
Efficient Semi-External Depth-First Search

Xiaolong Wana, Hongzhi Wanga,∗

aSchool of Computer Science and Technology, Harbin Institute of Technology, China

Abstract

As the sizes of graphs grow rapidly, currently many real-world graphs can hardly be loaded in the main memory. It
becomes a hot topic to compute depth-first search (DFS) results, i.e., depth-first order or DFS-Tree, on semi-external
memory model. Semi-external algorithms assume the main memory could at least hold a spanning tree T of a graph
G, and gradually restructure T into a DFS-Tree, which is non-trivial. In this paper, we present a comprehensive
study of semi-external DFS problem. Based on our theoretical analysis of its main challenge, we introduce a new
semi-external DFS algorithm, named EP-DFS, with a lightweight index N+-index. Unlike traditional algorithms, we
focus on addressing such complex problem efficiently not only with less I/Os, but also with simpler CPU calculation
(implementation-friendly) and less random I/O accesses (key-to-efficiency). Extensive experimental evaluation is
conducted on both synthetic and real graphs. The experimental results confirm that our EP-DFS algorithm significantly
outperforms existing algorithms.

Keywords: Depth-first search, Semi-external memory, Graph algorithm

1. Introduction

Depth-first Search (DFS) is a basic way to learn graph properties from node to node, which is widely utilized in
the graph field [15]. To visit a node u in a graph G, DFS first marks u as visited. Then, it recursively visits all the
adjacent nodes of u that are unmarked. Specifically, if DFS starts from a node that connects with all the others, the
total order that DFS visits the nodes of G is called depth-first order. Besides, the path that DFS walks on is a spanning
tree [15], known as DFS-Tree. Below, we present an example about depth-first order and DFS-Tree.

Example 1.1. We draw a graph G0 by three different ways shown in Figure 1, where Ta, Tb and Tc are the spanning
trees of G0 constituted by the solid lines. In each subfigure of Figure 1, the numbers around the nodes are the depth-
first orders of the nodes on the spanning tree (not G0) related to the subfigure. According to the above discussion of
DFS algorithm, Ta is not a DFS-Tree of G0, because after visiting node p, Ta visits node b instead of node f . Tb and
Tc are both DFS-Trees of G0, and the depth-first orders of the nodes in G0 could be either r, a, d, p, f , b, g, q, c, h or
r, b, g, q, f , c, h, a, d, p.

Computing depth-first order or DFS-Tree is a key operation for many graph problems, such as finding strongly
connected components [19], topology sort [11], reachability query [14], etc. That makes DFS a fundamental operation
in the graph field. For example, current algorithms for finding strongly connected components (SCCs) have to find the
DFS-Tree T of G or compute its total depth-first order. For example, Kosaraju-Sharir algorithm [15] executes DFS
to obtain a total depth-first order of G, and executes DFS again on the transposed G for finding all the SCCs of G.
Furthermore, topology sort occurs from a common problem with n variables, known that some of them are less than
some others. One has to check whether the given constraints are contradictory, and if not, an ascending order of these
n variables is required. Current solutions have to first obtain a DFS-Tree T of G. One reason is when G has a cycle,

∗Corresponding author
Email addresses: wxl@hit.edu.cn (Xiaolong Wan), wangzh@hit.edu.cn (Hongzhi Wang)

Preprint submitted to Information Sciences February 23, 2022

ar
X

iv
:2

00
6.

03
19

8v
3 

 [
cs

.D
B

] 
 2

2 
Fe

b 
20

22



�

�

�

� ��

ℎ�

	




9

8

7

6

54

3

2

1

0




	

�

�

��

ℎ�� � 9

8

7

6

5

43

2

1

0

9

8

7

65

4

3

2

1

0




�

�

�

�

�

� ℎ

�

	

(a) Ta

�

�

�

� ��

ℎ�

	




9

8

7

6

54

3

2

1

0




	

�

�

��

ℎ�� � 9

8

7

6

5

43

2

1

0

9

8

7

65

4

3

2

1

0




�

�

�

�

�

� ℎ

�

	

(b) Tb

�

�

�

� ��

ℎ�

	




9

8

7

6

54

3

2

1

0




	

�

�

��

ℎ�� � 9

8

7

6

5

43

2

1

0

9

8

7

65

4

3

2

1

0




�

�

�

�

�

� ℎ

�

	

(c) Tc

Figure 1: Schematic views of the spanning trees of a given graph G0.

it has no topology order, and to check that, normally a SCC algorithm is used. Another is when G has no cycle, a
topology order of G is the reversed postorder of the nodes on T [15].

Given a graph G with n nodes and m edges, an in-memory DFS algorithm requires O(n + m) [15] time. However,
as the sizes of graphs grow rapidly in practical applications, loading many large-scale graphs into the main memory
can hardly be done [18]. For example, at the end of 2014, Freebase [8] included 68 million entities, 1 billion pieces
of relationships and more than 2.4 billion factual triples. Currently, except in-memory algorithms, there are also two
kinds of DFS algorithms: external algorithms and semi-external algorithms.

External algorithms. Supposing one block of disk contains B elements. External DFS algorithms assume that
memory could hold at most M elements, while the others would be stored on disk. Each I/O operation reads a
block. However, as DFS may access the nodes of G randomly, the fastest external DFS algorithm [10, 20] still needs
O((n + m

B )log n
B + sort(m)) I/Os, where sort(m) = O( m

B log M
B

n
B ). Thus, when G is relatively large, these external

algorithms can hardly be utilized in practice in terms of their high time and I/O consumption.
Semi-external algorithms. They assume that c × n elements could be maintained in the main memory, where c is

very small constant, e.g. c = 3. Besides, instead of loading the whole graph, they construct an in-memory spanning
tree T of G, and convert the DFS problem into the problem of finding a DFS-Tree by restructuring T with iterations.
Computing DFS results on semi-external memory model is important, since the large-scale graphs, e.g. Freebase, can
hardly be processed in the external memory.

Traditional technique for constructing DFS-Tree of a graph G is introduced by Sibeyn et al. [16], named Edge-
ByBatch (EB-DFS). It gradually adjusts T into a DFS-Tree by iteratively scanning G sequentially. Each iteration is
called a round. EB-DFS ends in kth round when T does not change from (k− 1)th round to kth round, i.e. a DFS-Tree
is obtained. Regardless the other I/O or computing cost, in practice, that is too expensive and meaningless to scan
the entire G for an extra round (kth round), as the size of G is often relatively large. To address the high I/O cost of
EB-DFS, Zhang et al. [20] devise a divide-and-conquer algorithm, named DivideConquerDFS (DC-DFS). After first
executing one round of the above EB-DFS algorithm to construct a spanning tree T of G, they divide G into several
small subgraphs, and recursively process such subgraphs. Unfortunately, in the graph division process, since the main
memory cannot hold the entire graph, the division results need to be recorded in the external memory. DC-DFS is
inevitably related to numerous random I/O accesses, especially when the number of the divided subgraphs is huge [9].

Contributions. In this paper, we provide a comprehensive study of the DFS problem on semi-external environ-
ment, which is crucial according to the above discussions.

Even though the DFS problem has been studied over decades [15], addressing it on semi-external memory model
is quite new, and only a few works in literature have been proposed for that because of its difficulty. To demonstrate
why DFS problem on semi-external memory model is non-trivial, this paper presents a detailed discussion for its main
challenge, from the perspective of theoretical analysis.

Our analysis shows that the inefficiency of traditional semi-external DFS algorithms comes from a chain reaction
during the process of iteratively restructuring T to a DFS-Tree of G, where T is initialized as a spanning tree of
G. The chain reaction refers to that the depth-first orders of the nodes on T are changed without predictability in
traditional algorithms. Due to the chain reaction, in traditional algorithms, telling whether these edges belong to T
or not when T is a DFS-Tree of G is hard. Hence, to prune edges from G, many complex operations are devised in
traditional algorithms to ensure their efficiencies, which may involve numerous random I/Os, or scanning G many

2



times meaninglessly, etc.
Motivated by that, a novel semi-external DFS algorithm is proposed, named EP-DFS. Firstly, EP-DFS can effi-

ciently and effectively discard certain edges from G, even though the chain reaction exists in the process of iteratively
restructuring T . The reason is that, in each iteration of EP-DFS, only a batch of edges B is loaded into the main
memory, where (i) T is restructured into the DFS-Tree of the graph composed by T and B. Here, B contains a subset
of edges in G, and each edge in B is related to a node whose depth-first order on T is in a certain range. It can ensure
a large number of nodes in G have fixed depth-first orders on T in the early stage of the restructuring process. Hence,
the edges related to such nodes could be discarded effectively. Secondly, to avoid numerous random disk accesses
when loading B, a lightweight index, named N+-index, is devised in EP-DFS. The key of this index is selecting the
right set of edges from G, since EP-DFS only loads B from N+-index. The smaller the number of edges contained in
N+-index, the faster B can be obtained from N+-index, and the less I/O EP-DFS consumes. To evaluate the perfor-
mance of EP-DFS, we conduct extensive experiments on both real and synthetic datasets. Experimental results show
that EP-DFS is efficient, and significantly outperforms traditional algorithms on various conditions.

Our main contributions are as follows:

- This paper presents a detailed discussion about why the semi-external DFS problem is non-trivial.

- This paper proposes a novel semi-external DFS algorithm, named EP-DFS, in which a large number of nodes
on T have fixed depth-first orders so that EP-DFS can efficiently prune edges from G.

- This paper devises a lightweight index, named N+-index, with which EP-DFS could access the edges in G fast.

- Extensive experiments conducted on both real and synthetic datasets confirm that the performance of our EP-
DFS considerably surpasses that of the state-of-the-art algorithms.

The rest of this paper is organized as follows. We introduce the preliminaries about the problem of semi-external
DFS in Section 2. Section 3 gives a brief review of the existing solutions. The discussion about the main challenge
of semi-external DFS problem is presented in Section 4, to conquer which a naive algorithm is proposed in Section 5.
After that, we illustrate our EP-DFS algorithm in Section 6. The experimental results are demonstrated in Section 7.
We draw a conclusion in Section 8.

2. Preliminaries

We study the problem of semi-external DFS on directed disk-resident graphs. Figure 2 depicts an example of this
section; Table 1 summarizes the frequently-used notations of this paper.

�

�

��

��

�� ���

	




�

�

 ℎ

�

Figure 2: A schematic view of a spanning tree T1 of a graph G1, where the black solid lines are the tree edges of T1.

Definition 2.1. A directed graph G is a tuple (V, E), where
(i) V and E denote the node set and edge set of G, respectively, and n = |V | and m = |E|;
(ii) E ⊆ V × V, each entry e in E is a directed edge, denoted by (u, v), and ∀e = (u, v) ∈ E, u is the tail of e, and v

is the head of e.

3



Table 1: Frequently-used notations.
Notation Definition Description

G 2.1 The input graph with n nodes and m edges.
dfo(v,T ) 2.2 The depth-first order of v on tree T .

T 2.3 The in-memory spanning tree of G rooted at node r.
C(T,T ′) 5.1 A concrete number related to two spanning trees T and T ′ of G.

Υ(T ) 5.2 A concrete number related to T .
FNN 5.3 A parameter utilized in EP-DFS.
B, B+ 5.4, 6.1 The edge batches of G, which are subsets of E.

For simplicity, we let V(G) denote the node set of G, and let E(G) denote the edge set of G. For instance, G1 of
Figure 2 is a directed graph with 10 nodes (|V(G1)| = 10), and 12 directed edges (|E(G1)| = 12). Note that, we assume
G does not contain self-loops and multiple edges, since these edges are irrelevant to the correctness of the constructed
DFS-Tree. Thus, each node has less than n out-neighbors.

Depth-first search (DFS). For a given graph G, DFS first visits a node u and declares u as visited. Then, it picks
up an undeclared node v, from the out-neighborhood of the most recently visited node w. We say DFS walks on such
edges (w, v). In general, we assume that G has a node r which connects to all the others. If DFS visits G from r,
then it could visit each node in G once. The total order that DFS declares the nodes as visited is known as depth-first
order. This order is not unique, as demonstrated in Example 1.1. For a depth-first order of G, there is a corresponding
DFS-Tree T , composed by the edges that are passed by DFS. The examples of the DFS results, i.e. depth-first order
and DFS-Tree, are demonstrated in Example 1.1.

In the rest of this paper, notation dfo(u,T ) is utilized, as defined below.

Definition 2.2. dfo(v,T ) = k represents the depth-first order of v on T is k, where T is a tree, and v is a node of T .

As an example, for each node v in the graph G1 depicted in Figure 2, the value of dfo(v,T1) is presented on the
right side of Figure 2.

In order to make sure that a DFS-Tree of G only corresponds to a total depth-first order of G, we say that the
spanning trees T of G are ordered trees.

Definition 2.3. A spanning tree T of G is an ordered tree, where the out-neighbors of each node u on T is arranged
from left to right, by the following rule: ∀u, v ∈ V(T ), u is the left brother of v, or v is the right brother of u, iff, (i) u
and v have the same parent node on T and (ii) dfo(u,T ) < dfo(v,T ).

That is, there is an order among all the children u1, u2, . . . , uk of each non-leaf node u of T . If dfo(u1,T ) <
dfo(u2,T ) < · · · < dfo(uk,T ), then u1 is the leftmost child of node u in T while uk is the rightmost child of node u in
T . The running examples, in Figures 1-5, are drawn, according to the above order.

In general, when a semi-external algorithm uses an in-memory DFS algorithm to obtain a DFS-Tree of a graph
GT∪E composed by T and E (E ⊆ E(G)), it should follow Stipulation 2.1.

Stipulation 2.1. For each node u in GT∪E, after visiting u, (i) if a node in the out-neighborhood of u on T has not
been visited, then DFS first visits the leftmost child of u on T which has not been visited; (ii) otherwise, DFS picks a
node v from E, where there is an edge (u, v) in E, and v has not been visited.

For instance, as shown in Figure 1, G0 is a graph composed by Ta and an edge list E = {(d, f ), (g, q), (b, c)}. Tb is
the DFS-Tree of G0 obtained under Stipulation 2.1, while Tc is not. Note that, in Figure 1, the numbers related to the
nodes are their depth-first orders on Ta, Tb or Tc.

Furthermore, given a spanning tree T of G, the edges in G could be classified, as illustrated in Definition 2.4.

Definition 2.4. If an edge e in T , e is a tree edge, otherwise, e is a non-tree edge. For a non-tree edge e = (u, v),
(i) e is a forward edge, iff, the LCA (Least Common Ancestor) of u and v on T is u and (u, v) < E(T );
(ii) e is a backward edge, iff, the LCA of u and v on T is v;
(iii) e is a forward cross edge, iff, dfo(u,T ) < dfo(v,T ) and the LCA of u and v on T is not u;
(iv) e is a backward cross edge, iff, dfo(u,T ) > dfo(v,T ) and the LCA of u and v on T is not v.

4



For instance, in Figure 2, (a, d) is a tree edge, e1 is a forward edge, e2 is a backward edge, e3 is a forward cross edge,
and e4 is a backward cross edge, as classified by T1 of G1.

Problem statement. We study the semi-external DFS problem with the restriction that at most 2n edges could
be hold in the main memory. With such restriction, the semi-external DFS problem is much more complicated and
valuable, in that: (i) the greater the number of edges that can be maintained in memory, the better the performance of a
semi-external DFS algorithm; (ii) the efficient state-of-the-art algorithms (EB-DFS and DC-DFS), require to maintain
at least 2n edges in the main memory, which is discussed in Section 3.

3. Existing solutions

The problem of semi-external DFS is originated in [16], which assumes that only c × n elements could be loaded
into memory (c is a small constant). That assumption is important. For one thing, with the increases of the sizes of
current graph databases, loading a large-scale graph into the main memory becomes harder and harder. For another, to
process a large-scale graph, external DFS algorithms are extremely inefficient, as discussed in Section 1. According
to the fact that “Given a spanning Tree T of G, T is a DFS-Tree of G, iff, G has no forward cross edge as classified
by T” [16, 20], three main algorithms are proposed, i.e. EE-DFS (EdgeByEdge), EB-DFS (EdgeByBatch) and DC-
DFS (DivideConquerDFS).

EE-DFS. It is proposed in [16], which computes the DFS-Tree of G by iterations. In each iteration, it sequentially
scans G a time. Assuming w is the parent of v on T . In each iteration, if an edge e = (u, v) is a forward cross edge
as classified by T , then EE-DFS lets v be the rightmost child u on T , and removes edge (w, v) from T . EE-DFS
ends in kth iteration, if, ∀e ∈ E, e is not a forward cross edge as classified by T , during the kth scanning process.
EE-DFS is inefficient, whose major drawback is that, for each scanned edge e = (u, v), it needs to compute the
LCA of u and v on T , in order to determine whether e is a forward cross edge as classified by T . As T is changed
dynamically (no preprocess is allowed), the time complexity for answering LCA queries of each edge in E is too high
to be afforded1 [16].

EB-DFS. Different from EE-DFS, EB-DFS [16] processes the edges in G by batch to avoid the operation of
computing the edge types. It calls a sequential scan of G a round. In each round, for each n edges En, EB-DFS
replaces T with the DFS-Tree of graph G′, where G′ is composed of T and En. In addition, a function Reduction-
Rearrangement is utilized in EB-DFS, which requires to scan the entire input graph one more time, in order to classify
the nodes on T into two kinds: passive and non-passive. The out-going edges of the passive nodes could be passed in
the later round. For each non-passive node v with k children u1, . . . , uk, they rank the children of v according to their
weights. Here, the weight of a node ui in T is the size of the biggest subtree of T rooted at ui.

EB-DFS requires maintaining 2n edges in memory by default, for ensuring its efficiency. Even though it is
possible to implement EB-DFS by letting it only maintaining 1.5n edges or even fewer edges in the main memory,
its performance decreases greatly. When it only loads n + 1 edge in the main memory (the smallest number), its
performance will be worse than that of EE-DFS, as discussed in [16].

In EB-DFS, each node in T has three attributes [16] required by its procedure Reduction-Rearrangement. As far
as we know, there is no technique proposed for packing all the node attributes of a semi-external algorithm. That is
because, the values of the node attributes change constantly, and it is difficult to estimate them in advance. To ensure
efficiency, semi-external algorithms prefer to apply for a contiguous memory space to maintain their node attributes,
instead of packing them.

EB-DFS, in the worst case, needs n times graph scanning, when G is a strongly connected graph with n nodes and
2n edges positioned as a cycle. To address that, two additional functions are developed, which, unfortunately, is quite
expensive, and should be performed only when necessary, according to [16].

DC-DFS. That approach [20] is a divide-and-conquer algorithm. DC-DFS aims to iteratively divide G into several
small graphs equally and correctly, with two division algorithms Divide-Star and Divide-TD which both utilize the
data structure S-Graph Σ. The former constructs Σ based on T , where (i) initially Σ contains the root r of T and all
the children of r in T ; (ii) scanning all the edges of G from disk, and, ∀e = (u, v) ∈ E, if the LCA of u and v on T is
r (r , u and r , v), computing the S-edge e′ of e and adding e′ into Σ; (iii) restructuring Σ if Σ is not a directed acyclic

1https://algotree.org/algorithms/lowest common ancestor/

5



graph by a node contraction operation [20]. Then the G is divided based on Σ. The latter is similar to Divide-Star,
except that it initializes Σ by a cut-tree Tc of T , where (i) the complete graph composed by the nodes in Tc can fit into
the main memory; (ii) if a node u in Tc, then u is also in T ; (iii) if the children of u in Tc are v1, v2, . . . , vk, then the
children of u in T are v1, v2, . . . , vk.

DC-DFS involves numerous random I/O accesses when the number of the divided subgraphs is huge, comparing
to EB-DFS which only accesses G sequentially. The reason is as follows. G is disk-resident e.g. in a file FG. The
division process of G, in other words, could be treated as sequentially splitting and restoring FG into several small
files, where the elements in each small file are not necessarily continuous in FG. In addition, in such case, the scales
of the most divided subgraphs are relatively small, as a DFS-Tree tends to a left deep tree according to Stipulation 2.1.
Hence, the elements of a large-scale divided subgraph are hard to be stored continuously on disk, according to [9].

DC-DFS needs at least to maintain 2n edges of G in memory for the in-memory spanning tree T and the S-Graph
Σ, when the recursion depth of DC-DFS is relatively large. In addition, it requires at least 5n space to support its
division process, as discussed below. DC-DFS highly relies on certain in-memory graph algorithms. Especially, it
requires to parse all the edge types, in each division process. Hence, it is inevitable to compute the LCA of u and v
on T for each edge (u, v) in G at least once. With the consideration that the structure of T is static during the parsing
process of the edge types, and m is often huge, Farach-Colton and Bender algorithm [2] is the only option2. Based on
the data structure in [13], Farach-Colton and Bender requires at least 5n memory space.

Remark. The efficient traditional semi-external DFS algorithms, i.e. EB-DFS and DC-DFS, maintain at least
2n edges in the main memory. Besides, certain CPU calculations that they request are expensive, since (i) EB-DFS
proposes two functions to address the problem caused by the worst case, but such functions are too expensive to be
utilized in practical applications (expensive CPU calculation); (ii) DC-DFS relies on a certain sophisticated algorithm,
causing it requires 2n more additional memory space than EB-DFS (expensive memory space consumption). In
addition, DC-DFS might be related to numerous random I/Os when the input graph is huge (expensive disk access).

Motivated by the limitations of the state-of-the-art approaches, we aim to address the DFS problem on semi-
external environment with simpler CPU calculation, lower memory space consumption and fewer random disk ac-
cesses in practice. To achieve that goal, we put a lot of efforts to find out why the semi-external DFS problem is
difficulty, as discussed in Section 4.

4. Problem Analysis: the main challenge “chain reaction”

A semi-external DFS algorithm can easily find a total depth-first order or a DFS-Tree for G, when G has less than
n edges. That is because, semi-external algorithms assume that the main memory at least has the ability to maintain a
spanning tree T of G. When G has less than n edges, all its edges could be loaded into the main memory. However, for
a real-word graph G, m is normally dozens of times or even hundreds of times larger than n. When m

n is quite large, it
is hard to compute the DFS results on semi-external memory model. Because, in this case, a semi-external algorithm
can only maintain a portion of edges of G in the main memory simultaneously. Some edges that are currently resided
in the main memory must be removed and replaced by the new scanned edges, as discussed in Section 3.

The difficulty of the semi-external DFS problem is caused by the total depth-first order of the nodes on T is
changed without predictability, when T is replaced to the DFS-Tree of a subgraph of G, even under Stipulation 2.1.
That is as T is changed constantly, the depth-first orders of the nodes on T are changed correspondingly, so that the
edge types as classified by T are changed constantly.

To present an efficient semi-external DFS algorithm, in this section, we present an in-depth study for how the edge
types change when T is replaced. Specifically, we assume that G is divided into a series of edge batches, which are
B1, B2, . . . , Bi, . . . , Bk, in that G is stored on disk as an edge list. Ti represents the DFS-Tree of the graph composed
by T and Bi. Without loss of generality, we first assume that Bi = {e}, where (i) e happens to be a forward cross edge
of G as classified by T , and (ii) e = (x, u) or e = (x, v). Nine groups of examples are drawn to show what happens
to the types of the other edges when we restructure T to Ti, as depicted in Figure 3. The solid lines of Figure 3(a),
Figure 3(b), . . . , and Figure 3(i) are the tree edges of T , while edge (u, v) is an edge of G. Correspondingly, the solid
lines in Figure 3(A), Figure 3(B), . . . , and Figure 3(I) are the tree edges of Ti.

2Many thanks for the website “https://cp-algorithms.com/”.

6



(A) 

(a) 

�

�

�

�

�

�

(B) 

(b) 

�

� �

�

� �

(C) 

(c) 

�

�

�

�

�

�

(D) 

(d) 

�

�

�

�

�

�

(E) 

(e) 

�

�

�

�

�

�

� �

�

� �

�

(g) 

(G) 

�

�

�

�

�

�

(h) 

(H) 

�

� �

�

��

(i) 

(I) (F) 

(f) 

�

�

�

� �

�

(J) 

Figure 3: The demonstration of the chain reaction of modifying the in-memory spanning tree T with a forward edge (x, v) or (x, u). It is worth
noting that all the self-loops are omitted in subfigure (J).

Besides, one should know that the positional relationship between two nodes u and x on T has only two possi-
bilities, where (i) assuming u, v and x are the nodes of T ; (ii) (x, v) is a forward cross edge as classified by T ; (iii) u
is an ancestor of v on T . One is, if dfo(x,T ) is larger than dfo(u,T ), then u is also an ancestor of x on T . Another
is, if dfo(x,T ) is smaller than dfo(u,T ), then u and x belongs to two different subtrees of T . The above discussion is
formally defined the following Lemma 4.1.

Lemma 4.1. Given nodes u, v, x in T , u is an ancestor of v, and (x, v) is a forward cross edge as classified by T . If
dfo(x,T ) > dfo(u,T ), then the LCA of u and x on T is u; if dfo(x,T ) < dfo(u,T ), then the LCA of u and x on T is
neither u nor x.

Proof 4.1. (x, v) is a forward cross edge as classified by T . That is dfo(x,T ) < dfo(v,T ) and the LCA of x and v on T
is neither x nor v. On the one hand, if dfo(x,T ) > dfo(u,T ), assuming x is not a descendant of u, i.e. the LCA of u and
x on T is not u. As dfo(x,T ) > dfo(u,T ), x can only be a right brother of u, a descendant of u’s right brothers or a
descendant of a u’s ancestor’s right brother. Thus, dfo(x,T ) > dfo(v,T ), which contradicts the premise. One the other
hand, if dfo(x,T ) < dfo(u,T ), assuming the LCA of u and x on T is x. Then, the LCA of x and v on T is x. Hence, the
LCA of u and x on T is neither u nor x, as, when dfo(x,T ) < dfo(u,T ), the LCA of u and x on T is not u.

Firstly, we assume that (u, v) is a tree edge of T . Then, when Bi = {e = (x, u)}, a semi-external algorithm
restructures T to Ti, by (1) letting (x, u) be a tree edge of T ; (2) removing (w, x) from T , where node w is the parent
of u on T . Thus, (u, v) is still a tree edge of Ti. However, when Bi = {e = (x, v)}, (u, v) is either a forward edge or a
backward cross edge as classified by Ti. For one thing, when dfo(x,T ) is larger than dfo(u,T ), (u, v) is a forward edge
as classified by Ti. The reason is, according to Lemma 4.1, in this case, u must be an ancestor of x on T , as shown
in Figure 3(a). Thus, based on Stipulation 2.1, (x, v) should be a tree edge of T , and edge (u, v) should be removed
from T . That is (u, v) is a forward edge as classified by Ti, as shown in Figure 3(A). For another, when dfo(x,T ) is
smaller than dfo(u,T ), (u, v) is a backward cross edge as classified by Ti. That is because, according to Lemma 4.1,
if dfo(x,T ) < dfo(u,T ), node u and node x must belong to different subtrees of T , as shown in Figure 3(b). Hence, a
semi-external DFS algorithm should let (x, v) be a tree edge of T , and remove (u, v) from T , in terms of Stipulation 2.1.
That is (u, v) is a backward cross edge as classified by Ti, as shown in Figure 3(B).

After that, we assume (u, v) is a forward edge as classified by T . A semi-external algorithm may let (u, v) be a
forward edge or a backward cross edge as classified by Ti. For one thing, if Bi = {e = (x, u)}, then after restructuring
T to Ti, (u, v) is a forward edge as classified by Ti, which is obvious. In addition, when Bi = {e = (x, v)} and dfo(x,T )
is larger than dfo(v,T ), then (u, v) is also a forward edge as classified by Ti. Because according to Lemma 4.1, u must
be an ancestor of x on T , as shown in Figure 3(c) and Figure 3(C). For another, if Bi = {e = (x, v)} and dfo(x,T ) is
smaller than dfo(v,T ), then (u, v) is a backward cross edge as classified by Ti, in that according to Lemma 4.1, u and
x must belong to different subtrees of T . Figure 3(d) and Figure 3(D) is a demonstration for this case.

Moreover, if (u, v) is a backward edge as classified by T , then (u, v) is either a backward edge or forward cross
edge as classified by Ti, which is discussed as follows. On the one hand, if Bi = {e = (x, v)}, (u, v) must be a backward

7



edge as classified by Ti, because restructuring T to Ti does not change the descendants of v on the tree. On the
other hand, when Bi = {e = (x, u)}, there are two cases. One is when dfo(x,T ) is larger than dfo(v,T ), according
to Lemma 4.1, v must be an ancestor of x on T , as shown in Figure 3(e). Thus, according to Figure 3(E), (u, v) is a
backward edge, as classified by Ti. Another is that if dfo(x,T ) is smaller than dfo(v,T ), then according to Lemma 4.1,
x and v are in different subtrees of T , as shown in Figure 3(f). Then, (u, v) is a forward cross edge as classified by Ti,
as demonstrated in Figure 3(F).

Furthermore, edge (u, v) is given as a backward cross edge. (u, v) can be any type of the non-tree edges, except
the type of forward edges, as classified by Ti. The reason is discussed below. When (u, v) is a backward cross edge
as classified by T , then dfo(u,T ) is smaller than dfo(v,T ), and nodes u and v belong to two different subtrees of T .
On the one hand, assuming Bi = {e = (x, v)}, then dfo(v,Ti) must be smaller than dfo(v,T ), and dfo(u,Ti) is equal to
dfo(u,T ). That is, dfo(v,Ti) is smaller than dfo(u,Ti). Thus, (u, v) is not a forward edge as classified by Ti. On the
other hand, when Bi = {e = (x, u)}, then u cannot be an ancestor of v on Ti, so that (u, v) is not a forward cross edge
as classified by Ti. Figure 3(g)-Figure 3(G), Figure 3(h)-Figure 3(H), and Figure 3(i)-Figure 3(I) are three groups of
instances. Edge (u, v) is a backward cross edge as classified by T in Figure 3(g), Figure 3(h) and Figure 3(i). Edge
(u, v) is a backward cross edge, a backward edge, and a forward cross edge as classified by Ti, as demonstrated in
Figure 3(G), Figure 3(H) and Figure 3(I), respectively.

Therefore, when Bi has a forward cross edge as classified by T , there may be a set of edges in G whose edge
types as classified by T have been changed, after T is restructured to Ti, the DFS-Tree of the graph composed by
T and Bi. Since the distribution of the nodes and edges in G is unknown, and the order of the edges stored on disk
is also unknown, after restructuring T , it is impossible to predict which edges in G will have a changed edge type,
and what edge type will they become. Not to mention, it is very likely that Bi contains more than one forward cross
edge, when more than one edge is allowed to be loaded into memory. We notice that there is a “chain reaction” in
the process of restructuring T , which refers to the cycles of Figure 3(J). Here, Figure 3(J) is summarized based on the
above discussion, in which the self-loops are omitted.

With the existence of the chain reaction, it is hard to determine whether an edge will be used in the future or
not. Thus, traditional algorithms have to devise a series of complex operations to prune edges from G or be related
to numerous random I/O accesses (discussed in Section 3). For example, in order to select the nodes whose out-
neighborhoods should be rearranged, EB-DFS has to scan G one more time at the end of each iteration. Besides, to
improve the performance of EB-DFS when G may contain a large complex cycle, two additional functions are devised
for EB-DFS, which are quite expensive and can only be used when necessary. DC-DFS is presented for computing
the DFS results to reduce the high time and I/O costs of EB-DFS. Unfortunately, since real-world graphs are complex,
DC-DFS may have to divide the input graph G into a large set of small subgraphs, so that it involves numerous random
disk accesses.

5. A naive algorithm

As the chain reaction exists, given a complex network G, a semi-external DFS algorithm may have to scan G n
times, or be related to numerous random disk accesses, as discussed in Section 3. This cannot be afforded in practice.
In order to reduce the effect of the chain reaction on the performance of restructuring T to a DFS-Tree of G, an
in-depth study is conducted, in which we have a simple but very important observation:

- Given an edge batch Bi = {(u, v)}, assuming Ti is the DFS-Tree of the graph composed by T and Bi under
Stipulation 2.1. Then, ∀x ∈ V(T ), dfo(x,T ) is equal to dfo(x,Ti), if dfo(x,T ) is smaller than dfo(v,Ti).

In other words, the edge types of e as classified by T and Ti are the same, when e = (s, t) and the depth-first orders of
s and t on T are smaller than that of v on Ti. For example, when T is in the form of T0 (Figure 4(a)), given an edge
batch Bi = {e2 = (b, c)}, a semi-external algorithm will restructure T to Ti, where Ti is in the form of T1 (Figure 4(b)).
Then, the depth-first order of c on Ti (T1) is 7, and if a node has a depth-first order on T that is smaller than 7, then it
has the same depth-first orders on T and on Ti.

To formally define our above observation (Observation 5.1), we use a notation C(T,Ti), as defined in Defini-
tion 5.1.

8



�

�

��

��

��
�

�

	




�

� ℎ

�
9

8

7

65

4

3

2

1

0

�

�

��

��

�

�

	


 ��

ℎ

�
9

8

765

4

3

2

1

0

�

�

�

	




��

ℎ

�

��

�

9

8

76

5

4

3

2

1

0

�

�

�

	




��

ℎ�

�

9

8

7

6

5

4

3

2

1

0

(a) T0

�

�

��

��

��
�

�

	




�

� ℎ

�
9

8

7

65

4

3

2

1

0

�

�

��

��

�

�

	


 ��

ℎ

�
9

8

765

4

3

2

1

0

�

�

�

	




��

ℎ

�

��

�

9

8

76

5

4

3

2

1

0

�

�

�

	




��

ℎ�

�

9

8

7

6

5

4

3

2

1

0

(b) T1

�

�

��

��

��
�

�

	




�

� ℎ

�
9

8

7

65

4

3

2

1

0

�

�

��

��

�

�

	


 ��

ℎ

�
9

8

765

4

3

2

1

0

�

�

�

	




��

ℎ

�

��

�

9

8

76

5

4

3

2

1

0

�

�

�

	




��

ℎ�

�

9

8

7

6

5

4

3

2

1

0

(c) T2

�

�

��

��

��
�

�

	




�

� ℎ

�
9

8

7

65

4

3

2

1

0

�

�

��

��

�

�

	


 ��

ℎ

�
9

8

765

4

3

2

1

0

�

�

�

	




��

ℎ

�

��

�

9

8

76

5

4

3

2

1

0

�

�

�

	




��

ℎ�

�

9

8

7

6

5

4

3

2

1

0

(d) T3

Figure 4: We draw a graph G in four forms as shown in subfigures (a)-(d), where T0,T1,T2 and T3 are spanning trees of G constituted by solid
lines.

Definition 5.1. C(T,Ti) refers to a concrete number k, where (i) T and Ti are spanning trees of G; (ii) ∀u ∈ V(G), if
dfo(u,T ) < k, then dfo(u,T ) = dfo(u,Ti), otherwise dfo(u,T ) , dfo(u,Ti).

For instance, as depicted in Figure 4, C(T0,T1) = 10 and C(T0,T2) = 4.

Observation 5.1. C(T,Ti) ≥ dfo(v,Ti), where Ti is the DFS-Tree of the graph composed by T and an edge batch
Bi = {(u, v)}.

Proof 5.1. As mentioned in Section 2, T is restructured to Ti based on Stipulation 2.1. For one thing, if the edge (u, v)
in Bi is a forward cross edge, then T is restructured to Ti by adding an edge (u, v) into T and removing the edge (w, v)
from T, where w is the parent node of v on T . Thus, the above statement is valid. For another, if (u, v) is not a forward
cross edge, then the total depth-first order of T and that of Ti are the same. �

Based on Observation 5.1, when Bi refers to a subset of E(G), we find out some nodes of G could have the same
depth-first orders on T and on Ti, if their depth-first orders on T are smaller Υ(T ) as defined below. This observation
is formally presented in Observation 5.2.

Definition 5.2. Υ(T ) = dfo(u,T ), where (i) an edge e in G whose tail is u is a forward cross edge as classified by T ,
and (ii) for any other forward cross edge e′ in G as classified by T , the depth-first order of the tail of e′ is larger than
dfo(u,T ). If there is no forward cross edge in G as classified by T then Υ(T ) = +∞.

As depicted in Figure 4, Υ(T0) = Υ(T1) = 3, Υ(T2) = 6 and Υ(T3) = +∞.

Observation 5.2. ∀Bi ⊆ E(G), C(T,Ti) ≥ Υ(T ), where Ti is the DFS-Tree of the graph composed by T and Bi.

Proof 5.2. This statement is equivalent to “∀u ∈ V(G), if dfo(u,T ) = k ≤ Υ(T ), then dfo(u,Ti) = k”, which could be
proved by contradiction. Assuming there is a node x in G where dfo(x,T ) = kx ≤ Υ(T ), but dfo(x,Ti) , kx. Since
dfo(x,T ) ≤ Υ(T ), according to Definition 5.2, ∀e ∈ E(G), if x is the tail or the head of e, then e is not a forward cross
edge as classified by T . Thus, if our assumption is correct, then there must be an edge e′ in G, where (1) e′ ∈ Bi is
a forward cross edge as classified by T; (2) the depth-first order of the tail of e′ on T must be smaller than dfo(x,T ).
Otherwise, the assumption cannot be right, according to Stipulation 2.1. However, if there is an edge e′ in G, Υ(T )
must be smaller than the depth-first order of the tail of e′, which contradicts the premise. �

For example, given a batch of edges Bi = {e1, e2, (a, d)}, if T is in the form of T0 (Figure 4(a)), T2 is the DFS-Tree
of the graph composed by T and Bi, where T2 is depicted in Figure 4(c). C(T0,T2) = 4 ≥ Υ(T0) = 3.

Based on Observation 5.2, we find out that not all depth-first orders of the nodes on T will keep changing, during
the process of restructuring T to a DFS-Tree of G, especially when we limit the elements that can be contained in Bi.
A naive algorithm is presented, as shown in Algorithm 1.

The naive algorithm restructures T to a DFS-Tree of G with iterations, which is a natural way to address the DFS
problem on semi-external memory model. In each iteration, it sequentially scans G once, in order to obtain a batch B
of edges from G. Specifically, there is a parameter utilized in the naive EP-DFS, i.e. FNN as defined below.

9



Algorithm 1 Naive EP-DFS(G, r)
Input: G = (V, E) is an input graph; r is a node of G connected to all the other nodes in G.
Output: A DFS-Tree of G.

1: T ← a spanning tree of G rooted at r, FNN ← 1
2: while FNN < n do
3: B ←Scanning(G, FNN)
4: Replacing T with the DFS-Tree TB of the graph composed by T and B
5: FNN ← C(T,TB)
6: if C(T,TB) > Max(B) + 1 then
7: FNN ← Max(B) + 1
8: end if
9: end while

10: return T

Definition 5.3. FNN (Fixed Node Number) represents a concrete number, where, ∀u ∈ V(T ), if dfo(u,T ) < FNN
in the ith iteration of EP-DFS (Algorithm 1 and Algorithm 2), then the value of dfo(u,T ) will not be changed in any
following iteration.

Of course, during the whole process, we cannot change the root of T , so that FNN is initialized to 1, as demon-
strated in Line 1.

Line 3 loads an edge batch B, as defined in Definition 5.4. The reason is, in the ith iteration, if an edge e related
to a node s whose depth-first order on T is smaller than FNN, e cannot be a forward cross edge as classified by T in
the jth iteration, where j ≥ i. The above statement is proved by Theorem 5.1.

Definition 5.4. B is an edge batch of G, where
(i) B contains an edge e = (u, v) of G, if dfo(u,T ) ≥ FNN or dfo(v,T ) ≥ FNN;
(ii) if ∃e = (u, v) ∈ B and the tail or the head of an edge e′ of G has a depth-first order on T that is no larger than

dfo(u,T ) or dfo(v,T ), then e′ belongs to B
(iii) there is an edge in B whose tail or head has a depth-first order on T which is equal to Max(B), and ∀e =

(u, v) ∈ B, either dfo(u,T ) ≤ Max(B) or dfo(v,T ) ≤ Max(B).

As we limit the main memory maintains at most 2n edges of G, B has at most n edges. After obtaining the edge
batch B in Line 3, Line 4 restructures T into the DFS-Tree TB of the graph composed by T and B according to
Stipulation 2.1. It could be proved in Theorem 5.1 that parameter FNN could be updated by the smallest value of
C(T,TB) and Max(B) + 1, in case all the edges contained in B are not forward cross edges as classified by T .

Theorem 5.1. Υ(TB) ≥Min
(
C(T,TB),Max(B) + 1

)
, if Υ(T ) ≥ FNN and TB is the DFS-Tree of the graph composed

by T and an edge batch B. Min(i, j) represents the smaller value between i and j.

Proof 5.3. We prove the statement by contradiction, i.e. supposing Υ(TB) < Min
(
C(T,TB),Max(B) + 1

)
. In other

words, G contains a forward cross edge e = (u, v) as classified by TB, where dfo(u,TB) < Min
(
C(T,TB),Max(B) +

1
)
. According to Observation 5.2, dfo(v,TB) > dfo(u,TB) ≥ FNN. Hence, FNN ≤ dfo(u,TB) < Min

(
C(T,TB),

Max(B) + 1
)
. Based on the premise of the statement, if a node x has a depth-first order on T that is smaller than

C(T,TB), then dfo(x,TB) = k. As dfo(u,TB) < C(T,TB), there must be dfo(u,TB) = dfo(u,T ) and both of them are
smaller than Min

(
C(T,TB),Max(B) + 1

)
, i.e. (u, v) ∈ B. Thus, after restructuring T to TB, there is an edge in B that

is a forward cross edge as classified by TB, which is impossible. �

Example 5.1 takes one iteration of the naive EP-DFS for instance.

Example 5.1. Assuming at the beginning of one iteration of Algorithm 1, T is in the form of T0 shown in Figure 4(a),
the value of FNN is 1. B = {(r, a), (r, b), (r, c), (a, d), (d, p), (p, f ), (b, f ), (b, g), (b, c)} so that Max(B) = 5. That is, the
DFS-Tree TB of the graph composed by T and B is in the form of T2 shown in Figure 4(c). Hence, FNN is updated
to 4, as C(T0,T2) = 4 ≤ Max(B) + 1 = 6.

10



Algorithm 2 EP-DFS(G, r)
Input: G = (V, E) is an input graph; r is a node of G connected to all the other nodes in G.
Output: A DFS-Tree T .

1: T ← a spanning tree of G rooted at r
2: T, FNN ← InitialRound(G,T ) . Procedure 1
3: F1 ← FNN
4: N+-index← Indexing(FNN,T,G) . Procedure 3
5: while FNN < n do
6: B+ ←ObtainingEdges(FNN, N+-index,T ) . Procedure 4
7: Replace T with the DFS-Tree TB+ of the graph composed by T and B+

8: F2 ← FNN, FNN ← C+(T,TB+ )
9: If FNN > Max(B+) + 1 then FNN = Max(B+) + 1

10: if FNN−F2
n → 0 and FNN − F1 > γ × n then

// restructuring and rewriting N+-index
11: T, FNN ←RoundI&Reduction(N+-index, FNN,T ), F1 ← FNN
12: else if FNN−F2

n → 0 then
13: T, FNN ←RoundI(N+-index, FNN,T )
14: end if
15: Rearrangement(T, FNN) . Procedure 2
16: end while
17: return T

6. EP-DFS Algorithm

In practice, the implementation of Algorithm 1 is intricate, especially when G is relatively large. (1) One reason
is that at beginning the naive EP-DFS initializes FNN to 1. Even though, setting FNN = 1 is correct, because during
the whole process, the root of T is fixed which is node r, and the depth-first order of leftmost child of r is also fixed
according to Stipulation 2.1. This initialization of FNN may let the naive EP-DFS scan the whole input graph many
times meaninglessly. The reason is when Υ(T ) � 1, G may contains a large number of edges, each of which has
a tail or a head whose depth-first order on T is in the range of [1,Υ(T )), and these edges may not fit into one edge
batch B (B contians n edges at most according to Section 2). (2) Another is, it is hard to load an edge batch B, since
the value of Max(B) is unknown before B is obtained, and the distribution of the edges in G is also unknown. (3)
Furthermore, we find the naive EP-DFS may not be terminated when G has more than n edges whose tail or head is
u, and dfo(u,T ) = FNN. Because, in this case, according to Definition 5.4, B cannot fit into the main memory under
the restriction that at most 2n edges could be contained in the main memory.

To efficient restructure T to a DFS-Tree of G, EP-DFS is presented in this section, and its pseudo-code is given
in Algorithm 2. As shown in Lines 1-2, EP-DFS initializes parameter FNN by a new method, which is named
InitialRound and detailedly discussed in Section 6.1. Then, since loading an edge batch of G with certain restrictions
is hard and EP-DFS may not be terminated by using B, Section 6.2 introduces the edge batch, named B+, and a light-
weight index N+-index to efficiently obtain B+. Section 6.3 illustrates how to correctly update the value of FNN as
larger as possible when usingB+ instead ofB. Section 6.4 presents an optimization algorithm for EP-DFS. Section 6.5
discusses the space consumption of EP-DFS and presents its implementation details. For the correctness of EP-DFS,
please see Section 6.6.

6.1. The initialization of FNN
We present a procedure InitialRound(G,T ) in Procedure 1, for the initialization of T and that of parameter FNN.
This procedure has two loops. Its first loop is utilized in Lines 1-4. It scans G once, as demonstrated in Line 1.

For each n edges of G, it replaces the in-memory spanning tree T of G with the DFS-Tree of the graph composed by
T and these edges, as demonstrated in Line 2. Moreover, in each iteration of this loop, we present a new algorithm to
rearrange the orders of the nodes on T , which is named Rearrangement introduced in Procedure 2. Comparing with
the first loop, the second loop is simpler, in which we do not rearrange the nodes of T , as illustrated in Lines 6-8. At
the end of this function, Line 9 returns T , and sets FNN to C(T ′,T ), where T ′ represents the form of T obtained by
the first loop (Line 5). The correctness of setting FNN to C(T ′,T ) is proved in Theorem 6.1, Section 6.6.

11



Procedure 1 InitialRound(G,T )
1: for each n edges of G do
2: Replace T with the DFS-Tree of the graph composed by T and these n edges
3: Rearrangement(T, 0) . Procedure 2
4: end for
5: T ′ ← T
6: for each n edges of G do
7: Replace T with the DFS-Tree of the graph composed by T and these n edges
8: end for
9: return T and FNN ← C(T ′,T ) // Υ(T ) ≥ C(T ′,T )

Procedure 2 Rearrangement(T, FNN)
1: for i from n − 1 to FNN do
2: u represents the node on T whose depth-first order is i
3: Assuming u has k children on T which are v1, v2, . . . , vk

4: W(u)←− 1 +W(v1) +W(v2) + · · · +W(vk)
5: for each integer j in the range of [0, k

104 ] do
6: l← j × 104, QS-Rearrange(l + 1, l + 104)
7: end for
8: l← b k

104 c × 104, if l < k then QS-Rearrange(l + 1, k)
9: end for

Our rearrangement algorithm is introduced in Procedure 2. It aims to rearrange the children of each node u on T ,
according to their node weights. Specifically, the weight of v is the size of Tv, denoted by W(v). Tv is the subtree
of T , where the root of Tv is v and leaves of Tv are the leaves of T . Firstly, to compute the weights of nodes on T ,
we scan the nodes on T in the reverse total depth-first order of T . When node u on T is scanned, its node weight
W(u) is set to the value of 1 +W(v1) +W(v2) + · · · +W(vk), as shown in Line 4 of Procedure 2. Here, we assume
u has k children on T which are v1, v2, . . . , vk. The correctness of this node-weight computation process is proved in
Theorem 6.2, Section 6.6. Secondly, when node u is scanned, we also rearrange its out-neighborhoods. However,
considering that some nodes on T may have a large set of out-neighbors, when u has more than 104 nodes on T ,
procedure Rearrangement sorts at most 104 children of u at a time, as shown in Lines 5-8. Assuming l1 and l2 are
two integers, where l1 > l2. Each time a function QS-Rearrange is used to rearrange the l1th to the l2th out-neighbors
of u from the left to right, as shown in Line 6 and Line 8. It worth noting that, the sort algorithm used here is
quick-sort [15]. Besides, if the rearranged l1th to the rearranged l2th out-neighbors of u from the left to right are
vl1 , vl1+1 . . . , vl2 , thenW(vl1 ) ≥ W(vl1+1) ≥ · · · ≥ W(vl2 ).

Our rearrangement strategy is efficient, which is discussed below. For one thing, our rearrangement algorithm only
traverse T once, while traditional algorithms have to traverse T at least twice, where the former is used to compute
the weight of each node on T , and the latter is for sorting the children of each node on T in a required order. Even
though traversing an in-memory spanning tree is quite fast, it is still necessary to decrease the number of traversing
T . That is because, in a semi-external algorithm, T is changed without predictability so that it is also stored in the
main memory with an unstructured data structure. To restructure an in-memory spanning tree to a DFS-Tree of G, a
semi-external algorithm may have to rearrange T many times, and the size of G is often large. Note that, traversing T
in a semi-external algorithm does not involve any I/O costs since all the nodes are stored in the main memory and there
is no input and output disk access. For another, traditional algorithms have to consume O(n log n) time to rearrange
the out-neighbors of nodes on T , since a node u on T may have up to n out-neighbors. However, in EP-DFS, the time
consumption of procedure Rearrangement is only O(n), as discussed in the end of Section 6.5.

An example of our rearrangement algorithm is given below.

Example 6.1. Figure 5 is a vivid schematic view of how the rearrangement strategy works, when T is in the form
of T1 (Figure 4(b)), and the input FNN is set to 1. Figure 5(a) shows Procedure 2 first restructures the out-
neighborhoods of nodes q, h, c, . . . , b. Figure 5(b) illustrates that the last node whose out-neighborhood is rearranged
by Procedure 2 is a not r, since FNN is set to 1. Figure 5(c) depicts the rearranged T .

12



�

�




�

�

 ��

ℎ

�
9

8

7

6

5

4

3

2

1

0

�

�




�

�

� �

ℎ

�

98

7

6

5

4

3

2

1

0

�

�

�

�



�

� ℎ 8

7

5

4

2

1

0

6
2

1 5 8�

�

�

�



�

� ℎ

0

6 7 9

� �′

�

�




�

�

� �

ℎ

�

9

8

7

6
5

4

3

2

1

0

(a)

5

�

�

�

�

�

� �

ℎ




98

7

6

4

3

2

1

0

�

(b)

�

�

�

�

�

�� �

ℎ




98

7

6

5

4

3

2

1

0

(c)

Figure 5: An example of Procedure 2, where the input spanning tree of G is in the form of T1 shown in Figure 4(b), and the value of the input
parameter FNN is 1.

6.2. How to efficiently obtain an edge batch
As mentioned below, in the naive EP-DFS, restructuring T with an edge set B (defined in Definition 5.4) is

impractical, since it may cause the naive algorithm cannot be terminated. To be specific, when G has more than n
edges related to the node whose depth-first order on T is FNN, the edge batch B in the naive algorithm cannot fit into
the main memory under our restriction (Section 2). Moreover, since the edge entries of G is stored on disk with an
unknown order, it is quite difficult to obtain an edge batch of G with certain requirements.

In order to address the problem that the edge batch B may not be loaded in memory under the restriction that at
most 2n edges of G could be maintained in the main memory, in EP-DFS, B+ is used instead of B.

Definition 6.1. B+ is an edge batch of G, where
(i) B+ contains an edge e = (u, v) of G if FNN ≤ dfo(u,T ) and dfo(v,T ) > FNN;
(ii) e′ = (u′, v′) ∈ B+, if ∃e = (u, v) ∈ B+ and dfo(u′,T ) ≤ dfo(u,T );
(iii) ∃e = (u, v), dfo(u,T ) = Max(B+), and ∀e′ = (u′, v′) ∈ B+, dfo(u′,T ) ≤ Max(B+).

∀u ∈ V(T ) such that FNN ≤ dfo(u,T ) ≤ Max(B+), B+ contains only the outgoing edges (u, v) of u where
dfo(v,T ) is larger than FNN. Thus, for each node v in G, as the number of v’s outgoing edges is less than n discussed
in Section 2, there is an edge batch B+ that |B+| ≤ n. As an example, given FNN = 6 and Max(B+) = 7, B+ =

{(g, q), (c, h)}, in Figure 4(c).
In order to efficiently access G and obtain the edge batch B+, we devise a lightweight index, named N+-index. Its

indexing algorithm is presented in Procedure 3.

Procedure 3 Indexing(FNN,T,G)
1: i← 0, Ei ← an empty edge list
2: for each edge e = (u, v) in G do
3: if dfo(u,T ) < FNN or dfo(v,T ) ≤ FNN then
4: continue
5: end if
6: Ei ← Ei ∪ e
7: if Ei cannot be enlarged any more then
8: Sort the edges in Ei, and then stored them on disk
9: i← i + 1, Ei ← an empty edge list

10: end if
11: end for
12: Sort the edges in Ei

13: Obtain an edge stream Sv by merging all the ordered edge lists E0, E1, . . . ,Ei

14: return N+-index by compressing Sv

To construct N+-index, the edges e=(u, v) of G are sequentially scanned in Lines 2-11. When dfo(u,T ) is smaller
than FNN or dfo(v,T ) is no larger than FNN, e is discarded directly. That is because FNN < Υ(T ), based on

13



�

�

�

�

�

��

ℎ	




9

76

5

4

3

2

1

0

8

��

ℎ	
9

76

8

Unordered edge lists

Ordered edge lists

Uncompressed edge stream

Input graph

Reserved subgraph

(a)

(b)

(c)

(d)

(e)

Figure 6: An example of Procedure 3, where (i) the input graph is constituted by all the edges demonstrated in subgraph (a), (ii) the input spanning
tree is constituted by the black solid edges of subgraph (a), and (iii) the value of FNN is 6.

Theorem 6.1. Hence, ∀(u, v) ∈ E(G), if dfo(u,T ) < FNN and dfo(v,T ) ≤ FNN, then e cannot be a forward cross edge
as classified by T in Procedure 3.

Otherwise, Line 6 adds e into an edge list Ei, where Ei is initialized in Line 1 and Line 9. When the edge list
Ei cannot be enlarged anymore (Line 7), we sort the edges in E and store them on disk, as demonstrated in Line 8.
Here, the edges in Ei are ordered by the following rules. (1) Assuming the nodes of G are u1, u2, . . . , u j, . . . , un. (2)
Ei(u j) = [], if ∀v ∈ V(G), there is no edge (u j, v) in Ei; otherwise Ei(u j) = [(u j, v1), (u j, v2), . . . , (u j, vk)], iff, ∀l ∈ [i, k],
(u j, vl) ∈ Ei. (3) The ordered Ei is composed of Ei(u1),Ei(u2), . . . , and Ei(up) connected end to end. After scanning
G, an edge stream Sv is obtained by a multi-way merge of all the ordered edge lists E0,E1, . . . ,Ei, as illustrated in
Line 13. For clarity, an instance is given in Example 6.2.

Example 6.2. Assuming the input graph G is constituted by all the solid and dotted lines shown in Figure 6(a). One
of its spanning trees T is constituted by all the solid lines demonstrated in Figure 6(a). The given value of FNN is 6.
According to Procedure 3, given an edge e = (u, v) of G, if dfo(u,T ) < FNN or dfo(v,T ) ≤ FNN, then e is discarded.
Only a small set of edges in E(G) could be used to construct N+-index, which are depicted in Figure 6(b). Here, to
illustrated the following process of Procedure 3, we assume the main memory sorts 3 edges at a time. Then, all these
edges in Figure 6(b) are divided into three edge lists, where these unordered edge lists are demonstrated in Figure 6(c)
and their ordered forms are given in Figure 6(d). After using external sort to merge all these ordered edge lists, an
edge streaming can be obtained, as shown in Figure 6(e).

Finally, N+-index could be obtained by compressing Sv. Here, the compression algorithm used in this paper is
[6, 7], which could achieve the best compression rates (about 2-3 bits per link), as far as we know. In order to utilize
our N+-index, at least two attributes should be maintained for each node u on T , which are u.OF and u.OD. The
former u.OF is the offset value [7] of the node u in N+-index. The latter u.OD represents the out-degree of node u on
the graph composed by the edges in N+-index.

Based on N+-index, we construct the edge batch B+ by procedure ObtainingEdges(FNN,N+-index,T ), as shown
in Procedure 4. It is presented for obtaining the edge batch B+ with a given variable FNN on indexN+-index, and for
avoiding random disk accesses.

First of all, Lines 1-2 initialize O and B+ as an empty edge set and an empty offset list, respectively. Max(B+) =

FNN, and κ = 0. A loop, in Lines 3-16, runs until the value of Max(B+) is no smaller than n, or the sum of κ and
u.OD is larger than n, as shown in Line 9. Here, u represents the node on T whose depth-first order on T is equal
to Max(B+), as demonstrated in Line 4. When the sum of κ an u.OD is larger than n, as illustrated in Lines 5-7, we
load the edges that are related to the offsets in O sequentially to reduce random disk seek operations. Besides, we
reset O and κ to an empty offset list and |B+|, respectively. If u.OD is not equal to 0 in Line 12, then O = O ∪ {u.OF}
and κ = κ + u.OD (κ < n, according to Line 9). At the end of each iteration of this loop, Max(B+) is updated to
Max(B+) + 1 as shown in Line 15.

6.3. How to update FNN

In the naive EP-DFS, after replacing T with the DFS-Tree TB of the graph composed by T and the edge batch
B (Definition 5.4), the value of parameter FNN is updated by the smaller value of C(T,TB) and Max(B+). Even

14



Procedure 4 ObtainingEdges(FNN,N+-index,T )
1: O ← an empty offset list
2: κ ← 0, Max(B+)← FNN and B+ ← an empty edge set
3: while Max(B+) < n then
4: u is the node on T whose depth-first order is Max(B+)
5: if κ + u.OD > n then
6: B+ ← B+∪LoadSequentially(N+-index,O)
7: O ← an empty offset list , κ ← |B+|

8: end if
9: if κ + u.OD > n then

10: break
11: end if
12: if u.OD , 0 then
13: O = O ∪ {u.OF} , κ = κ + u.OD
14: end if
15: Max(B+)← Max(B+) + 1
16: end while
17: return B+∪LoadSequentially(N+-index,O)

though the way that the naive EP-DFS updates parameter FNN is correct, the difference between the value of
Υ(T ) (Definition 5.2) and the updated FNN in the naive EP-DFS is still large. Since our EP-DFS can be termi-
nated only when the value of FNN is no smaller than n, we have put in a lot of efforts to further increase the value of
FNN, after replacing T with TB+ . Here, TB+ represents the DFS-Tree of the graph composed by T and the edge batch
B+ (Definiton 6.1).

Our current result (Theorem 6.3) shows that, we could set the value of FNN to the smaller value of C+(T,TB+ )
and Max(B+), as defined in Definition 6.2.

Definition 6.2. C+(T,TB+ ) = dfo(u,TB+ ), iff, (i) dfo(u,T ) > Max(B+), and (ii) ∀v ∈ V(G), if dfo(v,T ) > Max(B+)
and v , u, then dfo(v,TB+ ) > dfo(u,TB+ ).

Example 6.3 is an instance of one iteration of EP-DFS.

Example 6.3. Given T in the form of T0 shown in Figure 4(a). Assuming FNN = 0, and B+ = {(r, a), (r, b), (r, c),
(a, d), (d, p), (p, f ), (b, f ), (b, g), (b, c)}. That is Max(B+) = 5, T2 (Figure 4(c)) is the DFS-Tree of the graph composed
by T and B+, and C+(T0,T2) = 6. Hence, FNN will be updated to 6.

6.4. Optimization
In order to reduce the iteration times of EP-DFS, an optimization is devised in this part. Its pseudo-code is

presented in Lines 10-14 of Algorithm 2. For clarity, notation F1 is used to denote the value of FNN initialized in
Line 6 or updated in Line 11. Notation F2 is used to denote the value of FNN before it is updated in Lines 8-9. γ is a
threshold for determining when to restructure N+-index, which normally will be set to 10%, in Line 10. FNN−F2

n → 0
indicates that the difference between the total depth-first orders of T and TB+ is small.

RoundI(N+-index, FNN,T ). This procedure of EP-DFS is used to restructure T with all the edges contained in
N+-index, by the following way. First of all, it loads the edges contained in N+-index by batches, and each batch
contains at most n edges. For an edge e = (u, v) in this index, e is loaded into the main memory, iff, the depth-first
order of u on T is no smaller than FNN and the depth-first order of v on T is larger than FNN. Second, it executes
function Rearrangement after every five invocations of DFS. Assuming the input spanning tree T is in the form of Tin

and the output spanning tree T is in the form of Tout, then RoundI updates FNN to C(Tin,Tout).
RoundI&Reduction(N+-index, FNN,T ). This procedure is similar to procedure RoundI, which uses edges in N+-

index to restructure T , and updates FNN to C(Tin,Tout) as discussed above. In addition to that, it also restructures
N+-index with the way of Procedure 3. To be specific, it scans N+-index sequentially. For each edge e = (u, v)
contained inN+-index, it discards e if dfo(u,T ) < FNN or dfo(v,T ) ≤ FNN, since e cannot be a forward cross edge as
classified by T in the following iterations of EP-DFS. The rest of the edges, which are not discarded, are processed by

15



batches: E0,E1, . . . ,Ei, . . . . For an edge batch Ei, T is replaced by the DFS-Tree of the graph composed by T and Ei.
Then, Ei is ordered in the same way that Ei is ordered in Procedure 3, an example of which is shown in Example 6.2.
After all the edge bathes are processed, an edge stream Sv is obtained by merging all the ordered edge batches (lists),
with external sort. Then, N+-index is replaced by the compressed Sv.

6.5. Discussion and Implementation details

Compared with traditional algorithms (Section 3), EP-DFS requires simpler CPU calculation, fewer random disk
accesses and lower memory space consumption. The reason is as follows. Firstly, EP-DFS prunes the edges of
the input graph G efficiently, and only based on the total depth-first order of the nodes on T . Secondly, EP-DFS
accesses the input disk-resident graph only sequentially; EP-DFS accesses the edges in N+-index either sequentially
or ObtainingEdges. Third, EP-DFS only needs to hold 2n edges of G in the main memory, and keeps 3 attributes for
each node on T , i.e. its depth-first order, u.OF and u.OD.

Our implementation method for EP-DFS is presented below, which could protect it from being affected by the
garbage collection mechanism of the implementation language, e.g. C# and java. We assume each node of the input
graph G could be represented by a 32-bit integer. Then, an integer array A1 of length n is used for maintaining the
node list of G. And an integer array A2 of length 4n is used for maintaining 2n edges of G, where a half is related to
T while the others correspond to B+. Plus, an integer array A3 of length 3n is used for maintaining node attributes.
Since we assume that each node could be represented as a 32-bit integer, it is obvious that dfo(u,T ) and u.OD can be
represented as a 32-bit integer. The reason why u.OF can also be denoted as a 32-bit integer is discussed in [6].

The in-memory spanning tree T of G and one edge batch are maintained in the main memory by arrays A1 and
A2. The elements in A2 are organized as one-way linkedlists. They may represent (i) the unused memory space, (ii)
the out-neighborhoods of nodes on T , and (iii) a stack discussed later. We let A1[i] to denote the ith element of A1
and let A2[i] to denote the ith element of A2. Assuming A1[i] = k, and node vi, v j and vl are the ith node, the jth
node and the lth node of G, respectively. Then, (i) A2[2k + 1] = j represents the rightmost child of vi is v j, and (ii)
if A2[2k] = l ∈ [0, 2n], then vl is the left brother of v j. Thus, every two integers of A2 are used to represent an edge
(u, v), and each integer of A1 is used to denote the index of an edge in A2 whose head is the rightmost child of its tail.
To be more specific, an example of how these two arrays work A1 and A2 in EP-DFS is given in Example 6.4.

Example 6.4. Supposing G of Figure 4 is the input graph. The nodes r, a, b, c, d, f , g, h, p, q in G1 are mapped into
integers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. An array A1 of length 10 is initialized, and an array A2 of length 10 × 4 is also
initialized. The initialized arrays are in from (1) of Table 2. Then, firstly, we load the spanning T0, as shown in
Figure 4(a), into the main memory, when these two arrays are in form (2) of Table 2. Secondly, we add an edge batch
{e1, e2, e3} as shown in Figure 4(a), when these two arrays are in form (3) of Table 2. Secondly, when we execute an
in-memory DFS algorithm to replace T0 with the DFS-Tree (i.e. T3 shown in Figure 4(d)) of the graph composed by
T0 and edge batch {e1, e2, e3}, the two arrays are in from (4) of Table 2.

One advantage, as mentioned above, of this implementation method is that it could protect EP-DFS from being
affected by implementation languages, because once initialized, the above arrays will be used until the end of the
algorithms. Moreover, based on this implementation method, EP-DFS does not have to maintain an external stack
when it needs to replace T . Instead, as (i) a stack is also a one-way linkedlist, and (ii) when a node is added into
the stack, there must be an edge removed from the main memory, the stack is also maintained by A2 as a one-way
linkedlist as we manage all the empty space of A2. For each node u in G, to record the most recent node w visited
before u where (w, u) belongs to G, we use the in-memory attribute space of the depth-first orders. That is because,
we only need to preserve the order among a very small subset of V(G) to update FNN, whose depth-first orders are
in the range of [FNN,Max(B+)], in order to update FNN which is no more than Max(B+) + 1. There are two ways
to preserve that order. First, storing them directly on disk. Second, there is no additional disk access required when
k2 < 2 × k1, where (i) k1 represents the number of the nodes whose depth-first orders on T are smaller than FNN; (ii)
k2 represents the number of the nodes whose depth-first orders on T are in the range of [FNN,Max(B+)]. The reason
is discussed below. As when a node u of G has a depth-first order on T which is no larger than FNN, the edges whose
tails are u are no need to be loaded into the main memory in EP-DFS, so that it is no need to maintain attributes u.OF
and u.OD. Of course, besides all the arrays mentioned above (A1 and A2), an integer array of length d n

32 e is required

16



Table 2: Four forms of arryas A1 and A2, in which T represents the in-memory spanning tree maintained for the input graph, T0 is depicted in
Figure 4(a), e1, e2, e3 are edges shown in Figure 4(a), and T3 is depicted in Figure 4(d).

(1)

Description After initialization

A1
Index r a b c d f g h p q Empty space Index

Elements - - - - - - - - - - 19

A2

Index/2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Elements
- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- - - - - - - - - - - - - - - - - - - -

(2)

Description When T0 is maintained in the main memory

A1
Index r a b c d f g h p q Empty space Index

Elements 17 16 14 13 12 - - 11 - - 10

A2

Index/2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Elements
- 0 1 2 3 4 5 6 7 8 9 - - - 15 - - 18 19 -
- - - - - - - - - - - q p h g f d c b a

(3)

Description When T0 and an edge batch {e1, e2, e3} are maintained in memory

A1
Index r a b c d f g h p q Empty space Index

Elements 17 16 9 13 12 - 8 11 10 - 7

A2

Index/2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Elements
- 0 1 2 3 4 5 6 - 14 - - - - 15 - - 18 19 -
- - - - - - - - q c f q p h g f d c b a

(4)

Description When T is replaced to the DFS-Tree T3 of the graph composed by T0 and {e1, e2, e3}

A1
Index r a b c d f g h p q Empty space Index

Elements 18 16 9 13 12 - 8 - 10 - 17

A2

Index/2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Elements
- 0 1 2 3 4 5 6 - 14 - 15 - - - 7 - 11 19 -
- - - - - - - - q c f - p h g - d - b a

for recording whether a node is marked as visited or not, when G has more than 231 nodes; otherwise, we will use the
highest bit of each element in A1 for recording that.

Furthermore, there are also two benefits of our implementation method. First, procedure Rearrangement is not
related to any input or output I/Os. One reason is that T is stored in the main memory, where T represents the input
spanning tree that needs to be rearranged. Procedure Rearrangement rearranges all the out-neighborhoods of the nodes
on T only based on their weights, as discussed in Section 6.1. Another reason is that, no external space is used to store
the weights of the nodes on T . In fact, we use A2 to maintain the node weights in procedure Rearrangement. As a
node u in EP-DFS and its weightW(u) are represented by integers, we denote (u,W(u)) as a directed edge, and store
it in A2 by lettingW(u) to be the rightmost child of u in A2. At the end of procedure Rearrangement, all the edges
(u,W(u)) could be easily and efficiently removed from A2. Second, it gives EP-DFS a chance to avoid the operation
of sorting edge batches in procedure Indexing, without additional memory space requirement. For clarity, when the
edge sorting operation required in procedure Indexing is utilized, the main memory only maintains a spanning tree T
for G, and no in-memory DFS algorithm is used in procedure Indexing. Each time it gets a set of edges E which is a
subset of E(G) and contains at most 2× n edges. EP-DFS could use A2 to maintain all the elements of the edges of E,
by storing all the elements of A1 and A2 on disk temporarily and reinitializing these two arrays. Each time at most 2n
edges can be loaded into the main memory since A2 in this implementation only has the ability of storing 2n edges.
It is worth noting that, after 2n edges are loaded into the main memory, these edges could be immediately output on
disk, because we already the out-neighbors of each node on the graph composed by the edges in E.

This paper does not present the asymptotic upper bounds for the time and I/O consumption of EP-DFS. Because it
is too complicated and deserves another paper, which will be our future work. Given the size of the available memory
space, the I/O and CPU costs of EP-DFS are related to (1) the initialized value of parameter FNN, in Line 2 of
Algorithm 2; (2) the total iteration times of the loop in Lines 5-16 of Algorithm 2; (3) the number of the edges pruned
from N+-index after executing procedure RoundI&Reduction. Since the distribution of the edges and nodes in G is

17



unknown, and the order of E(G) stored on disk is also unknown, it is hard to estimate the initialized value of parameter
FNN and the number of the edges contained in N+-index in Line 4. The number of the edges that contained in the
index affects the total iteration times of the loop in Lines 5-16 of Algorithm 2. Also, if some edges are pruned from
N+-index by procedure RoundI&Reduction, then the total iteration times of such loop will also be affected.

Our current results are shown below, which is under one assumption that the edges of G are evenly distributed on
disk. Supposing B is the block size, c is the value of parameter FNN returned by Procedure 1, and p = n−c

n < 1. First
of all, the I/O consumption of Procedure 1 is O( 2m

B ) = O( m
B ) since it has to sequentially loads G into the main memory

twice. The time consumption of Procedure 1 is O(dm
n e × (2n + n) + dm

n e × (2n)) = O(m), because (i) the in-memory
spanning tree replacing operation scans at most 2n edges; (ii) Procedure 2 requires O(n) time, which is discussed
in the followings; (iii) each loop of Procedure 1 runs dm

n e times. Assuming the nodes in G are v1, v2, . . . , vn, and in
one invocation Procedure 2, each node vi (i ∈ [1, n]) of G has ki out-neighbors on T . Thus, the time consumption of
Procedure 2 is O

(
Σi∈[1,n]d

ki
104 e104 log 104) = O

(
Σi∈[1,n]ki

)
= O(n). Secondly, Procedure 3 requires O

(m+2(p2m)
B
)

= O( p2m
B )

space on disk, if the edges are evenly distributed in G. That is because, when the edges are evenly distributed in G,
the maximum number of the edges in N+-index is ( n−c

n )2m= p2m. Thus, when the edges are evenly distributed in G,
the external space required by N+-index is at most 3×p2m bits, as discussed in Section 6.2. The time consumption of
Procedure 3 includes (i) O( m

B ), the time cost of scanning all the edges in G, (ii) O(|Ei|), the time cost of sorting the
edges in Ei (Line 7, Procedure 3), (iii) O( 2|Ei |

m ), the time cost of storing Ei on disk and accessing Ei from disk, (iv)
O(|E0| + |E1| + · · · + |Ei|) = O(p2m), the time cost of merging all the ordered edge lists E0,E1, . . . ,Ei as demonstrated
in Line 13 and (v) O(p2m), the time cost of compressing Sv. Hence, the time cost of Procedure 3 is O( m

B + p2m).
Thirdly, the time and I/O costs of Procedure 4 are obvious which are O(n) and O( n

m ), respectively. Then, according to

the above discussions, the time and I/O costs of function RoundI are O(d p2m
n e(n)) = O(p2m) and O( p2m

B ), respectively.

The time and I/O costs of function RoundI&Reduction are O(p2m) and O( p2m
B ), respectively.

6.6. Correctness analysis

In this section, we present the correctness analysis for Algorithm 1 and Algorithm 2. Assuming Min(i, j) represents
the smaller value of i and j.

Theorem 6.1 proves the correctness of the initialization of parameter FNN in Section 6.1.

Theorem 6.1. Υ(Tk) ≥ C(T,Tk), where (i) E(G) is divided into a series of edge batches B1, B2, . . . , Bk, where B1 ∪

B2 ∪ · · · ∪ Bk = E(G) and if 1 ≤ i < j ≤ k, then Bi ∩ B j = φ; (ii) ∀i ∈ [1, k], Ti represents the DFS-Tree of the graph
composed by Ti−1 and Bi, assuming T is in the form of T0.

Proof 6.1. According to Definition 5.1 and Definition 5.2, the statement is correct, iff, the following statement is
correct: “For any edge e in G, if the tail of e has a depth-first order that is smaller than C(T,Tk), then e is not a
forward cross edge of G as classified by Tk.” Without loss of generality, we assume that (1) an edge (x, y) ∈ Bi; (2)
dfo(x,Tk) < C(T,Tk). Thus, based on (1), (x, y) is not a forward cross edge as classified by Ti, since (x, y) belongs
to batch Bi and Ti is the DFS-Tree of the graph composed by Ti−1 and Bi. Besides, based on (2) and Definition 5.1,
dfo(x,T ) = dfo(x,T1) = · · · = dfo(x,Tk), that is, the depth-first order of x is unchanged during the whole process.
Hence, for all the nodes w, if dfo(w,Tk) < dfo(x,Tk), then dfo(w,T ) = dfo(w,T1) = · · · = dfo(w,Tk), because of
C(T,Tk) < dfo(x,Tk). Since (x, y) is not a forward cross edge as classified by Ti, it could be a tree edge, a forward
edge, a backward edge, and a backward cross edge as classified by Ti. For one thing, when (x, y) is a tree/forward edge
as classified by Ti, that is dfo(x,Ti) < dfo(y,Ti) and x is one of the ancestors of y on Ti. To be a forward cross edge
as classified by Tk, node y should be removed from the subtree rooted at x, since a forward cross edge has a tail and
a head which are from diffident subtrees of T , as discussed in Definition 2.4. That is the depth-first order of y should
be increased to be larger than the that of the right brother of x, which is impossible according to Stipulation 2.1. For
another, when (x, y) is a backward (cross) edge as classified by Ti. In this case (x, y) should still be a backward edge
as classified by any tree among Ti+1,Ti+2, . . . ,Tk, since the depth-first order of y is smaller than that of x during the
whole process as discussed above. �

The correctness of Procedure 2 is proved in Theorem 6.2.

18



Theorem 6.2. For a node u in T , when we compute the weight of u, the weights of the children of u all have been
computed, in procedure Rearrangement.

Proof 6.2. Based on the definitions in Section 2, the total depth-first order Od of a tree T is also the preorder [11] of
T . Thus, if procedure Rearrangement computes the nodes in T by the reverse order of Od, the statement is valid. �

Then, the correctness of Algorithm 2 updating FNN in each iteration is proved in Theorem 6.3.

Theorem 6.3. Υ(TB+ ) ≥ Min
(
C+(T,TB+ ),Max(B+) + 1

)
, if Υ(T ) ≥ FNN, where TB+ is the DFS-Tree of the graph

composed by T and B+.

Proof 6.3. Firstly, it could be easily proved that Υ(TB+ ) ≥ Min
(
C(T,TB+ ),Max(B+) + 1

)
, in the same way that we

prove Theorem 5.1. Secondly, assuming dfo(u,T ) ∈ [FNN,Max(B+)] and dfo(u,TB+ ) ≤ Max(B+). We prove the
statement by contradiction. Supposing edge (u, x) is a forward cross edge of G as classified by TB+ . However, as
dfo(u,T ) ∈ [FNN,Max(B+)], then (u, x) ∈ B+, which contradicts to our assumption according to Stipulation 2.1. �

Theorem 6.4 states the correctness of our optimization algorithm.

Theorem 6.4. If procedure RoundI or procedure RoundI&Reduction returns T and FNN, then Υ(T ) ≥ FNN.

Proof 6.4. It can be derived from Theorem 6.3 that: “In the ith iteration of EP-DFS, ∀e = (u, v) ∈ E(G), if dfo(u,T ) <
FNN and dfo(v,T ) ≤ FNN, then e cannot be a forward cross edge as classified by T in the jth ( j ≥ i) iteration of
G in EP-DFS”. Thus, the correctness of this statement could be proved based on Theorem 6.1, which is discussed
below. For one thing, ourN+-index is obtained after the value of FNN is given. Moreover, in the computation process
of N+-index, ∀e = (u, v) ∈ E(G), e is contained in N+-index, iff, dfo(u,T ) ≥ FNN and dfo(v,T ) > FNN. For another,
in procedure RoundI or procedure RoundI&Reduction, an edge e = (u, v) is discarded, iff, dfo(u,T ) < FNN and
dfo(v,T ) ≤ FNN. �

The termination proof and the correctness proof of EP-DFS are given in Theorem 6.6.

Theorem 6.6. Algorithm 2 can be finally terminated, and returns T as a DFS-Tree of G.

Proof 6.5. Termination proof. The loop in Lines 5-16 of Algorithm 2 ends when FNN ≥ n. In other words, Algo-
rithm 2 can be terminated iff the value of FNN could exceed n − 1, which can be proved based on the following two
points. One is, based on the discussions on Section 2, there exists an edge batch B+, where |B+| < n. Another is,
according to Theorem 6.3, the value of FNN must increase in each iteration of the loop (Lines 5-16 of Algorithm 2).
Correctness proof. The correctness of EP-DFS is equivalent to “In each iteration of Algorithm 2, if ∀(u, v) ∈ E(G),
if dfo(u,T ) < FNN or dfo(v,T ) ≤ FNN, (u, v) is not a forward cross edge as classified by T”. According to
Definition 6.2, Theorem 6.3, and Theorem 6.4 then the above statement is certainly correct. �

7. Experimental Evaluation

In this section, we evaluate the performance of the proposed algorithm, EP-DFS, against the EB-DFS and DC-
DFS algorithms, on both synthetic and real graphs. Specifically, we are interested in the efficiency and the number
of I/Os for each algorithm on each graph, where we measure the former by the running time, and the latter by the
total size of disk accesses. Besides, with the assumption that each input graph are stored on disk in the form of edge
list, we are also interested on the effects of the different disk edge storage methods, i.e. random list (default storage
method) and adjacency list (the directed edges with the same tail are continuous stored in disk.). Our experiments run
on a machine with the intel i7-9700 CPU, 64 GB RAM and 1TB disk space. All the algorithms in our experiments are
implemented by Java. Note that, we limit each experiment within eight hours, and we restrict that at most 2n edges
could be hold in the main memory, as discussed in our problem statement (Section 2).

Datasets. We utilize various large-scale datasets including both real and synthetic graphs. The storage method for
all utilized graphs is default to random list on disk.

19



Table 3: The experimental results on the real datasets, where (i) LCC is an abbreviation for largest connected component; (ii) the running time (RT)
is in seconds; (iii) the number of I/Os and the index size (IS) are in megabytes; (iv) “-” indicates that the method timed out on this dataset.

Dataset n/106 m/106 m/n LCC/106 EB-DFS DC-DFS EP-DFS
RT I/O RT I/O RT I/O IS

cnr-2000 0.33 3 9.88 0.11(34.4%) 190 10, 529 47 1, 809 7 225 1.6
amazon-2008 0.74 5 7.02 0.63(85.3%) 125 4, 445 59 1, 434 18 318 1.5

hollywood-2011 2.18 229 105 1.92(87.9%) - - 3, 539 118, 208 277 10, 318 4.4
eu-2015-host 11.3 387 34.4 6.51(57.8%) 15, 423 908, 045 25, 218 1, 346, 455 759 29, 087 146

uk-2002 18.5 298 16.1 12.1(65.3%) 19, 821 923, 335 22, 934 456, 917 833 32, 837 131
gsh-2015-tpd 30.8 602 19.5 20.0(64.9%) - - - - 1, 466 39, 833 102

it-2004 41.3 1, 151 27.9 29.9(72.3%) - - - - 3, 927 163, 805 500
sk-2005 50.6 1, 949 38.5 35.9(70.9%) - - - - 5, 723 222, 836 843

The real datasets are presented in Table 3, which include one relatively small graph, two social networks, and
several large crawls or massive networks from different domains3. cnr-2000 is a relatively small crawl based on the
Italian CNR domain. amazon-2008 describes the similarity among the books of Amazon store, which is a symmetric
graph. hollywood-2011 is one of the most popular social graphs, in which the nodes are actors, and each edge links
two actors appeared in a movie together. eu-2015-host is the host (the maximum number of pages per host is set to
10M) graph of eu-2015, which is a large snapshot of the domains of European Union countries, taken in 2015 by
BUbiNG [5] and starting from the site “http://europa.eu/”. uk-2002 is a 2002 crawl of the .uk domain performed by
UbiCrawler [4]. gsh-2015-tpd is the graph of top private domains of gsh-2015, which is a large snapshot of the web
taken in 2015 by BUbiNG, similar to graph eu-2015 but without any domain restriction. it-2004 is a fairly large crawl
of the .it domain. sk-2005 is 2005 crawl of the .sk domain performed by UbiCrawler. All the above utilized datasets
can be accessed from the website “http://law.di.unimi.it/datasets.php”.

The synthetic datasets are randomly generated [12], according to Erdös-Rényi (ER) model (default model) and
scale-free (SF) model. Firstly, for a dataset G = (V, E) in ER model, we randomly and repeatedly generate an edge
e = (u, v) that u, v ∈ V and u , v, where the edges in E are unique. Then, for the datasets following SF model, the
generation method is in the way in [1], where the parameters p, q and m are set to 0.9, 0 and 1, respectively.

Comparison algorithms and implementation details. In literature, many algorithms are proposed for addressing
the DFS problem [15]. However, only a few of them could be used on semi-external memory model, since it is non-
trivial to solve the DFS problem under the restriction that only a spanning tree of the input graph could be maintained
in memory. These algorithms include EE-DFS, EB-DFS, and DC-DFS, as discussed in Section 3. Among these
algorithms, EE-DFS is extremely inefficient, because it processes the edges of G one by one instead of edge batches.
Thus, in this section, we evaluate our EP-DFS against EB-DFS and DC-DFS.

We prefer the most efficient data structures in the limited main memory space (as discussed in Section 2 and
Section 6). For example, in EB-DFS, we utilize our rearrangement algorithm. The division technique used in the
evaluated DC-DFS algorithm is Divide-TD, as the other division technique is inefficient reported in [20]. In addition,
we develop the DC-DFS algorithm based on Tarjan algorithm (fast strongly connected component algorithm) [17] and
Farach-Colton and Bender Algorithm (fast LCA algorithm) [2] to ensure the efficiency of DC-DFS algorithm. Note
that, in EP-DFS, if F2 − FNN <Min(100, n

1000 ) in Line 10 and Line 12, Algorithm 2, we say F2−FNN
n → 0, and we set

the threshold γ to 10% by default.

7.1. Exp 1: Performance on real large graphs

We evaluate the semi-external DFS algorithms on eight real graphs. The disk storage method for all the utilized
graphs is default to random list. The evaluation results on the real datasets are demonstrated in Table 3, where we also
present (external) space (index size, IS) cost for function Indexing (Line 4) of EP-DFS. The indexing or restructuring
time of N+-index in EP-DFS is included in the running time (RT) of EP-DFS.

3https://github.com/google/guava/wiki/InternetDomainNameExplained

20

http://europa.eu/


10
1

10
2

10
3

10
4

10
5

20 40 60 80 100

R
u

n
n

in
g
 t

im
es

 (
s)

Percentage

EB-DFS
DC-DFS
EP-DFS

(a) Efficiency

10
3

10
4

10
5

10
6

20 40 60 80 100

N
u

m
b

er
 o

f 
I/

O
s 

(M
B

)
Percentage

EB-DFS
DC-DFS
EP-DFS

(b) I/O

Figure 7: The experimental results on hollywood-2011.

10
2

10
3

10
4

10
5

20 40 60 80 100

R
u

n
n

in
g
 t

im
es

 (
s)

Percentage

EB-DFS
DC-DFS
EP-DFS

(a) Efficiency

10
3

10
4

10
5

10
6

20 40 60 80 100

N
u

m
b

er
 o

f 
I/

O
s 

(M
B

)

Percentage

EB-DFS
DC-DFS
EP-DFS

(b) I/O

Figure 8: The experimental results on uk-2002.

10
2

10
3

10
4

10
5

20 40 60 80 100

R
u

n
n

in
g
 t

im
es

 (
s)

Percentage

EB-DFS
DC-DFS
EP-DFS

(a) Efficiency

10
4

10
5

10
6

10
7

20 40 60 80 100

R
u

n
n

in
g
 t

im
es

 (
s)

Percentage

EB-DFS
DC-DFS
EP-DFS

(b) I/O

Figure 9: The experimental results on sk-2005.

10
2

10
3

10
4

10
5

10 15 20 25 30
R

u
n

n
in

g
 t

im
e 

(s
)

Node number

EB-DFS
DC-DFS
EP-DFS

(a) Efficiency

10
3

10
4

10
5

10
6

10 15 20 25 30

N
u

m
b

e
r 

o
f 

I/
O

s 
(M

B
)

Node number

EB-DFS
DC-DFS
EP-DFS

(b) I/O

Figure 10: Varying n on the synthetic graphs of ER model.

Table 3 shows that, compared to EB-DFS and DC-DFS, our EP-DFS could achieve a great performance on the
complex real datasets. In other words, EP-DFS is an order of magnitude faster than EB-DFS and DC-DFS, on the
reported results. Besides, EP-DFS’s I/O consumption is also greatly lower than one-tenth of EB-DFS’s and DC-
DFS’s I/O consumption. For example, to obtaining a DFS-Tree of dataset eu-2015-host, EB-DFS costs 15, 423s and
908, 045MB I/Os; DC-DFS requires 25, 128s and 1, 346, 455MB I/Os; EP-DFS could be accomplished within 759s
and 29, 087MB I/Os. That is EB-DFS and DC-DFS consume 20 and 33 times as much time as EP-DFS, respectively,
and they require 31 and 46 times as much space as EP-DFS, respectively. Note that, the experimental results also
reflect that the indexing process ofN+-index is efficient, and the external space that such index requires is considerably
small compared to m or n.

In addition, we test the three algorithms on hollywood-2011, uk-2002 and sk-2005, by randomly selecting edges
from such datasets, as demonstrated in Figures 7-9. We vary the number of edges from 20%m to 100%m, as shown in
the x-axes of Figures 7-9. The chosen reason of such datasets against the others is as follows: (i) hollywood-2011 is
the dataset with the highest average node degree ( m

n ), i.e. 105; (ii) uk-2002 is a relatively large graph among the given
eight real graphs whose largest connected component contains more than half of nodes; (iii) sk-2005 is the graph with
the largest scale including a large connected component with about 35.9M nodes. Specially, in order to generate a
random graph Gp = (Vp, Ep) of an input graph G = (V, E) that |Ep |

m =p, we scan all the edges in E, where, for each edge
e ∈ E, e is selected independently, and added into Gp with p probability. Since the number of the edges in G is huge,
the size of the generated edge set Ep is p × m, according to the law of large numbers [3].

The experimental results in Figures 7-9 confirm that our EP-DFS outperforms the traditional algorithms on the
real large graphs with different structures. Firstly, in Figure 7, the EB-DFS algorithm cannot construct the DFS-Tree
when the generation percent p exceeds 40%, while, even on entire hollywood-2011 dataset, the cost of EP-DFS is
only about 102s. The reason is that EB-DFS needs to execute function Round many times, when the structure of the
input graph goes more complex, according to the discussion about the “chain reaction” in Section 5. Secondly, in
Figure 8, the performance of DC-DFS is poor, which consumes more than 104s for each generated graphs of uk-2002,
compared to the performance of EP-DFS, which requires less than 103s on the entire uk-2002 dataset. Besides, even
though the I/O costs of DC-BFS on the 20%, 40% uk-2002 graphs are less than that on the 60% uk-2002 graph, the
time costs are nearly the same. That is because the processes of DC-DFS on such datasets are related to random disk
I/O accesses, which is discussed in Section 2. Then, in Figure 9, both DC-DFS and EB-DFS are terminated because
of the time limitation, when p exceeds 60% on the sk-2005 dataset.

21



10
2

10
3

10
4

10
5

10 15 20 25 30

R
u

n
n
in

g
 t

im
e 

(s
)

Average node degree

EB-DFS
DC-DFS
EP-DFS

(a) Efficiency

10
3

10
4

10
5

10
6

10 15 20 25 30

N
u

m
b

er
 o

f 
I/

O
s 

(M
B

)
Average node degree

EB-DFS
DC-DFS
EP-DFS

(b) I/O

Figure 11: Varying m
n on the synthetic graphs of ER model.

10
2

10
3

10
4

10
5

10 15 20 25 30

R
u

n
n
in

g
 t

im
e 

(s
)

Average node degree

EB-DFS
DC-DFS
EP-DFS

(a) Efficiency

10
3

10
4

10
5

10
6

10 15 20 25 30

N
u

m
b

er
 o

f 
I/

O
s 

(M
B

)

Average node degree

EB-DFS
DC-DFS
EP-DFS

(b) I/O

Figure 12: The results on the ER graphs stored by adjacency list.

7.2. Exp 2: The impact of varying n on synthetic graphs

We vary the number of the nodes from 10, 000, 000 to 30, 000, 000, for the graphs in ER model, and we set the
average node degree ( m

n ) to 10, for each generated graph. All the graphs are stored on disk in the form of random list.
The experimental results about the time and I/O consumption of the evaluated algorithms are presented in Figure 10(a)
and Figure 10(b), respectively. As the number of nodes grows, the running time and the number of I/Os required by
each evaluated algorithm increase. However, among all the algorithms, EP-DFS has the lowest increasing rate, and
EB-DFS has the highest increasing rate. The reason is that, when the number of the nodes increases, the size of the
entire input graph grows, i.e. from 100M to 300M. Since the “chain reaction” exists, restructuring the in-memory
spanning tree to a DFS-Tree goes harder, where the invocation times of both function Round and function Reduction-
Rearrangement increase in EB-DFS. In contrast, our EP-DFS, after constructing N+-index, could avoid scanning the
entire input graphs. Besides, our EP-DFS greatly reduce the number of the I/Os, which only requires about 104MB
total size of disk accesses.

7.3. Exp 3: The impact of varying m
n on synthetic graphs

We vary the average degree of the nodes from 10 to 30, for the graphs in ER model, in this part. The node number
is default to 10, 000, 000, and the storage method is random list by default. The experimental results about the time
and I/O cost are depicted in Figure 11(a) and Figure 11(b), respectively, which demonstrate that: with the increase of
m
n (the average node degree), the numbers of the running time and the disk I/O accesses are increased. Since the chain
reaction exists, the number of I/Os required by algorithm EB-DFS is far beyond 105, and the running time reaches the
time limit, i.e. 8 hours, when m

n = 30. Plus, the performance of DC-DFS is acceptable, even though that of DC-DFS
is worse than that of EP-DFS which requires less than 103s and 104 I/Os.

7.4. Exp 4: The impact of different disk storage methods

For the two kinds of disk storage algorithms, we evaluate all the algorithms on the graphs, where the node numbers
are set to 10, 000, 000, and we vary the average node degree from 10 to 30. All the graphs are synthetic datasets and in
the form of ER model. In other words, we restore all the utilized synthetic datasets in Exp 3 in the form of adjacency
list. The experimental results on the graphs stored in the form of random list are presented in Figure 11, while that
in the form of adjacency list are depicted in Figure 12. Such results show that there is an increase trend when the
number of m

n increases, no matter what disk storage method is. However, the performances of both the two traditional
algorithms are worse when the input graphs are stored in the form of adjacency list, while, the performance of EP-
DFS is slightly better. Furthermore, both EB-DFS and DC-DFS reach the time limit in the experiments depicted in
Figure 12. Such experimental results indicate that (i) the different graph storage method changes the orders of the
edges on disk, which affects the process of restructuring an in-memory spanning tree to a DFS-Tree; (ii) compared
to the traditional algorithms, our EP-DFS algorithm is more adaptable to the different disk-resident graph storage
methods.

7.5. Exp 5: The impact of different graph structures

In this part, we evaluate all the three semi-external DFS algorithms on both ER and SF graphs. Each group of
the experiments runs on the graphs with fixed node number, i.e. n = 10, 000, 000, in which we vary the average

22



10
2

10
3

10
4

10 15 20 25 30

R
u

n
n
in

g
 t

im
e 

(s
)

Average node degree

EB-DFS
DC-DFS
EP-DFS

(a) Efficiency

10
3

10
4

10
5

10 15 20 25 30

N
u

m
b

er
 o

f 
I/

O
s 

(M
B

)
Average node degree

EB-DFS
DC-DFS
EP-DFS

(b) I/O

Figure 13: Varying m
n on the synthetic graphs of SF model.

10
2

10
3

10
4

10
5

10 15 20 25 30

R
u

n
n
in

g
 t

im
e 

(s
)

Average node degree

EB-DFS
DC-DFS
EP-DFS

(a) Efficiency

10
4

10
5

10
6

10 15 20 25 30

N
u

m
b

er
 o

f 
I/

O
s 

(M
B

)

Average node degree

EB-DFS
DC-DFS
EP-DFS

(b) I/O

Figure 14: Varying m
n on synthetic graphs of ER model with fixed m.

node degree m
n in the range of [10, 30]. Plus, the disk storage method of each graph is default to random list. The

experimental results of the running time and the number of disk I/O accesses on ER graphs are depicted in Figure 11(a)
and Figure 11(b), respectively, and that on SF graphs are demonstrated in Figure 13(a) and Figure 13(b), respectively.
The performances of the evaluated algorithms on the SF graphs are better than that on the ER graphs. However, the
time and I/O consumption of DC-DFS on certain SF graphs are higher than that of the other two algorithms. The
reason is that, the division process of DC-DFS is hard on the SF graphs generated in the way of [1], in which, the
more links that a node v is connected to, the higher the probability that it adds a new edge related to v.

7.6. Exp 6: The impact of fixing m on synthetic graphs

Since the performance of the semi-external DFS algorithms is related to the scales of the input graphs, we are
interested in the performance of the three algorithms on the synthetic graphs with fixed edge number. Specifically, in
this part, we set m to 300, 000, 000 for each generated graph, and vary average degree m

n from 10 to 30, as depicted
in Figure 14. The disk storage method is default to random list. The node numbers of the graphs are 30M, 20M,
15M, 12M and 10M, respectively. The experimental results of the running time and the number of required I/Os are
demonstrated in Figure 14(a) and Figure 14(b), respectively. According to the depicted results, the performance of
EB-DFS algorithm goes worse, when the average degree of input graph increases. Especially, when m

n = 30 and
m = 30, the EB-DFS reaches the time limit. Because, with the fixed size of m, the larger number of m

n , the more
complex the graph structure is, which causes numerous chain reactions in the restructuring process. In contrast, EP-
DFS and DC-DFS could address the given input graphs with higher efficiency and less I/Os, according to Figure 14,
with the increase of the average degree.

8. Conclusion

This paper is a comprehensive study of the DFS problem on semi-external environment, where the entire graph
cannot be hold in the main memory. This problem is widely utilized in many applications. Assuming that at least a
spanning tree T can be hold in the main memory, semi-external DFS algorithms restructure T into a DFS-Tree of G
gradually. This paper discusses the main challenge of the non-trivial restructuring process with theoretical analysis,
i.e. the “chain reaction”, which causes the traditional algorithms to be inefficient. Then, based on the discussion, we
devise a novel semi-external DFS algorithm, named EP-DFS, with a lightweight index N+-index. The experimental
evaluation on both synthetic and real large datasets confirms that our EP-DFS algorithm significantly outperforms
traditional algorithms. Our future work is to present the asymptotic upper bounds of the time and I/O costs of EP-
DFS. It is interesting but intricate, since the performance of EP-DFS is affected by many interrelated factors as
demonstrated in this paper.

Acknowledgments

This paper was partially supported by NSFC grant 61602129.

23



References

[1] R. Albert and A.-L. Barabási. Topology of evolving networks: Local events and universality. Phys. Rev. Lett., 85:5234–5237, Dec 2000.
[2] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common ancestors in trees and directed acyclic graphs.

J. Algorithms, 57(2):75–94, 2005.
[3] J. K. Blitzstein and J. Hwang. Introduction to Probability. Chapman and Hall/CRC, 2014.
[4] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: A scalable fully distributed web crawler. Software: Practice & Experience,

34(8):711–726, 2004.
[5] P. Boldi, A. Marino, M. Santini, and S. Vigna. BUbiNG: Massive crawling for the masses. In Proceedings of the Companion Publication

of the 23rd International Conference on World Wide Web, pages 227–228. International World Wide Web Conferences Steering Committee,
2014.

[6] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

[7] P. Boldi and S. Vigna. The webgraph framework II: codes for the world-wide web. In 2004 Data Compression Conference (DCC 2004),
23-25 March 2004, Snowbird, UT, USA, page 528, 2004.

[8] K. Bollacker, R. Cook, and P. Tufts. Freebase: A shared database of structured general human knowledge. In Proc. 22Nd National Conf.
Artificial Intelligence - Volume 2, pages 1962–1963, 2007.

[9] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s Perspective. Pearson, 3rd edition, 2015.
[10] A. L. Buchsbaum, M. H. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook. On external memory graph traversal. In Proceedings of

the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages 859–860, 2000.
[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.
[12] M. Drobyshevskiy and D. Turdakov. Random graph modeling: A survey of the concepts. ACM Comput. Surv., 52(6):131:1–131:36, 2020.
[13] S. Durocher and R. Singh. A simple linear-space data structure for constant-time range minimum query. Theoretical Computer Science,

770:51 – 61, 2019.
[14] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang. Computing label-constraint reachability in graph databases. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 123–134,
2010.

[15] R. Sedgewick and K. Wayne. Algorithms (Fourth edition deluxe). Addison-Wesley, 2016.
[16] J. F. Sibeyn, J. Abello, and U. Meyer. Heuristics for semi-external depth first search on directed graphs. In A. L. Rosenberg and B. M. Maggs,

editors, Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 2002, Winnipeg, Manitoba,
Canada, August 11-13, 2002, pages 282–292. ACM, 2002.

[17] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160, 1972.
[18] X. Wan, H. Wang, and J. Li. LKAQ: large-scale knowledge graph approximate query algorithm. Inf. Sci., 505:306–324, 2019.
[19] Z. Zhang, J. X. Yu, L. Qin, L. Chang, and X. Lin. I/O efficient: computing sccs in massive graphs. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 181–192, 2013.
[20] Z. Zhang, J. X. Yu, L. Qin, and Z. Shang. Divide & conquer: I/O efficient depth-first search. In T. K. Sellis, S. B. Davidson, and Z. G. Ives,

editors, Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31
- June 4, 2015, pages 445–458. ACM, 2015.

24


	1 Introduction
	2 Preliminaries
	3 Existing solutions
	4 Problem Analysis: the main challenge ``chain reaction''
	5 A naive algorithm
	6 EP-DFS Algorithm
	6.1 The initialization of FNN
	6.2 How to efficiently obtain an edge batch
	6.3 How to update FNN
	6.4 Optimization
	6.5 Discussion and Implementation details
	6.6 Correctness analysis

	7 Experimental Evaluation
	7.1 Exp 1: Performance on real large graphs
	7.2 Exp 2: The impact of varying n on synthetic graphs
	7.3 Exp 3: The impact of varying mn on synthetic graphs
	7.4 Exp 4: The impact of different disk storage methods
	7.5 Exp 5: The impact of different graph structures
	7.6 Exp 6: The impact of fixing m on synthetic graphs

	8 Conclusion

