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Abstract
As one of the prevalent topic mining tools, neu-
ral topic modeling has attracted a lot of in-
terests for the advantages of high efficiency
in training and strong generalisation abilities.
However, due to the lack of context in each
short text, the existing neural topic models
may suffer from feature sparsity on such doc-
uments. To alleviate this issue, we propose
a Context Reinforced Neural Topic Model
(CRNTM), whose characteristics can be sum-
marized as follows. Firstly, by assuming that
each short text covers only a few salient top-
ics, CRNTM infers the topic for each word
in a narrow range. Secondly, our model ex-
ploits pre-trained word embeddings by treating
topics as multivariate Gaussian distributions
or Gaussian mixture distributions in the em-
bedding space. Extensive experiments on two
benchmark datasets validate the effectiveness
of the proposed model on both topic discovery
and text classification.

1 Introduction

Mining topics from texts is significant for various
applications of natural language processing, e.g.,
text classification, sentiment analysis, and recom-
mender systems. As one of the most popular ap-
proaches for discovering latent topics, topic model-
ing (Blei et al., 2003; Yin and Wang, 2014) is ca-
pable of producing interpretable results. Generally,
the dominant methods for parameter estimation in
topic models are variational inference (Blei et al.,
2003) and Gibbs sampling (Griffiths and Steyvers,
2004), both of which, however, require complex re-
derivation when there is any minor changes to the
model structure. Moreover, with the growth of data
scale, the generative process is getting tricky and
expensive, which leads to mathematically arduous
derivation and high computational cost in training.
These limitations make it difficult to extend the
models to new variations flexibly.

∗The corresponding author.

With the development of deep learning, varia-
tional auto-encoder (VAE) (Kingma and Welling,
2014) has provided another promising solution for
topic modeling. Benefiting from the flexibility of
neural networks, the VAE framework is compe-
tent to learn complicated non-linear distributions
and is convenient to be applied to various tasks.
Furthermore, by using the back-propagation for
optimization, VAE is highly efficient in training
when compared with the models based on vari-
ational inference or Gibbs sampling. Consider-
ing the above advantages, several models built
on VAE have been proposed, such as neural vari-
ational document model (NVDM) (Miao et al.,
2016), neural variation latent Dirichlet allocation
(NVLDA) (Srivastava and Sutton, 2017), Gaussian
softmax model (GSM) (Miao et al., 2017), Dirich-
let variational auto-encoder (DVAE) (Burkhardt
and Kramer, 2019), and neural variational corre-
lated topic modeling (NVCTM) (Liu et al., 2019).
Although the VAE-based models reduce the compu-
tational cost impressively, they still suffer from the
feature sparsity problem in short texts. In this case,
the number of word occurrences in each text is rela-
tively small, while the vocabulary corresponding to
the corpus is large and the range of topics is broad.

To alleviate the above issue, many Bayesian ap-
proaches specific to short texts have been proposed
(Yan et al., 2013; Lin et al., 2014; Li et al., 2016).
Nonetheless, the above models all resort to Gibbs
sampling or variational inference and hence in-
cur the problems as mentioned before. In recent
years, models built on VAE are also introduced
for short texts, such as Graph-based inference net-
work for the biterm topic model (GraphBTM) (Zhu
et al., 2018) and neural sparsemax topic model
(NSMTM) (Lin et al., 2019). However, learning
context information is still challenging in these
models due to significant word non-overlap in short
texts. Relatedness information between word pairs
may not be fully captured owing to the lack of
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word-overlap between such short messages.
In this paper, we propose a VAE-based topic

model for short texts, where the context informa-
tion for each text is effectively enhanced. Firstly,
as can be observed, a short text generally covers
only a subset of topics due to the limited text length.
Therefore, we propose to filter irrelevant topics by
setting a topic controller for each topic, encourag-
ing each short text to focus on some salient top-
ics. Through this way, the topic inference range
is narrowed down and thus the topic sparsity can
be achieved indirectly. Secondly, we incorporate
pre-trained word embeddings into our model to ex-
plicitly enrich the context information. Specifically,
we model each topic by a multivariate Gaussian
distribution or a Gaussian mixture distribution in
the embedding space, through which the related-
ness of synonymous word pairs can be effectively
inferred regardless of word non-overlap in short
texts. In this way, our model can discover more
interpretable topics than other topic models. We
name the proposed model as Context Reinforced
Neural Topic Model (CRNTM) and conclude the
main contributions of our work as follows:

• We assume that each short text only focuses
on a few salient topics. By setting a topic con-
troller for each topic to filter irrelevant topics,
CRNTM narrows down the topic inference
space and achieves topic sparsity indirectly.

• Pre-trained word embeddings are incorporated
to explicitly enrich the limited context infor-
mation for each short message. By treating
topic distributions over words as multivari-
ate Gaussian distributions or Gaussian mix-
ture distributions in the embedding space,
CRNTM can produce more interpretable top-
ics.

The rest of this paper is organized as follows.
We discuss relevant research work in Section 2,
and detail our proposed model in Section 3. Experi-
mental settings and results are presented in Section
4. Finally, we draw the conclusion in Section 5.

2 Related Work

2.1 Neural Topic Modeling

With the development of deep learning, models
built on neural networks have been proposed to
discover latent topics, and most of them are based
on VAE. In this vein, NVDM (Miao et al., 2016) is

a neural variational framework for generative mod-
eling on texts. It consists of an inference network
and a multinomial softmax generative module. The
inference network is used to estimate continuous
hidden variables, which can represent the semantic
content of documents, while the generative mod-
ule aims to reconstruct the documents from the
latent topic distributions. GSM (Miao et al., 2017)
constructs the topic distributiona explicitly with a
softmax function applied to the projection of the
Gaussian random vector. ProdLDA (Srivastava and
Sutton, 2017) replaces the mixture model in la-
tent Dirichlet allocation (LDA) with a product of
experts for better topic modeling. NVLDA (Sri-
vastava and Sutton, 2017) approximates the Dirich-
let distribution by using Laplace approximation.
DVAE (Burkhardt and Kramer, 2019) decouples
the properties of sparsity and smoothness by rewrit-
ing the Dirichlet parameter vector into a product
of a sparse binary vector and a smoothness vector.
NVCTM (Liu et al., 2019) enhances the capabil-
ity of capturing the correlations among topics by
reshaping topic distributions.

2.2 Short Text Topic Discovery

Topic models (Blei et al., 2003) provide a valuable
solution for implicit semantic mining and under-
standing over documents. However, the feature
sparsity problem arises for topic models when ap-
plied to short texts (Zhao et al., 2011), because
such corpora are lack of word co-occurrences at
the document level.

To overcome this limitation, the external docu-
ments were first introduced to enrich the contextual
information in short texts (Sahami and Heilman,
2006; Jin et al., 2011; Phan et al., 2008). Unfor-
tunately, it requires the external documents to be
semantically close to the original corpus. Some ap-
proaches tackle the task by aggregating short texts
into lengthy pseudo-documents and then applying
a well established topic model. For this category
of methods, short texts can be aggregated by utiliz-
ing the side information, e.g., user characteristics
tags (Feng et al., 2020), user ID (Zhao et al., 2011),
and timestamp (Diao et al., 2012). Another alterna-
tive methods directly modify the prior of Bayesian
models to enrich word co-occurrences, so as to rem-
edy the feature sparsity problem. For instance, the
Biterm Topic Model (BTM) (Cheng et al., 2014),
which models the global word co-occurrences at
the corpus level, could lengthen short texts by con-



verting documents into biterm sets.
While the above methods are developed based

on Bayesian models, some neural network based
approaches have been introduced for short texts.
Zhu et al. (2018) proposed a graph-based inference
network named GraphBTM for accelerating the
above BTM. This model sampled a fixed number
of texts as a training instance to overcome the fea-
ture sparsity issue. Lin et al. (2019) proposed a
neural model which is called NSMTM by provid-
ing sparse posterior distributions over topics based
on the Gaussian sparsemax construction. Gupta
et al. (2019) designed a neural autoregressive topic
model named iDocNADE in a language modeling
fashion. They also incorporated word embeddings
as fixed prior in the model to introduce complemen-
tary information. However, the above approach
does not model topic distributions explicitly.

3 Model Description

In this section, we describe our context reinforced
neural topic model (CRNTM) in details. The over-
all architecture is illustrated in Figure 1, which con-
sists of two major modules: an inference network
for learning latent topics, and a Gaussian decoder
for reconstructing documents.

Reconstruct 

documents 

𝒙𝒅

Gaussian Decoder

 𝒙𝒅

Inference Network

𝜽𝒅

Infer topic 

distributions

Figure 1: Structure of our CRNTM.

3.1 Problem Definition

Given a corpus with D short texts, we de-
note the corresponding vocabulary as W =
{w1, w2, ..., wV }, with V being the vocabulary
size. Following (Miao et al., 2016), each document
is processed into a bag-of-words (BOW) represen-
tation, i.e., xd = [xd,1, xd,2, ..., xd,V ], where xd,i
denotes the number of times for word wi appearing
in document d.

In the inference network, we use θd ∈ RK to
denote the topic distribution of document d and
use zk ∈ {z1, z2, ..., zK} to denote the topic as-

signment for an observed word, where K denotes
the number of topics inherent in the given corpus.
Specifically, θd is drawn from the Gaussian distri-
bution N (µd,Σd), where both µd and Σd are prior
parameters. Furthermore, we set a topic controller
λd,k ∈ [0, 1] for each topic zk in document d: the
topic will be kept when λd,k = 1, or it will be
filtered out when λd,k = 0. For document d, the
topic controller λd = {λd,k}Kk=1 is drawn from a
Beta distribution, i.e., λd ∼ Beta(αd, βd), where
αd and βd are the prior parameters of λd.

For the Gaussian decoder, we denote the word
embedding matrix corresponding to the vocabulary
as WE ∈ RV×r, where r indicates the dimension
of word embeddings. Moreover, the embedding
of word wi is represented as WEi. We use a ma-
trix TW ∈ RK×V to denote the probabilities of
words conditioned to topics, in which, TW(k,i) rep-
resents the conditional probability of word wi over
topic zk. In this study, TW(k,i) is drawn from a
multivariate Gaussian distribution N (µk,Σk) or a
Gaussian mixture distribution, where µk ∈ Rr and
Σk ∈ Rr×r are learnable parameters.

3.2 Inference Network

The first component of CRNTM is the inference
network, which is applied to infer the topic distribu-
tions for the input documents. The structure of our
inference network is illustrated in Figure 2. Fol-
lowing the framework of VAE, CRNTM infers the
parameters µd and Σd via deep neural networks that
are elaborately designed for the observed data. Be-
ing fed with the input document xd, the inference
network first outputs an encoded vector πd. Then,
πd is linearly transformed to obtain µd and Σd,
which are used to parameterize the Gaussian prior
N (µd,Σd). The above process is described by
πd = MLP1(xd), µd = l1(πd), log σd = l2(πd),
and Σd = diag(σ2

d), where MLP1 is a multilayer
perceptron, l1(·) and l2(·) are linear transforma-
tions. Note that the diagonal elements σ2

d of co-
variance matrix Σd are non-negative. The output
of l2(·) is regarded as the logarithmic form log σd,
which is a real number.

A Gaussian random vector hd is passed through
a softmax function to parameterize the multino-
mial document-topic distribution θ′d. The process
is defined as: εd ∼ N (0, I2), hd = µd + εd ∗ σd,
and θ′d = softmax(Wθ · hd + bθ), where hd is
drawn from the Gaussian prior N (µd,Σd) with re-
parameterization, allowing the parameters to be



optimized by back-propagation.
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Figure 2: Inference network.

Due to the limited text length, a short document
only contains a few of words, resulting in the fea-
ture sparsity problem during the inference process.
However, it can be observed that a short text gen-
erally focuses on a subset of topics. This inspires
us to alleviate the above issue by narrowing down
the scope for topic inference. Instead of letting
the topic mixtures navigate freely in the simplex,
CRNTM allows short texts to cover a narrow range
of topics. This is achieved by setting a topic con-
troller λd,k ∈ [0, 1] for each topic. Topic zk is
focused when λd,k = 1, and it will be filtered out
when λd,k = 0. The topic controllers are drawn
from the Beta distribution, i.e., λd ∼ Beta(αd, βd),
as described in Section 3.1, which can guarantee
that each component λd,k ∈ λd is in the range of
[0, 1]. The parameters αd and βd are inferred as
follows:

φd = MLP2(xd), (1)

logαd = l3(φd), (2)

log βd = l4(φd), (3)

where MLP2 is a multilayer perceptron, l3(·) and
l4(·) are linear transformations. The output of l3(·)
and l4(·) are treated as the logarithmic form logαd
and log βd, since both αd and βd are non-negative.

The Beta sampling can not be differentiated di-
rectly, making it intractable to update model pa-
rameters through back-propagation. Therefore, we
use the re-parameterization technique to obtain λd
by following (Naesseth et al., 2017). The sam-
pling operation of Beta(αd, βd) can be decoupled
into Gamma(αd, 1) and Gamma(βd, 1), which
is formulated by λd =

λd,1
λd,1+λd,2

, where λd,1 ∼
Gamma(αd, 1) and λd,2 ∼ Gamma(βd, 1). For
the Gamma distribution Gamma(α, 1) with α > 1,
the re-parameterization can be accomplished by the

reject sampling method:

λd,1 = (αd −
1

3
)(1 +

εd√
9αd − 3

)3, (4)

where εd ∼ N (0, I2). On the other hand, the
shape augmentation method is applied to convert
α ≤ 1 to α > 1 to increase the accept rate of
each rejection sampler, which is formulated by

λd,1 = ρ
1
αd λ̃d,1, where ρ is drawn from a uni-

form distribution, i.e., ρ ∼ U [0, 1], and λ̃d,1 ∼
Gamma(α + 1, 1) can be obtained according to
Equation (4).

During the inference process, CRNTM deter-
mines whether topic zk is kept according to λd,k.
By filtering out some certain topics, the short texts
are allowed to focus on a few specific topics, and
thus the feature sparsity problem can be alleviated.
Finally, the topic distribution of document xd is
obtained by θd = θ′d ∗ λd.

3.3 Gaussian Decoder
Context information is important for topic mining
(Gupta et al., 2019). Words that appear together
frequently are more likely to belong to the same
topic, which implies that closer words in the em-
bedding space are more likely to reflect the same
topic. In Bayesian models, word embeddings that
are trained on a large corpus have shown to effec-
tively bring auxiliary context information for short
texts (Li et al., 2016). Considering this advantage,
we propose to introduce word embeddings into
the decoder named Gaussian decoder. To our best
knowledge, this is the first work of incorporating
pre-trained word embeddings into the decoder of
VAE to enhance the ability of capturing context
information. The basic structure of our Gaussian
decoder is shown in Figure 3(a).

The Gaussian decoder is applied to decode the
topic distribution θd, based of which a new doc-
ument can be reconstructed. Concretely, the de-
coder employs the multivariate Gaussian distribu-
tion N (µk,Σk) to model the k-th topic in the em-
bedding space. Since the elements of the diagonal
matrix Σk are non-negative, a transformation simi-
lar to the one applied to Σd is used here, as follows:
Σk = diag(σ2

k).
By incorporating pre-trained word embed-

dings, the probability of word wi conditioned
on topic zk, i.e., TW(k,i), can be formulated by

TW(k,i) = exp(g(WEi))

(2π)r/2|Σk|1/2
, where r is the word em-

bedding dimension, and g(WEi) = −1
2(WEi −
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Figure 3: Gaussian decoder.

µk)
TΣ−1

k (WEi − µk). It is worth noting that
the parameters µk and Σk can be regarded as the
topic centroid and topic concentration in the em-
bedding space. According to the properties of
Gaussian distribution, words that are closer to the
topic centroid have higher probabilities. Mean-
while, words in each topic are related to the con-
text information implied by word embeddings.
Therefore, CRNTM can enrich context informa-
tion via pre-trained word embeddings to address
the feature sparsity problem. Finally, we esti-
mate the conditional probability p(wd,i|θd, λd) by
p(wd,i|θd, λd) =

∑
k θd,k · TW(k,i).

The above method can be easily adjusted by as-
suming that TW(k,i) obeys a Gaussian mixture dis-
tribution, as shown in Figure 3(b). In this case,
TW(k,i) =

∑M
m=1 τm

exp(gm(WEi))

(2π)r/2|Σk,m|1/2
, where M is

number of Gaussian components, τm is the coeffi-
cient of Gaussian distributions, and gm(WEi) =
−1

2(WEi − µk,m)TΣ−1
k,m(WEi − µk,m).

3.4 Optimization Objective
The optimization objective of CRNTM is L =
log p(D), where log p(D) is the likelihood of ob-
served samples. According to the assumption, there
is log p(D) =

∑
d log p(d). Since the true dis-

tributions of documents are unknown, variational
inference is used here to convert the optimiza-
tion to its evidence lower bound (ELBO), that is,
log p(d) ≥ L(d). According to the variational in-
ference method, L(d) is derived as follows:

L(d) =

∫∫
q(θd, λd|xd)[− log q(θd, λd|xd)

+ log p(xd, θd, λd)]dθddλd

= Eq(θd|xd)q(λd|xd)[log p(xd|θd, λd)]
−DKL[q(θd|xd) ‖ p(θd)]
−DKL[q(λd|xd) ‖ p(λd)], (5)

where Eq(θd|xd)q(λd|xd)[log p(xd|θd, λd)] is often
regarded as the reconstruction loss. p(xd|θd, λd) =∏nd
i=1 p(wd,i|θd, λd). p(θd) is the prior distribu-

tion of θd, q(θd|xd) is the variational approxima-
tion of p(θd), p(λd) is the prior distribution of
λd, q(λd|xd) is the variational approximation of
p(λd), and Eq(θd|xd)(·) is approximated by sam-
pling of θd ∼ q(θd|xd). For θd, we assume that the
true prior p(θd) is a normal Gaussian distribution
N (0, I) by following (Kingma and Welling, 2014;
Miao et al., 2016; Liu et al., 2019). Therefore,
the KL divergence term DKL[q(θd|xd) ‖ p(θd)]
can be derived by DKL[q(θd|xd) ‖ p(θd)] =
1
2(−n+ µ2

d − log |Σd|+ |Σd|).
Similarly, we take Beta(α′, β′) as the true

prior of p(λd), and the KL divergence term
DKL[q(λd|xd) ‖ p(λd)] can be computed by
DKL[q(λd|xd) ‖ p(λd)] = ln ∆(α′,β′)

∆(αd,βd) − (α′ −
αd)ψ(αd) − (β′ − βd)ψ(βd) + (α′ − αd + β′ −
βd)ψ(αd + βd), where ∆(α, β) = Γ(α)Γ(β)

Γ(α+β) , Γ(·)
is the Gamma function, and ψ(·) is the Digamma
function. In our model, the topic controller acts
as a switch to filter out irrelevant topics and keep
related topics with higher probabilities. Since α
and β determine the shape of Beta distribution, we
set both α′ and β′ to 0.5, so that the probabilities
are sharp in values of 0 and 1.

4 Experiments

In this section, we first introduce the experimental
setting, and then evaluate the effectiveness of our
model by a series of experiments.

4.1 Datasets

To compare the model performance on both topic
mining and text classification, we employ 20News-



Table 1: The statistics of datasets.

Dataset Train Test V AvgD L

20NewsGroups 11, 314 7, 531 2, 000 12.3 20
Snippets 10, 060 2, 280 5, 000 14.3 8

Groups1 and Snippets2 with document labels as our
datasets. 20NewsGroups is a collection of short
news messages, which contains 11, 314 training
and 7, 531 testing samples. These short texts are
grouped into 20 different categories. Snippets is
collected from the results of web search transac-
tion over 8 domain labels. The officially divided
10,060 and 2,280 search transaction documents are
used for training and testing, respectively. For data
preprocessing, we remove stopwords and take the
most frequent 2, 000 words and 5, 000 words as vo-
cabularies. The statistics of the processed corpora
are shown in Table 1, where AvgD and L denote
the averaged number of words for each document
and the number of categories, respectively.

4.2 Baseline Methods

We use the following mainstream VAE based meth-
ods as baselines for evaluation: NVDM (Miao
et al., 2016), NVLDA & ProdLDA (Srivastava and
Sutton, 2017), GSM (Miao et al., 2017), TMN
(Zeng et al., 2018), NVCTM (Liu et al., 2019),
and DVAE (Burkhardt and Kramer, 2019). Among
these methods, NVDM is one of the first neural
document models, NVLDA, ProdLDA, and GSM
are classical neural topic models. TMN consists of
a neural topic model and a topic memory mecha-
nism, which are trained in an end-to-end learning
manner. NVCTM exploits the Centralized Trans-
formation Flow (CTF) to capture the topic corre-
lations by reshaping topic distributions. DVAE
achieves a competitive topic coherence and a high
log-likelihood by decoupling the properties of spar-
sity and smoothness in VAE-based topic models
for short texts.

Note that iDocNADE (Gupta et al., 2019) and
NSMTM (Lin et al., 2019) are not adopted for com-
parison, because the former does not model topic
distributions explicitly while the training process
of the latter is too sensitive to continue based on
our implementation. Besides, since the ELBO is

1http://www.qwone.com/˜jason/
20Newsgroups/20news-18828.tar.gz

2http://jwebpro.sourceforge.net/
data-web-snippets.tar.gz

typically used and necessary to evaluate the perfor-
mance of VAE based methods (Miao et al., 2016,
2017), we do not use Bayesian models such as (Yan
et al., 2013; Lin et al., 2014; Li et al., 2016) as base-
lines for fair comparison. Finally, GraphBTM (Zhu
et al., 2018) which only models a mini-corpus is
unsuitable to be evaluated in this study.

4.3 Experimental Settings

In our experiments, the publicly available codes
of NVDM3, NVLDA & ProdLDA4, TMN5, and
DVAE6 are directly used. The baselines of GSM
and NVCTM are implemented by us based on
the code of NVDM, where the length of CTF
in NVCTM is set to 10 according to the pre-
liminary experiments. For our model, we use
the widely adopted pre-trained word embedding
from Glove (Pennington et al., 2014), and the
embedding size is 300. All the models are
trained alternatively by Adam optimizer with a
learning rate of 1e−5 and a batch size of 64.
In the task of topic discovery, perplexity =
exp{− 1

D

∑D
d=1

1
Nd

∑Nd
i=1 log p(wd,i)} is used to

evaluate the generalization performance of mod-
els on the testing set, where D is the number of
documents, Nd is the number of words in docu-
ment d and p(wd,i) is the log-likelihood of model
on word wi in document d. To evaluate the quality
of discovered topics, we also use the normalized
pointwise mutual information (NPMI) (Lau et al.,
2014) as the metric. The averaged values of NPMI
on the top 5, 10, and 15 words for all topics is
computed as the final results. For the task of text
classification, we use the topic vector of each docu-
ment generated by convergent models as the input
of a classifier. MLPClassifier from scikit-learn7

is chosen as the classifier in this study and accu-
racy is used as the metric. For each task, the topic
numbers are set to 25, 50, and 100. We denote our
models with Gaussian distribution and Gaussian
mixture distribution in the decoder as CRNTM GD
and CRNTM GMD, respectively. Unless explic-
itly specified, the number of Gaussian components
is set to 25 for CRNTM GMD. The source code,
detailed parameter settings, and complementary

3https://github.com/ysmiao/nvdm
4https://github.com/akashgit/

autoencoding_vi_for_topic_models
5https://github.com/zengjichuan/TMN
6https://github.com/sophieburkhardt/

dirichlet-vae-topic-models
7https://scikit-learn.org/stable/

modules/classes.html
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Table 2: Perplexity results of different models on both
datasets, where the best scores are boldfaced.

Model 20NewsGroups Snippets
25 50 100 25 50 100

NVDM 802 855 871 5144 5180 5328
NVLDA 1046 1252 1153 5336 5496 5374
ProdLDA 1106 1073 1035 5312 5379 5348

GSM 949 922 943 5237 5295 5434
TMN 1159 1136 1128 3177 3197 3236

NVCTM 758 738 744 5090 5121 5136
DVAE 1095 1066 1075 5090 5121 5136

CRNTM GD 698 706 680 4822 4872 4861
CRNTM GMD 574 586 590 4608 4695 4602

Table 3: Topic coherence results of different models on
both datasets, where the best scores are boldfaced.

Model 20NewsGroups Snippets
25 50 100 25 50 100

NVDM 0.041 0.061 0.053 0.068 0.067 0.069
NVLDA 0.065 0.062 0.061 0.042 0.045 0.041
ProdLDA 0.064 0.062 0.065 0.046 0.051 0.045

GSM 0.080 0.076 0.065 0.068 0.061 0.065
TMN 0.031 0.051 0.042 0.043 0.025 0.029

NVCTM 0.022 0.017 0.014 0.052 0.051 0.055
DVAE 0.065 0.075 0.069 0.039 0.052 0.040

CRNTM GD 0.065 0.077 0.069 0.075 0.076 0.074
CRNTM GMD 0.088 0.081 0.079 0.082 0.084 0.085

results of our models can be found at Github8.

4.4 Comparison with Baselines

Table 2 presents the test document perplexities of
all models, from which we can observe that our
CRNTM GD and CRNTM GMD achieve the best
results in most cases. Specifically, TMN performs
the best on Snippets. The reason may be that TMN
is basically a supervised model for text classifi-
cation and that the supervision from labels can
help mining topics on a corpus consisting of less
formal texts (i.e., Snippets). We also report the
results of topic coherence in Table 3. It can be
observed that both of our models are significantly
better than all the baselines, which shows that they
are able to discover more meaningful and inter-
pretable topics. The performance comparisons for
text classification are shown in Table 4. We can
find that CRNTM GD and CRNTM GMD obtain
competitive performances when compared with the
benchmark methods, which validates the effective-
ness of our models on generating representative
vectors for short text classification.

8https://github.com/Deloris-NLP/CRNTM

Table 4: Classification accuracies of different models
on both datasets, where the best scores are boldfaced.

Model 20NewsGroups Snippets
25 50 100 25 50 100

NVDM 0.64 0.64 0.67 0.15 0.17 0.16
NVLDA 0.40 0.45 0.42 0.12 0.13 0.13
ProdLDA 0.43 0.44 0.40 0.14 0.14 0.15

GSM 0.45 0.46 0.45 0.11 0.12 0.11
TMN 0.40 0.48 0.51 0.15 0.16 0.13

NVCTM 0.64 0.64 0.65 0.16 0.18 0.18
DVAE 0.32 0.37 0.34 0.08 0.09 0.06

CRNTM GD 0.64 0.65 0.68 0.15 0.16 0.14
CRNTM GMD 0.69 0.65 0.66 0.16 0.16 0.17

4.5 Evaluation on Gaussian Decoder via
Topic Visualization

To investigate the quality of topics discovered by
our models, we report top 15 words of 4 repre-
sentative topics and visualize these topics by their
embedding vectors using 20NewsGroups. Partic-
ularly, we extract µk of Gaussian distributions
as the topic centroid and utilize t-SNE (van der
Maaten, 2009) for visualization. Topic visual-
ization of the results in CRNTM GD is depicted
in Figure 4(a). The points with different col-
ors indicate different topics, and the centroid of
topic k is denoted as Tk. For the convenience
of comparison, we manually annotate each topic
by referring to the ground truth category. Accord-
ingly, T1, T2, T3, and T4 in CRNTM GD are an-
notated as “soc.religion.christian”, “talk.politics”,
“comp.sys.ibm.pc.hardware”, and “comp.graphics”,
respectively. We can see that all top words of the
same topics are close to each other and to the cor-
responding topic centroids in the continuous vector
space. This validates that our Gaussian decoder
can effectively capture the context information via
word embeddings in mining topics. We also present
4 topics generated by CRNTM GMD whose se-
mantics are similar to those in CRNTM GD to
verify the effectiveness of Gaussian mixture dis-
tributions. Topic visualization of the results in
CRNTM GMD is shown in Figure 4(b). For clarity,
the coefficients of Gaussian components are indi-
cated by different point sizes and shades of colour.
The bigger the points are and the stronger the color
is, the higher coefficient of the corresponding Gaus-
sian components is. The topic centroids and their
probabilities are detailed in Figure 4(c). We can ob-
serve that for topic T3 named as “comp.graphics”,
the main components such as T3:5, T3:3, and T3:0
are close to the cluster of red points, while T2:8
and T2:5 are close to sub-clusters of top words in

https://github.com/Deloris-NLP/CRNTM
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(a) Top 15 words in CRNTM GD, and
T1, T2, T3, T4 are topic centroids.
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Tk:m is the mth centroid of topic k.
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Figure 4: Characteristics of 4 representative topics generated by our models on 20NewsGroups.

T2.
To make a comprehensive comparison, we

present the results of all models on generating
topic “soc.religion.christian” in Table 5. It can
be observed that our models can discover quite
meaningful topics. We can also observe that the
numbers of semantically irrelevant words of TMN
and NVCTM are more than other models, which is
consistent to the topic coherence results in Table 3.

Table 5: Top 10 words of manually labeled topic
“soc.religion.christian” from all models on 20News-
Groups, where irrelevant words are underlined.

Model Top words

NVDM god sin scsi bible jesus rutgers
homosexuality christian ide christians

NVLDA god scsi sin drive jesus
bible christian christians homosexuality love

ProdLDA god christians jesus bible doctrine interpretation
belief homosexuality christianity eternal

GSM god jesus bible christ church
people christian believe christians sin

TMN sin myers eternal president mary
god heaven christ doctor jobs

NVCTM church catholic christians magnus scripture
duke andrew turkey sex christianity

DVAE jesus scripture christ bible doctrine
sin christians god canon homosexuality

CRNTM GD jesus god christ heaven death
holy truth gods faith lord

CRNTM GMD god christians bible christ jesus
sin religion church lord doctrine

4.6 Impact of Gaussian Mixture Numbers
We further study the impact of the number of Gaus-
sian components. Table 6 presents the results of
CRNTM GMD on 20NewsGroups when varying
component numbers under 25 topics. We can ob-
serve that CRNTM GMD with more Gaussian com-

Table 6: Performance of CRNTM GMD with different
Gaussian mixture numbers on 20NewsGroups, where
the best results are boldfaced.

M Perplexity Coherence Accuracy

5 634 0.060 0.65
10 616 0.071 0.66
15 597 0.081 0.68
20 588 0.084 0.68
25 574 0.088 0.69
30 574 0.080 0.66
35 571 0.081 0.66

ponents generally performs better than that with
less ones, which demonstrates that a more sophis-
ticated mixture possesses a stronger capacity of
learning high quality topics. The best topic co-
herence and classification accuracy are obtained
when the component number is set to 25, and a
larger value may not further boost the model per-
formance.

5 Conclusion

In this paper, we propose a Context Reinforced
Neural Topic Model (CRNTM) to address the fea-
ture sparsity problem in short texts. By introduc-
ing a topic controller to the inference network,
CRNTM infers the topic for each word in a nar-
row range. Besides, pre-trained word embeddings
are incorporated with multivariate Gaussian distri-
butions or Gaussian mixture distributions into our
model to enrich the context information of short
messages. To quantitatively validate the effective-
ness of CRNTM, we conduct various experiments
on two benchmark datasets in terms of perplexity,
topic coherence, and text classification accuracy.
The results indicate that the proposed model largely



improves the performance of topic modeling by en-
riching the context information effectively.
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