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Semi-Supervised Clustering with Inaccurate
Pairwise Annotations

Daniel Gribel, Michel Gendreau, and Thibaut Vidal

Abstract—Pairwise relational information is a useful way of providing partial supervision in domains where class labels are difficult to
acquire. This work presents a clustering model that incorporates pairwise annotations in the form of must-link and cannot-link relations
and considers possible annotation inaccuracies (i.e., a common setting when experts provide pairwise supervision). We propose a
generative model that assumes Gaussian-distributed data samples along with must-link and cannot-link relations generated by stochastic
block models. We adopt a maximum-likelihood approach and demonstrate that, even when supervision is weak and inaccurate,
accounting for relational information significantly improves clustering performance. Relational information also helps to detect meaningful
groups in real-world datasets that do not fit the original data-distribution assumptions. Additionally, we extend the model to integrate prior
knowledge of experts’ accuracy and discuss circumstances in which the use of this knowledge is beneficial.

Index Terms—Semi-supervised clustering, pairwise annotations, inaccurate annotations, stochastic block models
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1 INTRODUCTION

DATA clustering aims at systematically grouping a set of
data samples such that samples with similar features

are placed within the same cluster, whereas samples with
a certain degree of separability are allocated to different
clusters. Although clustering is an unsupervised-learning
task, situations exist in which partial annotations are given
with the dataset [1], leading to semi-supervised models.

In particular, relational information in the form of pair-
wise constraints sees regularly use: must-link constraints state
that a pair of data samples should belong to the same
cluster, whereas cannot-link constraints separate pairs of
data samples into different groups. Relational information
is usually inferred through similarity measures or provided
by domain experts and can provide semi-supervision in
domains where it is difficult, time-consuming, or expensive
to accurately measure the actual classes [2, 3]. Incorporating
relational supervision can bring significant benefits. Figs. 1(a)
and 1(b), for example, compare clustering solutions obtained
without and with semi-supervised learning, respectively,
on a dataset with 200 samples and 600 random pairwise
annotations. In this example, the relational information
guides the clustering algorithm out of a local minimum
of the unsupervised model toward a solution close to the
ground-truth.

The present study focuses on the use of relational infor-
mation in clustering. We consider a regime in which experts or
automated procedures provide pairwise annotations indicat-
ing whether pairs of observations belong to the same group
or not. This regime presents two notable characteristics: First,
the annotators are not entirely accurate, so the relational
information is given with some level of trust. Second, they
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have a limited work capacity, so only a small amount of
pairwise relational information is available.

Some previous works focused on semi-supervised clus-
tering settings with relational information, and especially on
variants of the minimum sum-of-squares clustering (MSSC)
model with additional pairwise constraints [2, 4–6]. The K-
means algorithm [7] is a well-known local optimizer of this
formulation, and successive improvements of this solution
method have been proposed over the years [8–11]. However,
most of these studies incorporate pairwise information
in classical search algorithms such as K-means through
additional ad hoc constraints or soft penalty factors. By
doing so, these approaches lack a probabilistic interpretation
and may fail in the presence of noisy and scarce supervision
due to erroneous binding constraints. Similarly, soft penalties
depend largely on good parameter choices.

To cope with these issues, we introduce a maximum-
likelihood approach for a generative model that assumes
that data samples are generated by spherical Gaussian
distributions. The must-link and cannot-link constraints occur
between a pair of data samples with probabilities that
depend only on the groups that contain the samples. To
model the presence of must-link and cannot-link relations,
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(a) Unsupervised clustering
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(b) Pairwise-clustering

Fig. 1: Different partitions in a mixture of Gaussians.
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we assume graphs generated by stochastic block models
(SBMs) and integrate prior beliefs to represent possible
knowledge of the experts’ accuracy. We further propose
efficient solution techniques for this model based on the
HG-means approach [11], a state-of-the-art algorithm for the
MSSC model that enhances the classical K-means approach
through successive restarts from promising starting points
obtained by recombination.

Finally, we conduct extensive computational experiments
by applying the proposed model to synthetic and real-
world datasets to measure how relational information affects
clustering. We show that pairwise annotations can signifi-
cantly improve clustering performance, even when given
only a small amount of imperfect supervision. Incorporating
pairwise annotations can also reveal clustering structures not
detected by unsupervised approaches, as demonstrated on a
real-world dataset. Finally, we show that incorporating prior
knowledge regarding the experts’ accuracy further guides
the clustering process toward more accurate partitioning.

2 RELATED WORKS

Several clustering formulations have been proposed to
exploit pairwise information, e.g., based on expectation-
maximization (EM) [3, 12], spectral clustering [13, 14], or
affinity propagation [15, 16].

Some previous works have adapted the MSSC objective
function to incorporate pairwise constraints. Wagstaff et al.
[4] proposed a variant of the K-means algorithm that imposes
that no constraint is violated. However, such a model may fail
to find a feasible solution. Basu et al. [2] and Hiep et al. [17]
included a penalty term that is either uniform or proportional
to the distance between samples in the dataset. Bilenko et al.
[5] studied the MSSC with pairwise constraints and proposed
a metric-adaptive penalty factor according to which the
penalty of a violated must-link is greater for two distant
samples than for two close samples. An analogous notion
holds for cannot-links. Pelleg and Baras [6] also explored
an extension of K-means in which the violated pairwise
constraints are tentatively solved by moving one cluster’s
center toward another one to change the regions of the
feature space covered by the clusters and thereby satisfy
the constraints.

Bai et al. [18] included supervision from different sources
(pairwise constraints, positive labeling, and negative labeling)
in a pairwise relational matrix representation. For the result-
ing optimization problem, the authors proposed eigenvalue
decomposition methods that jointly maximize within-cluster
similarity and the consensus among the different supervision.
Shental et al. [12] modified the Gaussian mixture model
(GMM) likelihood to incorporate must-link and cannot-link
constraints and designed an EM algorithm with tailored
update rules to handle these constraints. Must-link con-
straints are handled by collapsing data samples through
transitive closure, whereas cannot-links are described through
Markov networks. However, erroneous pairwise relations
can strongly affect the results of the algorithm.

All these approaches are adaptations of the MSSC formu-
lation and the GMM to cluster data samples with additional
pairwise constraints. Thus, the relational information is
incorporated into the formulation to find a partition (e.g.,

by using the violation of pairwise constraints as penalty
factors). An alternative way to jointly consider the data
features and the relational information that we adopt in
this paper consists in modeling the observed data from a
probabilistic perspective. According to this perspective, the
features and pairwise relations are assumed to come from a
generative model, which is fit to the data.

SBMs [19, 20] are general classes of random graph models
commonly used to detect clusters based only on relational
information. When such graphs have some structure, fitting
the parameters of a SBM to empirical graphs is widely
adopted to reveal blocks (clusters). In the canonical form of
SBMs, the expected number of edges between two samples
is determined solely by the blocks to which they belong.
In this way, samples within each block are statistically
equivalent in terms of their connectivity patterns. SBMs
are regularly used to recover meaningful information from
complex graphs and are also a natural modeling choice
for community detection. The surveys of Abbe [21] and of
Lee and Wilkinson [22] discuss key concepts and solution
algorithms in stochastic block modeling. Different types of
algorithms can be used to fit SBMs based on Markov chain
Monte Carlo approaches [20, 23, 24], variational inference
[25, 26], belief propagation [27], spectral clustering [28–30],
or semidefinite programming [31, 32], among others.

Previous studies have proposed to extend SBMs to
consider additional data features (also referred to as meta-
data). Stanley et al. [33] presented a probabilistic model that
combines relational information and data features within a
“soft membership” formulation. In the derived model, SBM
probabilities define the graph connectivity, and Gaussian
parameters describe the features. The authors employ EM
algorithms to maximize the resulting likelihood function.
Although EM works well for estimating the Gaussian param-
eters, the computation of the conditional distributions to get
the assignment probabilities is not tractable with SBMs [34].
They therefore use a variational approach that optimizes
a lower bound of the SBM likelihood function. Several
experiments on link prediction and collaborative filtering
on biological datasets have been reported.

Contisciani et al. [35] introduced a probabilistic model
for community detection in multi-layer graphs, combining
sample features with relational information, where the sam-
ple features are categorical. Each category has a probability
of being observed in a community, while a SBM variant
serves to model relational information. Thus, the proposed
model includes two independent likelihood functions and
assumes conditional independence of the observed features
and networks. Given that each likelihood may differ in
magnitude, the authors propose using a weight—tuned by
cross-validation—that inclines the model toward one of the
formulations. As a consequence, this approach diverges from
a maximum-likelihood perspective.

The techniques described above represent fundamental
advances in semi-supervised models and methods. However,
they either involve firm constraints and cannot handle
imprecise annotations, or they depend on soft penalty factors
that are hard to calibrate. Finally, they do not directly derive
from a maximum-likelihood interpretation. In what follows,
we fill this gap and propose principled probabilistic models
to set experts’ annotations.
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3 PROPOSED MODEL

In the pairwise-constrained clustering problem, we are given
a set X = {x1, . . . ,xN} with N data samples in RD along
with a symmetric adjacency matrix A ∈ NN,N representing
some relational information between the data samples,
where the entry Aij indicates the number of existing
edges between data samples xi and xj . Typically, pairwise
constraints express some hard association. For example, they
indicate whether two samples should be assigned to the
same cluster or to different clusters. We then aim to partition
the data samples into K disjoint clusters C = {C1, . . . , CK}
with the goal of optimizing a given clustering criterion.
One way to formalize this problem is to define a likelihood
function and fit this function’s parameters to the observed
data.

Gaussian Mixture Model. The Gaussian Mixture Model
(GMM) is a widely used probabilistic model that assumes
data samples generated by a finite number of Gaussian
distributions. The model parameters are the mean points and
the covariance matrices of each cluster, and the assignment
of samples to clusters is a latent variable. In this work, we
explore the hard-membership version of the GMM, which
assumes that each data sample is assigned to exactly one
cluster, so that the latent assignment variable becomes binary.
It is well known that maximizing the likelihood of the
hard-membership GMM (also referred to as the MSSC)
approximates the ordinary GMM, and algorithms such as
K-means act as a variational expectation-maximization in
the GMM [36]. The log-likelihood function for the hard-
membership GMM can be calculated as per Bishop [37]:

logP (X|µ,Σ,Z) =
N∑
i

K∑
r

zir logN (xi|µr,Σr), (1)

where Z ∈ RN,K is the binary cluster indicator such that
each entry zir ∈ {0, 1} takes the value 1 if and only if sam-
ple i belongs to cluster r, so

∑K
r zir = 1 ∀ i ∈ {1, . . . , N}.

The variables µ = {µ1, . . . ,µK} and Σ = {Σ1, . . . ,ΣK}
contain the means and covariances of the Gaussian compo-
nents, respectively. For the special case of spherical GMMs,
Σr = σ2

rI ∀ r ∈ {1, . . . ,K}, and the log-likelihood function
may be expressed as

logP (X|µ,σ,Z) =
N∑
i

K∑
r

zir log

(
e−‖xi−µr‖2/2σ2

r

(2π)D/2σDr

)

=
N∑
i

K∑
r

zir

(
−‖xi − µr‖

2

2σ2
r

− D

2
log(2π)−D log(σr)

)
.

(2)

When the assignments are fixed, as seen in Bishop [37],
the maximum of this log-likelihood function occurs when

µ̂r =

∑N
i zirxi∑N
i zir

(3)

and

σ̂2
r =

∑N
i

∑K
r zir‖xi − µr‖

2

2D
∑N
i zir

. (4)

Therefore, suppressing the constant D log(2π) and rear-
ranging terms, we obtain:

logP (X|Z)∝−1

2

N∑
i

K∑
r

zir

(
‖xi−µ̂r‖2

σ̂2
r

− 2Dlog(σ̂r)

)
. (5)

Stochastic Block Models. The likelihood function of a
GMM is a well-known clustering formulation when data
samples have continuous features. To incorporate pairwise
constraints into our semi-supervised setting, we now briefly
review SBMs, a family of probabilistic models used to detect
structure in graphs, and then proceed toward a unified
formulation that considers both feature-based samples and
relational information.

In its most fundamental form, a SBM considers N data
samples and K groups, where each sample is originally
assigned to one group. Then, we assume undirected edges
placed between two samples at random with expected
value ωrs that depends only on groups r and s to which
the data samples belong [38]. Finding the latent membership
of data samples in a SBM corresponds to finding the block-
model parameters Ω that best fit an observed graph [21].
For an observed adjacency matrix A ∈ NN,N representing a
graph with m possibly weighted edges, the log-likelihood
function of the SBM can be expressed as per Karrer and
Newman [39]:

logP (A|Ω,Z) =
1

2

K∑
rs

N∑
ij

(Aij log(ωrs)− ωrs) zirzjs, (6)

where parameters Z and Ω are the latent variables, with
Z ∈ RN,K being the binary cluster indicator, and ωrs being
an entry of Ω that represents the expected number of edges
between any two samples in clusters r and s. If we fix the
assignment Z in Equation (6), then the maximum-likelihood
values of ωrs can be found by differentiation:

ω̂rs =
mrs

nrns
, (7)

where mrs =
∑N
ij Aijzirzjs is the number of edges between

clusters r and s, and nr =
∑N
i zir is the number of samples

in cluster r. Using the closed form of Ω from Equation (7),
the log-likelihood of the SBM can be rewritten as

logP (A|Z) =
1

2

K∑
rs

N∑
ij

(Aij log(ω̂rs)− ω̂rs) zirzjs

=
1

2

K∑
rs

N∑
ij

(
Aij log

(
mrs

nrns

))
zirzjs.

(8)

3.1 Experts’ Annotations Setting

Our proposed generative model considers a set X =
{x1, . . . ,xN} of N samples in RD, along with two inde-
pendent graphs A+ and A− that represent the must-link and
cannot-link relations in the form of adjacency matrices. These
annotations are produced by experts on a subset of sample
pairs. The complete generative process can be described as
follows:
• For each i ∈ {1, . . . , N}:

– Pick a Gaussian component r ∈ {1, . . . ,K} with
uniform probability 1/K, and set ŷi = r as the
ground-truth;
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– Generate a D-dimensional sample xi from compo-
nent r:

xi ∼ N (µr, σ
2
r). (9)

• For each sample pair (xi,xj) selected independently
and with uniform probability, an expert labels the pair
as a must-link or a cannot-link relation according to a
Bernoulli distribution, which is defined based on the
groups to which the samples belong:{

A+
ij = Bernoulli(pŷiŷj ),

A−ij = 1−A+
ij ,

(10)

in which prs ∈ [0, 1] is the probability of marking a pair
of samples as a must-link given that the samples belong
to groups r and s. Analogously, 1−prs is the probability
of marking a pair of samples in groups r and s as a
cannot-link. Typically, prr ≥ prs when r 6= s.

Assuming that m annotations are generated indepen-
dently and uniformly between sample pairs, the expected
number of must-link edges between an arbitrary pair of
samples from groups r and s can be estimated as βprs,
with β = 2m/[n(n + 1)]. Similarly, the expected number
of cannot-link edges is β(1 − prs). We can thus model the
experts’ annotations setting by using two stochastic block
models with matrices Ω+ and Ω− for the must-link and
cannot-link graphs, respectively. In this case, ω+

rs ∼ βprs and
ω−rs ∼ β(1−prs). Since multiple experts provide annotations
with replacement, we obtain Poisson-distributed matrices
Ω+ and Ω−. Note, however, that the two graphs produced
are not independent because a “failure” in a Bernoulli trial
generates an edge in the cannot-link graph. Nonetheless,
independence holds between annotations because of sample
pair selections with replacement, such that we can reasonably
approximate the experts’ annotations by two independent
SBMs with parameters Ω+ and Ω− for must-link and cannot-
link relations, respectively:

P (X,A+,A−|µ,σ,Ω,Z) =P (X|µ,σ,Z)

× P (A+|Ω+,Z)

× P (A−|Ω−,Z).

(11)

Hereinafter, we consider L(·) = logP (·) to refer to a log-
likelihood function, A = {A+,A−} to represent the must-
link and cannot-link graphs, and Ω = {Ω+,Ω−} to represent
the two SBM matrices. Thus, the resulting log-likelihood
function is

L(X,A|µ,σ,Ω,Z)∝−
N∑
i

K∑
r

(
‖xi−µr‖2

σ2
r

+2Dlog(σr)

)
zir

+
K∑
rs

N∑
ij

(
A+
ij log(ω+

rs)− ω+
rs

)
zirzjs

+
K∑
rs

N∑
ij

(
A−ij log(ω−rs)− ω−rs

)
zirzjs,

(12)

where we removed the constant 1
2 in front of all terms. The

variables µr and σr are obtained from Equations (3) and (4),

respectively, and ω+
rs and ω−rs are obtained from Equation (7).

As a consequence, we can write this log-likelihood as

L(X,A|Z) = logP (X|Z) + logP (A+|Z) + logP (A−|Z).
(13)

3.2 Prior Knowledge of Experts’ Accuracy

Although the SBMs are used to infer partitions of any
structure, it is common in practice to have an estimate of the
experts’ accuracy. In some circumstances, we may reasonably
assume to have pre-evaluated the experts’ accuracy before
the annotation procedure. Consequently, we propose an
extension of model (12) that incorporates a prior belief
regarding the accuracy of annotations. We first consider
the maximum posterior estimate of parameters Ω and Z in
the SBM:

P (Ω,Z|A) ∝ P (A|Ω,Z)P (Ω,Z), (14)

where the joint prior distribution is

P (Ω,Z) = P (Ω|Z)P (Z), (15)

and we assume that P (Z) has the same probability for any
assignment Z and thus is treated as a constant. As in Peixoto
[24], we opt for the following form of a prior function:

P (Ω|Z) =
∏
r≤s

λrs(Z, p) e
−λrs(Z,p)ωrs

=
∏
rs

(
λrs(Z, p) e

−λrs(Z,p)ωrs

) 1
2 (1+δrs)

,
(16)

where δrs is the Kronecker delta and 1/λrs(Z, p) is the
expected (mean) value in the exponential distribution. Al-
though the experts’ accuracy is fixed (for example, p = 90%),
the values we choose for our priors depends on Z, since
the assignment choices impact the size of the clusters
and therefore the expected total number of annotations.
This dependence occurs because SBMs have two sets of
parameters, making our prior distribution conditioned on Z.
λrs(Z, p) can be expressed as:

λrs(Z, p) =

{
1/fIN(Z, p) if r = s

1/fOUT(Z, p) otherwise,
(17)

where, for a given Z and p, fIN(Z, p) represents a prior
knowledge of the expected number of edges between two
samples in the same group. Similarly, fOUT(Z, p) represents
the prior expected number of edges between two samples
in different groups. For the sake of brevity, we will use the
short form λrs = λrs(Z, p) in the remainder of this section.
Since we have two graphs, we use λ+rs and λ−rs to refer to our
priors in the must-link and cannot-link graphs, respectively,
along with functions f+IN(Z, p), f+OUT(Z, p), f−IN(Z, p), and
f−OUT(Z, p). Suitable values for these functions are discussed
later in this section. This leads to the following posterior
distribution:

P (Ω,Z|A) ∝ P (A+|Ω+,Z)
∏
rs

(
λ+rse

−λ+
rsω

+
rs

)1
2 (1+δrs)

× P (A−|Ω−,Z)
∏
rs

(
λ−rse

−λ−
rsω

−
rs

)1
2 (1+δrs)

,

(18)
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and therefore to the following log-posterior with the ob-
served features X :

L(µ,σ,Ω,Z|X,A)∝−
N∑
i

K∑
r

(
‖xi−µr‖2

σ2
r

+2Dlog(σr)

)
zir

+
∑
rs

∑
ij

(
A+
ij log(ω+

rs)− ω+
rs

)
zirzjs

+
∑
rs

∑
ij

(
A−ij log(ω−rs)− ω−rs

)
zirzjs

+
∑
r

log(λ+rrλ
−
rr)− λ+rrω+

rr − λ−rrω−rr

+
∑
rs

log(λ+rsλ
−
rs)− λ+rsω+

rs − λ−rsω−rs.

(19)

In Equation (19), we used a constant prior for the mixture
of Gaussians, and therefore only take the likelihood into
account. The last two summations come from the exponen-
tial priors. The optimal value of ωrs in the posterior log-
likelihood can then be estimated by differentiation:

ω̂rs =

{
mrs/(nrns + 2λrs) if r = s

mrs/(nrns + λrs) otherwise,
(20)

where we substitute ω̂rs with the corresponding parameter
ω+
rs or ω−rs, depending on the graph (likewise for mrs

and λrs).

Parametrization of the priors. In the must-link graph, we can
use λ+rs = 1/f+IN(Z, p) for r = s, and λ+rs = 1/f+OUT(Z, p)
for r 6= s. In the cannot-link graph, λ−rs = 1/f−IN(Z, p) for
r = s, and λ−rs = 1/f−OUT(Z, p) otherwise. Due to the experts’
annotations setting, the following relationship holds between
f+IN(Z, p) and f+OUT(Z, p):

f+IN(Z, p) =
p

1− p
f+OUT(Z, p). (21)

Analogously, for the cannot-link graph, we have

f−IN(Z, p) =
1− p
p

f−OUT(Z, p). (22)

The number of pairs within and between groups given
by Z, and the number of must-link annotations m+ and
cannot-link annotations m− also lead to the following rela-
tions:

f+IN(Z, p)
∑
r

nr(nr+1)

2
+ f+OUT(Z, p)

∑
r<s

nrns = m+, (23)

f−IN(Z, p)
∑
r

nr(nr+1)

2
+ f−OUT(Z, p)

∑
r<s

nrns = m−, (24)

where nr =
∑
i zir is the number of samples in group r.

Then, combining Equations (21–24) leads to:

f+
IN(Z, p) = m+

/(∑
r

nr(nr+1)

2
+

(1−p)

p

∑
r<s

nrns

)
, (25)

f−
IN(Z, p) = m−

/(∑
r

nr(nr + 1)

2
+

p

(1− p)

∑
r<s

nrns

)
. (26)

4 SOLUTION APPROACH

To solve model (19), we adapt the hybrid genetic search of
Gribel and Vidal [11], which has demonstrated state-of-the-
art performance on the minimum-sum-of-squares clustering
problem. As summarized in Algorithm 1, the method begins
with a set of Π1 initial solutions obtained by using the
K-means algorithm starting from different centers, followed
by local search. After this initialization phase, the algorithm
iteratively generates new solutions via three successive
steps: crossover, mutation, and local search. Upon attaining
the maximum population size Π2, the best Π1 solutions
in terms of log-likelihood are preserved to ensure elitism
and selection pressure, and the remaining solutions are
discarded. The algorithm terminates after a fixed number of
iterations. The remainder of this section details each operator.

Crossover. The algorithm selects two random parent solu-
tionsZ(1) andZ(2) in the population and applies a crossover
to them to create a new solution. This operator works as
follows (see Fig. 2):
• Step 1. It first solves a bipartite matching problem to pair

up the centers of the two solutions. Let G = (U ,V ,E)
be a complete bipartite graph in which the vertex
set U = (u1, . . . ,uK) represents the centers of so-
lution Z(1) and V = (v1, . . . ,vK) represents the
centers of solution Z(2). Each edge (ui,vj) ∈ E, for
i ∈ 1, . . . ,K and j ∈ 1, . . . ,K represents a possible
association of center i from solution Z(1) with center j
from solution Z(2). The minimum-cost bipartite match-
ing problem is then solved in graph G by considering
the weights of the edges in E as the squared Euclidean
distance between the vertices in V and U .

• Step 2. For each pair obtained in the previous step, the
crossover randomly selects one of the two centers with
equal probability. This effectively recombines the centers
of both parents.

• Step 3. Once the new centers are generated, each
sample xi is assigned to the closest center in terms of
Euclidean distance.

Mutation. The mutation operator follows the crossover. Its
goal is to introduce randomness into the solutions and permit
a broader exploration of the search space. We use a special
case of the mutation scheme described in Gribel and Vidal
[11] in which all samples have an equal chance of being
selected as the new center:

1) Select one center for removal with uniform probability.
2) Select a random sample and create a new center at its

position.
3) Re-assign each sample to the closest center.

Local Search. The solution generated by the previous steps
serves as a starting point for a two-phase local search
(Algorithms 2 and 3) that iterates until converging:

1) The algorithm iteratively evaluates each possible reloca-
tion of an annotated sample (i.e., a sample involved in
at least one pairwise annotation) to a different cluster.
Each relocation is applied if it improves the likelihood
(see Algorithm 2).

2) Next, the unannotated samples are assigned to their
closest cluster, as determined by the distance to the
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(a) Solution Z(1) (b) Solution Z(2)

(c) Assignment and random
selection

(d) Resulting solution

Fig. 2: Crossover based on centers’ matching.

cluster center. The parameters of the Gaussians are
then updated based on the new assignments. These two
steps are iterated until convergence to a local optimum,
making this step of the local search equivalent to a K-
means algorithm applied to the unannotated samples
(see Algorithm 3).

For notational simplicity, Algorithms 2 and 3 cover the
case of log-likelihood maximization (model without priors).
Still, the algorithms work analogously for the log-posterior
maximization, with the priors being updated according to
Equations (21)–(26).

Algorithm 1 Hybrid-Genetic Search

1: Input: Feature data: X , Adjacency matrices: A, Anno-
tated samples: A, Unannotated samples: U , Number of
clusters: K , Parameters: Π1 and Π2

2: S ← Set with Π1 initial solutions
3: repeat
4: Z(1),Z(2) ← Random solutions from S
5: Z ← Crossover(Z(1), Z(2))
6: Z′ ←Mutation(Z)
7: Algorithm 2: FitAnnotated(X , A, Z ′,A)
8: Algorithm 3: FitUnannotated(X , A, Z ′,U )
9: Add solution Z ′ to S

10: if |S| = Π2 then
11: S ← Select the best Π1 solutions
12: end if
13: until Maximum number of iterations is attained
14: return Best solution Z∗ found

Algorithm 2 FitAnnotated: Relocation of Annotated Samples

1: Input: Feature data: X , Adjacency matrices: A, Current
solution: Z, Annotated samples: A

2: Find parameters µ, σ, Ω+ and Ω− maximizing
L(X,A|Z)

3: Evaluate log-likelihood with the estimated parameters:
Q ← L(X,A|µ,σ,Ω,Z)

4: repeat
5: for i ∈ A and r ∈ {1, . . . ,K} in random order do
6: Consider solution ZR obtained from Z by relocating

sample i to cluster r
7: Find parameters µ̂, σ̂, Ω̂+ and Ω̂− maximizing

L(X,A|ZR)
8: Evaluate log-likelihood with the estimated parame-

ters: Q′ ← L(X,A|µ̂, σ̂, Ω̂,ZR)
9: if Q′ > Q then

10: Apply: µ← µ̂, σ ← σ̂, Ω+ ← Ω̂+, Ω− ← Ω̂−,
Z ← ZR, Q ← Q′

11: end if
12: end for
13: until No improving relocation has been identified

Algorithm 3 FitUnannotated: Assignment of Unannotated
Samples

1: Input: Feature data: X , Adjacency matrices: A, Current
solution: Z, Unannotated samples: U

2: repeat
3: for i ∈ U do
4: yi ← minr ‖xi − µr‖2
5: Update Z with the new assignment
6: end for
7: for r ∈ {1, . . . ,K} do
8: µr ←

∑N
i zirxi/

∑N
i zir

9: σ2
r ←

∑N
i

∑K
r zir ‖xi − µr‖

2
/
(

2D
∑N
i zir

)
10: end for
11: until No change in the solution has been identified
12: Update log-likelihood with the estimated parameters and

the current value of Ω:
Q ← L(X,A|µ,σ,Ω,Z)

5 COMPUTATIONAL EXPERIMENTS

We conducted computational experiments to investigate two
main effects. First, we analyze how the incorporation of
relational information affects the performance of the method
on datasets that match the ideal conditions of the model
(i.e., mixtures of spherical Gaussians). We evaluate the
performance of the proposed semi-supervised models as
a function of the quality and amount of the information
provided and analyze the impact of incorporating prior
beliefs. Second, we assess how the model performs on more
challenging real data not likely to be generated from spherical
Gaussian mixtures. We evaluate the extent to which the
model generalizes to treat these cases and discuss some of
its limitations.

All algorithms were implemented in Julia (version
1.0.5). The source code is available at http://github.com/
danielgribel/SSC-IPA.

http://github.com/danielgribel/SSC-IPA
http://github.com/danielgribel/SSC-IPA
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5.1 Evaluation Metrics

We consider three evaluation metrics in our experimental set-
ting: normalized mutual information (NMI) [40], an entropy-
based measure to compare two partitions from the sample-
group memberships; the Kullback–Leibler (KL) divergence
between two Gaussians mixtures using the matching-based
approximation of Goldberger et al. [41]; and the centroid
index (CI) [42], a discrete measure of the number of different
cluster locations between two clustering solutions. A CI of
zero indicates that the given partition matches the ground-
truth structure. These metrics reflect different aspects of the
solutions: NMI compares the partitions (membership vari-
ables) with the ground-truth, the KL divergence compares
the continuous Gaussian parameters, and the CI is based on
the coordinates of the solution centers.

5.2 Performance for Mixtures of Spherical Gaussians

In our first set of experiments, we analyze the general
performance of Algorithm 1 applied to synthetic datasets that
meet ideal conditions (i.e., mixtures of spherical Gaussians).

To generate these datasets, we use overlapping mixtures
in which each group has its own dispersion. More precisely,
for each group r, we create a D-dimensional mean µr by
sampling uniformly over the range [−1, 1]. For the dispersion
of each group, we sample σ2

r uniformly from the range
[0, 5]. Each data sample is then generated with probability
1/K from group r according to the Gaussian distribution
N (µr, σ

2
r).

Finally, the edges of graphs A+ and A− are ran-
domly generated via Equation (10). We create datasets
with different experts’ accuracies by defining a parameter
p ∈ {0.8, 0.9, 1.0} and setting prr = p for all r and
prs = 1 − p for all r 6= s. In all datasets, the number of
samples is set to N = 200, the feature-space dimension is
set to D = 10, and the number of clusters is selected from
the set K ∈ {2, 4, 6}. For each value of K, we generate 50
Gaussian mixtures, leading to 150 datasets. We define the
number of total annotations m (including both must-links and
cannot-links) as a proportion of the number of samples N ,
in which m ∈ {0, N/2, N, 1.5N, 2N, . . . , 4N}. This exper-
imental setup includes 3750 cases overall, considering all 150
datasets and the possible values of p and m.

Tables 1–3 report the performance of both proposed
models for p ∈ {0.8, 0.9, 1.0}. All results correspond to
the best log-likelihood solution found after 50 repetitions
of Algorithm 1.

Table 1 reports the NMI and KL divergence performance
for p = 0.8 when we expect a mistake rate of 20% for the
experts. For K = 2, we observe that the pairwise annotations
have a positive impact on clustering performance, even
with a small amount of information. For 100 annotations,
the use of pairwise information leads to an average NMI
of approximately 0.51, against 0.48 for the unsupervised
model (m = 0). For datasets with four clusters, a significant
performance enhancement occurs only for m ≥ 400. With
six clusters, the incorporation of pairwise annotations has
less impact. Moreover, the NMI slightly decreases for small
values of m despite the improved KL divergence. Finally, the
inclusion of priors does not lead to large performance differ-

ences in this setting. The most visible impact occurs when
K = 4 and K = 6, but only when m is sufficiently large.

Table 2 presents the same set of experiments for p = 0.9.
Since the annotation accuracy is higher than in the previous
case, the resulting graphs are more structured. Consequently,
semi-supervision translates into a larger gain of performance
over the unsupervised model. For K = 2 and m = 100,
the semi-supervised models present an average NMI of
approximately 0.55. In the case with two clusters, the
proposed models achieve a near-perfect recovery when m
is large. Finally, the use of prior information regarding the
experts’ accuracy had a more significant impact than in the
previous case with p = 0.8.

As expected and seen in Table 3, the difference in
performance between the semi-supervised and unsupervised
approaches becomes evident in a regime with perfect anno-
tations p = 1.0. With K = 2 and m = 100 annotations, we
obtain an average NMI of more than 0.64 without priors.
As the number of annotations grows, the semi-supervised
solution converges toward the ground-truth, effectively
attaining it when m = 800 and K = 2. Still, when p = 1.0,
the model with priors suffers from numerical instability
because f−IN and f+OUT drop to zero. To circumvent this issue,
we use p = 1 − 10−6 as an approximation. Despite this
adjustment, the penalties represented by λ may still remain
quite large such that, for small values of K and sparse
graphs with many unannotated samples, the priors tend
to dominate the other terms in the objective function. This
diminishes the impact of the Gaussians terms in the objective
and leads to more frequent misallocations of unannotated
samples. We therefore recommend using the formulation
without priors in these circumstances or even using simple
constraints when the experts’ annotations are perfect. In
the other circumstances, the model with priors generally
performs better.

Fig. 3 presents the average percentage of correct anno-
tations according to the partitions obtained with the two
models. When we incorporate the prior beliefs, this quantity
becomes close to the real number of correct annotations for
K = 4 and K = 6. Conversely, the model without priors
requires more information to approximate the real number
of mistakes even when the experts’ accuracy is high (p = 0.9
and p = 1.0). This behavior stems from the fact that ordinary
SBMs can recover any connectivity pattern, which may be an
issue in sparse graphs with little structure [43].

Finally, Figs. 4–6 compare the CI obtained with the
two proposed models and the unsupervised model for
K = 6 and different values of m. In Fig. 4, for p = 0.8,
no significant difference appears between the three models,
although the semi-supervised models present more datasets
with CI = 0 (same ground-truth structure) and CI = 1 (one
center diverging from the ground-truth center locations).
Fig. 5 compares the CI when p = 0.9. For 200 annotations,
37 out of 50 datasets have CI = 0 or CI = 1 without prior
information, whereas 36 cases are reported with priors. The
unsupervised model, however, presents only 29 datasets with
CI = 0 or 1. Finally, Fig. 6 shows the CI distribution with
perfect annotation accuracy. In this case, differences between
the two proposed models are more significant, notably when
more information is provided.
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TABLE 1: Average NMI and KL divergence on synthetic datasets for p = 0.8.

NMI KL divergence
K = 2 K = 4 K = 6 K = 2 K = 4 K = 6

Priors: 5 X 5 X 5 X 5 X 5 X 5 X
m = 0 0.4808 0.4358 0.4003 0.0998 0.3980 0.7529

m = 100 0.5136 0.5160 0.4323 0.4373 0.3834 0.3878 0.0657 0.0733 0.3414 0.3421 0.7157 0.6671
m = 200 0.5497 0.5536 0.4319 0.4436 0.3878 0.3943 0.0528 0.0520 0.3300 0.3062 0.6652 0.6327
m = 300 0.5880 0.5894 0.4369 0.4468 0.3870 0.3917 0.0396 0.0383 0.3188 0.3089 0.6093 0.6121
m = 400 0.6676 0.6549 0.4687 0.4697 0.3976 0.4064 0.0285 0.0327 0.2614 0.2563 0.5903 0.5790
m = 500 0.7260 0.7210 0.4895 0.4865 0.3907 0.4063 0.0154 0.0152 0.2380 0.2365 0.6013 0.5550
m = 600 0.7974 0.7978 0.4994 0.5030 0.4006 0.4201 0.0075 0.0077 0.2206 0.2167 0.5637 0.5276
m = 700 0.8328 0.8346 0.5296 0.5375 0.4114 0.4216 0.0060 0.0054 0.2092 0.1757 0.5563 0.5413
m = 800 0.8616 0.8623 0.5369 0.5479 0.4181 0.4322 0.0037 0.0036 0.2102 0.1679 0.5404 0.4985

TABLE 2: Average NMI and KL divergence on synthetic datasets for p = 0.9.

NMI KL divergence
K = 2 K = 4 K = 6 K = 2 K = 4 K = 6

Priors: 5 X 5 X 5 X 5 X 5 X 5 X
m = 0 0.4808 0.4358 0.4003 0.0998 0.3980 0.7529

m = 100 0.5461 0.5483 0.4513 0.4607 0.3930 0.4034 0.0541 0.0537 0.3291 0.2906 0.6637 0.6433
m = 200 0.6515 0.6601 0.4672 0.4840 0.4048 0.4089 0.0304 0.0263 0.2951 0.2702 0.6311 0.6043
m = 300 0.7546 0.7618 0.4998 0.5140 0.4046 0.4118 0.0117 0.0095 0.2531 0.2157 0.6225 0.5669
m = 400 0.8603 0.8678 0.5369 0.5529 0.4248 0.4485 0.0049 0.0041 0.2155 0.1785 0.5545 0.4835
m = 500 0.9045 0.9017 0.5998 0.6085 0.4385 0.4562 0.0020 0.0020 0.1635 0.1362 0.5284 0.4684
m = 600 0.9381 0.9387 0.6416 0.6694 0.4731 0.4908 0.0012 0.0012 0.1314 0.1004 0.4753 0.4098
m = 700 0.9664 0.9659 0.7107 0.7302 0.4768 0.5035 0.0007 0.0007 0.0825 0.0617 0.4823 0.4022
m = 800 0.9722 0.9728 0.7608 0.7831 0.4991 0.5274 0.0006 0.0005 0.0562 0.0492 0.4518 0.3476

TABLE 3: Average NMI and KL divergence on synthetic datasets for p = 1.0.

NMI KL divergence
K = 2 K = 4 K = 6 K = 2 K = 4 K = 6

Priors: 5 X 5 X 5 X 5 X 5 X 5 X
m = 0 0.4808 0.4358 0.4003 0.0998 0.3980 0.7529

m = 100 0.6444 0.5559 0.4683 0.4706 0.4019 0.4156 0.0293 0.0401 0.3213 0.2713 0.6843 0.6002
m = 200 0.8140 0.7578 0.5195 0.5218 0.4228 0.4551 0.0078 0.0086 0.2741 0.1939 0.6060 0.4648
m = 300 0.9402 0.9311 0.6128 0.6016 0.4642 0.4820 0.0012 0.0015 0.1703 0.1145 0.5468 0.3874
m = 400 0.9746 0.9746 0.7075 0.7145 0.4926 0.5270 0.0004 0.0004 0.1039 0.0616 0.4818 0.3122
m = 500 0.9936 0.9936 0.8089 0.8289 0.5409 0.5891 0.0001 0.0001 0.0602 0.0238 0.4167 0.2388
m = 600 0.9976 0.9976 0.8830 0.9130 0.6120 0.6508 0.0000 0.0000 0.0277 0.0086 0.3182 0.1666
m = 700 0.9976 0.9976 0.9375 0.9490 0.6602 0.7322 0.0001 0.0001 0.0110 0.0056 0.2838 0.1110
m = 800 1.0000 1.0000 0.9678 0.9749 0.7509 0.8038 0.0000 0.0000 0.0065 0.0026 0.1848 0.0740
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Fig. 3: Percentage of correct annotations given by the two proposed models in synthetic datasets.
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Fig. 4: CI of 50 Gaussian mixtures for (A) m = 0, (B) m = 200, (C) m = 400, and (D) m = 600, with p = 0.8.
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Fig. 5: CI of 50 Gaussian mixtures for (A) m = 0, (B) m = 200, (C) m = 400, and (D) m = 600, with p = 0.9.
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Fig. 6: CI of 50 Gaussian mixtures for (A) m = 0, (B) m = 200, (C) m = 400, and (D) m = 600, with p = 1.0.

5.3 Performance on Real-World Benchmarks

This section considers datasets that are assumed not to be
generated by spherical Gaussian distributions. The goal is to
show whether the introduction of pairwise information leads
to partitions with a different structure from those obtained
with unsupervised clustering in challenging datasets that
do not fit the original assumptions of the model. For this
analysis, we consider eight real datasets from the UCI
machine learning repository [44] with continuous multi-
feature data and available ground-truth information. Table 4
summarizes these datasets in terms of size and number of
clusters.

TABLE 4: UCI datasets.
Dataset N D K
Diabetes 145 5 3
Iris 150 4 3
Wine 178 13 3
Thyroid 215 5 3
Vertebral 310 6 3
E. coli 336 7 8
Breast-Cancer 683 9 2
Pendigits-389 2157 16 3

Figs. 7 to 9 show the performance of the two mod-
els in terms of NMI for p ∈ {0.8, 0.9, 1.0} and m ∈
{N/2, N, 1.5N}. For each combination of a dataset and

values of p and m, we generate ten different graphs. We run
50 repetitions of Algorithm 1 on each case and register the
NMI for the solution with the best log-likelihood. Then, we
measure the difference of (i.e., relative) NMI between each
of the proposed semi-supervised models and the baseline
model without supervision and represent those values as
boxplots, in which the whiskers extend to 1.5 times the
interquartile range.

Fig. 7 presents the relative NMI for p = 0.8, i.e.,
considering annotations that are quite inaccurate. In three
out of eight datasets, the NMI improves when pairwise
information is considered. For the remaining datasets, no
significant improvement occurs. Additionally, we did not
observe significant differences between the two proposed
models (with or without priors) for p = 0.8. In general,
prior knowledge led to the same solutions that are obtained
without priors.

Fig. 8 reports the relative NMI for graphs with only 10%
annotation errors (p = 0.9). In these conditions, the NMI
obtained in the datasets Diabetes, E. coli, and Wine also
increase visibly upon adding pairwise information. Although
the two proposed models perform quite similarly, in all test
instances, the model with priors performs the same or better
than the model without priors.

In Fig. 9, with perfect annotations, the median relative
NMI is positive in all datasets and for all values of m.
We consider again p = 1 − 10−6 for the priors estimation.
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Fig. 7: Relative NMI between proposed models and unsupervised model for UCI datasets (p = 0.8).
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Fig. 8: Relative NMI between proposed models and unsupervised model for UCI datasets (p = 0.9).
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Fig. 9: Relative NMI between proposed models and unsupervised model for UCI datasets (p = 1.0).

A notable difference now appears between the two proposed
models. The most expressive difference appears for
m = 1.5N (average NMI of 0.8828 with prior information
versus 0.8074 without priors). The results reveal that, given
trusted supervision, attaching prior beliefs significantly
boosts performance even if the available supervision is
limited and the datasets do not fit the original assumptions.

Vertebral column dataset. Fig. 10 presents the solutions
obtained for the Vertebral dataset [44] with unsupervised clus-
tering and the semi-supervised model with priors, along with
the ground-truth solution. The Vertebral dataset contains six
biomechanical measures used to classify orthopedic patients
into three classes: normal, disk hernia, and spondilolysthesis.

Each diagonal in the figure represents one feature of the
dataset, and each upper square presents the feature values
in pairs. We consider m = N = 310 pairwise annotations
with no errors. In these conditions, the unsupervised model
obtains CI = 1, whereas the use of pairwise annotations
leads to a CI of zero. Without side information, unsupervised
clustering naturally tends to retrieve partitions with separa-
ble clusters because it relies only on the available features.
The introduction of pairwise information can reveal hidden
structures, especially if some clusters significantly overlap,
which is the case for the Vertebral dataset. The yellow (“×”
crosses) and purple (circles) clusters considerably overlap,
and the unsupervised formulation does not capture this
characteristic. Adding pairwise annotations can guide the
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clustering process toward solutions that differ structurally
from those obtained with an unsupervised model. Beyond
repairing the membership of annotated samples originally
misallocated by unsupervised methods, the semi-supervision
also reveals partitions with markedly distinct structures.

6 CONCLUSION

Side information in the form of pairwise annotations can
be a powerful tool to improve clustering performance. In
this work, we used SBMs to model must-link and cannot-
link annotations and integrated them into the minimum
sum-of-squares clustering model. We provided efficient
learning algorithms and demonstrated that incorporating
pairwise information can significantly improve clustering
performance, even if the annotations are provided in a small
volume and with mistakes. Moreover, for both synthetic and
real-world datasets, we have shown that prior knowledge
of annotation accuracy can be harnessed to further improve
clustering. In challenging cases in which groups overlap
substantially and the observed data do not fit the model’s
general premises, the adoption of pairwise information can
be decisive to reveal hidden structures.

This work provides a font of promising research per-
spectives. Firstly, we suggest exploring other algorithmic
approaches for the proposed models along with specific
applications such as facial image recognition and video object
classification, as discussed in Basu et al. [3]. Moreover, we
suggest other methodological extensions that naturally fit in
a semi-supervised framework. Further improvements could
also be achieved using active learning to select samples for an-
notation, or through label propagation techniques [3, 45, 46].
Finally, this model could be further generalized to consider
experts with different accuracy levels and support other prob-
ability distributions, increasing its generality and flexibility.
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(b) Pairwise supervision (m = N)

40 80 120

40
80

12
0

1

0 20 40

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

● ●

●

●
● ●
●

●

●●
●

●
●

●

●
●

●

●
●●

●●●

●

●

●

●

●
●

●
●

●
●

2

20 60 100

●

●

●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

● ●
●

●
●

●

●
●

●

●
●●

●●●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●●

●●●
●

●

●

●

●
●

●

●
●

●

3

20 50 80

●

●

●●

●

●

●

●●
●

●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●●
●

●
●

●

●
●

●

●
●●

●●●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

●●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●●●
●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●● ● ●
●

●● ●

4

80 120 160

●

●

●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●

●

●

●●

●

●
● ●

●

●

● ●
●

●
●

●

●
●

●

●
●●

● ●●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●●

● ●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●
●

●●

●

●

●
●

●

●

●

●●●
●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●●●●
●

● ●●

●

●

●●
●

●

●
●

●●
●

●

●
●● ●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●●

● ●●
● ●

●

●

●

●

●
●
●●

●●● ●●

●●

●●

●

● ●
●

●

●

5

0 50 150

40
80

12
0

●

●

● ●

●

●

●

● ●
●

●

●

●
●
●

●

●

●
●●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●●
●

●
●

●

●
●

●

●
●●
●●●

●

●

●

●

●
●
●

●
●

●

0
20

40

●

●

●
●

●
●
●

●
●

●

●

●
●●
●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

●●●
●

●

●

●

●
●

●

●
●

●

20
60

10
0

●

●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●●●
●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●
●●● ●
●

●● ●

20
50

80

●

●

● ●
●

●

●
●

●●
●

●

●
●●●

●

●
●
●●
●

●

●

●

●

●

●
●

●

●●

●●●●●

●

●

●

●

●
●

●●

●●●●●

●●

●●

●

●●
●

●

●

80
12

0
16

0

●

●

●
●

●

●

●
●

●

●

●

●●

●
●
●

●

●
●
●

●

●

●

●●
●

●

●●● ●

●

●
●
●
●

●
●

●
●

●

●
●●

●
●●
●

●●●

●

●

●
●

●

●
●

● ●

0 50 150

0
50

15
0

6

(c) Ground-truth solution

Fig. 10: Different clustering structures found in the Vertebral
dataset.
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