rn×d denote the input dataset comprised of n points in a d-
dimensional Euclidean space, with xi = (xi,1, . . . , xi,d) denoting the i-th
point, i ∈ [1 : n] = {1, 2, . . . , n}.

We shall be looking for a partition of X into k ≥ 2 nonempty, mu-
tually disjoint clusters, with k fixed in advance. Note that a k-partition
{X1, . . . , Xk} of a set {x1, . . . ,xn} can be encoded by means of a surjection
C : [1 : n] onto→ [1 : k], where C(i) ∈ [1 : k] gives the cluster number of the i-th
point. Let us denote the set of all such possible mappings with Ck.

For the sake of clarity and simplicity, we will only be focused on clus-
ter validity indices based on Euclidean distances between all pairs of points,
‖xi−xj‖, or the input points and some other pivots, such as their correspond-
ing cluster centroids, ‖xi − µj‖, where µj,l = 1

|Xj |
∑

xi∈Xj xi,l. The fixation
of the distance metric is not at all restrictive, as various transformations
can be applied onto X at the data pre-processing stage, including variable
selection, standardisation, outlier removal, feature engineering (by means of
spectral/kernel-based methods), etc., see [15, 16, 44], amongst others.

We shall consider 52 different internal cluster validity indices like I : Ck →

7

R. Apart from the most popular, classical CVIs, we also bring forth our own
proposal.

2.1. CVIs based on cluster centroids
1,2) BallHall, CalińskiHarabasz. Let µ denote the centroid of the whole X.
The two following indices are based on within-cluster sum of squares (WCSS),
which itself can be rewritten in terms of the squared Euclidean distances
between the points and their respective centroids.

The Ball–Hall index [3] is the WCSS weighted by the cluster cardinality:

BallHall(C) = −
n∑
i=1

1
|XC(i)|

‖xi − µC(i)‖2. (1)

Note the minus that accounts for the fact that in Section 3.3 we want all the
indexes be maximised.

Then the Caliński–Harabasz index [8, Eq. (3)] (“variance ratio criterion”)
is given by:

CalińskiHarabasz(C) = n− k
k − 1

∑n
i=1 ‖µ− µC(i)‖2∑n
i=1 ‖xi − µC(i)‖2 . (2)

It may be shown that the task of minimising the (unweighted) WCSS is
equivalent to maximising the Caliński–Harabasz index. Hence, this index is
precisely the objective function in k-means [41] and the algorithms by Ward,
Edwards and Cavalli-Sforza, etc., see [8, 19, 57].

3) DaviesBouldin. The Davies–Bouldin [12, Def. 5] index also refers to the
notion of cluster centroids. It is given as the average similarity between each
cluster and its most similar counterpart (note the minus sign again):

DaviesBouldin(C) = −1
k

k∑
i=1

(
max
j 6=i

si + sj
mi,j

)
, (3)

where si is the dispersion of the i-th cluster: if |Xi| > 1, it is given by
si = 1

|Xi|
∑

xu∈Xi ‖xu − µi‖ and otherwise we set si = ∞. Furthermore, mi,j

is the intra-cluster distance, mi,j = ‖µi − µj‖. In [12], other choices of si
and mi,j are also suggested; here, we choose the most popular setting (used,
e.g., in [2]).

8

2.2. Silhouettes
4, 5) Silhouette, SilhouetteW. In [54, Sec. 2], Rousseeuw proposes the notion
of a silhouette as a graphical aid in cluster analysis.

Denote the average dissimilarity between the i-th point and all other
points in its own cluster with:

ai = 1
|XC(i)| − 1

∑
xu∈XC(i)

‖xi − xu‖ (4)

and the average dissimilarity between the i-th point and all other entities in
the “closest” cluster with:

bi = min
j 6=C(i)

 1
|Xj|

∑
xv∈Xj

‖xi − xv‖

 . (5)

Then the Silhouette index is defined as the average silhouette score:

Silhouette(C) = 1
n

n∑
i=1

bi − ai
max{ai, bi}

, (6)

with convention ±∞/∞ = 0.
The same paper also defines what we call here the SilhouetteW index,

being the mean of the cluster average silhouette widths:

SilhouetteW(C) = 1
k − s

n∑
i=1

1
|XC(i)|

bi − ai
max{ai, bi}

, (7)

where s is the number of singletons. Note that SilhouetteW, just like BallHall,
employs weighting by cluster cardinalities.

2.3. Generalised Dunn indices
6–20) GDunn_dX_DY. In [18, Eq. (3)], Dunn proposed an index defined
as the ratio between the smallest between-cluster distance and the largest
cluster diameter. It has been generalised by Bezdek and Pal in [6] as:

GDunn(C) = mini 6=j d (Xi, Xj)
maxiD (Xi)

. (8)

The numerator measures the between-cluster separation whilst the denomi-
nator quantifies the cluster compactness.

Function d was assumed in [6] one of:

9

• d1(Xi, Xj) = Min ({‖xu − xv‖ : xu ∈ Xi,xv ∈ Xj}),

• d2(Xi, Xj) = Max ({‖xu − xv‖ : xu ∈ Xi,xv ∈ Xj}),

• d3(Xi, Xj) = Mean ({‖xu − xv‖ : xu ∈ Xi,xv ∈ Xj}),

• d4(Xi, Xj) = ‖µi − µj‖,

• d5(Xi, Xj) = |Xi|Mean({‖xu−µi‖:xu∈Xi})+|Xj |Mean({‖xv−µj‖:xv∈Xj})
|Xi|+|Xj | .

Bezdek and Pal in [18] considered also d6 based on the Hausdorff metric but
this will be omitted here as it turned out too slow to compute.

On the other hand, D was chosen amongst:

• D1(Xi) = Max ({‖xu − xv‖ : xu,xv ∈ Xi}),

• D2(Xi) = Mean ({‖xu − xv‖ : xu,xv ∈ Xi}),

• D3(Xi) = Mean ({‖xu − µi‖ : xu ∈ Xi}).

There are 15 different combinations of the possible numerators and de-
nominators in our study, hence 15 different CVIs, which we will denote as
GDunn_dX_DY. In particular, GDunn_d1_D1 gives the original Dunn [18]
index.

2.4. CVIs based on near-neighbour graphs
Let NNM(i) = {j1, . . . , jM} denote the set of the i-th point’s M nearest

neighbours, 0 < ‖xi − xj1‖ < · · · < ‖xi − xjM‖ (assuming there are no tied
distances, otherwise, some small random noise can be added).

21–50) DuNN_OWAs_OWAc. Note that the original Dunn index (denoted
GDunn_d1_D1 above) can be viewed as:

Dunn(C) = Min ({‖xi − xj‖ : C(i) 6= C(j)})
Max ({‖xi − xj‖ : C(i) = C(j)}) . (9)

Here we propose the following generalisation of the above – a generalised
Dunn-type index based on the notion of the M -near-neighbour graph and

10

ordered weighted averaging [60] operators – convex combinations (weighted
sums) of ordered inputs. Namely:

DuNN(C) = OWAs ({‖xi − xj‖ : C(i) 6= C(j), i ∈ NNM(j) or j ∈ NNM(i)})
OWAc ({‖xi − xj‖ : C(i) = C(j), i ∈ NNM(j) or j ∈ NNM(i)}) .

(10)
As a measure of cluster separation we aggregate the ordered between-point
distances but only provided that they are part of the near-neighbour graph.
This will enable us to take the local point density into account and detect
well-separable clusters of even quite sophisticated shapes. In a similar man-
ner, cluster compactness will be based on the nearest neighbours as well.

Below we shall study pairs of OWAs and OWAc chosen amongst:

• Min,

• Max,

• Mean,

• SMinδ(q1, q2, . . . , qz) = ∑z
i=1 wi,zq(i), with wi,z = ψ(i;z,δ)∑z

j=z−3δ+1 ψ(j;z,δ) for
i > z − 3δ and 0 otherwise (“smooth minimum”),

• SMaxδ(q1, q2, . . . , qz) = ∑z
i=1 wi,zq(i), with wi,z = ψ(i;z,δ)∑3δ

j=1 ψ(j;1,δ)
for i ≤ 3δ

and 0 otherwise (“smooth maximum”),

where q(1) ≥ q(2) ≥ · · · ≥ q(z) and ψ(·;µ, σ) denotes the probability den-
sity function of the normal distribution with expectation µ and standard
deviation σ, see also [10].

For instance, DuNN_25_SMin:5_Max denotes a generalised Dunn index
based on each point’s 25 nearest neighbours. It uses SMin5 as a separation
measure (computed over a subset of 25n distances restricted to the pair of
points belonging to different clusters) and Max as a measure of compactness
(the remainder of the 25n distances comprised of point pairs belonging to the
same clusters). Moreover, we will study indices likeDuNN_25_Mean_Const,
where the denominator is fixed at 1.

In the sequel we will consider M = 5 and M = 25. In order to keep
the number of cases within reasonable limits, we will restrict ourselves to 30
different CVIs of this type (see Table 3 for a complete listing).

11

51,52) WCNN_M. The within-cluster near-neighbours (WCNN) index is
parametrised by M ≥ 1. It aims to reflect how many nearest neighbours
of every point actually belong to the very same cluster:

WCNN(C) = |C(i) = C(j) : j ∈ NNM(i)|
nM

. (11)

Ideally, WCNN(C) = 1. Hence, this is a measure of how well the clusters are
separated from each other.

Additionally, to prevent the formation of small clusters, we will assume
WCNN(C) = −∞ whenever there is a cluster of cardinality ≤M . Similarly
as above, we shall consider M ∈ {5, 25}.

3. Method

3.1. What is a valid cluster validity index?
As we have proclaimed in the introduction, our key assumption in this

paper is that a meaningful cluster validity measure I should be high whenever
it is asked to assess the quality of one of the reference partitions, and lower
if it is applied on other clusterings. In other words, useful CVIs should
encourage the results that agree with expert knowledge.

In order to be able to answer our main research question, i.e., which
cluster validity measures are valid, we need the following components:

• benchmark data sets for evaluating the methods (Section 3.2),

• a procedure for finding the partition that maximises a given CVI on
each dataset (Section 3.3),

• a measure for quantifying the degree of agreement between what a CVI
thinks is a good partition vs what experts have to say on this matter
(Section 3.4).

3.2. Benchmark Datasets
We shall use an extensive battery of clustering benchmarks [24]1, which

not only combines data that have already been used in a number of studies
[17, 20, 21, 28, 32, 55], but also features new test sets.

1Available at https://github.com/gagolews/clustering_benchmarks_v1.

12

https://github.com/gagolews/clustering_benchmarks_v1

Table 1: Benchmark datasets studied, see [24] and
https://github.com/gagolews/clustering_benchmarks_v1 for their visual depictions; l
gives the number of reference partitions and ks denote their possible cardinalities.

dataset ks l dataset ks l

1. fcps/atom 2 1 32. sipu/spiral 3 1
2. fcps/chainlink 2 1 33. sipu/unbalance 8 1
3. fcps/engytime 2 2 34. uci/ecoli 8 1
4. fcps/hepta 7 1 35. uci/ionosphere 2 1
5. fcps/lsun 3 1 36. uci/sonar 2 1
6. fcps/target 2, 6 2 37. uci/statlog 7 1
7. fcps/tetra 4 1 38. uci/wdbc 2 1
8. fcps/twodiamonds 2 1 39. uci/wine 3 1
9. fcps/wingnut 2 1 40. uci/yeast 10 1
10. graves/dense 2 1 41. wut/circles 4 1
11. graves/fuzzyx 2, 4, 5 6 42. wut/cross 4 1
12. graves/line 2 1 43. wut/graph 10 1
13. graves/parabolic 2, 4 2 44. wut/isolation 3 1
14. graves/ring 2 1 45. wut/labirynth 6 1
15. graves/ring_noisy 2 1 46. wut/mk1 3 1
16. graves/ring_outliers 2, 5 2 47. wut/mk2 2 1
17. graves/zigzag 3, 5 2 48. wut/mk3 3 1
18. graves/zigzag_noisy 3, 5 2 49. wut/mk4 3 1
19. graves/zigzag_outliers 3, 5 2 50. wut/olympic 5 1
20. other/chameleon_t4_8k 6 1 51. wut/smile 4, 6 2
21. other/chameleon_t5_8k 6 1 52. wut/stripes 2 1
22. other/hdbscan 6 1 53. wut/trajectories 4 1
23. other/iris 3 1 54. wut/trapped_lovers 3 1
24. other/iris5 3 1 55. wut/twosplashes 2 1
25. other/square 2 1 56. wut/windows 5 1
26. sipu/aggregation 7 1 57. wut/x1 3 1
27. sipu/compound 4, 5, 6 5 58. wut/x2 3 1
28. sipu/flame 2 2 59. wut/x3 4 1
29. sipu/jain 2 1 60. wut/z1 3 1
30. sipu/pathbased 3, 4 2 61. wut/z2 5 1
31. sipu/r15 8, 9, 15 3 62. wut/z3 4 1

13

Most importantly, each benchmark dataset comes with a set of l ≥ 1 ref-
erence labels that were assigned by experts. The case l > 1 reflects the situ-
ation where there might be multiple valid/plausible/useful partitions (com-
pare, e.g., [11]); we are dealing with an unsupervised learning problem after
all.

The original benchmark battery consists of 79 data instances, however 16
datasets are accompanied by labels that yield n(k − 1) > 50,000; they were
omitted for their computation would be too lengthy (namely: mnist/digits,
mnist/fashion, other/chameleon_t7_10k, other/chameleon_t8_8k, sipu/a1,
sipu/a2, sipu/a3, sipu/birch1, sipu/birch2, sipu/d31, sipu/s1, sipu/s2, sipu/s3,
sipu/s4, sipu/worms_2, sipu/worms_64). Also uci/glass has been removed
as one of its 25-near-neighbour graph’s connected components was too small
for the NN-based methods to succeed. This leaves us with 62 datasets in
total, see Table 1.

Further, all columns of 0 variance were removed and a tiny amount of
noise (Gaussian with µ = 0 and σ equal to 10−6 of each column’s sample
standard deviation) was added so as to assure the uniqueness of the clustering
results.

3.3. Finding optimal partitions (w.r.t. a given CVI)
From now on we assume that the reader is familiar with the basics of the

language of mathematical programming, see, e.g., [37, 49] for a comprehensive
overview.

For a predefined X and k, let us fix a cluster validity measure I : Ck → R.
Without loss in generality, we assume that the higher the I, the more useful
the partition. This is because we can always take I := −I, as we have done
with the Ball–Hall and Davies–Bouldin indices above.

For a given k-partition C, let NEIGHBOURS(C) denote the set of all
surjections like C ′ : [1 : n] onto→ [1 : k] with C ′(i) 6= C(i) for some i and
C ′(j) = C(j) for all j 6= i. In other words, it is the set of all k-partitions that
can be obtained from C by relocating a single point to some other cluster.

We are interested in finding a partition which is a solution to the optimi-
sation problem:

maximise
C∈Ck

I(C), (12)

i.e., C∗ ∈ Ck such that I(C∗) ≥ I(C) for all C ∈ Ck.

14

Remark 1. The solution to (12) is not unique; clusterings are defined up
to a permutation of the cluster numbers (IDs). For example, a 2-partition
of a 4-ary set encoded like (C(1), C(2), C(3), C(4)) = (1, 1, 2, 1) is seman-
tically equivalent to (2, 2, 1, 2). Moreover, it might happen that a dataset
exhibits a number of equally good splits. This is exactly the case when we ap-
ply WCNN_M on datasets whose M-near-neighbour graphs are disconnected
and the number of connected components is greater than k. For instance, as-
suming Y1, Y2, Y3 are disconnected, in this setting the 2-partition {Y1∪Y2, Y3}
is as good as {Y1, Y2 ∪ Y3}.

In general, the combinatorial optimisation problem (12) is extremely dif-
ficult to solve in practice. Enumerating all the possible solutions is virtually
impossible as the number of possible partitions is equal to the Stirling num-
ber of the second kind, S(n, k) = 1

k!
∑k
i=0(−1)i

(
k
i

)
(k − i)n which is O(kn),

and note that in our case 2 ≤ k � n.
In this paper, however, we shall make reasonable efforts towards find-

ing the maximum of the objective (12). In essence, for each dataset we
will generate dozens of “interesting” partitions (using existing state-of-the
art clustering algorithms and evolutionary-based heuristics, see Section 3.5)
each of which we shall then try to improve with an expansive variant of the
steepest ascent hill climbing (with tabu [27] search-like memoisation) that
itself guarantees to land in a local maximum of the objective (12).

The maximum of the objective (12) will be sought by means of the fol-
lowing variant of the hill climbing scheme.

Algorithm 1. With {C1, . . . , Cm} let us denote the set of initial candidate
solutions (see Section 3.5 for more details) ordered in such a way that I(C1) ≥
· · · ≥ I(Cm). For brevity of notation, we assume that I(∅) = −∞.

In: I :, C1, C2, . . . , Cm, P ∈ N;
1. T = ∅; (a “tabu” list)
2. C∗ = C1; (best solution so far)
3. for C = C1, C2, . . . , Cm do: (I(C1) ≥ · · · ≥ I(Cm))

3.1. p = 1;
3.2. C+ = ∅;
3.3. for each C ′ ∈ NEIGHBOURS(C) do:

3.3.1. if C ′ 6∈ T and I(C ′) > I(C+), then C+ = C ′;

15

3.4. if C+ = ∅ then continue to step 3; (cannot improve further)
3.5. T = T ∪ {C+}; (never visit C+ again)
3.6. C = C+;
3.7. if I(C) > I(C∗), then C∗ = C, else p = p+ 1;
3.8. if p ≤ P , then go to step 3.2; (try to improve current C+ next)

4. return C∗;

It is easily seen that the algorithm guarantees that the solution returned
cannot be further improved by relocating an individual point to a different
cluster. Hence, the return value is definitely a local maximum, however there
is of course no guarantee that the identified optimum is global. As we argue
below, though, it will turn out sufficient for our purposes.

We shall set the upper bound for the number of iterations without im-
provement, P , to 250 (we have rarely seen any improvements beyond 100,
though). This allows for the procedure to explore the area around the can-
didate solutions quite broadly. Note that the T set, which guarantees that
no partition is considered twice, is shared across all the iterations so that
the visited subspace is even broader. Hence, the search is more comprehen-
sive than if we had restarted the whole procedure independently for each
C1, . . . , Cm and then chose the best amongst the identified local maxima.

Remark 2. Note that the number of points in NEIGHBOURS(C) is O(n(k−
1)). Overall, the procedure for certain CVIs can be sped up by computing
I(C+) incrementally based on I(C ′) and the knowledge of which point is being
relocated to which cluster. For instance, the Silhouette index only requires an
O(nk) update instead of a full recompute worth of O(n2) time. The CVIs we
have considered gave the time complexity of steps 3.1–3.8 most often lying
between O(n2k2) and O(n3k2) (with constants d and M having some obvious
influence as well). The typical size of T at the end of the algorithm’s run
(i.e., the number of executions of step 3.5) when started from m = 5 random
points was 1000–2000.

3.4. Measuring similarity to reference partitions
For a given benchmark dataset X, let C$

1 , C
$
2 , . . . , C

$
l be the reference

partitions and k1, . . . , kl be their respective cardinalities.
Note that any clustering method c (for example, the maximiser of the

Caliński–Harabasz index or the Ward linkage) can be thought of as a function
that takes X and ki on input and yields a ki-partition of X on output, i.e.,
c(X, ki) ∈ Cki .

16

We will use the adjusted Rand index (ARI) [36, 53] to measure the sim-
ilarity between c(X, ki) and C$

i . Recall that two equivalent partitions yield
ARI equal to 1. Moreover, two “independent” (see [26] for discussion) clus-
terings have the expected ARI of 0. Negative ARIs will be replaced with 0
for better interpretability of the results.

In order to quantify the quality of the method c on X, we will evaluate its
outputs against all the available reference labellings and choose the highest
ARI in result:

QX(c) = max
{

ARI
(
c(X, k1), C$

1

)
, . . . ,ARI

(
c(X, kl), C$

l

)}
. (13)

This is to account for the fact that there might be many equally valid par-
titions and the (unsupervised) method c should be rewarded if it identifies
one of them (does not matter which one).

It is worth noting that only 13 datasets have l > 1, 11 of which come
with reference labellings that do not have identical cardinalities. Also, some
reference partitions include noise points – these were excluded during the
computations of the ARIs (after the output of c was determined, as none of
the clustering methods studied features a noise point detector). Overall, this
validation methodology conforms with [24].

3.5. Candidate solutions
To generate the list of candidate (initial) solutions used in Algorithm 1,

we will apply many different clustering algorithms on each dataset, including:

• the most popular hierarchical clustering methods (single, average, Ward,
centroid, complete linkage),

• Genie [23] (with different thresholds),

• information-theoretic algorithms (ITM [46] as well as IcA and GIc [9]),

• other methods in the well-established sklearn [50] package for Python:
k-means, Gaussian mixtures, spectral clustering with different kernels,
Birch (with a range of parameter values).

This gives 87 different combinations of algorithms and their setups. In Sec-
tion 4 we provide some technical details about their implementations. Note
that 12 of them will constitute the baseline in our empirical study below.

Also, we shall utilise the following heuristic solvers:

17

• particle swarm optimisation (via R package pso [4]),

• “global” optimisation by differential evolution [51] (DEoptim [45] in R).

They pinpoint local maxima based on 3–5 restarts from different initial candi-
date solutions. Both of them search over the continuous space R(V k)×d in such
a way that the clusters are represented by means of V k vantage points. V
vantage points represent one cluster (empirically, we have determined V = 5
be a good compromise between quality and speed). In every iteration, each
point is assigned to its closest vantage point, and, as a consequence, to a
cluster which is represented by this vantage point. This approach allows to
determine clusters of more sophisticated shapes than when simply V = 1
is utilised (as with V > 1 we consider different unions of cells in a Voronoi
diagram).

Additionally, to broaden the search space even further, we will pick 5
partitions completely at random, i.e., each C ∈ Ck being such that C(1), . . . ,
C(n) being independent random variables from the discrete uniform distribu-
tion on [1 : k]. Nevertheless, starting from a random partition never turned
out better than an assisted initialisation based on one of the aforementioned
candidate solutions.

Most importantly, as each dataset comes with a set of reference labels
given by experts, these shall be considered as well.

Overall, for each dataset, we have obtainedm ' 100 different clusterings2,
however, quite often there were duplicated entries, hence the effective m was
in the range 30–50.

An ideal index, if it existed, would be 100% concordant with expert la-
bels. That is, it would be impossible for the hill climbing method to improve
them any further. Note that when we maximise I, the reference partitions
are always amongst the initial candidate solutions which are fed to Algo-
rithm 1. Therefore, our procedure guarantees that all the good combinations
of indices and datasets must be identified. If the hill climbing method con-
verges to a different solution, it means that I promotes some points that are
less compatible with experts’ opinion.

2All results are available at https://github.com/gagolews/clustering_results_
v1.

18

https://github.com/gagolews/clustering_results_v1
https://github.com/gagolews/clustering_results_v1

Let us stress that neither I itself, nor the procedure for maximising it, is
“aware” of the existence of any external labels: only X and k are input to c,
not C$

i ; this is still an unsupervised learning method. Algorithm 1 converges
where it converges; the starting points are plentiful and there is a great
variety of them. Reference partitions are only used at the final evaluation
stage.

4. Experiments

4.1. Implementation
Experiments, data analysis, and visualisation tasks were performed us-

ing Python 3.8.6 (PyPI packages: numpy 1.19.0, scipy 1.5.1, pandas 1.0.3,
matplotlib 3.3.3, seaborn 0.11.1) and R 4.0.3 (CRAN packages: DEoptim
2.2-5 [45], pso 1.0.3 [4]).

The correctness of our C++ implementations3 of the cluster validity in-
dices was verified against R packages clusterCrit 1.2.8 and clusterSim
0.49-2 (wherever applicable). Our library turned out significantly faster than
the two reference ones. Moreover, we allowed for the computing of the in-
dices incrementally (as mentioned above), which was particularly beneficial
in terms of the run-time of Algorithm 1.

Overall, the computations took ca. 3 months of computing time with the
use of 2 computer clusters (within the allocated resource limits we have been
granted by ICM UW/PL-Grid and the School of IT at Deakin University).

4.2. Which index best agrees with expert knowledge?
Let us proceed with the evaluation of the agreement between the cluster

validity indices and expert knowledge.

4.2.1. GDunn_dX_DY
We first focus on the 15 generalised Dunn indices [6]. To recall, GDunn

indices are defined as the ratio of cluster separation (d) and compactness
(D).

Figure 3 gives the box-and-whisker plots for the Adjusted Rand indices
across the benchmark datasets studied. We clearly see that d1, i.e., the
pairwise minimum distance (used in the original Dunn index) outperforms

3Available at https://github.com/gagolews/optim_cvi.

19

https://github.com/gagolews/optim_cvi

the other measures. In this scenario, the Wilcoxon signed-rank test does not
find the choice of D significant (α = 0.05).

Also, the measures based on d5 are significantly worse than all other ones.
Perhaps it would be better if d5 was defined as the average squared point-
centroid distance, not just average raw distance; recall that a centroid is the
point that minimises exactly the square of the Euclidean metric.

0.0 0.2 0.4 0.6 0.8 1.0

GDunn_d1_D1
GDunn_d1_D2
GDunn_d1_D3
GDunn_d2_D1
GDunn_d2_D2
GDunn_d2_D3
GDunn_d3_D1
GDunn_d3_D2
GDunn_d3_D3
GDunn_d4_D1
GDunn_d4_D2
GDunn_d4_D3
GDunn_d5_D1
GDunn_d5_D2
GDunn_d5_D3

Figure 3: ARI: Generalised Dunn indices. We see that the choice of the cluster compact-
ness measure D is rather negligible. On the other hand, separation measure d1 = Min
performs best whilst d5 (averaged distance to cluster centres) is subpar.

4.2.2. DuNN
Figure 4 shows the empirical distribution of ARIs in the case of the near-

neighbour versions of the Dunn index.
For a fixed separation measure OWAs, OWAc equal to Min and Const

is never significantly worse (one-sided Wilcoxon test, α = 0.05) than Max
and Mean. Moreover, there is no significant difference between Min and
Const, therefore, applying Ockham’s razor, we conclude that the cluster
compactness could be omitted whatsoever (at least as far as our selection
of aggregation functions is concerned).

Setting OWAc at Const, interestingly, DuNN_25_SMin:5_Const signif-
icantly outperforms all the variants except DuNN_5_Mean_Const.

Moreover, DuNN_25_Min_Const is better than DuNN_5_Min_Const.
Also note that the behaviour of Max or its smoothened version is particularly
poor.

20

0.0 0.2 0.4 0.6 0.8 1.0

DuNN_25_Max_Const
DuNN_25_Max_Max

DuNN_25_Max_Mean
DuNN_25_Max_Min

DuNN_25_Mean_Const
DuNN_25_Mean_Max

DuNN_25_Mean_Mean
DuNN_25_Mean_Min
DuNN_25_Min_Const

DuNN_25_Min_Max
DuNN_25_Min_Mean

DuNN_25_Min_Min
DuNN_25_SMax:5_Const

DuNN_25_SMax:5_Min
DuNN_25_SMax:5_SMin:5

DuNN_25_SMin:5_Const
DuNN_25_SMin:5_Max

DuNN_25_SMin:5_SMax:5
DuNN_5_Max_Const

DuNN_5_Max_Max
DuNN_5_Max_Mean

DuNN_5_Max_Min
DuNN_5_Mean_Const

DuNN_5_Mean_Max
DuNN_5_Mean_Mean

DuNN_5_Mean_Min
DuNN_5_Min_Const

DuNN_5_Min_Max
DuNN_5_Min_Mean

DuNN_5_Min_Min

Figure 4: ARI: Near-neighbour-based DuNN indices. Disabling the use of a compactness
measure whatsoever (*_Const) might be preferred. Also, it is better to have the closest
pairs of points from different clusters as far away from each other as possible.

4.2.3. Other methods
As a base line, the above and remaining CVIs will be compared against

the outputs of 12 clustering algorithms:
1–5) Average, Centroid, Complete, Ward, Single – classical agglomerative

hierarchical clustering algorithms;
6–9) Genie_G0.1, Genie_G0.3, Genie_G0.5, Genie_G0.7 – the robust hi-

erarchical clustering algorithm Genie that we have proposed in [23],
with different thresholds for the Gini index of the inequity in cluster
sizes;

10) ITM – greedy divisive minimiser of an information theoretic criterion
over minimum spanning trees [46];

11) GaussMix – expectation-maximisation (EM) for Gaussian mixtures
with 100 restarts and each cluster having its own covariance matrix;

21

12) KMeans – Lloyd-like k-means algorithm with 10 restarts (note that this
is a heuristic to optimise the Caliński–Harabasz index/within-cluster
sum of squares).

Their implementations are included in Python packages (available via PyPI;
see their respective API documentation for more details on algorithms and
default values of their parameters in place) fastcluster 1.1.26 (Average,
Centroid, Complete, Ward; [47]), genieclust 0.9.4 (Genie_G0.x, Single;
[22]), sklearn 0.23.1 (GaussMix, KMeans; [50]). Moreover, the implemen-
tation of ITM [46] is available from GitHub4.

Tables 2 and 3 give the basic summary statistics on the empirical distri-
bution of the ARIs across the 62 benchmark datasets and all the methods
studied. Moreover, Figure 5 displays the boxplots.

We observe what follows:

• Our Genie algorithm [22] outperforms other methods. Note that it is
significantly faster than most other algorithms as it is based on the
minimum spanning tree of the pairwise distance graph.

• The lesser-known ITM method [46] performs relatively well.

• The near-neighbour-based DuNN indices that we have proposed in this
paper are much better than GDunn.

• The difference between DuNN_25_SMin:5_Const and WCNN_25 is
insignificant.

• Overall, the algorithms based on the near-neighbourhood (minimum
spanning trees can be considered a variant thereof, in some sense),
seem to be much more valid for clustering tasks.

• Next in line are Gaussian mixtures that detect clusters of specific
(spherical) shapes.

• Of course, k-means give similar results to the Caliński–Harabasz opti-
miser as the former is a heuristic to optimise the latter as the objective.
Also Ward is a greedy agglomerative maximiser of the same objective.

4See https://github.com/amueller/information-theoretic-mst; git commit
178fd43.

22

https://github.com/amueller/information-theoretic-mst

• Most other cluster validity measures seem to promote the clusterings
that are not concordant to expert knowledge which calls their relevance
into question.

• SilhouetteW and BallHall – the weighted-by-cluster-cardinality ver-
sions of Silhouette and CalińskiHarabasz, respectively, perform worse
than their unadjusted counterparts.

• The poor performance of some methods may be partially explained by
the inequality of the cluster sizes they output – some of them are prone
to generating few very large clusters and a number of very small ones
(perhaps even being singleton objects). This includes Single (median
Gini index of the cluster sizes=0.85), DaviesBouldin (0.95), and Silhou-
etteW (0.98). On the other hand, Dunn_25_Max_Mean (median Gini
index of the cluster sizes=0.09), Dunn_5_Max_Mean (0.09), Caliński-
Harabasz (0.13), KMeans (0.15), ITM (0.17), and Genie_G0.1 (0.17)
produced the least skewed partition sizes. However, let us note that
this is not necessarily an accurate predictor of the clustering quality
(see also [22] for discussion).

• Note that some datasets are inherently hard to cluster (the outputs
of no algorithm matches the reference partition well); these include
uci/sonar (max ARI=0.036), uci/yeast (max ARI=0.181), and uci/iono-
sphere (max ARI=0.401).

4.3. Clustering of clustering algorithms
Let us perform an interesting exercise where we determine a grouping

of the clustering methods by means of the overall similarity of the results
they generate on all the benchmark datasets. This way, we will know which
methods (and CVIs) are “semantically” similar to each other.

We have computed the AR indices between all pairs of label vectors gen-
erated by all the methods (this time, reference/expert labels were not used).
We used the mean, the median, or the 3rd quartile of (1.0−ARI) to obtain
a single number that summarises the “distance” between the algorithms.

We have applied the agglomerative hierarchical clustering algorithm with
complete linkage so that the resulting dendrograms, which are depicted in
Figure 6, are more interpretable (this will give us the maximal aggregated
dissimilarities between all methods in a cluster). Note that we will be only
interested in groups of algorithms that have small pairwise distances.

23

The majority vote of the results obtained by means of all the three dissimi-
larity measures gives the following “consensus” clusters, where the algorithms
have quite high overall degree of similarity:

• CalińskiHarabasz, KMeans,

• DuNN_25_Mean_Const, DuNN_25_Mean_Min,

• DuNN_5_Min_Const, DuNN_5_Min_Min,

• DuNN_25_Min_Const, DuNN_25_Min_Min, DuNN_25_SMin:5_Const,

• DuNN_5_Mean_Const, DuNN_5_Mean_Min,

• GDunn_d1_D1, GDunn_d1_D2, GDunn_d1_D3, Single.

Let us note that:

• The above indicates again that in our task, the denominator (com-
pactness measure) in all the generalisations of the Dunn index has no
significant impact on the results. However, when CVIs are applied for
the purpose of selecting the optimal number of clusters, the conclusions
could be much different.

• GDunn and DuNN are not so similar, despite they both generalise the
same index, Dunn. On the other hand, the latter (to recall, it is based
on d1 = Min) is similar to Single linkage (which is determined through
a greedy (agglomerative) consumption of the nearest pairs of points; it
can be computed based on a minimum spanning tree).

• Ward is quite similar to CalińskiHarabasz, and KMeans, which was to
be expected as they tend to optimise the same objective function.

5. Conclusion and Future Work

We have studied whether cluster validity indices really promote partitions
that reflect what experts judge as meaningful. While some measures could
still be considered relevant in the task of selecting the right number of clus-
ters, it is better not to treat them as objective functions for identifying good
partitions. This is particularly the case with the Davies–Bouldin, Silhouette,

24

Ball–Hall, and the no-near-neighbour-based versions of the generalised Dunn
index.

In the future, we will verify the usability of our new near-neighbour-based
generalisations of the Dunn index in the problem of choosing the meaning-
ful number of clusters. Their advantage is that they take into account the
locality of the input points as well as the relative density of the points’ distri-
bution. Certainly, more combinations of OWA operators should be studied.

Acknowledgements

This research was supported by the Australian Research Council Discovery
Project ARC DP210100227 as well as the PL-Grid Infrastructure.

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

References

[1] D. Aloise, A. Deshpande, P. Hansen, P. Popat, NP-hardness of Euclidean
sum-of-squares clustering, Machine Learning 75 (2009) 245–248.

[2] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J.M. Pérez, I. Perona, An
extensive comparative study of cluster validity indices, Pattern Recog-
nition 46 (2013) 243–256.

[3] G. Ball, D. Hall, ISODATA: A novel method of data analysis and pattern
classification, Technical Report AD699616, 1965.

[4] C. Bendtsen, pso: Particle Swarm Optimization, 2012. R package ver-
sion 1.0.3; https://CRAN.R-project.org/package=pso.

[5] J. Bezdek, R. Ehrlich, W. Full, FCM: The fuzzy c-means clustering
algorithm, Computers & Geosciences 10 (1984) 191–203.

[6] J. Bezdek, N. Pal, Some new indexes of cluster validity, IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics) 28
(1998) 301–315.

25

https://CRAN.R-project.org/package=pso

0.0 0.2 0.4 0.6 0.8 1.0

Genie_G0.3
Genie_G0.5
Genie_G0.1

DuNN_25_Min_Min
DuNN_25_SMin:5_Const

DuNN_25_Min_Const
DuNN_25_Min_Max

WCNN_25
DuNN_25_SMin:5_SMax:5

DuNN_25_SMin:5_Max
DuNN_5_Mean_Const

DuNN_5_Mean_Min
DuNN_5_Min_Const

DuNN_5_Min_Min
DuNN_25_Min_Mean

ITM
DuNN_5_Min_Max

Genie_G0.7
WCNN_5

DuNN_25_Mean_Const
DuNN_25_Mean_Min

DuNN_5_Min_Mean
DuNN_25_Mean_Max

GaussMix
DuNN_5_Mean_Mean

GDunn_d1_D3
GDunn_d1_D2
GDunn_d1_D1

DuNN_25_Mean_Mean
DuNN_5_Mean_Max

KMeans
Ward

CalinskiHarabasz
Single

DuNN_5_Max_Min
DuNN_5_Max_Const

Average
GDunn_d2_D3
GDunn_d2_D2

Centroid
Silhouette
Complete

GDunn_d3_D2
GDunn_d3_D3
GDunn_d4_D2
GDunn_d4_D3

DuNN_5_Max_Max
GDunn_d2_D1
GDunn_d4_D1

DuNN_5_Max_Mean
GDunn_d3_D1

BallHall
DuNN_25_Max_Max

DuNN_25_Max_Const
DuNN_25_Max_Min

DuNN_25_SMax:5_SMin:5
DuNN_25_SMax:5_Const

DuNN_25_SMax:5_Min
DaviesBouldin

DuNN_25_Max_Mean
GDunn_d5_D2

SilhouetteW
GDunn_d5_D1
GDunn_d5_D3

Figure 5: ARI: All methods (ordered by the average ARI). The Genie algorithm outper-
forms other clustering approaches. Near-neighbour-based cluster validity measures reflect
expert knowledge quite well.

26

Table 2: ARI: Basic summary statistics; part I.

Method Mean St.Dev. Q1 Median Q3
Average 0.47 0.38 0.10 0.44 0.88
Centroid 0.44 0.39 0.05 0.41 0.86
Complete 0.43 0.33 0.17 0.36 0.72
GaussMix 0.63 0.38 0.36 0.76 0.99
Genie_G0.1 0.73 0.32 0.50 0.86 1.00
Genie_G0.3 0.78 0.29 0.57 0.98 1.00
Genie_G0.5 0.77 0.32 0.59 0.97 1.00
Genie_G0.7 0.68 0.38 0.29 0.96 1.00
ITM 0.68 0.28 0.53 0.67 1.00
KMeans 0.50 0.35 0.18 0.48 0.84
Single 0.49 0.47 0.00 0.52 1.00
Ward 0.50 0.35 0.19 0.50 0.83
BallHall 0.40 0.40 0.01 0.29 0.85
CalińskiHarabasz 0.49 0.35 0.18 0.48 0.84
DaviesBouldin 0.31 0.37 0.00 0.12 0.51
Silhouette 0.44 0.37 0.11 0.43 0.72
SilhouetteW 0.15 0.29 0.00 0.00 0.10
WCNN_25 0.71 0.38 0.43 1.00 1.00
WCNN_5 0.67 0.40 0.32 0.99 1.00
GDunn_d1_D1 0.58 0.44 0.01 0.74 1.00
GDunn_d1_D2 0.59 0.45 0.01 0.77 1.00
GDunn_d1_D3 0.59 0.45 0.01 0.77 1.00
GDunn_d2_D1 0.40 0.34 0.07 0.37 0.63
GDunn_d2_D2 0.46 0.32 0.14 0.48 0.70
GDunn_d2_D3 0.46 0.33 0.13 0.46 0.72
GDunn_d3_D1 0.40 0.35 0.02 0.38 0.63
GDunn_d3_D2 0.43 0.36 0.08 0.44 0.79
GDunn_d3_D3 0.42 0.36 0.07 0.41 0.77
GDunn_d4_D1 0.40 0.36 0.01 0.38 0.63
GDunn_d4_D2 0.42 0.36 0.07 0.43 0.73
GDunn_d4_D3 0.41 0.36 0.03 0.39 0.72
GDunn_d5_D1 0.13 0.20 0.02 0.07 0.14
GDunn_d5_D2 0.16 0.19 0.02 0.09 0.23
GDunn_d5_D3 0.12 0.28 0.00 0.00 0.01

27

Table 3: ARI: Basic summary statistics; part II.

Method Mean St.Dev. Q1 Median Q3
DuNN_5_Max_Const 0.47 0.44 0.09 0.26 1.00
DuNN_5_Mean_Const 0.70 0.38 0.44 0.99 1.00
DuNN_5_Min_Const 0.69 0.39 0.34 0.97 1.00
DuNN_25_Max_Const 0.37 0.39 0.05 0.20 0.60
DuNN_25_Mean_Const 0.67 0.38 0.31 0.92 1.00
DuNN_25_Min_Const 0.72 0.36 0.42 0.97 1.00
DuNN_25_SMax:5_Const 0.35 0.39 0.06 0.20 0.55
DuNN_25_SMin:5_Const 0.72 0.37 0.42 0.99 1.00
DuNN_5_Max_Min 0.48 0.43 0.09 0.32 1.00
DuNN_5_Mean_Min 0.69 0.38 0.39 0.99 1.00
DuNN_5_Min_Min 0.69 0.39 0.34 0.97 1.00
DuNN_25_Max_Min 0.37 0.39 0.05 0.20 0.65
DuNN_25_Mean_Min 0.67 0.38 0.31 0.92 1.00
DuNN_25_Min_Min 0.72 0.35 0.42 0.97 1.00
DuNN_25_SMax:5_SMin:5 0.36 0.38 0.05 0.24 0.39
DuNN_25_SMax:5_Min 0.34 0.39 0.01 0.20 0.48
DuNN_5_Max_Max 0.40 0.47 0.00 0.06 1.00
DuNN_5_Mean_Max 0.57 0.44 0.06 0.61 1.00
DuNN_5_Min_Max 0.68 0.40 0.31 0.97 1.00
DuNN_25_Max_Max 0.38 0.41 0.00 0.19 0.89
DuNN_25_Mean_Max 0.64 0.39 0.26 0.82 1.00
DuNN_25_Min_Max 0.71 0.36 0.47 0.97 1.00
DuNN_25_SMin:5_Max 0.70 0.37 0.41 0.99 1.00
DuNN_25_SMin:5_SMax:5 0.71 0.37 0.46 0.98 1.00
DuNN_5_Max_Mean 0.40 0.47 0.00 0.04 1.00
DuNN_5_Mean_Mean 0.60 0.44 0.04 0.93 1.00
DuNN_5_Min_Mean 0.66 0.41 0.25 0.95 1.00
DuNN_25_Max_Mean 0.27 0.42 0.00 0.02 0.30
DuNN_25_Mean_Mean 0.57 0.43 0.08 0.60 1.00
DuNN_25_Min_Mean 0.69 0.38 0.37 0.92 1.00

28

1.0 0.6 0.2

GDunn_d5_D3
DaviesBouldin
SilhouetteW
DuNN_5_Max_Max
DuNN_5_Max_Mean
DuNN_25_Max_Mean
Single
GDunn_d1_D3
GDunn_d1_D1
GDunn_d1_D2
DuNN_5_Mean_Max
DuNN_5_Mean_Min
DuNN_5_Mean_Const
DuNN_5_Mean_Mean
DuNN_5_Min_Max
DuNN_5_Min_Mean
DuNN_25_Mean_Max
DuNN_25_Mean_Mean
DuNN_25_Mean_Const
DuNN_25_Mean_Min
Genie_G0.5
DuNN_25_SMin:5_Const
DuNN_25_Min_Const
DuNN_25_Min_Min
Genie_G0.7
DuNN_5_Min_Const
DuNN_5_Min_Min
DuNN_25_Min_Mean
DuNN_25_SMin:5_SMax:5
DuNN_25_Min_Max
DuNN_25_SMin:5_Max
WCNN_25
WCNN_5
GDunn_d5_D1
GDunn_d5_D2
GaussMix
ITM
Genie_G0.1
Genie_G0.3
GDunn_d2_D2
GDunn_d2_D3
Ward
CalinskiHarabasz
KMeans
Complete
BallHall
Average
Centroid
GDunn_d2_D1
GDunn_d3_D1
GDunn_d4_D1
Silhouette
GDunn_d3_D2
GDunn_d4_D2
GDunn_d3_D3
GDunn_d4_D3
DuNN_25_Max_Max
DuNN_25_SMax:5_SMin:5
DuNN_5_Max_Const
DuNN_5_Max_Min
DuNN_25_SMax:5_Const
DuNN_25_SMax:5_Min
DuNN_25_Max_Const
DuNN_25_Max_Min

1.0 0.6 0.2

GDunn_d5_D3
DuNN_5_Mean_Mean
DuNN_5_Max_Max
DuNN_5_Max_Mean
DuNN_25_Max_Mean
GDunn_d1_D1
Single
GDunn_d1_D2
GDunn_d1_D3
DuNN_25_Max_Min
DuNN_25_SMax:5_Min
DuNN_25_SMax:5_Const
DuNN_5_Max_Min
DuNN_25_SMax:5_SMin:5
DuNN_5_Max_Const
DuNN_25_Max_Const
DuNN_25_Max_Max
DaviesBouldin
SilhouetteW
DuNN_5_Min_Mean
DuNN_5_Min_Max
DuNN_5_Min_Const
DuNN_5_Min_Min
ITM
Genie_G0.1
Genie_G0.3
DuNN_25_Min_Mean
DuNN_25_SMin:5_Const
DuNN_25_Min_Const
DuNN_25_Min_Min
DuNN_25_SMin:5_SMax:5
DuNN_25_Min_Max
DuNN_25_SMin:5_Max
DuNN_25_Mean_Const
DuNN_25_Mean_Min
Genie_G0.5
Genie_G0.7
WCNN_25
WCNN_5
DuNN_5_Mean_Const
DuNN_5_Mean_Min
DuNN_5_Mean_Max
DuNN_25_Mean_Max
DuNN_25_Mean_Mean
GDunn_d5_D1
GDunn_d5_D2
GDunn_d2_D1
Complete
GaussMix
Ward
CalinskiHarabasz
KMeans
GDunn_d2_D2
GDunn_d2_D3
BallHall
Average
Centroid
GDunn_d3_D1
GDunn_d4_D1
Silhouette
GDunn_d3_D2
GDunn_d3_D3
GDunn_d4_D2
GDunn_d4_D3

1.0 0.6 0.2

GDunn_d5_D3
DaviesBouldin
SilhouetteW
GDunn_d2_D1
GDunn_d3_D1
GDunn_d4_D1
Silhouette
GDunn_d4_D2
GDunn_d4_D3
GDunn_d3_D2
GDunn_d3_D3
Complete
Average
Centroid
BallHall
GaussMix
GDunn_d2_D2
GDunn_d2_D3
Ward
CalinskiHarabasz
KMeans
GDunn_d5_D1
GDunn_d5_D2
DuNN_25_Max_Mean
DuNN_5_Max_Mean
DuNN_5_Max_Max
DuNN_5_Max_Const
DuNN_5_Max_Min
Single
GDunn_d1_D1
GDunn_d1_D2
GDunn_d1_D3
Genie_G0.1
ITM
DuNN_5_Mean_Max
DuNN_5_Mean_Mean
Genie_G0.7
DuNN_5_Min_Max
DuNN_5_Min_Mean
DuNN_5_Min_Const
DuNN_5_Min_Min
Genie_G0.3
Genie_G0.5
DuNN_25_Mean_Const
DuNN_25_Mean_Min
DuNN_25_Min_Max
DuNN_25_SMin:5_Max
DuNN_25_SMin:5_SMax:5
DuNN_25_Min_Mean
DuNN_25_SMin:5_Const
DuNN_25_Min_Const
DuNN_25_Min_Min
WCNN_25
WCNN_5
DuNN_5_Mean_Const
DuNN_5_Mean_Min
DuNN_25_Mean_Max
DuNN_25_Mean_Mean
DuNN_25_Max_Max
DuNN_25_Max_Const
DuNN_25_Max_Min
DuNN_25_SMax:5_SMin:5
DuNN_25_SMax:5_Const
DuNN_25_SMax:5_Min

Figure 6: Complete linkage with Median(1.0-ARI), Q3(1.0-ARI), Mean(1.0-ARI), respec-
tively. Only clusters that are formed at low dissimilarity levels (branches with connectors
in the right parts of each figure) can be considered meaningful.

29

[7] M. Brun, C. Sima, J. Hua, J. Lowey, B. Carroll, E. Suh, E.R.
Dougherty, Model-based evaluation of clustering validation measures,
Pattern Recognition 40 (2007) 807–824.

[8] T. Caliński, J. Harabasz, A dendrite method for cluster analysis, Com-
munications in Statistics 3 (1974) 1–27.

[9] A. Cena, Adaptive hierarchical clustering algorithms based on data ag-
gregation methods, Ph.D. thesis, Systems Research Institute, Polish
Academy of Sciences, 2018. In Polish.

[10] A. Cena, M. Gagolewski, Genie+OWA: Robustifying hierarchical clus-
tering with OWA-based linkages, Information Sciences 520 (2020) 324–
336.

[11] S. Dasgupta, V. Ng, Single data, multiple clusterings, in: Proc. NIPS
Workshop Clustering: Science or Art? Towards Principled Approaches,
2009. http://clusteringtheory.org.

[12] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI–1 (1979)
224–227.

[13] K.G. Dhal, A. Das, S. Ray, J. Gálvez, Randomly attracted rough firefly
algorithm for histogram based fuzzy image clustering, Knowledge-Based
Systems 216 (2021) 106814.

[14] E. Dimitriadou, S. Dolnicar, F. Leisch, A. Weingessel, More insight into
clustering: Comparison of cluster algorithms and evaluation of indexes
for determining the correct number of clusters, Methods of Psychological
Research 4 (1999) 65–66.

[15] D.T. Dinh, V.N. Huynh, S. Sriboonchitta, Clustering mixed numeri-
cal and categorical data with missing values, Information Sciences 571
(2021) 418–442.

[16] M. Du, R. Wang, R. Ji, X. Wang, Y. Dong, ROBP a robust border-
peeling clustering using Cauchy kernel, Information Sciences 571 (2021)
375–400.

30

http://clusteringtheory.org

[17] D. Dua, C. Graff, UCI Machine Learning Repository, 2021. http://
archive.ics.uci.edu/ml.

[18] J. Dunn, A fuzzy relative of the ISODATA process and its use in de-
tecting compact well-separated clusters, Journal of Cybernetics 3 (1974)
32–57.

[19] A.W.F. Edwards, L.L. Cavalli-Sforza, A method for cluster analysis,
Biometrics 21 (1965) 362–375.

[20] P. Fränti, R. Mariescu-Istodor, C. Zhong, XNN graph, Lecture Notes in
Computer Science 10029 (2016) 207–217.

[21] P. Fränti, S. Sieranoja, K-means properties on six clustering benchmark
datasets, Applied Intelligence 48 (2018) 4743–4759.

[22] M. Gagolewski, genieclust: Fast and robust hierarchical clustering, Soft-
wareX 15 (2021) 100722.

[23] M. Gagolewski, M. Bartoszuk, A. Cena, Genie: A new, fast, and outlier-
resistant hierarchical clustering algorithm, Information Sciences 363
(2016) 8–23.

[24] M. Gagolewski, et al., Benchmark suite for clustering algo-
rithms – version 1, 2020. https://github.com/gagolews/clustering_
benchmarks_v1, doi:10.5281/zenodo.3815066.

[25] M. Garey, D. Johnson, H. Witsenhausen, The complexity of the gener-
alized Lloyd–Max problem, IEEE Transactions on Information Theory
28 (1982) 255–256.

[26] A.J. Gates, Y.Y. Ahn, The impact of random models on clustering sim-
ilarity, Journal of Machine Learning Research 18 (2017) 1–28.

[27] F. Glover, Future paths for integer programming and links to artificial
intelligence, Computers & Operations Research 13 (1986) 533–549.

[28] D. Graves, W. Pedrycz, Kernel-based fuzzy clustering: A comparative
experimental study, Fuzzy Sets and Systems 161 (2010) 522–543.

[29] M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation
techniques, Journal of Intelligent Information Systems (2001) 107–145.

31

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/gagolews/clustering_benchmarks_v1
https://github.com/gagolews/clustering_benchmarks_v1

[30] R. Isimeto, C. Yinka-Banjo, C.O. Uwadia, D.C. Alienyi, An enhanced
clustering analysis based on glowworm swarm optimization, in: 2017
IEEE 4th International Conference on Soft Computing Machine Intelli-
gence (ISCMI), pp. 42–49.

[31] M. Jamil, X.S. Yang, A literature survey of benchmark functions for
global optimization problems, International Journal of Mathematical
Modelling and Numerical Optimisation 4 (2013).

[32] G. Karypis, E. Han, V. Kumar, CHAMELEON: Hierarchical clustering
using dynamic modeling, Computer 32 (1999) 68–75.

[33] M. Kim, R. Ramakrishna, New indices for cluster validity assessment,
Pattern Recognition Letters 26 (2005) 2535–2363.

[34] R. Kuo, Y. Zheng, T.P.Q. Nguyen, Metaheuristic-based possibilistic
fuzzy k-modes algorithms for categorical data clustering, Information
Sciences 557 (2021) 1–15.

[35] G. Lance, W. Williams, A general theory of classification sorting strate-
gies: 1. Hierarchical systems, Computer Journal (1967) 373–380.

[36] H. Lawrence, A. Phipps, Comparing partitions, Journal of Classification
2 (1985) 193–218.

[37] J. Lee, A First Course in Combinatorial Optimisation, Cambridge Uni-
versity Press, 2011.

[38] H. Li, S. Zhang, X. Ding, C. Zhang, P. Dale, Performance evaluation
of cluster validity indices (cvis) on multi/hyperspectral remote sensing
datasets, Remote Sensing 8 (2016).

[39] S. Liang, D. Han, Y. Yang, Cluster validity index for irregular clustering
results, Applied Soft Computing 95 (2020) 106583.

[40] Y. Liu, Y. Jiang, T. Hou, F. Liu, A new robust fuzzy clustering validity
index for imbalanced data sets, Information Sciences 547 (2021) 579–
591.

[41] S. Lloyd, Least squares quantization in PCM, IEEE Transactions on
Information Theory 28 (1957 (1982)) 128–137. Originally a 1957 Bell
Telephone Laboratories Research Report; republished in 1982.

32

[42] U. Maulik, S. Bandyopadhyay, Performance evaluation of some clus-
tering algorithms and validity indices, IEEE Transactions on Pattern
Analysis and Machine Intelligence 24 (2002) 1650–1654.

[43] G.W. Milligan, M.C. Cooper, An examination of procedures for deter-
mining the number of clusters in a data set, Psychometrika 50 (1985)
159–179.

[44] G. Mishra, A.K. Kar, A.C. Mishra, S.K. Mohanty, M. Panda, SEND: A
novel dissimilarity metric using ensemble properties of feature space for
clustering numerical data, Information Sciences 574 (2021) 279–296.

[45] K. Mullen, D. Ardia, D. Gil, D. Windover, J. Cline, DEoptim: An
R package for global optimization by differential evolution, Journal of
Statistical Software 40 (2011) 1–26.

[46] A. Müller, S. Nowozin, C. Lampert, Information theoretic clus-
tering using minimum spanning trees, in: Proc. German Confer-
ence on Pattern Recognition, 2012. https://github.com/amueller/
information-theoretic-mst.

[47] D. Müllner, fastcluster: Fast hierarchical, agglomerative clustering rou-
tines for R and Python, Journal of Statistical Software 53 (2013) 1–18.

[48] S.J. Nanda, G. Panda, A survey on nature inspired metaheuristic algo-
rithms for partitional clustering, Swarm and Evolutionary Computation
16 (2014) 1–18.

[49] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, 2006.

[50] F. Pedregosa, et al., Scikit-learn: Machine learning in Python, Journal
of Machine Learning Research 12 (2011) 2825–2830.

[51] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution – A Prac-
tical Approach to Global Optimization, Springer-Verlag, 2006.

[52] R. Qaddoura, H. Faris, I. Aljarah, An efficient evolutionary algorithm
with a nearest neighbor search technique for clustering analysis, Ambient
Intell Human Comput (2020).

33

https://github.com/amueller/information-theoretic-mst
https://github.com/amueller/information-theoretic-mst

[53] M. Rezaei, P. Fränti, Set matching measures for external cluster validity,
IEEE Transactions on Knowledge and Data Engineering 28 (2016) 2173–
2186.

[54] P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis, Journal of Computational and Applied
Mathematics 20 (1987) 53–65.

[55] A. Ultsch, Clustering with SOM: U*C, in: Workshop on Self-Organizing
Maps, WSOM 2005, 2005, pp. 75–82.

[56] A. Vij, P. Khandnor, Validity of internal cluster indices, in: Interna-
tional Conference on Computational Systems for Sustainable Solutions,
pp. 388–395.

[57] J.H. Ward Jr., Hierarchical grouping to optimize an objective function,
Journal of the American Statistical Association 58 (1963) 236–244.

[58] Q. Xu, Q. Zhang, J. Liu, B. Luo, Efficient synthetical clustering validity
indexes for hierarchical clustering, Expert Systems with Applications
151 (2020) 113367.

[59] R. Xu, J. Xu, D.C. Wunsch, A comparison study of validity indices
on swarm-intelligence-based clustering, IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 42 (2012) 1243–1256.

[60] R.R. Yager, On ordered weighted averaging aggregation operators in
multicriteria decision making, IEEE Transactions on Systems, Man, and
Cybernetics 18 (1988) 183–190.

[61] S. Zhu, L. Xu, E.D. Goodman, Evolutionary multi-objective auto-
matic clustering enhanced with quality metrics and ensemble strategy,
Knowledge-Based Systems 188 (2020) 105018.

34

	1 Introduction
	2 Cluster validity indices
	2.1 CVIs based on cluster centroids
	2.2 Silhouettes
	2.3 Generalised Dunn indices
	2.4 CVIs based on near-neighbour graphs

	3 Method
	3.1 What is a valid cluster validity index?
	3.2 Benchmark Datasets
	3.3 Finding optimal partitions (w.r.t. a given CVI)
	3.4 Measuring similarity to reference partitions
	3.5 Candidate solutions

	4 Experiments
	4.1 Implementation
	4.2 Which index best agrees with expert knowledge?
	4.2.1 GDunn_dX_DY
	4.2.2 DuNN
	4.2.3 Other methods

	4.3 Clustering of clustering algorithms

	5 Conclusion and Future Work

