
Price graphs: Utilizing the structural information of
financial time series for stock prediction

Junran Wua, Ke Xua, Xueyuan Chena, Shangzhe Lib, Jichang Zhaoc,∗

aState Key Lab of Software Development Environment, Beihang University
bSchool of Mathematics Science, Beihang University

cSchool of Economics and Management, Beihang University

Abstract

Great research efforts have been devoted to exploiting deep neural networks in

stock prediction. While long-term dependencies and chaotic property are still

two major issues that lower the performance of state-of-the-art deep learning

models in forecasting future price trends. In this study, we propose a novel

framework to address both issues. Specifically, in terms of transforming time

series into complex networks, we convert market price series into graphs. Then,

structural information, referring to associations among temporal points and the

node weights, is extracted from the mapped graphs to resolve the problems

regarding long-term dependencies and the chaotic property. We take graph

embeddings to represent the associations among temporal points as the predic-

tion model inputs. Node weights are used as a priori knowledge to enhance

the learning of temporal attention. The effectiveness of our proposed frame-

work is validated using real-world stock data, and our approach obtains the

best performance among several state-of-the-art benchmarks. Moreover, in the

conducted trading simulations, our framework further obtains the highest cu-

mulative profits. Our results supplement the existing applications of complex

network methods in the financial realm and provide insightful implications for

∗Corresponding author:
Email address: jichang@buaa.edu.cn (Jichang Zhao)

Preprint submitted to Elsevier November 2, 2021

ar
X

iv
:2

10
6.

02
52

2v
5

 [
q-

fi
n.

ST
]

 1
 N

ov
 2

02
1

investment applications regarding decision support in financial markets.

Keywords: stock prediction, complex network, time series graph, graph

embedding, structure information

1. Introduction

Financial time series prediction, in particular the stock prediction, which

aims at forecasting the future trends of stock prices, is one of the key founda-

tional techniques in investment and has attracted tremendous attention from

various fields [35, 37, 50]. Various categories of methods (e.g., technical analysis,

machine learning and deep learning models) and data sources (e.g., historical

market price data, common funds and financial news) have been adopted for

stock prediction [5, 37, 50, 51], via the modeling of the relationship between the

historical behavior and future trend [15]. While most of these traditional efforts,

though equipped with state-of-the-art prediction algorithms, only concentrate

on the structures among time series, the structures within time series are hardly

investigated for stock prediction. With increasing literature leveraging complex

network methods for characterizing dynamical systems derived from time se-

ries, complex networks have already served as promising and versatile tools for

adopting structural information embedded within the temporal points of time

series and providing new insights for stock prediction [48, 58].

In the current literature regarding stock prediction, without glimpsing at

the structural information of stock time series, most research efforts have been

devoted to various types of Internet information sources and dynamic indicators

derived from stock prices [5, 50]. Currently, deep learning has become an effec-

tive method to refine multiaspect features from complex financial time series.

Plenty of deep learning frameworks have been proposed in the literature with

the aim of predicting asset prices [37, 15]. To capture the interactions among

multiple variables, attention mechanisms have also been deployed for time series

2

forecasting [37, 19, 9]. However, the long-term dependencies of financial time

series in experiments still have not been fully captured due to the complex tem-

poral evolution of the interactions among all the temporal points. The value of

a data point at time t is not likely independent of its temporally neighboring

points or historical points which are far before t. Such associations are denoted

as short-term and long-term dependencies, respectively in deep learning [4, 19].

In financial realm, it is analogously vital to utilize the dependencies among the

values in the given series, and the long-term memories have also been uncov-

ered and validated on daily, weekly, monthly, and annual stock returns [28]. On

the other hand, financial time series often represent chaotic and complex price

movement behaviors [14]. As a result, stock prices are shown in non-stationary

time series, and have abrupt changes or unexpected reversals which are taken as

outliers in modeling and undermine the generalization ability of learning mod-

els. In particular, the chaotic property seriously challenges these models and

makes them assign incorrect weights to points that are unhelpful for forecast-

ing further trends. Consequently, the predictive capability of current models is

limited, as it is profoundly undermined by both above-mentioned issues.

Because complex network theory and nonlinear time series analysis are gen-

erally considered domains of complex system science, the adoption of complex

network methods has become a popular way of nonlinear time series analysis,

thereby allowing fundamental questions regarding long-term dependencies and

the chaotic property in time series prediction to be addressed [36, 48, 58]. For

example, protein structural classes have been successfully predicted by mapping

protein time series into recurrent networks [34]. Moreover, the virtual graphs

derived from response time series of a marine system have helped forecast sys-

tem catastrophes [57], suggesting that the topological characteristics of time

series graphs do contain latent information for regarding the future states of

3

a chaotic trajectory. For financial time series, it has been found that an ex-

change rate series converts into scale-free and hierarchically structured graphs

[54]. Therefore, in the context of various graphs that are converted from time se-

ries, structural information, referring to the associations among temporal points

and the node weights, provides promising assistance for financial time series pre-

diction. First, owing to the existence of explicit edges among distant nodes in

converted graphs, the long-term dependencies in a time series can be directly

captured through the associations among temporal points [36]. By bridging

distant temporal points, long-range information can be delivered more quickly

through these edges, thereby preventing information vanishing in recurrent deep

learning. Additionally, by identifying prominent content from chaotic time se-

ries, the weights of graph nodes can provide additional knowledge for temporal

attention to tackle the chaotic property of financial time series [48].

In this paper, we propose a novel graph-based framework for stock predic-

tion. Our framework consists of two main modules. The first is a time series

embedding module, which is used to map time series into graphs and extract

structural information from the corresponding graphs. In this module, given fi-

nancial time series, which includes not only four kinds of stock prices (the closing

price, high price, low price, opening price) but also the volume and amount of

share trading at each time interval [43], the visibility graph (VG) algorithm

is employed for time series transformation [24], in which the mapped time se-

ries graph is denoted as the price graph. To overcome the above fundamental

questions regarding prediction (e.g., long-term dependencies and the chaotic

property), struc2vec is further adopted to learn node embeddings to preserve

the associations among temporal points [38], and the collective influence (CI)

algorithm is employed for measuring the node weights of price graphs [31]. The

second is a prediction module based on neural networks. Specifically, to com-

4

plement the loss of temporal sequences in the structural information of stock

time series, attention-based recurrent neural networks (RNNs) are employed to

resolve the implicit long-term dependencies and chaotic evolution of the tem-

poral points. Then, a self-attention layer is used to fully model the structure

among stocks. Finally, with the obtained hidden representation of each stock,

the corresponding movement direction is extracted from a final nonlinear fully

connected layer.

To inspect the power of our framework, in this paper, we conduct numerous

experiments on real-world market data from the Chinese market index (China

Securities Index 300, i.e., CSI-300), which contains 300 stocks with data from

2010 to 2019. The experiment results demonstrate the effectiveness of the struc-

tural information extracted from price graphs for the task of stock prediction.

A trading simulation is also performed based on signals produced by the pre-

diction module to validate the profitability and stability of our framework. The

contributions of our work can be summarized as follows:

• For the first time, by utilizing complex network methods that bridge time

series and graphs, we leverage the structural information obtained from

market price data for stock prediction.

• We develop a novel framework based on the structural information embed-

ded in price graphs, and this framework is capable of addressing fundamen-

tal questions regarding long-term dependencies and the chaotic property

in stock prediction.

• We empirically reveal the effectiveness of structural information and the

proposed framework for stock prediction on real-world data, i.e., our ap-

proach outperforms state-of-the-art baselines in terms of testing accuracy

and obtains the highest average return (47.91%) in trading simulations.

5

The remainder of this paper is organized as follows. Section 2 discusses the

related literature. Section 3 specifies the details of our proposed framework and

structural information extraction methodology. Section 4 depicts the experi-

mental settings, including the data, compared baselines and model parameters.

The subsequent section reveals the experimental prediction results. We conduct

a further analysis and market trading simulation in Section 6. Finally, Sec-

tion 7 concludes this work and presents some limitations about future research

directions.

2. Related Work

In this section, we review the relevant literature streams regarding finan-

cial series prediction and graph learning to position our research vis-à-vis the

findings from extant research.

2.1. Financial time series prediction

Before deep learning methodologies became popular, statistical and machine

learning models were universally adopted for financial time series prediction

because of their good interpretation capabilities. Commonly used statistical

models include the autoregressive moving average (ARMA) [49], generalized

autoregressive conditional heteroskedasticity (GARCH) [2] and nonlinear au-

toregressive exogenous (NARX) [27] models, which were employed to verify

assumptions regarding the finance market, and predictions were accordingly

based on these verified assumptions. However, chaotic behaviors often appear

with financial time series. As a result, the predictive capability of the models

mentioned above is undermined because of their inability to shape the evolu-

tionary process in financial systems [14]. To improve the modeling of chaotic

time series, a bunch of nonlinear learning models have been developed. In

particular, Machine learning methods provide a strong capability to learn the

6

underlying relationships among patterns between features and targets [44, 50].

These methods focus on maximizing prediction accuracy based on a wide variety

of models. However, a limitation exists among these methods, that is the adop-

tion of a predefined nonlinear framework which may not be consistent with the

true underlying nonlinear form [37]. In addition, the effectiveness of traditional

statistical models or machine learning algorithms mostly relies on the quality

of the input features, which enables improper features to possibly undermine

model performance because of the chaotic property of financial time series.

In recent years, extensive studies have been undertaken to solve financial

time series prediction problems using deep learning methods [37, 15, 19] be-

cause of their powerful expression ability [21]. RNNs [39], deep neural networks

specifically developed for sequence data, have a great vogue because of their

superior performance in capturing nonlinear relationship. However, traditional

RNNs is insufficient in long-term dependencies capturing owing to the issue of

gradients vanishing [4]. Based on “memory cells” that are designed to preserve

information for a longer time, a special type of RNN, Long short-term mem-

ory (LSTM), has been developed and proven to be useful in predicting stock

returns [20, 15]. Therefore, LSTM is constantly employed for sequential data

or financial time series prediction and performs better than RNNs [15]. How-

ever, the shortage in capturing long-term dependencies still exists; that is, the

performance of LSTM networks deteriorates rapidly when increases the length

of the input sequence [37]. Furthermore, owing to the noise amplification in the

model recurrence process, the chaotic property of financial time series worsens

the prediction performance of the model [20, 3].

Because the concept of attention represents the human intuition by which

some portions of data are given more emphasis than others, deep learning meth-

ods based on attention mechanisms are widely used to learn the complex de-

7

pendencies among features in time series tasks. Based upon this, a dual-stage

attention-based RNN (DARNN) was proposed [37]. In the first encoder stage,

an input attention mechanism automatically extracts the crucial input features

at each iteration based on the previous hidden state of encoder, which gives

greater emphasis to more informative features from chaotic series. In the sec-

ond decoder stage, a temporal attention mechanism is designed to select crucial

encoder hidden states by referring to all time steps, thereby rebalancing the

information at each temporal point to capture long-term dependencies. In an-

other recent work, a cross-attention stabilized fully convolutional neural network

(CA-SFCN), which also adopts variable and temporal attention, was proposed

to classify multivariate time series [19]. While these models implicitly cap-

ture certain long-term dependencies, there is still rare attention that explicitly

exploits the structure within time series, i.e., the direct links among distant tem-

poral points. Through the bridging of distant temporal points to form edges,

long-range information could be directly obtained through these edges to pre-

vent information vanishing in traditional deep learning. We believe that more

accurate predictions can be obtained by capturing this explicit structural infor-

mation of the given time series.

2.2. Time series graphs

With increasing literature leveraging complex network methods for charac-

terizing dynamical systems derived from time series, the adopting of complex

network methods has become an active realm of nonlinear time series analysis,

which has provided a guideline for addressing fundamental questions regard-

ing long-term dependencies and the chaotic property in time series prediction

[36, 48, 58]. By transforming time series into graph, researchers are capable

of measuring the structural properties of time series and capturing the hidden

structures embedded within chaotic temporal points. Based on different ratio-

8

nals, there are three main kinds of methods designed to map a time series into a

graph: (1) recurrence networks (RNs), which emphasizes the mutual statistical

similarities or metric proximities among various segments of the time series [13];

(2) VGs, which depict local convexities or record-breaking properties within a

signal time series [24], and (3) transition networks (TNs), which profiles the

transition probabilities between discrete states [33]. Among these three com-

plex methods, there are many parameters need to be optimized in RNs and TNs

when converting time series. Although, there is also literature discussing the op-

timal choice about these parameters of RNs and TNs, a simple algorithm (VG)

is much preferred for financial time series analysis because of the parameter-free

nature [58]. In particular, the associated VG refines certain important features

from the original time series, i.e., the structure within the time series [58].

Chaotic time series widely exist in various scenarios, including finance, bi-

ology, and meteorology, and there has been a wide range of recent applications

of complex network methods for such chaotic data [34, 57, 54]. As reported

in [34], the structural classes of proteins have been successfully predicted by

transforming protein time series into recurrence networks. Moreover, another

recent study showed that the virtual graph derived from response time series

of a marine system can be used to forecast system catastrophes [57]. While in

financial studies, the degree distributions of mapped graphs derived from the

growth rates of gross domestic product series were found to be scale-free, and

the degree distributions of converted graphs derived from the growth rates of

three industry series are almost exponential [54, 48]. Another study found that

the markets in developed countries differ significantly from developing coun-

tries through analyzing the time series graphs mapped from stock market [7].

Specifically, the complexity of developing markets is disturbed and relatively

low over some periods while more stable and stronger over time for mature

9

stock markets, suggesting a stronger long-range price memory and indicating

that transforming financial time series into graphs can effectively capture the

chaotic characteristics of stocks.

Therefore, in the context of various graphs converted from time series, pre-

vious complex network methods naturally provided promising assistance for

financial time series prediction. First, owing to the existence of explicit edges

among distant nodes in converted graphs, the long-term dependencies in time

series graphs can be directly captured through the associations among temporal

points. Additionally, by identifying prominent content from chaotic time series,

the weights of graph nodes provide additional knowledge for learning temporal

attention to tackle the chaotic property of financial time series. However, despite

the great potential of structural information for financial time series forecasting,

little attention has been paid to the employment of complex network methods

for obtaining more accurate predictions. Moreover, how to integrate the struc-

tural information of time series networks and deep learning methods remains

an open problem.

2.3. Graph embedding

To employ graph structures for deep learning, graph embedding has aroused

much research interest. With the advantage of preserving node content, graph

structure, and additional information, graph embedding is capable of embed-

ding graph nodes into latent, low-dimensional spaces [56]. After obtaining the

new node representations, conventional vector-based learning methods can be

conveniently and efficiently employed for graph analysis tasks; this inspires us

to take advantage of structural information for time series prediction.

Traditional efforts in learning low-dimensional vectors for vertices in net-

works have been considerably successful with respect to performing prediction

and classification tasks [38, 17, 10, 55]. Based on the proximity of nodes de-

10

rived from learned embeddings, the future interactions between users can be

extracted from a social network [42]. In addition, through dynamically com-

puting a user’s recent preferences by referring to the embedding of check-in

points of interest (POIs), a location-based model was introduced to help dis-

cover attractive and interesting POIs [52, 26]. For financial problems, with a

bipartite network constructed from mutual fund shareholding data in the real

world, the intrinsic properties of stocks were extracted from the latent space to

optimize technical indicators and target the critical factors of market crashes

[25]. Besides the interrelationships among stocks, various networks, which con-

sists of financial institutions, cryptocurrencies, stock indices and stock sectors,

are constructed for investment/portfolio assistances [6, 23, 41]. While excellent

performance has been confirmed, these target graphs may not be applicable to

more refined problems, such as daily stock prediction, because these graphs con-

tain only coarse-grained information. Moreover, due to the connection among

nodes established on assets, the weaved graphs are time invariant or evolve with

a low frequency (e.g., monthly or seasonally in general); that is, the embedded

information cannot change in a timely manner with the dynamics of the whole

market, which may result in lower effectiveness in terms of daily stock predic-

tion. Therefore, these target graphs are often adopted to identify the market

states over a period or assist other methods which are capable of timely reaction

[40, 6, 41]. With the emergence of time series graphs, more refined structural

information can be obtained, which suggests great potential for financial time

series prediction.

The extant literature on complex networks and graph embedding implies

that the structural information extracted from time series graphs is capable

of tackling issues regarding long-term dependencies and the chaotic property.

In this paper, based on this structural information obtained from time series

11

graphs, we propose a new framework to obtain more accurate stock predictions.

3. Proposed framework

This paper presents a novel trend prediction framework for stock prices.

To conquer the shortcomings of the financial time series forecasting methods

mentioned above, a module based on complex network methods and graph em-

bedding is introduced to extract structural information from mapped graphs

that structurally connect distant price points. The predictions of stock trends

are obtained from several attention-based layers and a fully connected classifi-

cation layer. Figure 1 illustrates the proposed framework, which is constructed

with two modules. The first module is a time series embedding module, which

takes raw market price data as inputs and aims to extract structural informa-

tion, referring to the associations among temporal points and the node weights.

The second module is a prediction module. Based on deep learning methods,

stock representations are learned from structural information by incorporating

temporal sequences for stock trend forecasting. The different modules of the

proposed framework are discussed below in turn.

3.1. Time series embedding module

In this module, we convert raw market price data into time series graphs

and measure the weights of graph nodes. Second, we explore the topological

properties of the constructed graphs associated with raw market data, namely,

the structural representations.

3.1.1. Time series graphs

As discussed above, there are three main types of complex network ap-

proaches for mapping individual time series into graphs, i.e., RNs, VGs and

12

Time

Close price

Open price

Volume

Market price data Visibility graph Time series graphs

Graph embedding

Time Series Embedding Module

Prediction Module

Node weights
𝐶𝐼! ∈ R"×$𝕏! ∈ R"×$×%

High price

Low price

Amount
𝑥&& ⋯ 𝑥&'
⋮ ⋱ ⋮
𝑥(& ⋯ 𝑥('

D
A

R
N

N
-E

nc
od

er

D
A

R
N

N
-D

ec
od

er

C
A

A
N

Fu
lly

-C
on

ne
ct

ed
 L

ay
er

R
is

e
or

 F
al

l?

Figure 1: Computational flow of the proposed framework. Let Pt ∈ RM×T denote the
history price data for a stock at time t, the node vectors after embedding is Xt ∈ RM×T×E

and node weights is CIt ∈ RM×T , where M is number of stock quote data (six here), T is the
length of the lookback window and E is the embedding size of graph nodes.

13

TNs. Among these three complex methods, the VG algorithm is widely em-

ployed for financial time series analysis because it is not influenced by any

algorithmic parameters and maps time series into scale-free graphs [24]. Thus,

we take the VG algorithm to map raw market price data into time series graphs,

i.e., price graphs.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Visibility graph

1

2

3
45

6

7

8

10

9

11
12

13

14

15
16

18
19

17

20

(b) Time series graph with node
weights

Figure 2: Instance of a time series containing 20 temporal points and the associated
VG derived from the VG algorithm.

Consider a stock price series pt with a length of T at time t. Each vertex

in the converted graph corresponds to data point in original series. Based on

the principle that if two data points can mutually be seen in the bar chart of

corresponding time series, an edge between the two points is established; put

differently, two temporal points in series can be connected by a straight line

when there are not any intermediate data heights intersect this “visibility line”.

In a formal manner, a VG can be transformed from a time series under the next

visibility specification [24]: given two data points (ti, pi) and (tj , pj) where

pi, pj > 0 in a time series, there is a visibility line that connects the two

data points in converted graph if and only if all data points (tk, pk) such that

14

ti < tk < tj satisfies

pk < pi +
tk − ti
tj − ti

(pj − pi). (1)

For graphs converted from stock prices, each vertex represents the daily price

under real-world trading circumstances. We can view the graph edges as signals

of no abrupt price changes occurring during the period between two temporal

points. Furthermore, on the basis of Equation 1, we can find that the short-

est path between any two temporal points in the converted graph is definitely

shorter than their original time interval, which indicates that time series graphs

are adept at capturing long-term dependencies because the information embed-

ded in early prices can be sooner obtained by later points without long-range

transfers and information vanishing.

VGs are connected graphs and the construction process is invariant even

if a series of basic transformations is performed on the original series, such as

vertical and horizontal translations [24]. An example of VG algorithm can be

seen in Figure 2(a), where we present a converted VG and the original time

series with 20 data points. As seen, temporal points are connected by edges

as long as they can see each other. Furthermore, we are capable of measuring

the weight of every temporal point for chaotic property settling after we obtain

the graph structure within the time series. In traditional complex network

analysis, there are many metrics used to identify vital nodes, such as degrees,

k-cores, and cluster coefficients. In this study, the collective influence (CI)

algorithm is selected due to its low computational consumption yet excellent

performance in characterizing the node influence with regard to influence as a

collective attribute, instead of a local feature like the node’s degree [31]. In the

CI algorithm, there is a Ball(i, l), which contains a bunch of nodes within a ball

of radius l (the length of shortest path) around node vi. The frontier of this

15

ball is defined as ∂Ball(i, l). Then, the CI index of node vi of radius l is

CIl(i) = (di − 1)
∑

j∈∂Ball(i,l)

(dj − 1), (2)

where di is the degree of node vi and l is a nonnegative integer and given

according to the graph diameter (normally less than diameter) 1. A time series

graph with CI as the node weight converted from the time series in Figure 2(a)

is shown in Figure 2(b). In this figure, nodes with higher weights are marked

with deeper colors and greater sizes.

In this phase, we use the vector Pt to denote the historic state of a stock at

time t, where Pt ∈ R6×T and consists of the raw market price data (the closing

price, high price, low price, opening price, amount and volume), and T is the

length of the lookback window of t. Through the VG algorithm, converted price

graphs Gt are obtained, where Gt = [GC
t , G

O
t , G

H
t , G

l
t, G

A
t , G

V
t] and each graph

has T nodes. Furthermore, before extracting structural information, we measure

the node weights CIt of the converted graphs through the CI algorithm, where

CIt ∈ R6×T .

3.1.2. Graph embedding

In this paper, graph embedding based on vector representations is further

employed, as this not only complements the loss of mapped price graphs in

the temporal sequence but also incorporates structural information into deep

learning methods. To retain the structural properties of graphs regarding as-

sociations among their temporal points, we adopt struc2vec [38] in this paper.

Struc2vec is a skip gram [30]-based graph embedding algorithm that aims to

learn a mapping g : v ∈ V 7→ R|V |×d. According to the structural similarities

1In general, l was set to 3 and achieved sufficient performance in [31], while we assign 2 to
l because our mapped graphs with 20 nodes are far smaller than the graphs in [31]

16

based on nodes’ k-hop neighborhoods, struc2vec is able to learn a vector-based

representations that capture the structural roles of the nodes. Specifically, the

method involves executing numerous random walks over the graph from each

node. The co-occurrences of nodes in a short window are captured based on

the sequences of these walks, which can be used to tackle the diffusion in the

neighborhood around every node in the graph and explore the local topology

structure around a vertex. The embedding method is designed to learn a rep-

resentation that enables the estimation of the possibility of a node u showing

together with other nodes in the subwindow of a short random walk:

max
g

∑
u∈V

logPr(N(u)|g(u)), (3)

where N(u) represents the neighboring nodes of node u. The likelihood of a

vertex v appearing together with u is estimated by using a softmax function:

Pr(v|u) =
exp(g(v) · g(u))∑

vi∈V exp(g(vi) · g(u))
. (4)

Furthermore, to measure the structural similarities between nodes, struc2vec

[38] generates a series of weighted assistant graphs gk, k = {1, 2, . . . , k∗} that

derived from original graph, in which the assistant graphs capture the structural

similarities between nodes’ k-hop neighborhoods, and k∗ is the diameter of

original graph. More concretely, each assistant graph is a weighted undirected

complete graph. As for the weights of edges, Rk(v) is defined as the ordered

degree sequence with nodes that are precisely k hops from v, and wk(v, u) that

measures the edge weights in an assistant graph gk is recursively defined as

wk(v, u) = wk−1(v, u) + d(Rk(v), Rk(u)), (5)

17

where w0(v, u)=0 and d(Rk(v), Rk(u)) measures the difference between Rk(v)

and Rk(u). And struc2vec can generate vertex sequences based on the edge

weights in these weighted assistant graphs. Then, to maximize the probability

of neighboring nodes in the local area appearing together with the central node,

a neural network is trained by using the skip gram architecture. Finally, the out-

put of the hidden layer of trained neural network is obtained as the embedding of

nodes. Through embedding price graphs into vector representations, struc2vec

further enriches the information of time points by considering the global depen-

dencies in representations and enhances the description of raw time series. The

long-term dependencies among temporal points can be captured owing to the

feature of struc2vec in structural similarity measuring.

In this phase, with the converted price graphs Gt, we obtain the tensor

representations Xt for all graphs through struc2vec at time t, where Xt =

[XC
t , X

O
t , X

H
t , X

L
t , X

A
t , X

V
t], Xt ∈ RT×E and E is the embedding size.

3.2. Prediction module

In this section, we introduce the classification module, which is constructed

with two main parts. The first key part has several (e.g., six here) DARNNs

with node weights for the temporal attention network [37]. The goal of the first

part is to automatically extract input series representations by incorporating

temporal information and structural information 2. Based on this model, a

stock representation rt is obtained from the combination of several DARNNs’

outputs for each stock at time t. The second key part is a cross-asset attention

network (CAAN), which is used to describe the interrelationships among the

stocks [47]. Finally, the classification results are given by a fully connected

classification layer. And to further illustrate the detailed data transformation

2Temporal information is obtained through organizing the model inputs in the order of
time sequences.

18

in the prediction module, Figure 3 shows the input and output for each step 3.

𝑥!! ⋯ 𝑥!"
⋮ ⋱ ⋮
𝑥#! ⋯ 𝑥#"

Input of a sample
𝕏! ∈ ℝ"×$×%

CI of a sample
𝐶𝐼! ∈ ℝ"×$

DARNN-
Encoders

𝑥!! ⋯ 𝑥!$
⋮ ⋱ ⋮
𝑥#! ⋯ 𝑥#$

DARNN-
Decoders

Output of
DARNN-Encoders

ℍ! ∈ ℝ"×$×&

Output of
DARNN-Decoders

𝕊! ∈ ℝ"×&

Elementwise
summation

Stock representation
at time t

𝑟! ∈ ℝ&

CAAN

𝑎! ∈ ℝ&

Stock representation
after interrelationships
weighting at time t

Prediction
layer

𝑦! ∈ [0, 1]

Output of a sample

Figure 3: Computational flow of the prediction module. Here, we take a sample at
time t for example. In which T is the lookback window of history prices at time t. E is the
embedding size of struc2vec for each graph node. In experiments, we set hidden vectors of
our deep learning method to a fixed size m.

3.2.1. Structural information learner

The structural information learner contains multiple DARNNs that incorpo-

rate node weights. DARNNs [37] are employed as our essential components not

only because of their capability of selecting crucial variables and temporal points

but also because of their excellent performance regarding time series forecasting

in comparison to LSTM [20] and attention-based LSTM [1]. Without the loss of

any generality, we show the learning process in one of the six DARNN models

for illustration. Each DARNN is an encoder-decoder network and have the same

learning process with different inputs. Specifically, the encoder is basically an

LSTM that learns the input sequences as a hidden representation that considers

input attention. For time series prediction, letting X = (x1, x2, · · ·, xT) ∈ RT×E

denote the input sequence, where xt ∈ RE and E is the graph embedding size,

3We omit the presentation of historical price input of DARNN-Decoder to emphasize the
structural information input.

19

the encoder is used to recursively learn a hidden vector from X:

ht = LSTM(ht−1, xt), t ∈ [1, T], (6)

where ht ∈ Rm is the hidden vector encoded by LSTM at time step t and m is

the size of each hidden vector.

As attention mechanisms are widely employed in deep neural networks, a

DARNN integrates the input attention into the encoder stage, which can auto-

matically select the appropriate input series to give more emphasis to informa-

tive features obtained from chaotic series. Letting xk = (xk1 , x
k
2 , · · ·, xkT)> ∈ RT

denote the k-th input series, the input attention is calculated through a deter-

ministic attention model, which adopts the hidden state ht−1 and cell state st−1

of the encoder LSTM unit with

ckt = v>c tanh(Wc[ht−1; st−1] + Ucx
k) (7)

and

αk
t =

exp(ckt)∑n
i=1 exp(cit)

, (8)

where vc ∈ RT , Wc ∈ RT×2m and Uc ∈ RT×T are learnable parameters. At time

step t, the importance regarding the k-th input series is estimated by αk
t . To

normalize the attention weights, a softmax is applied to ckt . Thus, the updating

of input series with attention weights can be formulated as

x̃t = (α1
tx

1
t , α

2
tx

2
t , · · ·, αn

t x
n
t). (9)

Then the updating of the hidden state at time t is

ht = LSTM(ht−1, x̃t). (10)

20

By measuring the attention weight of each input series, the encoder can adap-

tively select crucial series rather than assuming all the input series to be equal.

Taking the obtained structural information Xt as input, hidden features Ht =

[HC
t , H

O
t , H

H
t , H

L
t , H

A
t , H

V
t] ∈ R6×T×m for six prices can be obtained from the

DARNN-Encoders.

Together with the encoder that applies the input attention, a decoder that

incorporates temporal attention is also proposed to automatically select appro-

priate hidden vectors of encoder from among all time intervals, as these can

implicitly and appropriately capture the long-term dependencies within a time

series. More concretely, the temporal attention among encoder hidden states

is also calculated through a deterministic attention model, which adopts the

hidden state h′t−1 ∈ Rm and cell state s′t−1 ∈ Rm of the decoder LSTM unit

with

dit = v>d tanh(Wd[h′t−1; s′t−1] + Udhi), 1 ≤ i ≤ T (11)

and

βi
t =

exp(dit)∑T
j=1 exp(djt)

, (12)

where Ud ∈ Rm×m, Wd ∈ Rm×2m and vd ∈ Rm are parameters to be learned

and m is the size of each hidden state. Similarly, βi
t is a temporal attention

weight that measures the importance regarding the i-th encoder hidden state,

thereby rebalancing the information at each temporal point to capture long-term

dependencies and filter out chaotic temporal points. A softmax is also applied

to dit to normalize the attention weights. Thus, with the obtained temporal

attention, all encoder hidden states {h1, h2, · · ·, hT } are weightedly summed as

a context vector et:

et =

T∑
i=1

βi
thi. (13)

The context vector et varies for each time step.

21

In this basic decoder, the temporal weights modeled by Equations 11 and

12 are directly learned from the hidden encoder representation. In fact, as we

discussed in the previous section, we can use priori knowledge to enhance the

temporal weight learning process. Given the previously mentioned node weights

of the price graphs, we use the node weights as the knowledge-based attention

over the temporal points to highlight informative points and address the chaotic

property of price series. Then, for each hidden state hi, we update the attention

weight dit as

d̃it = v>d tanh(Wd[h′t−1; s′t−1] + Udhi + wdCIi), 1 ≤ i ≤ T, (14)

where wd is a learnable parameter and CIi denotes the node weight of tempo-

ral point i. In this way, the relative importance levels of temporal points in

the price graphs are introduced as weights to enhance attention learning and

chaotic property settling. The nodes that obtain critical positions in the time

series contribute more to the final sample representations and make more ac-

curate predictions. After reweighing the temporal attention, the combination

of the updated context vector ẽt with the stock price series {p1, p2, . . . , pT−1}

is denoted as p̃t−1 = wp[pt−1; ẽt−1] + bp, where [pt−1; ẽt−1] ∈ Rm+1 is a con-

catenation of history price and context vector, wp ∈ Rm+1 and bp ∈ R are

parameters to learn. Accordingly, the newly p̃t−1 is adopted to update the hid-

den feature of LSTM in decoder as h′t = LSTM(h′t−1, p̃t−1). Finally, the output

of DARNN-Decoder can be formulated as

S = w̃[h′T ; ẽT] + b̃, (15)

where S ∈ Rm and [h′T ; ẽT] ∈ Rm+m is a concatenation of the hidden feature h′

and and the updated context vector ẽ at the last step of LSTM. The parameters

22

w̃ ∈ Rm×2m and b̃ ∈ Rm map the concatenation to the size of the decoder hidden

states.

With the hidden features Ht learned from DARNN-Encoder, the stock rep-

resentations St = [SC
t , S

O
t , S

H
t , S

L
t , S

A
t , S

V
t] for six price series at time t are

computed through several DARNNs, where St ∈ Rm and m is the hidden size

of each DARNN’s decoder. Then, with an elementwise summation layer, six

representations are merged into one rt =
∑

I∈{C,O,H,L,A,V } S
I
t ∈ Rm as the

stock representation at time t.

3.2.2. The CAAN model

While acquiring the stock representations, we adopt a CAAN based on self-

attention to utilize the interrelationships among stocks. Specifically, based on

the merged stock representation ri
4 of stock i, we calculate three vectors qi =

Wqr
i, ki = Wkr

i and vi = Wvr
i as the query vector, key vector and value

vector, respectively, where Wq, Wk, and Wv are learnable parameters. The

interrelationships between stock i and other stocks within a batch are computed

by using the query vector qi of stock i to query the key vectors of other stocks,

i.e.,

lij =
qi> · kj√

Dk

(16)

and

γij =
exp(lij)∑I

j′=1 exp(lij′)
, (17)

where Dk is a rescaling parameter set in line with [45] and I is the size of each

sample batch. Afterwards, we use the interrelationships γij to weighted the

4The omittance of time t does not cause the loss of any generality

23

value vectors vj into an attention representation

ai =

I∑
j=1

γij · vj (18)

for stock i. Finally, to forecast the future price trend, the scalar prediction score

ŷi for stock i is computed by a feed-forward layer and a sigmoid transformation:

ŷi = sigmoid(Wfca
i + bfc) (19)

where Wfc and bfc are the linear parameter and the bias to be learned, respec-

tively. Finally, based on the computation flow in Figure 3, the learning and

optimization process of our prediction module are summarized in Algorithm 1.

Algorithm 1 Optimization of our prediction module within a sample

Input: input sample X ∈ R6×T×E , corresponding CI ∈ R6×T , historical price

series P ∈ R6×T , labeled target y

Output: predicted label ỹ of input

1: Denote all parameters of the prediction model as W;

2: Initialize the parameters W;

3: for epoch ∈ [1, . . . ,maxIteration] do

4: H = DARNN-Encoders(X), where H ∈ R6×T×m;

5: S = DARNN-Decoders(H, CI, P), where S ∈ R6×m;

6: r =
∑6

i=0 Si, where r ∈ Rm;

7: a = CAAN(r), where a ∈ R;

8: ỹ = fprediction(a), where ỹ ∈ R;

9: // computing loss on a batch sample;

10: L = LossFunction(y, ỹ);

11: Update hidden parameters W with gradient decent (L|W);

12: end for

24

4. Experiments

To evaluate the proposed framework, we use stock data from the China A-

share market. In the following subsections, we introduce the details of the data

and the compared methods. We also depict the detailed experimental settings

of the training and testing process for our proposed framework and baselines.

4.1. Data

We collect the daily quote data of CSI-300 component stocks from the China

A-share market from January 1, 2010, to December 31, 2019 to cover compre-

hensive patterns in price trends and avoid the external shock from the COVID-

19 on model validation. In particular, China stock market has great research

value and plenty of research attention has been devoted to it [53, 6, 23], and

in which the CSI-300 index selects the most liquid A-share stocks and aims to

reflect the overall performance of the China A-share market [29]. In addition to

the explicit influences from the supply and demand of investors, the price of a

stock can also be changed owing to some firm operations, including stock splits,

rights offerings and dividend payouts or distributions, and the prices need to be

adjusted after these actions. In this case, the adjusted price is more insightful

for investigating historical returns because it reflects an accurate performance

of a firm’s market value beyond the raw market trading prices. The adjusted

daily quote data are obtained from Tushare 5, an open source financial data

package [50]. The data contain daily stock prices, including closing prices, low

prices, high prices, opening prices, amounts and volumes.

4.2. Baselines

Due to the ubiquity of deep neural networks, most recent efforts regarding

stock prediction have been devoted to leveraging LSTM [32], CNNs [29, 19] and

5http://tushare.org.

25

attention-based approaches [37, 19] with market price data as inputs. Compet-

itive performance is also achieved by these novel methods. Note that among

these state-of-the-art prediction models, to the best of our knowledge, none of

them leverage the structural information extracted from time series graphs. To

inspect the power of our framework, which investigates such important infor-

mation, our proposed framework is compared to the following models:

• LSTM: a basic LSTM network used to predict the future trends of stock

prices based on historical price data [32].

• DARNN: a dual-stage attention-based RNN that employs input attention

and temporal attention in the encoder and decoder stages, respectively

[37].

• DARNN-SA: an extension of the DARNN that employs a self-attention

layer between the output of the DARNN and the prediction layer.

• MFNN: a multifilter deep learning model that integrates convolutional

and recurrent neurons for feature extraction with respect to financial time

series and stock prediction [29].

• CA-SFCN: a fully convolutional network (FCN) incorporating cross at-

tention (CA), in which CA is also used as dual-stage attention for the

variable and temporal dimensions (with temporal attention first) [19].

In particular, in line with their original model inputs, all five baseline methods

take market price data as inputs. In addition, we further make the comparison

between our proposed framework with the classical time series approaches, i.e.,

ARMA and GARCH models.

26

4.3. Parameter settings

To prevent data snooping, experiment data sets are strictly split according

to the sample dates. For example, we use the data from Jan. 2010 to Dec.

2018 as the training and validation sets and the rest as the test set, which

includes the whole year of 2019 6. During the training process, 70% samples are

randomly selected as the training set and the remaining 30% of the samples as

the validation set to take full advantage of the historical information. For each

stock, we take the historical information with a window size of 20 days [37, 16]

to predict the price trend of the next day. The target of our experiments is

defined as follows:

y =

1 (↑) , pct+1 > pct

0 (↓) , otherwise,

(20)

where pct is the stock closing price at time t. Furthermore, in the experiment,

the test period is set to a three-month sliding window; thus, 4 test periods

are obtained from the test set in 2019 and sequentially denoted as 2019(S1),

2019(S2), 2019(S3) and 2019(S4). The details of our datasets are listed in Table

1. In summary, our training/validation set has more than a half million samples

and is almost balanced. In addition, we have 72,545 samples in total for the

test set, and each test period has more than 10,000 samples. We evaluate

the prediction performance with the accuracy metric and employ binary cross

entropy [11] to measure the loss between ŷ and y.

In this paper, we select the optimal hyperparameters with grid search to

obtain the best performance for all models. Specifically, we tune the sizes of the

hidden representations within {32, 64, 128, 256} and the sizes of the minibatches

6We also test our framework on CSI-300 across 2015 to further inspect its capability under
extreme market environment, stable and competitive performances still can be obtained by
our proposed framework.

27

Table 1: Summary statistics of CSI-300 for the training, validation and test
datasets. The dataset for training and validation has more than a half million samples
and is almost balanced. The four seasons for test have 72,545 samples in total, and each
season has more than 10,000 samples.

Dataset #Sample
↓ ↑

#Sample (%) #Sample (%)

Train/Val 2010 - 2018 530,284 276,533 52.15 253,751 47.85

Test

2019(S1) 16,992 7,591 44.67 9,401 55.33

2019(S2) 17,765 9,534 55.36 8,231 46.33

2019(S3) 19,488 10,789 55.36 8,699 44.64

2019(S4) 18,300 9,142 49.96 9,158 50.04

within {32, 128, 256}. We use the Adam optimizer with an initial learning

rate of 1e-3. Following the computation flow in Algorithm 1 and Figure 3, we

employ the most popular deep learning library in research area, PyTorch which

can automatically optimize learnable parameters through backpropagation, to

implement our prediction module 7. For all baselines, we train the models in an

end-to-end manner from raw quote data with a z-score normalization function

using the standard deviation and mean calculated for each sample. For the

parameters in struc2vec, we set walk-length as 10 and window-size as 3 which

are consistent with parameters set in [38]. The classical time series approaches,

i.e., ARMA and GARCH, are optimized through Auto-Arima in Python.

5. Results

In this section, we show the empirical results obtained from numerical ex-

periments. Further back-test experiments are also conducted to demonstrate

the effectiveness of our proposed framework.

7The code of our framework is available at https://github.com/BUAA-WJR/PriceGraph

28

0 200 400 600 800
CI(KS P-value=0.00e+00)

0.000

0.002

0.004

0.006

0.008

0.010
De

ns
ity

Open

0 200 400 600 800 1000
CI(KS P-value=0.00e+00)

0.000

0.002

0.004

0.006

0.008

De
ns

ity

High

0 200 400 600 800
CI(KS P-value=0.00e+00)

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

Low

0 200 400 600 800
CI(KS P-value=0.00e+00)

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

Close

0 100 200 300 400 500 600
CI(KS P-value=0.00e+00)

0.000

0.002

0.004

0.006

0.008

De
ns

ity

Volume

0 100 200 300 400 500 600
CI(KS P-value=0.00e+00)

0.000

0.002

0.004

0.006

0.008

De
ns

ity

Amount

Fall
Rise

Figure 4: CI distributions of price graphs converted from a sample stock with six
market price data from 2010 to 2019. We also examine the two groups of distributions
in the Rise and Fall directions by a Kolmogorov–Smirnov test (KS test), where the KS test
p-values show that the two groups of distributions are distinct (i.e., all p-values are less than
0.001).

5.1. CI distribution of price graphs

To examine the quality of the price graphs obtained from the daily quote

data of stocks, we take the CI distributions to assess whether the converted

price graphs can capture the intrinsic properties of stocks and whether CIs are

capable of distinguishing between graph nodes. Specifically, for each market

price dataset, we split the converted price graphs into two groups by the corre-

sponding target value and calculate the CI for each graph from 2010 to 2019.

For graphs with target 1, we denote this group as Rise and color them red.

29

For graphs with target 0, we denote this group with Fall and mark them green.

Figure 4 shows the CI distributions of a stock sampled from CSI-300 component

stocks with the ticker symbol 002624. We find that the CI distributions of the

two groups across the six market price datasets can be distinguished from each

other. Furthermore, in addition to the visual differences, we also employ the

Kolmogorov–Smirnov test to examine whether the two groups of distributions

are significantly distinct in terms of statistics. We can see in Figure 4 that all

p-values are less than 0.001; that is, the two groups of CIs have different distri-

butions, which indicates that the price graphs converted from stock quote data

can leverage certain intrinsic properties of stocks and separate rises from falls.

Besides the CI distributions within two groups, we also inspect the discrimina-

tive ability of other structural indicators of nodes, such as degrees. However,

they are not as distinguishable as CI within two groups, which indicates that CI

can not only achieve more accurate or more discriminative attention weighing in

model learning but also help model control the possible bias when facing abnor-

mal nodes caused by chaotic property of financial time series. At the same time,

this is consistent with the excellent performance of CI in influence description.

5.2. Training set performance

We further assess the representational power of our proposed framework by

comparing its training accuracies with that of the baselines. Models with higher

representational power should have higher training set accuracy. Figure 5 shows

the training accuracy curves of our proposed framework and all five baselines

on the same training set from 2010 to 2018 8. First, our proposed framework is

capable of obtaining the highest training accuracy, which implies that certain

properties of stock quote data can be captured by the structural information

8Although we train all models with longer epochs, Figure 5 only shows the accuracies for
the first 500 epochs because all models converge by this point.

30

0 100 200 300 400 500
Epoch

0.55

0.60

0.65

0.70

0.75

0.80
Tr

ai
ni

ng
 A

cc
ur

ac
y

LSTM
DARNN
DARNN-SA
MFNN
CA-SFCN
Our Proposed Framework

Figure 5: Training set performances of our proposed framework and baselines.

derived from price graphs. In comparison, despite utilizing the same learning

component, DARNN-SA still cannot defeat our proposed framework. DARNN-

SA yields a significant accuracy gain over the DARNN when fitting training

data, which confirms the positive effect of the interrelationships between stocks

[47]. Compared with our proposed framework, CA-SFCN achieves competitive

performance on the training dataset with only six market price data, which

confirms the superior capability of component-based CNNs for capturing short-

range dependencies [19]. In particular, LSTM severely underfits the training

dataset. In our experiments, in addition to feature engineering approaches,

such as the CNNs in the MFNN and CA-SFCN, attention mechanisms also

have remarkable predictive capabilities.

5.3. Test set performance

Next, we compare the achieved test accuracies to further evaluate our pro-

posed framework. Although the training results do not directly reveal the gen-

eralization capability of structural information, it is not a delusion to expect

31

that our proposed framework with strong representational power can accurately

capture certain properties and thus generalize well. Table 2 compares the test

accuracies of our proposed framework and the state-of-the-art baselines. It can

be concluded that the performance on the test set is in line with that on the

training set; that is, our proposed framework consistently outperforms the state-

of-the-art baselines on the test set, obtaining the best accuracy. This reveals that

the structural information contained in stock time series is capable of address-

ing fundamental questions regarding long-term dependencies and the chaotic

property. Compared with that of the second-best method, CA-SFCN, the recall

rate of our proposed framework is lower in the second season of 2019, and the

precision is lower in the third season of 2019. As for the classical time series

approaches, ARMA and GARCH do not even achieve competitive performance

with the base deep learning method (i.e., LSTM). Although high precision and

recall are preferred in the Chinese stock market, which only allows longing on

stocks, consistently high accuracies are still able to ensure that profitable pre-

dictions are generated by our framework. Furthermore, it is worth mentioning

that our proposed framework yields significant improvements in all evaluation

metrics over those of DARNN-SA with six market price data as inputs; this

again emphasizes the effectiveness of the structural information obtained from

price graphs and the proposed framework for stock prediction.

Table 2: Results (%) of our proposed framework and the baselines. All models
predict price trend labels at the next time step. The best-performing results are highlighted
with boldface. Our proposed framework outperforms all the state-of-the-art baselines on the
test accuracies.

2019(S1) 2019(S2) 2019(S3) 2019(S4)

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

ARMA 50.15 54.96 42.81 48.13 50.75 46.61 42.51 44.46 49.89 44.26 39.91 41.97 50.07 49.40 41.77 45.26

GARCH 50.28 54.90 44.68 49.26 50.66 46.74 45.74 46.23 50.43 45.05 41.76 43.34 50.36 49.75 42.24 45.69

LSTM 57.94 64.88 52.26 57.89 59.88 58.98 44.04 50.43 56.71 52.23 35.33 42.16 54.75 55.97 44.92 49.84

DARNN 60.87 68.27 54.69 60.73 62.03 61.48 48.29 54.09 60.62 58.10 61.33 59.67 61.54 68.34 63.31 65.73

DARNN-SA 64.32 71.72 58.63 64.52 66.23 66.60 54.40 59.89 65.47 65.00 59.09 61.9 65.63 72.34 68.92 70.59

MFNN 61.21 68.28 60.81 64.33 63.00 65.30 51.40 57.52 62.74 67.68 58.75 62.9 64.69 67.19 57.52 61.98

CA-SFCN 65.51 72.82 60.10 65.85 67.21 67.61 73.52 70.44 66.10 77.81 68.32 72.76 67.30 70.24 73.38 71.78

Our framework 67.48 75.24 61.45 67.65 68.46 69.81 71.67 70.73 68.34 67.86 73.77 68.09 67.91 77.51 73.78 75.60

Notes. Precision, recall and the F1 measure are metrics calculated in the upward direction.

32

6. Discussion

To further assess the performance of the proposed framework, the predic-

tive powers of structural information and the node weights of price graphs are

tested. Furthermore, a trading strategy is also implemented based on the sig-

nals produced by the prediction model to validate the profitability and stability

of our framework in more realistic scenarios.

6.1. Ablation analysis

To test the effectiveness of structural information, the contribution of each

type of market price data is inspected by reducing complexity while preserving

the predictive capability of our framework. Borrowing the idea of feature selec-

tion from traditional machine learning methods [18], the training and computa-

tional time can be saved by reducing the size of input tensor for deep learning

approaches. The input of the proposed framework corresponds to the number

of market price data types. Therefore, we conduct an ablation study with only

one price graph embedding (PGE) derived from each corresponding time series

of price data as input; these embeddings are denoted as Close-PGE, Open-PGE,

High-PGE, Low-PGE, Amount-PGE and Volume-PGE. To simply exhibit the

effectiveness of structural information, accuracy, the most universal indicator in

prediction tasks, is adopted to inspect the performance of each type of market

price data [50]. The accuracies are shown in the upper panel of Table 3. As

can be seen, the performances of the models tested on of stock price embed-

dings, i.e., close, open, high and low prices, are consistently better than those of

the models tested on amount and volume embeddings. This proves that price

trend prediction can be better performed by models with more direct inputs of

price. In particular, the model of Close-PGE acquires the highest accuracies

in this ablation analysis except for the second season of 2019. These results

also indicate that the structural information obtained from different types of

33

market price data related to stock prices contains distinct predictive power for

predicting price trends. The results from our proposed framework represent an

increase in predictive power through the extraction of structural information

from a variety of market price data types.

Table 3: Ablation analysis accuracy of each learning model (%). The increases of
accuracy after introducing node weights are presented in parentheses behind accuracies.

The effectiveness of structural information

2019(S1) 2019(S2) 2019(S3) 2019(S4)

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

Close-PGE 61.24 67.32 57.47 62.01 63.69 64.57 66.31 65.43 62.23 61.74 64.54 63.11 60.54 66.82 67.15 66.98

Open-PGE 60.34 65.43 55.97 60.33 63.17 63.73 59.42 61.50 61.97 61.41 63.27 62.33 59.33 64.33 63.54 63.93

High-PGE 60.89 66.47 56.41 61.03 64.13 65.54 62.76 64.12 60.36 59.58 55.76 57.61 60.12 65.97 64.27 65.11

Low-PGE 61.59 66.12 57.57 61.55 62.69 62.91 65.34 64.10 60.83 60.09 64.17 62.06 59.64 62.13 66.56 64.27

Amount-PGE 58.65 63.44 52.15 57.24 60.27 60.22 63.96 62.03 59.41 58.32 61.91 60.06 58.47 63.14 64.85 63.98

Volume-PGE 59.15 63.79 52.86 57.81 60.52 60.25 62.77 61.48 58.37 59.13 57.35 58.23 59.37 62.57 54.13 58.04

The effectiveness of node weights

2019(S1) 2019(S2) 2019(S3) 2019(S4)

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

DARNN-NW 61.33 (+0.46) 68.76 57.33 62.53 62.94 (+0.91) 63.42 50.74 56.38 61.89 (+1.27) 58.11 63.86 60.85 62.13 (+0.59) 68.48 63.53 65.91

DARNN-SA-NW 65.67 (+1.35) 73.43 57.49 64.49 67.22 (+0.99) 67.06 55.2 60.55 65.64 (+0.17) 64.47 62.36 63.40 66.72 (+1.09) 70.36 69.87 70.11

Next, we delve deeper into the effect of node weights obtained from price

graphs in terms of mitigating the chaotic property of financial time series.

Specifically, we conduct a battery of additional experiments based on the DARNN

and DARNN-SA. As shown in Equation 14, we update the temporal attention by

adding node weights as knowledge-based attention over temporal points. There-

fore, we add the same node weights to the second decoder stages of DARNN

and DARNN-SA while retaining the original model input and six market price

data. As shown in the lower panel of Table 3, the two variants are denoted

as DARNN-NW and DARNN-SA-NW, respectively. Compared to the original

versions without node weights (see Table 2), the adjusted models yield obvious

increases in accuracies for the four seasons. Thus, we can conclude that by using

node weights to enhance temporal weight learning, we can refine crucial infor-

mation from chaotic series and obtain better or at least comparable prediction

results.

34

6.2. Why CI works

To obtain further insights into how CI overcomes the chaotic-property in-

duced bias, a representative example of how the model decoder shifts its tem-

poral attention from noisy points to real influential points is shown in Figure

6. Given the chaotic property of financial series, stock prices are shown in non-

stationary time series and have abrupt changes or unexpected reversals. Figure

6(a) shows such a typical price series, in which an abrupt price change or un-

1 2 3 4 5 6 7 8 9 1011121314151617181920
Day

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

Pr
ice

MA5

(a) Stock prices

1

2

3
4 5

6

7

8
15

18

9

13

10

11

12 14

1617
19

20

(b) Price graph with CI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Attention weights without CI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(d) Attention weights with CI

Figure 6: Illustration of how CI algorithm can help model capture real informative
nodes. Day 15 presents the largest price deviation from its five-day moving average (MA5),
occupies the node with largest degree in corresponding price graph and attracts most of
temporal attention of model without CI regularization (Equation 11). After updating the
attention with CI as in Equation 14, the learned model dispenses most temporal weights to
Day 18 and also pays more attention to Day 8 and Day 7 instead of Day 15.

35

expected reversal appears at Day 15 and results in the largest price deviation

from its five-day moving average. In addition, as can be seen in Figure 6(b), the

Day 15 in the corresponding price graph also serves as the node of the largest

degree. However, in Figure 6(b), the real informative (larger CI values) nodes

are marked with deeper colors and greater sizes. Thus, we know that the Day

18 is actually the node with the greatest collective influence in this price graph

followed by Day 8 and Day 7, suggesting indispensable signals they carry in

the trending prediction of other nodes. In the process of temporal attention

learning in Equation 11, we expect that the model could pay more attention

to the real informative nodes that carry significant trending signals instead of

abrupt changes. However, as can be seen in Figure 6(c), the model without

CI regularization just follows the price change and is fully attracted by Day 15

rather than Day 18, implying the nodes of largest degrees resulted by abrupt

changes in price would be wrongly targeted as informative ones in graph regard-

less of little trending information they actually carry. To fix this disadvantage

of the vanilla model, we employ the CI of nodes to enhance the temporal weight

learning process as in Equation 14. As a result, Figure 6(d) shows that the

learned model agrees to dispense most temporal weights to Day 18 and also

pays more attention to Day 8 and Day 7 rather than Day 15, which is indeed

less informative for trending prediction.

6.3. Trading simulation

To further check the performance of our proposed framework, multiple back-

tests are conducted by simulatively trading chosen stocks in our test set for

the four seasons of 2019. The estimation strategy carries out trading with a

daily frequency. In the process of simulation, according to the prediction of

our framework, a simple rule is set to develop the trading strategy: if a rising

trend of a stock price is given by our framework, we will take a long position

36

that stock; while a falling trend of a stock price is predicted, we will take a

short position for that stock. All stocks are evenly invested in and held for

one day. In particular, all short/long operations open the position at closing

price of the predicting day and close the position at closing price of the next

day. Under the circumstance of no transaction cost, the cumulative profit are

reinvested on the next trading day [8]. Although the transaction costs affect the

final profit, the relative position based on model profit does not change owing

to the use of the same trading strategy. We also calculate the average returns of

the component stocks of CSI-300 by holding every stock evenly as the baseline,

thereby indicating the overall market trend. All models’ net value curves in

the periods of simulations are shown in are shown in Figure 7. Among all the

0 10 20 30 40 50 60
2019(S1)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Cu
m

ul
at

iv
e

Pr
of

it

ARMA
GARCH
LSTM
DARNN
DARNN-SA
MFNN
CA-SFCN
Our framework
Market

0 10 20 30 40 50 60
2019(S2)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Cu
m

ul
at

iv
e

Pr
of

it

ARMA
GARCH
LSTM
DARNN
DARNN-SA
MFNN
CA-SFCN
Our framework
Market

0 10 20 30 40 50 60
2019(S3)

0.9

1.0

1.1

1.2

1.3

1.4

Cu
m

ul
at

iv
e

Pr
of

it

ARMA
GARCH
LSTM
DARNN
DARNN-SA
MFNN
CA-SFCN
Our framework
Market

0 10 20 30 40 50 60
2019(S4)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Cu
m

ul
at

iv
e

Pr
of

it

ARMA
GARCH
LSTM
DARNN
DARNN-SA
MFNN
CA-SFCN
Our framework
Market

Figure 7: The cumulative profit curves of our proposed framework and different
baselines for the four seasons of 2019.

37

baseline methods, our proposed framework gains the best profits (47.91% return

on average), even during the second season of 2019 when the market falls into

a downturn. In particular, the market had a long rising period during the first

season of 2019, and all of the models failed to gain enough profit to defeat the

market, except for our framework, CA-SFCN and DARNN-SA.

In summary, all these results indicate that the structural information de-

rived from price graphs by referring to the associations among temporal points

and node weights can address the fundamental questions regarding long-term

dependencies and the chaotic property of time series; moreover, the learned

prediction model can help investors make more accurate trading decisions.

7. Conclusion

In this paper, based on time series graphs converted from market price data,

we propose a novel framework to address fundamental questions by using struc-

tural information extracted from price graphs. Through this framework, deep

learning models collaborating with structural information achieve competent

performance and display practical capabilities in stock prediction and trading.

By employing models with attention mechanisms, we find that the long-term

dependencies of the values in time series can be captured via structural informa-

tion. Furthermore, by identifying prominent content from chaotic time series,

models employing graph node weights as additional knowledge for temporal at-

tention are capable of tackling the chaotic property of financial time series and

achieving better stock prediction performance. The results in this paper high-

light the role of complex network methods for characterizing dynamical systems

derived from time series. Compared with raw financial information such as mar-

ket price data, structural information finely weaved from financial time series is

verified to be superior for prediction tasks.

38

The superior performance of our proposed framework supplements the exist-

ing financial research on stock prediction by enriching the representations of time

series through complex networks. Compared with previous studies that pay at-

tention to networks among different stocks, sectors or markets [53, 40, 6, 23, 41],

the time series graphs based on temporal points from stock prices have more

fine-grained information about the current states of stocks, which sufficiently

helps us address the two fundamental questions regarding long-term dependen-

cies and chaotic property in daily stock prediction. Notably, our framework

is not limited to these observations mentioned in this study (i.e., market price

data), other series related to price changes with time could also be new inputs

to our framework. Accordingly, besides stock price prediction, our framework

can also be extended and applied to other financial scenarios.

Our results also offer noteworthy implications for investors and policy mak-

ers. In this study, not only the transformation of financial series based on the

VG algorithm but also the proposed deep learning model for financial series

prediction have important inspirations for investors and supervisors in prac-

tice. Firstly, based on the structural information obtained from stock prices,

our proposed framework outperforms the state-of-the-art models which take

the raw market prices as input in testing accuracies. Additionally, the highest

cumulative net values in trading simulation further highlight the effect of our

framework in profit promotion. In this context, our work has important value

in decision-making support for investors, especially institutional investors. Sec-

ondly, our work is also helpful for supervision. The superior performance of

obtained results shows that the structural information of time series can be

excellently preserved when performing complex network transformation, which

makes it possible to depict the entire market structure, and provides a new angle

for exploring propagation dynamics and early warnings of systemic risks.

39

Although the effectiveness of structural information for stock prediction is

verified, there are also limitations in this study that inform the directions of

future research. For example, in addition to graph embeddings, various charac-

teristics of graphs that have been investigated in recent decades, such as graph

centrality, clustering coefficients, and global efficiency, could also be informative

for graphs and effective for stock prediction. Moreover, feature engineering ap-

proaches, such as taking advantage of time series graphs, may lead to potential

information loss during the process of structural information extraction. There-

fore, given the ubiquity of graph neural networks in various time series problems,

such as event forecasting [12], transportation prediction [46] and recommenda-

tion [22], an end-to-end learning model based on a graph neural network may

be superior for financial time series prediction. Both of the above limitations

are promising directions for our future work.

Acknowledgments

This work was supported by NSFC (Grant No. 71871006).

References

[1] Bahdanau, D., Cho, K., Bengio, Y.. Neural machine translation by

jointly learning to align and translate. In: Proceedings of the 3rd ICLR.

2015. .

[2] Bauwens, L., Laurent, S., Rombouts, J.V.. Multivariate garch models: a

survey. Journal of Applied Econometrics 2006;21(1):79–109.

[3] Bayer, J., Osendorfer, C., Korhammer, D., Chen, N., Urban, S., van der

Smagt, P.. On fast dropout and its applicability to recurrent networks.

In: Proceedings of the 2nd ICLR. 2014. .

40

[4] Bengio, Y., Simard, P., Frasconi, P.. Learning long-term dependencies

with gradient descent is difficult. IEEE Transactions on Neural Networks

1994;5(2):157–166.

[5] Blume, L., Easley, D., O’hara, M.. Market statistics and technical

analysis: The role of volume. The Journal of Finance 1994;49(1):153–181.

[6] Bouri, E., Gupta, R., Hosseini, S., Lau, C.K.M.. Does global fear predict

fear in brics stock markets? evidence from a bayesian graphical structural

var model. Emerging Markets Review 2018;34:124–142.

[7] Cao, H., Li, Y.. Unraveling chaotic attractors by complex networks and

measurements of stock market complexity. Chaos: An Interdisciplinary

Journal of Nonlinear Science 2014;24(1):013134.

[8] Chen, C., Zhao, L., Bian, J., Xing, C., Liu, T.Y.. Investment behaviors

can tell what inside: Exploring stock intrinsic properties for stock trend

prediction. In: Proceedings of the 25th SIGKDD. 2019. p. 2376–2384.

[9] Chen, W., Jiang, M., Zhang, W.G., Chen, Z.. A novel graph convo-

lutional feature based convolutional neural network for stock trend predic-

tion. Information Sciences 2021;556:67–94.

[10] Dai, G., Hu, X., Ge, Y., Ning, Z., Liu, Y.. Attention based simplified

deep residual network for citywide crowd flows prediction. Frontiers of

Computer Science 2021;15(2):1–12.

[11] De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.. A tutorial on

the cross-entropy method. Annals of Operations Research 2005;134(1):19–

67.

[12] Deng, S., Rangwala, H., Ning, Y.. Learning dynamic context graphs for

41

predicting social events. In: Proceedings of the 25th SIGKDD. 2019. p.

1007–1016.

[13] Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.. Recur-

rence networks—a novel paradigm for nonlinear time series analysis. New

Journal of Physics 2010;12(3):033025.

[14] Farmer, J.D., Sidorowich, J.J.. Predicting chaotic time series. Physical

Review Letters 1987;59(8):845.

[15] Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A..

Deep learning for time series classification: a review. Data Mining and

Knowledge Discovery 2019;33(4):917–963.

[16] Feng, F., Chen, H., He, X., Ding, J., Sun, M., Chua, T.S.. Enhancing

stock movement prediction with adversarial training. In: Proceedings of

the 28th IJCAI. 2019. .

[17] Grover, A., Leskovec, J.. node2vec: Scalable feature learning for networks.

In: Proceedings of the 22nd SIGKDD. 2016. p. 855–864.

[18] Guyon, I., Elisseeff, A.. An introduction to variable and feature selection.

Journal of Machine Learning Research 2003;3(Mar):1157–1182.

[19] Hao, Y., Cao, H.. A new attention mechanism to classify multivariate

time series. In: Proceedings of the 29th IJCAI. 2020. .

[20] Hochreiter, S., Schmidhuber, J.. Long short-term memory. Neural Com-

putation 1997;9(8):1735–1780.

[21] Hornik, K., Stinchcombe, M., White, H.. Multilayer feedforward networks

are universal approximators. Neural Networks 1989;2(5):359–366.

42

[22] Huang, L., Ma, H., He, X., Chang, L.. Multi-affect (ed): improv-

ing recommendation with similarity-enhanced user reliability and influence

propagation. Frontiers of Computer Science 2021;15(5):1–11.

[23] Ji, Q., Bouri, E., Gupta, R., Roubaud, D.. Network causality struc-

tures among bitcoin and other financial assets: A directed acyclic graph

approach. The Quarterly Review of Economics and Finance 2018;70:203–

213.

[24] Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.. From

time series to complex networks: The visibility graph. Proceedings of the

National Academy of Sciences 2008;105(13):4972–4975.

[25] Li, Z., Yang, D., Zhao, L., Bian, J., Qin, T., Liu, T.Y.. Individualized

indicator for all: Stock-wise technical indicator optimization with stock

embedding. In: Proceedings of the 25th SIGKDD. 2019. p. 894–902.

[26] Lin, H., Liu, G., Li, F., Zuo, Y.. Where to go? predicting next location

in iot environment. Frontiers of Computer Science 2021;15(1):1–13.

[27] Lin, T., Horne, B.G., Tino, P., Giles, C.L.. Learning long-term depen-

dencies in narx recurrent neural networks. IEEE Transactions on Neural

Networks 1996;7(6):1329–1338.

[28] Lo, A.W.. Long-term memory in stock market prices. Econometrica:

Journal of the Econometric Society 1991;:1279–1313.

[29] Long, W., Lu, Z., Cui, L.. Deep learning-based feature engineering for

stock price movement prediction. Knowledge-Based Systems 2019;164:163–

173.

[30] Mikolov, T., Chen, K., Corrado, G., Dean, J.. Efficient estimation of

43

word representations in vector space. In: Proceedings of the 1st ICLR.

2013. .

[31] Morone, F., Makse, H.A.. Influence maximization in complex networks

through optimal percolation. Nature 2015;524(7563):65–68.

[32] Nelson, D.M., Pereira, A.C., de Oliveira, R.A.. Stock market’s price

movement prediction with lstm neural networks. In: IJCNN. IEEE; 2017.

p. 1419–1426.

[33] Nicolis, G., Cantu, A.G., Nicolis, C.. Dynamical aspects of in-

teraction networks. International Journal of Bifurcation and Chaos

2005;15(11):3467–3480.

[34] Olyaee, M.H., Yaghoubi, A., Yaghoobi, M.. Predicting protein structural

classes based on complex networks and recurrence analysis. Journal of

Theoretical Biology 2016;404:375–382.

[35] Ou, J.A., Penman, S.H.. Financial statement analysis and the prediction

of stock returns. Journal of Accounting and Economics 1989;11(4):295–329.

[36] Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.. Geom-gcn:

Geometric graph convolutional networks. In: Proceedings of the 8th ICLR.

2020. .

[37] Qin, Y., Song, D., Cheng, H., Cheng, W., Jiang, G., Cottrell, G.W..

A dual-stage attention-based recurrent neural network for time series pre-

diction. In: Proceedings of the 26th IJCAI. 2017. p. 2627–2633.

[38] Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.. struc2vec: Learning

node representations from structural identity. In: Proceedings of the 23rd

SIGKDD. 2017. p. 385–394.

44

[39] Rumelhart, D.E., Hinton, G.E., Williams, R.J.. Learning representations

by back-propagating errors. Nature 1986;323(6088):533–536.

[40] Shahzad, S.J.H., Bouri, E., Ahmad, T., Naeem, M.A.. Extreme tail net-

work analysis of cryptocurrencies and trading strategies. Finance Research

Letters 2021;:102106.

[41] Shahzad, S.J.H., Bouri, E., Kristoufek, L., Saeed, T.. Impact of the

covid-19 outbreak on the us equity sectors: Evidence from quantile return

spillovers. Financial Innovation 2021;7(1):1–23.

[42] Song, H.H., Cho, T.W., Dave, V., Zhang, Y., Qiu, L.. Scalable proximity

estimation and link prediction in online social networks. In: Proceedings

of the 9th SIGCOMM. 2009. p. 322–335.

[43] Taylor, S.J.. Modelling financial time series. world scientific, 2008.

[44] Valiant, L.G.. A theory of the learnable. Communications of the ACM

1984;27(11):1134–1142.

[45] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A.N., Kaiser, L., Polosukhin, I.. Attention is all you need. In: NIPS.

2017. .

[46] Wang, H.W., Peng, Z.R., Wang, D., Meng, Y., Wu, T., Sun, W., Lu,

Q.C.. Evaluation and prediction of transportation resilience under extreme

weather events: A diffusion graph convolutional approach. Transportation

Research Part C: Emerging Technologies 2020;115:102619.

[47] Wang, J., Zhang, Y., Tang, K., Wu, J., Xiong, Z.. Alphastock: A buying-

winners-and-selling-losers investment strategy using interpretable deep re-

inforcement attention networks. In: Proceedings of the 25th SIGKDD.

2019. p. 1900–1908.

45

[48] Wang, N., Li, D., Wang, Q.. Visibility graph analysis on quarterly

macroeconomic series of china based on complex network theory. Physica

A: Statistical Mechanics and its Applications 2012;391(24):6543–6555.

[49] Whittle, P.. Hypothesis testing in time series analysis. volume 4. Almqvist

& Wiksells boktr., 1951.

[50] Wu, J., Xu, K., Zhao, J.. Predicting long-term returns of individual

stocks with online reviews. Neurocomputing 2020;417:406–418.

[51] Wu, X., Chen, H., Wang, J., Troiano, L., Loia, V., Fujita, H.. Adaptive

stock trading strategies with deep reinforcement learning methods. Infor-

mation Sciences 2020;538:142–158.

[52] Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S.. Learn-

ing graph-based poi embedding for location-based recommendation. In:

Proceedings of the 25th CIKM. 2016. p. 15–24.

[53] Xu, Q., Li, M., Jiang, C., He, Y.. Interconnectedness and systemic risk

network of chinese financial institutions: A lasso-covar approach. Physica

A: Statistical Mechanics and its Applications 2019;534:122173.

[54] Yang, Y., Wang, J., Yang, H., Mang, J.. Visibility graph approach to

exchange rate series. Physica A: Statistical Mechanics and its Applications

2009;388(20):4431–4437.

[55] Yu, Q., Yu, Z., Wang, Z., Wang, X., Wang, Y.. Estimating posterior in-

ference quality of the relational infinite latent feature model for overlapping

community detection. Frontiers of Computer Science 2020;14(6):1–15.

[56] Zhang, D., Yin, J., Zhu, X., Zhang, C.. Network representation learning:

A survey. IEEE Transactions on Big Data 2018;6(1):3–28.

46

[57] Zhang, H., Xu, D., Wu, Y.. Predicting catastrophes of non-autonomous

networks with visibility graphs and horizontal visibility. Mechanical Sys-

tems and Signal Processing 2018;104:494–502.

[58] Zou, Y., Donner, R.V., Marwan, N., Donges, J.F., Kurths, J.. Com-

plex network approaches to nonlinear time series analysis. Physics Reports

2019;787:1–97.

47

	1 Introduction
	2 Related Work
	2.1 Financial time series prediction
	2.2 Time series graphs
	2.3 Graph embedding

	3 Proposed framework
	3.1 Time series embedding module
	3.1.1 Time series graphs
	3.1.2 Graph embedding

	3.2 Prediction module
	3.2.1 Structural information learner
	3.2.2 The CAAN model

	4 Experiments
	4.1 Data
	4.2 Baselines
	4.3 Parameter settings

	5 Results
	5.1 CI distribution of price graphs
	5.2 Training set performance
	5.3 Test set performance

	6 Discussion
	6.1 Ablation analysis
	6.2 Why CI works
	6.3 Trading simulation

	7 Conclusion

