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Abstract

For a certain moment, the information volume represented in a probability space

can be accurately measured by Shannon entropy. But in real life, the results of

things usually change over time, and the prediction of the information volume

contained in the future is still an open question. Deng entropy proposed by

Deng in recent years is widely applied on measuring the uncertainty, but its

physical explanation is controversial. In this paper, we give Deng entropy a new

explanation based on the fractal idea, and proposed its generalization called

time fractal-based (TFB) entropy. The TFB entropy is recognized as predicting

the uncertainty over a period of time by splitting times, and its maximum value,

called higher order information volume of mass function (HOIVMF), can express

more uncertain information than all of existing methods.

Keywords: Dempster-Shafer theory, Time fractal-based entropy, Information

volume, Mass function, Time splitting, Generalized Deng entropy

1. Introduction

In order to deal with the uncertain events described by probability theory

(PT), Shannon proposed information entropy called Shannon entropy in [1],

which has satisfactory performance in describing the mutually exclusive infor-

mation. For a probability distribution, Shannon entropy represents the infor-

mation volume of it in the space and moment. For a random variable with the
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number of mutually exclusive events n, when it is uniformly distributed, it has

the largest information volume log n, which represents the maximum informa-

tion volume that can be expressed by probability theory (PT) for n mutually

exclusive events in certain moment and space. But in real life, there are many

events that cannot be linearly represented by probability distributions. On

the space scale, Mandelbrot [2] proposed the fractal theory; on the time scale,

Lorenz [3] proposed the chaos theory. For processing incomplete mutually ex-

clusive information, Zadeh [4] proposed fuzzy set theory, and developed into Z

number [5, 6], D number [7, 8], intuitionistic fuzzy set [9], Pythagoras fuzzy

set [10]. They are widely used in medical diagnosis [11], multi-criteria decision-

making[12, 13, 14], reliability analysis [15, 16]. Dempster and Shafer propose

Dempster-Shafer evidence theory based on the multi-value probability mapping

in [17] and [18]. Because the Dempster-Shafer theory (DST) can express more

uncertain information than probability theory, it is applied on multi-source in-

formation fusion [19][20], predicting interference effect [21], pattern recognition

[22] and classification decision [23, 24], and further extended to complex evi-

dence theory [25, 26].

How to measure the uncertainty of nonlinear system or incomplete mutually

exclusive is an open issue [27, 28, 29]. Zmeska [30] puts forward fractal entropy

for fractal theory to describe the uncertainty of a nonlinear system, and Lutz

[31] uses fractal dimension to describe individual strings and sequences, which

provides the possibility for the application of fractal ideas in information pro-

cessing. In DST, many uncertainty measures have been proposed recently, the

most widely applied of them including JS entropy [32], Deng entropy [33] and

SU uncertainty measurement [34]. However, according to the total uncertainty

measure requirements proposed by Kiler [35] and Abellàn [36], Deng entropy [33]

produces undesirable results shown in [37][38]. SU uncertainty measurement [34]

has unreasonable results in [39] if we respectively discuss the discord and non-

specificity parts proposed by Yager [40]. In terms of reality, JS entropy [32] has

no physical model corresponding to Shannon entropy. Besides, the eXtropy[41]

and negation[42] also can be used in uncertainty measure. Based on above,
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we firstly combine fractal idea with belief entropy and proposed fractal-based

(FB) entropy in [39], It has better performance than all previous methods in

measuring the uncertainty at a certain moment. But if we consider a period of

time, FB entropy cannot be used to measure the uncertainty of basic probability

assignment (BPA) in DST. So this paper proposes a generalized Deng entropy,

called time fractal-based (TFB) entropy, which expresses the uncertainty over

a period of time by splitting time to segments.

Similar to the information volume in probability theory (PT), in Dempster-

Shafer theory (DST), Deng [43] puts forward the information volume of mass

function based on fractal idea and BPA of maximum Deng entropy, which is

the first time to apply fractal idea on DST. But because of Deng’s information

volume splitting the BPA based on Deng entropy in a same proportion repeat-

edly, it cannot reach the maximum value in each order, and when the initial

BPA or splitting proportion is changed, the maximum information volume also

changes. The information volume corresponding to our proposed FB entropy

[39] can represent the information volume of mass function at a certain moment.

However, the uncertain information in reality changing with time, this paper,

based on the TFB entropy, proposes the higher order information volume of

mass function (HOIVMF), which can express more uncertain information than

Deng’s method.

After the above introduction, the structure of paper is shown as follows:

• Some preliminary knowledge is introduced in the Section2, which can help

readers understand the paper more easily.

• In Section3. We give a new explanation of Deng entropy and introduced

time fractal-based (TFB) entropy through a case. Then analyzing the

properties of TFB entropy by some numerical examples.

• Section4 is the core of the paper, the maximum k-order TFB entropy is cal-

culated and the mathematical reasoning is shown. The higher order in-

formation volume of mass function based on the maximum k-order TFB

entropy is proposed.
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• Section5 summarizes the contributions of the paper, and puts forward the

prospects for future research directions and contents.

2. Preliminaries

This Section introduces the Dempster-Shafer theory (DST), Shannon en-

tropy and its information volume, Deng entropy, FB entropy and other prelim-

inary knowledge.

2.1. Dempster-Shafer theory

As a generalization of probability theory (PT), it can express more uncertain

information than probability theory, whether in space or time. Hence, it has

been well studied, including evidential reasoning [44, 45], classification [46, 47,

48], industrial alarm system [49, 50], etc.

Definition 2.1 (DST). For a finite element set Θ = {θ1, θ2, . . . , θn}, it is

called a discernment framework to describe the state of evidence. Its power set

X = 2θ = {∅, {θ1}, . . . , {θn}, {θ1θ2}, . . . {θ1 . . . θn}} is composed with all subsets

of Θ, and each subset is called the focal element. Mass functions of them called

basic probability assignment (BPA) are usually used to express the degree of

support in the evidence, and the mass function should satisfy[17][18]:

m(∅) = 0; m(A) ≥ 0;
∑
A∈X

m(A) = 1. (1)

How to deal with the BPA of multi-element focal elements is the key to handle

uncertainty of DST. Smets [51] transforms BPA into probability distribution

by average distributing, but this loses its non-specificity. Abellàn et al. ex-

presse BPA by using belief interval[52], but there are limitations in processing

data. Some researchers focus on the BPA study of conflict coefficient [53, 54],

combination [55, 56], etc.
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2.2. Information entropy

Entropy is useful to measure uncertainty of information [57]. Especially,

Shannon entropy has a wide range of applications in information theory, and it

is now the most commonly used tool to express the uncertainty.

Definition 2.2 (Shannon entropy). For a n-dimensional random variable

P , its probability distribution is P = {p1, p2, . . . , pn}, and
∑n
i=1 pi = 1. The

Shannon entropy of P is defined as[1]

H(P ) = −
n∑
i=1

pi log pi. (2)

When ∀i = 1→ n, pi = 1
n , the Shannon entropy reach the maximum log n.

The n-dimensional maximum Shannon entropy represents the maximum infor-

mation volume of n-dimensional random variable expressed by the probability

distribution. For the DST, we propose the fractal-based (FB) entropy based on

the fractal idea.

Definition 2.3 (FB entropy). For a n-dimensional discernment framework

Θ, its power set is X = 2Θ. The fractal-based entropy is defined as [39]:

EFB(Θ) = −
∑
Fi∈X

mF (Fi) logmF (Fi), (3)

where mF (Fi) is the representation of BPA in the dimension of probability dis-

tribution. It is defined as:

mF (Fi) =
m(Fi)

2|Fi| − 1
+

∑
Fi⊆Gi∩|Fi|<|Gi|

m(Gi)

2|Gi| − 1
. (4)

If and only if m(Θ) = 1 or mF (Fi) = 1
2|Θ|−1

, the FB entropy reaches the

maximum value log(2|Θ| − 1).

FB entropy can reasonably represent the information volume expressed by

BPA at a certain moment. This method not only meets the requirements of

total uncertainty measurement proposed by Kiler [35] and Abellàn [36], but is

superior to all existing methods as well. Deng proposes Deng entropy in [33],

which is the first method to combine power set ideas with belief entropy.
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Definition 2.4 (Deng entropy). For a n-dimensional discernment framework

Θ, its power set is X = 2Θ. The Deng entropy is defined as [33]:

Ed(Θ) = −
∑
Fi∈X

m(Fi) log
m(Fi)

2|Fi| − 1
. (5)

In order to show more intuitively, Deng entropy can also be written as follows:

Ed(Θ) = −
∑
Fi∈X

mω
d (Fi) logmω

d (Fi), (6)

where mω
d (Fi) = m(ω)

2|ω|−1
(ω ∈ X and Fi ⊆ ω). If and only if ∀Fi m(Fi) =

2|Fi|−1∑
Gi∈X

2|Gi|−1 or mω
d (Fi) = 1∑

Gi∈X
2|Gi|−1

, the Deng entropy reaches the maxi-

mum value [] log(
∑
Fi∈X(2|Fi| − 1)).

Different from FB entropy, Deng entropy thinks that the subset after split-

ting of multi-element subsets cannot be directly added to the atomic subset, so

Deng entropy can represent more information volume than FB entropy. Figure1

shows the different operations of FB entropy and Deng entropy on BPA during

splitting.

Figure 1: FB entropy and Deng entropy’s splitting of BPA

2.3. Information volume of mass function

According to the fractal idea and the maximum Deng entropy distribution,

Deng proposes the information volume of mass function[].

6



Definition 2.5 (Information volume of mass function). For a n-dimensional

discernment framework Θ, its power set is X = 2Θ. The information volume of

mass function is defined by following steps[]:

Step1 Input the BPA m(Fi) of focal elements set X.

Step2 Using the proportion of the maximum Deng entropy distribution is con-

tinuously split the mass function of the multi-element focal elements. Put

the result of each split into Deng entropy formula until the increase of

Deng entropy is less than ε, where ε is error coefficient.

Step3 Output the Deng entropy of the last iteration.

In order to show the splitting process more intuitively, Figure 2 shows the

corresponding splitting method of the 2-dimensional discernment framework

Θ = {X0, Y0}. The information volume of mass function proposed by Deng uti-

Figure 2: Deng’s information volume of mass function [43]

lizes the idea of fractal for the first time, but it splitting the existing BPA, rather

than the discernment framework, so the physical meaning of Deng’s information

volume is not clear yet.
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3. Time fractal-based belief entropy

In this section, a virus invasion case is used to give a new explanation to

Deng entropy and generalized it to time fractal-based (TFB) entropy. And then

the proposed entropy is compared with Deng entropy [33], FB entropy [39] and

Shannon entropy [1] to prove its necessary in uncertainty prediction.

3.1. Speaking from the case of virus invasion

Suppose a new human-to-human virus C invades a city which has no popu-

lation exchange with outside world. In the beginning, residents’ treatment and

prevention of the C are unknown. With the time going by, residents’ medical

ability and prevention methods for the C have continued to improve. Until the

end of the last patient’s course, no new patients are generated, which means

that the virus invasion is over. The entire invasion process is shown in the Fig-

ure3. For the discernment framework C = {R,D}, m(R) represents the cure

Figure 3: The process of virus invasion

rate, m(D) represents the death rate, and m(RD) represents the proportion of

patients in the course of the disease. According to the Figure3, we know noth-

ing about C when no patient is cured or died, so m(RD) = 1. The information

volume at this moment can be expressed by FB entropy [39], so the information

volume at this moment is log(22 − 1) = 1.5850. When residents fight with the

virus for a period of time, m(R) and m(D) at a certain moment are the results
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of the previous struggling with C. When the virus invasion is over (point B and

m(RD) = 0), m(R) and m(D) degenerate into a probability distribution, which

is the result of the entire process of struggling with C. When we are at point

A, how to predict the information volume for a period of time in the future (ex.

segment AB), the existing method does not discuss this issue.

3.2. The new explanation of Deng entropy

Though Deng entropy proposed by Deng [33] has satisfactory performance

in many fields of uncertainty measure, its physical meaning and maximum value

is controversial. Abellàn et al. indicates that Deng entropy is not satisfied the

monotonicity so that leading to undesirable results in some cases. In fact, it is

unreasonable for Deng entropy to be used to measure BPA at a certain moment.

According to the Equation6, Deng entropy also can be calculated by the form of

Shannon entropy. mω(θi) is the projection of BPA to the starting point in the

evolution process, and the start point is original BPA. It is also can be seen as the

BPA is split into its power set, and the mass functions of same focal elements

after splitting is non-additive, because they are from different moments. For

2-dimensional discernment framework {A,B}, its splitting method is shown in

Figure 4, and Deng entropy of it is substituting the mass functions of second row

to the Shannon entropy. And the BPA of maximum Deng entropy is composed

with the uniform distribution of the second row’s mass functions. Unlike other

belief entropies, Deng entropy also covers a period of time while splitting the

space, so the physical meaning of Deng entropy is predicting the information

volume of segment AB on the point A of case in Section3.1.

Figure 4: The splitting method of Deng entropy [33]
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Based on above, we can learn Deng entropy from a new perspective, and its

mathematical explanation and physical meaning can reply the previous critiques

of it.

3.3. Time fractal-based entropy

Deng entropy is one-step splitting of the multi-element focal elements, and it

treats a period of time as a whole. But in reality, the time also can be splitting,

and we can splitting time to many segments by continuously splitting the focal

elements. According to this, k-order time fractal-based(TFB) entropy is calcu-

lated by continuously splitting the multi-element focal elements of their power

set, and then uniformly distributing the original BPA into the mass functions

of target k order. Finally, substitute the mass functions of split focal elements

into the Shannon entropy equation [1] to obtain the result.

Definition 3.1 (TFB entropy). For a n-dimensional discernment framework

Θ = {θ1, θ2, . . . , θn}, its BPA set M0 = {m(θ1),m(θ2), . . . ,m(θ1 . . . θn)}. The

k-order time fractal-based (TFB) entropy is defined as

EkTFB(M0) = −
∑

Fi∈M0

m(Fi) log
m(Fi)

((k + 1)|Fi| − k|Fi|)
, (7)

where order coefficient k ∈ N+ and 1-order ATFB entropy is the Deng entropy[].

E1
TFB(M0) = −

∑
Fi∈M0

m(Fi) log
m(Fi)

(2)|Fi| − (1)|Fi|
= Ed(M0). (8)

Observing the Definition 3.1, we can find that the TFB entropy is the gener-

alization of the Deng entropy. So the physical meaning combining with Figure3

of it can be explained as predicting the information volume of segments AB

on the point A. The order coefficient k means splitting the AB to k segments

to predict the uncertainty respectively. Figue5 shows the relationship between

1, 2, 3-order TFB entropy, Deng entropy, FB entropy and Shannon entropy in

Section3.1.
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Figure 5: 1,2,3-order TFB entropy in Section 3.1

3.4. The numerical examples of ATFB entropy

Some numerical examples are shown to illustrate the properties of ATFB

entropy more intuitively.

Example 3.1. For 2-dimensional discernment framework Θ = {A,B}, its BPA

set M0 = {m(A) = 1
9 ,m(B) = 1

9 ,m(AB) = 7
9}. The splitting process of 3-order

TFB entropy is shown in Figure6. For the mass function mp
nq(ω) (ω ⊆ {A,B})

generated in the splitting process, in order to distinguish them reasonably, we

make the following regulations:

1. p represents the ω from which focal element in the original BPA.

2. If ω is a single element, then nq represents the nth-order multi-element focal

element which splits itself into single element.

3. if ω consists of multiple elements, then nq represents its last order focal ele-

ment which splits itself into ω.

According to the mass function of last row, the 3-order TFB entropy is

EkTFB(M0) = −9× 1
9 log( 1

9 ) = 3.0294.

Example3.1 shows that for the k-order TFB entropy, the single element of

k-order mass function is the same as BPA, and the multi-element focal elements’

mass function is calculated by uniformly splitting the BPA. Though there are

many splitting methods, the uniformly splitting can retain the maximum un-

certainty to predict.
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Figure 6: The splitting method of TFB entropy in 2-dimensional discernment framework

Property 1. With nothing know about the external environment, TFB entropy

predicts the information volume for a period of time by retaining the maximum

uncertainty of BPA.

Example 3.2. For a n-dimensional discernment framework Θ = {θ1, θ2, . . . , θn},

its BPA set M0 = {m(θ1),m(θ2), . . . ,m(θ1 . . . θn)}. Suppose
∑n
i=1m(θi) = 1,

the k-order TFB entropy is

EkTFB(M0) = −
n∑
i=1

m(θi) logm(θi) = H(M0), (9)

which is equal to the Shannon entropy of n-dimensional probability distribution.

Example 3.2 means that when BPA degenerates into probability distribu-

tion, TFB entropy also degenerate into Shannon entropy. This is because the

matter at this time has a definite result, so TFB entropy can only represent the

information volume at this moment. And the Property 2 can be described as

follows.

Property 2. The probability distribution corresponding to the elements of dis-

cernment framework is the end point of TFB entropy prediction information

volume.
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Example 3.3. For a n-dimensional discernment framework Θ = {θ1, θ2, . . . , θn},

its BPA set M0 = {m(θ1),m(θ2), . . . ,m(θ1 . . . θn)}. Suppose m(θ1 . . . θn) = 1,

the k-order TFB entropy is

EkATFB(M0) = log((k + 1)n − kn). (10)

By observing Equation10, we can find that the increase of k or n can increase

TFB entropy. For n, as the number of elements increases, the information

volume increases intuitively. For k, this is because that k-order TFB entropy

is to predict the information volume of the period time by splitting time into k

segments to observe, which is like for observing a thing, comparing with hour-

scale observation, minute-scale observation can find more information volume.

So the Property 3 can be described as follows.

Property 3. For a n-dimensional discernment framework, the higher order

TFB entropy means the higher the accuracy of predicting the information volume

in the future.

Example 3.4. For a 2-dimensional discernment framework Θ = {A,B}, its

BPA set M0 = {m(A),m(B),m(AB)}. When m(A) and m(B) change in the

interval [0, 1] respectively, the 1−9-order TFB entropy is shown in the Figure7.

Through the change trend of TFB entropies with k in Figure7, it can be

found that the value of the maximum k-order TFB entropy increases as the k

increases. And the BPA corresponding to the maximum k-order TFB entropy

is also changing with the k, the trend is getting closer to m(AB) = 1.

In this section, give Deng entropy a new explanation and generalized it to

the TFB entropy, and utilize a virus invasion case .

4. Higher dimensional information volume of mass function

Example3.4 shows that in the 2-dimensional discernment framework, the

BPA of maximum k-order FTB entropy is different with the k increasing. In

this section, we show the relationship between maximum k-order TFB entropy
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(a) k=1 (b) k=2 (c) k=3

(d) k=4 (e) k=5 (f) k=6

(g) k=7 (h) k=8 (i) k=9

Figure 7: 1− 9-order TFB entropy in Example3.4
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and its BPA and k. Expand the information volume of mass function proposed

by Deng in [43] based on Deng entropy.

4.1. Higher dimensional information volume of mass function

The maximum TFB entropy or the maximum information volume of k order

obtained when its mass functions reach the uniform distribution, and the value

is log n, where n is the number of mass functions of the target order k.

Example 4.1. For a n-dimensional discernment framework Θ = {θ1, θ2, . . . , θn},

its BPA set M0 = {m(θ1),m(θ2), . . . ,m(θ1 . . . θn)}. For the different n or k,

their k-order maximum TFB entropy is shown in Table1.

Table 1: The maximum TFB entropy in Example 4.1

Order {θ1θ2} {θ1 . . . θ3} {θ1 . . . θ4} {θ1 . . . θ5} {θ1 . . . θn}

k = 1 log 5 log 19 log 65 log 211 log(
∑n

a=1

(
n

a

)
(2a − 1a))

k = 2 log 7 log 37 log 175 log 781 log(
∑n

a=1

(
n

a

)
(3a − 2a))

k = 3 log 9 log 61 log 369 log 2101 log(
∑n

a=1

(
n

a

)
(4a − 3a))

k = 4 log 11 log 91 log 671 log 4651 log(
∑n

a=1

(
n

a

)
(5a − 4a))

According to the right column, we can substitute the k to the maximum TFB

entropy EkTFB(Mn) to get

EkTFB(Mn) = log(

n∑
a=1

(
n

a

)
((k + 1)a − ka))

= log((

n∑
a=0

(
n

a

)
(k + 1)a − 1)− (

n∑
a=0

(
n

a

)
(k)a − 1))

= log((k + 2)n − (k + 1)n).

(11)

From Example4.1 we can find that the information volume of mass function

being larger is because that the higher order mass functions have more dimen-
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sions than original BPA. So with the increasing of splitting order, we can define

the higher order information volume of mass function (HOIVMF).

Definition 4.1 (HOIVMF). For a n-dimensional discernment framework Θ =

{θ1, θ2, . . . , θn}, its k-order information volume of (k+2)n−(k+1)n-dimensional

mass function is defined as follows,

Ekn = log((k + 2)n − (k + 1)n). (12)

When the k-order FTB entropy equals to the k-order information volume, the

original BPA’s m(Θ) is

m(Θ) =
(k + 1)n − (k)n

(k + 2)n − (k + 1)n
. (13)

According to Equation13, we can find that when n is a constant, with the k

increasing, the m(Θ) is closer to 1, which is consist with the trend in Figure7.

When k is infinite, m(Θ) = 1. So when the time is split into countless seg-

ments, the original BPA corresponding to the maximum entropy is m(Θ) = 1,

which is intuitive. Therefore, when the scale of prediction is split to infinitely

small, the TFB entropy corresponding to m(Θ) = 1 is the largest BPA. When

the observation of things has been infinitely detailed, m(Θ) = 1 is the most

uncertainty BPA, which is the same as the result FB entropy [39] in a certain

moment. From this perspective, the result of this splitting method is that the

whole (TFB entropy) and the part (FB entropy) are similar, which is the core

idea of fractal theory.

4.2. Comparison with Deng’s information volume of mass function

Definition 2.5 shows the Deng’s information volume of mass function, which

is splitting the BPA continuously in a same proportion. and then substitute the

k-order mass function to Deng entropy. Because the same proportion splitting

cannot reach the uniform distribution in k order, even if it uses Deng entropy

to calculate the information volume, the maximum information volume of Deng

still smaller than proposed HOIVMF. we use a numerical example to display

their relationship intuitively.
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Example 4.2. For a 2-dimensional discernment framework Θ = {A,B}, its

BPA set M0 = {m(A),m(B),m(AB)}. Suppose m(A) = m(B) = 0.2; m(AB) =

0.6. The Deng’s 1− 14-order information value and the HOIVMF are shown in

Table2.

Table 2: The information volume in Example 4.2

Order
Deng’s

method
HOIVMF Order

Deng’s

method
HOIVMF

k = 1 2.3219 2.3219 k = 8 3.3964 4.2479

k = 2 2.7641 2.8074 k = 9 3.4088 4.3923

k = 3 3.0294 3.1699 k = 10 3.4162 4.5236

k = 4 3.1886 3.4594 k = 11 3.4206 4.6439

k = 5 3.2841 3.7044 k = 12 3.4234 4.7549

k = 6 3.3414 3.9069 k = 13 3.4250 4.8580

k = 7 3.3758 4.0875 k = 14 3.4259 4.9542

From Example4.2, we can find that because Deng entropy is only the 1-

order ATFB entropy, which equals to the 1-order information volume. In higher

dimensional information volume, our splitting methods can make the predicted

information volume larger than the splitting method proposed by Deng [43], so

the HOIVMF is superior to Deng’s method.

5. Conclusion

This paper first proposed the belief entropy of a period time, called time

fractal-based (TFB) entropy, which is the generalization of Deng entropy and

can predict the future information volume at a moment. After verification,

giving a BPA at a certain moment, the physical meaning of TFB entropy is

predicting the information volume between the BPA and the probability distri-

bution. The higher order information volume of mass function (HOIVMF) in

17



k order is defined as the maximum k-order TFB entropy. After the mathemat-

ical demonstration, for the n-dimensional discernment framework, the k-order

information volume of mass function of it is log((k+2)n− (k+1)n). Finally, we

compared the HOIVMF with Deng’s previous information volume and proved

that the HOIVMF is more intuitive to predict the information.

In summary, the main contributions of this paper is shown as follows:

1. This paper firstly proposes the information volume can be predicted/measured

over a period of time, and a measurement method called TFB entropy

based on fractal idea is given.

2. This paper firstly gives Deng entropy [33] the physical meaning, and pro-

poses Deng entropy’s generalization, called ATFB entropy, which satisfies

the mathematical operation law and intuition in predicting information

volume for a period of time.

3. A new higher order mass function’s information volume is proposed, and by

comparing with the previous information volume proposed by Deng [43]

the new information volume can represent more uncertain information.

In the future research work, we further quantify the information volume for

a period of time, and apply the prediction information volume in the fields of

pattern recognition and information decision-making. Because a larger informa-

tion volume and a longer time scale can help to achieve more accurate results

in decision-making. In addition, we prepare to apply the idea of splitting time

and fractal idea to more uncertainty measurements, because the changes in a

period of time can describe things more accurately than a certain moment.
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