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Abstract—With the continuous expansion of Internet of Things
(IoT) devices, edge computing mode has emerged in recent years
to overcome the shortcomings of traditional cloud computing
mode, such as high delay, network congestion, and large resource
consumption. Thus, edge-thing systems will replace the classic
cloud-thing/cloud-edge-thing systems and become mainstream
gradually, where IoT devices can offload their tasks to neigh-
boring edge nodes. A common problem is how to utilize edge
computing resources. For the sake of fairness, double auction
can be used in the edge-thing system to achieve an effective
resource allocation and pricing mechanism. Due to the lack of
third-party management agencies and mutual distrust between
nodes, in our edge-thing systems, we introduce blockchains to
prevent malicious nodes from tampering with transaction records
and smart contracts to act as an auctioneer to realize resources
auction. Since the auction results stored in this blockchain-
based system are transparent, they are threatened with inference
attacks. Thus in this paper, we design a differentially private
combinatorial double auction mechanism by exploring the ex-
ponential mechanism such that maximizing the revenue of edge
computing platform, in which each IoT device requests a resource
bundle and edge nodes compete with each other to provide
resources. It can not only guarantee approximate truthfulness
and high revenue, but also ensure privacy security. Through
necessary theoretical analysis and numerical simulations, the
effectiveness of our proposed mechanisms can be validated.

Index Terms—Internet of Things, Blockchain, Smart contract,
Edge-thing system, Combinatorial auction, Truthfulness, Rev-
enue, Differential privacy.

I. INTRODUCTION

W ITH the rapid improvement of electronic equipment
and communication infrastructure, Internet of Things

(IoT) has become a hot research topic connecting the physical
environment to the syberspace system. IoT devices are ubiq-
uitous and play an important role in our lives, such as mobile
phones, cemeras, automobiles, and traffic sensors. In recent
years, the number of IoT devices has exploded. Based on a
survey conducted by Cisco [1] [2], they predicted that more
than 75 billion IoT devices would go into operation before
2025. These IoT devices produce a large amount of data. How
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to utilize these data to better serve the society has attracted
more and more attention in academia and industry, and has
driven a series of downstream industries such as smart home,
smart supply chain, healthcare, and product traceability.

It is not easy to process these data to produce valuable
information, which usually involves some artificial intelligence
algorithms or data mining techniques. It requires IoT devices
to have a certain amount of computing power and storage
space. However, most IoT devices are lightweight, which can
only temporarily store a small amount of data and perform
simple operations. In the traditional cloud-thing system, IoT
devices rely on the computing power, network bandwidth, and
storage space of cloud centers to implement their own func-
tions. Usually, cloud centers are far away from IoT devices,
which leads to high energy consumption and network deley. In
addition, it also faces the threat of the single point of failure [3]
[4], making this system more unreliable. As a result, the cloud-
edge-thing system came into being. There are a lot of edge
servers distributed in every corner of the space evenly. These
edge nodes provide nearby IoT devices with the resources they
need. Thus, IoT devices can offload their tasks to neighboring
edge nodes instead of cloud centers. Although it overcomes
some defects, especially long distance transmission, in cloud-
thing systems, the cloud-edge-thing system does not get rid of
the control of cloud centers completely.

Therefore, we focus on the edge-thing system in this paper,
which is completely decentralized without the management
of a third-party authority. But in the resources allocation
between IoT devices and edge nodes, they do not trust each
other due the conflict of interests, in which both entities want
to maximize their own revenues. Moreover, the transaction
records stored in edge nodes may be maliciously tampered
with. With this in mind, blockchain [5] is an opportunity to
provide a secure peer-to-peer (P2P) network. Blockchain is
a distributed ledger for storing real-time data generated by
all active participants in the system. It can not only achieve
complete decentralization, but also has the characteristics of
tampering-proof and transparency. The secure P2P network
proved by blockchain can be used as a supplementary tech-
nique to design our edge-thing system.

In order to reflect the real market fluctuation and relation-
ship between supply and demand, auction has been proven to
be effective, so that IoT devices can get the resources they
need at acceptable prices and edge nodes can benefit from
providing resources. In this paper, we design a blockchain-
based edge-thing system, where the resources allocation and
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pricing are realized by a combinatorial double auction mech-
anism. Here, IoT devices are buyers requesting resources and
edge nodes are sellers providing resources. Because we have
adopted a completely decentralized architecture, there is no
suitable entity to act as an auctioneer responsible for executing
the auction mechanism and deciding auction results. In our
system, the auction mechanism is stored in the smart contract
that is built in the blockchain, which can be run automatically
when receiving all requests from IoT devices and edge nodes.
Different IoT devices have different requirements for each
resource type. For example, a device in smart home needs
more computing power to implement intelligent algorithms,
but a traffic monitor needs more storage space to store road
condition data. Each IoT device ususally request a bundle of
resources according to its task and gives a total bid, which
is the reason for the formulation of a combinatorial double
auction. The core of designing an auction mechanism is to
easure the truthfulness, so as to encourage buyers/sellers to
bid/ask their true valuations.

Since allocation and pricing results are transparent in the
blockchain, it exsits possible risk of exposing bids/asks of
buyers/sellers. The bidding/asking information is their privacy,
which may contain some commercial secrets. Adversaries
could infer others’ bids/asks through comparing the public
auction results in multiple rounds by changing its bid/ask. This
is known as “inference attack” [6] [7]. In order to prevent
players from being trouble by inference attacks, differential
privacy [8] is a promising technology with strong thoeretical
guaranatees that can be introduced in designing auction mech-
anisms. Even though several differential privacy-based auction
mechanisms have been proposed in previous literature [9] [6]
[10] [11] [12] [13], they are very different from the auction
in our edge-thing systems. First, our auction is combinatorial
because every buyer gives a total bid for a bundle of resources.
Second, each edge nodes can only provide a limited amount
of resource for each resource type. Third, the resource request
of an IoT device can only be satisfied by one edge node,
and the distance between them is constrained. Consider the
real situation in edge-thing systems, we design a differentially
private combinatorial double auction mechanism by exploring
the exponential mechanism that selects the final pricing with
a probability proportional to its corresponding revenue. On
the premise of ensuring that the privacy is not exposed, it
achieves individual rationality, budget balance, computational
efficiency, and expected truthfulness at the same time. Our
main contributions can be summarized as follows.

1) We propose an novel edge-thing architecture based on
blockchain technology to achieve complete decentral-
ization and tempering-proof, in which the built-in smart
contract acts as a central coordinator.

2) To model a real edge-thing system, we formulate a
combinatorial double auction model to achieve resources
allocation between IoT devices and edge nodes.

3) We introduce the exponential mechanism in differential
privacy to our auction model so as to ensure privacy
protection, and also achieve the expected truthfulness
and approximately high revenue.

4) We conduct extensive simulations to evaluate the per-
formances of our proposed mechanisms. The simulation
results verify our theoretical analysis.

Orgnizations: In Sec. II, we survey the-state-of-art work. In
Sec. III, we introduce the edge-thing system model and define
our problem formally. In Sec. IV, we introduce the differential
privacy describe the mechasnism design in detial. In Sec. V,
we give the proofs of related properties. Finally, we evaluate
our mechanisms by numerical simulations in Sec.VI and show
the conclusions in Sec. VII.

II. RELATED WORK

In recent years, the related research on resources allocation
has attract wide attention in academia. Auction theory has been
used in a series of related areas, such as mobile crowdsens-
ing [14] [15] and energy trading [16] [17]. In mobile edge
computing environment, Sun et al. [18] proposed a double
auction mechanism to allocate computing power between IoT
devices and edge nodes, where IoT devices can purchase
computing power from edge nodes. Habiba et al. [19] put
forward a reverse auction framework in mobile edge comput-
ing based on position, which aimed at maximizing the utility
of edge servers. Peng et al. [20] designed a multiattribute-
based double auction mechanism in vehicular edge computing,
where the matching is determined by both price and non-price
factors. However, a trusted auctioneer is essential to realize
the resources allocation by auction mechanisms, especially for
double auction. In P2P distributed edge network, there is no
entity suitable acting as an auctioneer that can guarantee the
security and reliability.

The emergence of blockchain technology has potentially
solved this dilemma. It maintains a decentralized ledger, and
can work as the auctioneer by combining smart contracts. Sun
et al. [21] revised their previous work in [18] by introducing
blockchain to achieve a trustworthy platform. Jiao et al. [22]
proposed an auction-based market model for the allocation
of computing resources between miners and edge servers.
Ding et al. [23] [24] attempted to build a secure blockchain-
based IoT system by attracting more IoT devices to purchase
computing power from edge servers and participate in the
consensus process, where they adopted a multi-leader multi-
follower Stackelberg game. Guo et al. [25] proposed a secure
and efficient charging scheduling system based on DAG-
blockchain and double auction mechanism. However, all the
transaction models in these works are based on the allocation
for a kind of resource. They did not consider the allocation
of multiple resources. Moreover, they did not consider the
potential risk of privacy disclosure.

Because of the public auction results, the sensitive informa-
tion of participants is at risk of being exposed. To prevent
the adversary from inferring players’ sensitive information,
Dwork et al. [8] founded the theory of differential privacy.
McSherry et al. [9] first applied the differential privacy to
auction mechanism and made a complete theoretical analysis.
Chen et al. [26] combined the differential privacy with double
spectrum auction design in order to maximize social welfare
approximately. Guo et al. [12] revised their work in [25]
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by introducing differential privacy to avoid the leakage of
bidding/asking information. Besides, differential privacy has
been used in mechanism design of spectrum auction [6]
[7], smart grid [27] [28], and mobile crowdsensing [29].
However, applying differential privacy to our combinatorial
double auction model is very different from the existing work.

III. EDGE-THING SYSTEM MODEL

In this section, we introduce the system model of the edge-
thing architecture and how to integrate the blockchain as an
effective technique to overcome the potential security threats
in detail. Here, we consider the time can be discretized into
time slots, denoted by T = {t1, t2, t3, · · · }, where each time
slot is equal in length. The following discussion is within a
time slot, including the combinatorial auction mechanism and
consensus process. Finally, the objective function and problem
definition can be formulated.

A. System Description

In the existing intelligent environment, there are a large
number of IoT devices deployed in every corner of our
lives, which undertake their own different tasks, such as
traffic monitoring, health recording, navigation, and machine
learning training. Because of their lightweight nature (lim-
ited resources) and delay sensitivity, these IoT devices can
attempt to offload their tasks to adjacent edge nodes. In order
to quantify the demand for different resources, we assume
there are k kinds of resources in our system, denoted by
R = {r1, r2, · · · , rk}, where each ri ∈ R represents a certain
kind of resource such as computation, memory, storage, or
network bandwidth.

A certain number of edge nodes can form an intermediate
layer between the more powerful cloud center and mobile
IoT devices. In our system, there are m IoT devices, denoted
by TD = {TD1, · · · , TDi, · · · , TDm}. These IoT devices
have limited computing power and storage space, thus not
enough to achieve their goals. In order to upgrade the quality
of service, the resources that are required by the IoT device
TDi can be expressed as Di = {d1

i , d
2
i , · · · , dki }, where dzi ∈

[dmin, dmax]. Each dzi ∈ Di indicates that IoT device TDi re-
quires at least dzi units of the resource rz . Similarly, there are n
edge nodes, denoted by EN = {EN1, · · · , ENj , · · · , ENn}.
These edge nodes are responsible for providing different re-
sources to IoT devices. The resources that are provided by the
edge node ENj can be expressed as Hj = {h1

j , h
2
j , · · · , hkj },

where hzj ∈ [hmin, hmax]. Each hzj ∈ Hj indicates that edge
node ENj provides at most hzj units of the resource rz .
Therefore, each resource-limited IoT device has to broadcast
its resource request to the edge service provider in the hope
of getting the resources it wants.

As mentioned earlier, in each time slot, edge nodes make
a profit by selling resources and IoT devices complete their
tasks by buying resources, which has created a double auction
problem. In a double auction model, all players have to submit
their requests to the auctioneer. There is an important question
about who will assume the role of auctioneer. A natural idea is
to let the cloud center be the auctioneer. However, this deviates

Fig. 1. The architecture of our edge-thing system based on blockchain and
smart contract.

from our original intention of getting rid of the cloud centers.
There are several potential security threats when trying out a
centralized cloud center, which can be summarized as follows.

1) Vulnerability: the cloud center is attacked or damaged
by malicious attackers or unexpected disasters. It will
cause the single point of failure.

2) Insecurity: the bidding/asking information submitted by
players could be leaked or tampered with. It will cause
data loss and privacy leakage.

3) Unreliability: the cloud center is biased, and colludes
with some nodes for their own benefits. It will cause
the auction results to be unfair.

4) Communication security and network delay: the cloud
center is physically far away from IoT devices and edge
nodes, which will cause potential security hazards and
network delays in the transmission process.

In order to overcome the above drawbacks and achieve the
decentralization, the blockchain and smart contract are used
as ancillary techniques to prevent tampering and establish a
credible system among unfamilar nodes without the third-party
authority. The transaction between IoT devices and edge nodes
are stored in the blockchain. Figure 1 exhibits the architecture
of our blockchain-enabled edge-thing system. Shown as Figure
1, IoT devices are light nodes that do not store the blockchain
but participate in the transaction. Edge nodes are full nodes
that store the complete blockchain and perform the consensus
process to add new blocks to the blockchain. Moreover, a smart
contract is deployed on the blockchain, which plays the role of
auctioneer by implementing information interaction between
IoT devices and edge nodes, and executing the predefined
auction mechanism automatically. Such a system does not
rely on a third-party authority to act the auctioneer, and also
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inherits the advantages of decentralization, temper resistance,
and transparency in the blockchain.

B. Combinatorial Auction Mechanism

In order to simulate the real situation, we assume that each
IoT device submitted its resource request in a bundled way,
which formulates a combinatorial auction. For example, an
IoT device needs to complete a task of training a deep learning
model, thereby it wants to buy computation and memory from
edge nodes. It is more reasonable to give a total bid according
to its valuation of this task instead of bidding each resource
separately. Furthermore, we find that this task can only be
accomplished at one edge node. In other words, computing
and memory resources must come from the same edge node,
which increases the limitation of our model.

In a typical auction, there are three key roles, namely, the
buyer, seller, and auctioneer. In our system, IoT devices are
buyers, thus buyer set is TD; edge nodes are sellers, thus
seller set is EN; and a smart contract is the auctioneer. In
each time slot, the buyer requests a set of resources and gives
the maximum price it is ready to pay to the edge node for
buying these resources. For each buyer TDi ∈ TD, its bidding
information can be denoted by Bi = (Di, bi, dmi) where the
bi ∈ [vmin, vmax] is the total bid (maximum buying price) to
buy a bundle of resources Di, and the dmi is the maximum
tolerant distance from the edge node providing resources to
it. For each seller ENj ∈ EN, its asking information can be
denoted by Aj = (Hj ,aj), where the aj = (a1

j , a
2
j , · · · , akj ) is

the asking vector where each azj ∈ aj is the unit ask (minimum
selling price) per resource rz . The bidding information of
buyers and asking information of sellers are submitted to the
auctioneer, therefore this auction can be defined as

Ω =
(
{Bi}TDi∈TD , {Aj}ENj∈EN

)
. (1)

Besides, for each buyer TDi ∈ TD, its valuation for obtaining
the bundle of resources Di is vi ∈ [vmin, vmax]. For each seller
ENj ∈ EN, it has a cost vector cj = (c1j , c

2
j , · · · , ckj ) where

each czj ∈ [cmin, cmax] is the unit cost per resource rz .
In each time slot, once collecting the biding and asking

information from players, the auctioneer will determine who
are winning buyers and sellers, and how to allocate resources
between them. The resource allocation is denoted by a binary
matrix Xm×n, called “allocation matrix”. For each xij ∈X ,
xij = 1 if the resources requested by TDi are provided
by ENj according to the result; otherwise xij = 0. Be-
sides, the auctioneer needs to determine the clearing price
of each resource, which can be denoted by a price vector
p = (p1, p2, · · · , pk). For each pz ∈ p, it is the unit price
that buyers have to pay to get a unit of resources rz .

Remark 1. Here, we have czj ∈ [cmin, cmax] for each resource
rz ∈ R and the price vector p ∈ [cmin, cmax]k. For simplicity,
we denoted by Θ = [cmin, cmax] in the following description.

C. Problem Formulation

According to the above definitions, we assume that the
utility of each buyer TDi is denoted by uTD

i and the utility

of each seller ENj is denoted by uEN
j . After the auctioneer

determines a clearing price vector p and its corresponding
allocation matrix X , the utilities of all losing players are
equal to zero. Namely, we have uTD

i = 0 for each losing
buyer TDi ∈ TD if

∑n
j=1 xij = 0 and uEN

j = 0 for each
losing seller ENj ∈ EN if

∑m
i=1 xij = 0. The utility of

each winning buyer is the difference between its valuation
and payment toward its requested resources. In summary, for
each buyer TDi ∈ TD, we have

uTD
i = vi −

n∑
j=1

xij ·
k∑

z=1

pz · dzi . (2)

The utility of each winning seller if the difference between
the total payment from buyers and total cost. In summary, for
each seller ENj ∈ EN, we have

uEN
j =

k∑
z=1

(pz − czj ) ·
m∑
i=1

xij · dzi . (3)

Because the requested resources of a buyer must come from
the same seller, there is a constraint that

∑n
j=1 xij ≤ 1 for

each buyer TDi ∈ TD.
The result of an auction depends on its objective. In this

system, we aim at maximizing the revenue of edge computing
platform. The corresponding optimization problem can be
summarized as to maximize the accumulated utility of all edge
nodes, which is shown as the following problem:

max

n∑
j=1

[
k∑

z=1

(pz − azj ) ·
m∑
i=1

xij · dzi

]
(4)

s. t.

n∑
j=1

xij ≤ 1, ∀TDi ∈ TD (4a)

m∑
i=1

xij · dzi ≤ hzj , ∀rz ∈ R,∀ENj ∈ EN (4b)

n∑
j=1

xij · δij ≤ dmi, ∀TDi ∈ TD (4c)

xij ∈ {0, 1}, ∀TDi ∈ TD,∀ENj ∈ EN. (4d)

where δij is the transmission distance between buyer TDi

and seller ENj . Constraint (4a) represents the many-to-one
relationship from IoT devices to an edge node. Constraint
(4b) states that the total consumption of each kind of resource
rz cannot be larger than the maximum amount hzj that can
be provided by an edge node ENj . Constraint (4c) implies
that the distance between an IoT device TDi and the edge
node that provides it with resources cannot be larger than
the maximum distance allowed by this IoT device. This
optimization problem can be classified as an integer linear
programming problem, thus it is NP-hard.

IV. MECHANISM DESIGN

In this section, we first introduce basic principles of de-
signing an effective combinatorial auction mechanism. Due
to the use of blockchain technology, the transactions in
this system become transparent. That is to say, all auction
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results, including winners and clearing price, will be made
public, which makes the system face the threat of inference
attack. Therefore, we introduce the differential privacy into
our mechanism design to avoid accidental disclosure of users’
bidding/asking information.

A. Design Rationales

An effective auction mechanism has to satisfy the following
four properties: individual rationality, budget balance, compu-
tational efficiency, and truthfulness.

Definition 1 (Individual Rationality). An auction is individ-
ually rational if and only if the utilities of all players are
non-negative. In our auction Ω, we have uTD

i ≥ 0 for each
buyer TDi ∈ TD and uEN

j ≥ 0 for each seller TNj ∈ TN,
where uTD

i and uEN
j are defined in (2) and (3).

Definition 2 (Budget Balance). An auction is budget balanced
if and only if the auctioneer is profitable. In our auction Ω,
that is

n∑
j=1

[
k∑

z=1

(pz − azj ) ·
m∑
i=1

xij · dzi

]
≥ 0. (5)

Definition 3 (Computational Efficiency). The auction result
can be obtained in polynomial time.

In an auction, players could manipulate their bids/asks in a
strategical sense in order to win the auction. The truthfulness
is a concept that encourages players in an auction to bid/ask
according to their valuations/costs strictly. However in some
cases, it is difficult to reach an exact truthfulness. Thus, we
can consider an approximate truthfulness instead, called γ-
truthfulness [30], which ensures there is no one gaining more
than γ utility when bidding/asking truthfully.

Definition 4 (γ-truthfulness). An auction is approximately
truthful if and only if each player bids/asks truthfully is
approximate to one of its dominant strategies. In our auction
Ω, for each buyer TDi ∈ TD, we have

E
[
uTD
i (vi,Ω−i)

]
≥ E

[
uTD
i (bi,Ω−i)

]
− γ (6)

where Ω−i is other players’ strategies except TDi. For each
seller ENj ∈ EN, we have

E
[
uEN
j (cj ,Ω−j)

]
≥ E

[
uEN
j (aj ,Ω−j)

]
− γ (7)

where Ω−j is other players’ strategies except ENj .

When we discuss the truthfulness in our auction, we assume
that the resquested bundle Di submitted by the buyer and the
total resources Hj submitted by the seller are all believable
because they can be monitored. Due to the truthfulness, no
player is motivated to manipulate its strategy to gain more
utility, which makes the strategic decision of players easier
and guarantees a fair competitive environment.

B. Differential Privacy

The blockchain applied in our system can only ensure the
security at the physical level, but it cannot prevent inference
attacks. A curious player can infer other players’ strategies

by changing its own bid/ask in continuous auction rounds
and analyzing the relavant auction results. With the help of
other players’ strategies, the attacker is able to make decisions
in their favor and increase its benefits, thus undermining the
fairness. To prevent this kind of threat, we choose to design a
differentially private auction mechanism. Differential privacy
is a technique that makes the attacker not distinguish between
two neighboring inputs with high probability [8]. Two datasets,
s = (s1, s2, · · · , si, · · · ) and s′ = (s1, s2, · · · , s′i, · · · ), are
neighboring if and only if they have exactly one different
element. For convenience, we denote by the bids of all
buyers b = (b1, b2, · · · , bm) and the asks of all sellers
A = (a1,a2, · · · ,an). The definition of differential privacy
is shown as follows.

Definition 5 (Differential Privacy). We simplify our auction
mechanism as a function M(·) that maps input bids b and
input asks A to a clearing price p. The mechanism M(·) gives
ε-differential privacy if and only if, for any two neighboring
inputs (b,A) and {(b′,A) or (b,A′)}, we have

Pr[M(b,A) = p] ≤ exp(ε) · Pr[(M(b′,A) = p] (8)

Pr[M(b,A) = p] ≤ exp(ε) · Pr[(M(b,A′) = p] (9)

where the constant ε is privacy budget.

The privacy budget is a parameter for controlling the degree
of privacy protection that a mechanism gives. Generally speak-
ing, the smaller the privacy budget, the stronger the privacy
protection. By introducing the differential privacy into our
auction mechanism, the change of a player’s bid/ask will not
significantly affect the final clearing price. Thus, it prevents
us from inference attacks through manipulating strategies and
analyzing auction results.

Exponential mechanism [8] is one of the mainstream meth-
ods to realize practical differential privacy. It depends on
an “score” function Q(·) that maps input/output pairs to
scores. The score function in our auction can be defined as
Q((b,A),p), where a candidate output is more likely to be
chosen if its score is higher. Thus, the exponential mechanism
can be defined as follows.

Definition 6 (Exponential Mechanism). Given an output
p ∈ Θk, a score function Q(·), and a privacy budget ε, the
exponential mechanism M(b,A) selects p as its output with
a probability that is proportional to its score εQ((b,A),p).
Thus, we have

Pr[M(b,A) = p] ∝ exp

(
εQ((b,A),p)

2∆Q

)
(10)

where ∆Q is the sensitivity of score function Q(·). That is
the largest difference of their sorces for any two neighbor-
ing inputs (b,A) and {(b′,A) or (b,A′)}, which can be
denoted by ∆Q = maxp max(b,A),(b′,A′){|Q((b,A),p) −
Q((b′,A),p)|, |Q((b,A),p)−Q((b,A′),p)|}.

C. Algorithm Design and Description

The design goal of our auction mechanism is to maximize
the revenue of edge computing platform approximately, but
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Algorithm 1 DPAM
Input: ({Bi}TDi∈TD, {Aj}ENj∈EN), ε, Θ
Output: Xp, p

1: Initialize ∆R =
∑n

j=1(cmax − cmin) ·
∑k

z=1 h
z
j

2: for each p ∈ Θk do
3: // Winning candidate determination
4: Initialize xij = 0 for each xij ∈Xp

5: Initialize TDc ← ∅
6: for each TDi ∈ TD do
7: if

∑k
z=1 pz · dzi ≤ bi then

8: TDc ← TDc ∪ {TDi}
9: end if

10: end for
11: Sort the TDc s.t.

∑k
z=1 d

z
1 ≥

∑k
z=1 d

z
2 ≥ · · ·

12: // Assignment
13: Initialize {h1

j
′
, h2

j
′
, · · · , hkj

′} where hzj
′ = hzj ∈ Hj

14: for each TDi ∈ TDc do
15: Initialize ENc,i ← ∅
16: for each ENj ∈ EN do
17: if hzj

′ ≥ dzi for each rz ∈ R, δij ≤ dmi, and∑k
z=1(pz − azj ) · dzi ≥ 0 then

18: ENc,i ← ENc,i ∪ {ENj}
19: end if
20: end for
21: if ENc,i 6= ∅ then
22: ENj∗ ← arg minENj∈ENc,i

{δij}
23: for each rz ∈ R do
24: hzj∗

′ ← hzj∗
′ − dzi

25: end for
26: xij∗ ← 1
27: end if
28: end for
29: R((b,A),p) =

∑n
j=1[

∑k
z=1(pz − azj )

∑m
i=1 xijd

z
i ]

30: end for
31: // Pricing
32: Select a p ∈ Θk according to the selection distribution:

Pr[M(b,A) = p] =
exp( εR((b,A),p)

2∆R )∑
p′∈Θk exp

(
εR((b,A),p′)

2∆R

)
33: return Xp, p

achieve ε-differential privacy, γ-truthfulness, individual ratio-
nality, budget balance, and computational efficiency at the
same time. The mechanism can be divided into three stages,
winning candidate determination, assigment, and pricing. The
procedure is shown in Algorithm 1.

In the winning candidate determination, we first select a
subset of TD as winning buyer candidates, which is denoted
by TDc ⊆ TD. Given a price vector p ∈ Θk, we have TDi ∈
TDc if and only if it satisfies

k∑
z=1

pz · dzi ≤ bi. (11)

Then, we sort the set of winning buyer candidates TDc in
a descending order according to their amount of requested
resources. For each buyer TDi ∈ TDc, its amount of requested
resources is defined as

∑k
z=1 d

z
i . Thus, we sort TDc =

{TD1, TD2, · · · } where they satisfy
∑k

z=1 d
z
1 ≥

∑k
z=1 d

z
2 ≥

· · · definitely. Next, for each buyer TDi ∈ TDc, we need to
determine its winning seller candidates, which is denoted by
ENc,i ∈ EN. We have ENj ∈ ENc,i if and only if it satisfies
three conditions.

1) Its remaining resources H′j are sufficient. In other words,
we have hzj

′ ≥ dzi for each rz ∈ R.
2) Its distance from TDi is close enoguh. Thus, we have

δij ≤ dmi.
3) It is profitable by providing resources to buyer TDi.

Here, we have
∑k

z=1(pz − az) · dzi ≥ 0.

Conditon (1) and (2) is obvious. If Condition (3) cannot be
satisfied, providing resources for TDi by ENj (xij = 1) will
lead to a decrease in the objective value.

Given a buyer TDi ∈ TDc, we can get its winning seller
candidates ENc,i. If |ENc,i| ≥ 1, how can we select the
best one to provide resources? In the assignment stage, we
can think about it in two directions. The first strategy is to
consider load balancing, and we try our best to arrange the
edge node with more idle resources to provide service. The
second strategy is to consider saving network bandwidth, and
we try our best to arrange the edge node that is closest to the
target buyer TDi. Because an edge node can provide a variety
of resources, how to quantify ”idle resources” is difficult.
Thus, we use the second strategy here, where we select an
ENj∗ ∈ ENc,i that satisfies

ENj∗ = arg min
ENj∈ENc,i

{δij} (12)

to provide resources to the buyer TDi.
From the above process, we can obtain winning buyers and

winning sellers, and their corresponding allocation matrix X
given a price vector p. The next pricing stage is to determine
which price vector p ∈ Θk we select. This pricing process
comes from both the uniform pricing [31] and the exponential
mechanism. Given a price vector p, it generates an allocation
matrix Xp, then we can calculate the corresponding revenue
of the platform as (4), denoted by

R((b,A),p) =

n∑
j=1

[
k∑

z=1

(pz − azj ) ·
m∑
i=1

xij · dzi

]
. (13)

We make this platform revenue as the score of price p. The
sensitivity of score function R(·) can be formulated as

∆R =

n∑
j=1

(cmax − cmin) ·
k∑

z=1

hzj (14)

since pz−azj ≤ cmax−cmin and
∑m

i=1 xij ·dzi ≤ hzj . Then, we
repeat the above process to calculate platform revenues under
all possible price p ∈ Θk. To determine the final pricing, we
define the probability distribution of price vectors as follows.

Pr[M(b,A) = p] =
exp

(
εR((b,A),p)

2∆R

)
∑

p′∈Θk exp
(

εR((b,A),p′)
2∆R

) (15)

where R((b,A),p) is defined in (13) and ∆R is defined in
(14). Given all possible price p ∈ Θk and their scores, in
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the pricing stage, it randomly select a price vector p with the
probability Pr[M(b,A) = p] shown as (15).

V. THEORETICAL ANALYSIS

In this section, we describe the theoretical analysis of
how our proposed mechanism DPAM, shown as Algorithm
1 satisfies desirable properties.

Theorem 1. The DPAM achieves ε-differential privacy.

Proof. Given two neighboring inputs (b,A) and (b′,A), the
mechanism M randomly select a clearing price p from Θk.
Thus, the probability ratio of their corresponding probability
selected by the M is shown as follows.

Pr[M(b,A) = p]

Pr[M(b′,A) = p]

=
exp

(
εR((b,A),p)

2∆R

)
∑

p′∈Θk exp
(

εR((b,A),p′)
2∆R

)/ exp
(

εR((b′,A),p)
2∆R

)
∑

p′∈Θk exp
(

εR((b′,A),p′)
2∆R

)
= exp

(
ε[R((b,A),p)−R((b,A),p)]

2∆R

)
·∑

p′∈Θk exp
(

εR((b′,A),p′)
2∆R

)
∑

p′∈Θk exp
(

εR((b,A),p′)
2∆R

)
≤ exp

(ε
2

)
·

∑
p′∈Θk exp

(
ε[R((b,A),p′)+∆R]

2∆R

)
∑

p′∈Θk exp
(

εR((b,A),p′)
2∆R

)
≤ exp

(ε
2

)
· exp

(ε
2

)
·

∑
p′∈Θk exp

(
εR((b,A),p′)

2∆R

)
∑

p′∈Θk exp
(

εR((b,A),p′)
2∆R

)
= exp(ε).

By symmetry, we have Pr[M(b,A) = p]/Pr[M(b′,A) =
p] ≥ exp(−ε). According to Definition 5, the DPAM is ε-
differentially private to buyers.

Given two neighboring inputs (b,A) and (b,A′), by similar
induction procedure as buyers, we have

Pr[M(b,A) = p]/Pr[M(b,A′) = p] ≤ exp(ε).

Thus, the DPAM is ε-differentially private to sellers, and
Theorem 1 has been proven.

To achieve the γ-truthfulness eventually, we first introduce
the following two lemmas as a foreshadowing.

Lemma 1. Given a clearing price p ∈ Θk, for each buyer
TDi ∈ TD, the DPAM achieves

uTD
i ((vi,Ω−i),p) ≥ uTD

i ((bi,Ω−i),p). (16)

Proof. The TDi ∈ TDc if it bids truthfully. There are two
sub-cases we need to concern:
• bi > vi: The TDi will be in TDc as well. According to

the winner candidate determination and assignment, the
auction result to the TDi will not change. Thus, we have
uTD
i ((vi,Ω−i),p) = uTD

i ((bi,Ω−i),p).
• bi < vi: If

∑k
z=1 pz · dzi ≤ bi can be satis-

fied, the TDi will be in TDc as well. Thus, we

have uTD
i ((vi,Ω−i),p) = uTD

i ((bi,Ω−i),p); Other-
wise, the TDi will be not in TDc, which loses the
auction definitely. Thus, we have uTD

i ((vi,Ω−i),p) ≥
uTD
i ((bi,Ω−i),p) = 0.

The TDi /∈ TDc if it bids truthfully. There are two sub-
cases we need to concern:
• bi > vi: If

∑k
z=1 pz · dzi ≤ bi can be satisfied, the TDi

will be in TDc. If it can be assigned an edge node in the
assignment stage, its utilty will be uTD

i ((bi,Ω−i),p) =
vi −

∑k
z=1 pz · dzi < 0 = uTD

i ((vi,Ω−i),p).
• bi < vi: The TDi will be not in TDc as well,

which loses the auction definitely. Thus, we have
uTD
i ((vi,Ω−i),p) = uTD

i ((bi,Ω−i),p) = 0.
From the above, we always have uTD

i ((vi,Ω−i),p) ≥
uTD
i ((bi,Ω−i),p), and Lemma 1 has been proven.

Lemma 2. Given a clearing price p ∈ Θk, for each buyer
ENj ∈ EN, the DPAM achieves

uEN
j ((cj ,Ω−j),p) ≥ uEN

j ((aj ,Ω−j),p). (17)

Proof. First, “aj > cj” implies there is at least one element in
these vectors satisfying az

∗

j > cz
∗

j and others satisfy azj ≥ czj
for each rz ∈ R\{rz∗}. Second, we denoted by xij ∈ X
the allocation when a seller asks truthfully and x̄ij ∈ X̄ the
allocation when a seller asks untruthfully.

Consider the seller ENj ∈ EN, there are two sub-cases we
need to concern:
• aj > cj : When xij = 1, the auction result will be x̄ij =

1 as well if
∑k

z=1(pz − az) · dzi ≥ 0 can be satisfied;
otherwise x̄ij = 0. Thus, we have uEN

j ((cj ,Ω−j),p) ≥
uEN
j ((aj ,Ω−j),p) because xij ≥ x̄ij .

• aj < cj : When xij = 1, the auction result will be x̄ij = 1

as well. When xij = 0 and
∑k

z=1(pz − cz) · dzi ≥ 0, the
auction result to the x̄ij = 0 will not change according to
the assignment. However, when xij = 0 and

∑k
z=1(pz−

cz) · dzi < 0, it is possible to happen
∑k

z=1(pz − cz) ·
dzi ≥ 0, and leading to x̄ij = 1 if δij is the minimum
one among this buyer’s winning seller candidates. The
utility gained from TDi less than zero. Thus, we have
uEN
j ((cj ,Ω−j),p) ≥ uEN

j ((aj ,Ω−j),p).
From the above, we always have uEN

j ((cj ,Ω−j),p) ≥
uEN
j ((aj ,Ω−j),p), and Lemma 2 has been proven.

Theorem 2. The DPAM achieves γ-truthfulness.

Proof. Given two neighboring inputs (b,A) and (b′,A), for
any buyer TDi ∈ TD, we assume that vi ∈ b and bi ∈ b′.
Thus, we have

E
[
uTD
i (vi,Ω−i)

]
=
∑
p∈Θk

Pr[M(b,A) = p] · uTD
i ((vi,Ω−i),p)

≥ exp(−ε) ·
∑
p∈Θk

Pr[M(b′,A) = p] · uTD
i ((bi,Ω−i),p)

= exp(−ε) · E
[
uTD
i (bi,Ω−i)

]
≥ (1− ε) · E

[
uTD
i (bi,Ω−i)

]
≥ E

[
uTD
i (bi,Ω−i)

]
− ε · vmax.
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For any buyer TDi ∈ TD, we have E[uTD
i (bi,Ω−i)] ≤

maxTDi∈TD{uTD
i } ≤ vmax−cmin ·minTDi∈TD{

∑k
z=1 d

z
i } ≤

vmax. Thus, we can conclude that the DPAM achieves ε·vmax-
truthfulness to buyers.

Given two neighboring inputs (b,A) and (b,A′), for any
seller ENj ∈ EN, we assume that cj ∈ A and aj ∈ A′.
Similarly as the above, we have

E
[
uEN
j (cj ,Ω−j)

]
≥ E

[
uEN
j (aj ,Ω−j)

]
− ε · (cmax − cmin) · k · hmax.

For any seller ENj ∈ EN, we have E[uEN
j (cj ,Ω−j)] ≤

maxENj∈EN{uEN
j } ≤ (cmax − cmin) ·

∑k
z=1 h

z
j ≤ (cmax −

cmin)·k·hmax. Thus, we can conclude that the DPAM achieves
ε · (cmax − cmin) · k · hmax-truthfulness to sellers.

Giving γ = max{ε · vmax, ε · (cmax− cmin) · k ·hmax}, the
DPAM achieve γ-truthfulness.

Theorem 3. The DPAM achieves individual rationality.

Proof. According to Theorem 2, no player has the motivation
to bid/ask untruthfully. We can consider bi = vi for each buyer
TDi ∈ TD and aj = cj for each seller ENj ∈ EN. Based on
the winning candidate determination, each winning buyer TDi

must have
∑k

z=1 pz · dzi ≤ bi, thus its utility uTD
i ≥ 0. Based

on the assignment, each winning seller ENj that provides
resources to buyer TDi must have

∑k
z=1(pz − az) · dzi ≥ 0,

which means that providing resources to an IoT devices always
bring positive returns. Thus, its utility uEN

j ≥ 0.

Theorem 4. The DPAM achieves budget balanced.

Proof. The utilities of all edge nodes are positive according
to Theorem 3, thus the sum of them (budget)

∑n
j=1 u

EN
j is

greater than zero as well.

Theorem 5. The DPAM does not achieve computational
efficiency.

Proof. The main loop to traverse all possible price vectors
p ∈ Θk contains |Θk| iterations. For each iteration, the dom-
inant step in winning candidate determination is to sort TDc,
which has at most m elements. Thus, sorting TDc is bounded
by O(m logm). Then, in the assignment, it takes O(n) for
each buyer TDi ∈ TDc. Thus, its running time is bounded by
O(mn). The total time complexity of Algorithm 1 is bounded
by O((mn + m logm) · |Θk|). Therefore, the running time
increases exponentially with k instead of polynomial time.

Next, we need to calculate the expected performance of our
proposed mechanism. Based on (13), the expected revenue of
edge computing platform can be expressed as

E[R(b,A)] =
∑
p∈Θk

Pr[M(b,A) = p] ·R((b,A),p). (18)

To achieve the approximation ratio of the DPAM, we first
introduce the following lemma.

Lemma 3. Let OPT be the optimal revenue by solving the
problem defined in (4) and OPT ∗ = maxp∈Θk{R((b,A),p)}
be the maximum revenue obtained by the winning candidate

determination and assignment process of Algorithm 1. Then,
we have

F (Θ) ·OPT ≤ OPT ∗ ≤ OPT (19)

where we denoted by F (Θ) =
max

p∈Θk{R((b,A),p)}
(cmax−cmin)·n·k·hmax

as a
factor of OPT .

Proof. Because the OPT is globally optimal, we must have
OPT ≥ OPT ∗. Based on (4), we have

OPT ≤ (cmax − cmin) · n · k · hmax (20)

since each edge node provides at most k · hmax units of
resources and there are total n edge nodes. According to the
definition of OPT ∗, we have

OPT ∗ = max
p∈Θk

{R((b,A),p)}

≥
maxp∈Θk{R((b,A),p)}

(cmax − cmin) · n · k · hmax
·OPT

= F (Θ) ·OPT

since the relationship (20) exists.

In order to achieve the truthfulness, the returned revenue is
not optimal even though there is no differential privacy. This
difference can be bounded by F (Θ). After introducing the
differential privacy, the revenue will be damaged further.

Theorem 6. The expected revenue of edge computing platform
E[R(b,A)] achieved by DPAM and the optimal revenue OPT
satisfies that E[R(b,A)] ≥

F (Θ) ·OPT − 6∆R

ε
· ln
(
e+

εOPT |Θk|
2∆R

)
. (21)

Proof. Let OPT ∗ = maxp∈Θk{R((b,A),p)} be the max-
imum revenue returned by the DPAM. For a small con-
stant t ≥ 0, we define four sets, which are St = {p :
R((b,A),p) > OPT ∗ − t}, S̄t = {p : R((b,A),p) ≤
OPT ∗ − t}, S2t = {p : R((b,A),p) > OPT ∗ − 2t}, and
S̄2t = {p : R((b,A),p) ≤ OPT ∗ − 2t}. Thus, we have
Pr[M(b,A) ∈ S̄2t] ≤

≤ Pr[M(b,A) ∈ S̄2t]

Pr[M(b,A) ∈ St]

=

∑
p∈S̄2t

exp( εR((b,A),p)
2∆R )∑

p′∈Θk exp
(

εR((b,A),p′)
2∆R

)
∑

p∈St

exp( εR((b,A),p)
2∆R )∑

p′∈Θk exp
(

εR((b,A),p′)
2∆R

)

=

∑
p∈S̄2t

exp
(

εR((b,A),p)
2∆R

)
∑

p∈St
exp

(
εR((b,A),p)

2∆R

) ≤ |S̄2t| · exp
(

ε(OPT∗−2t)
2∆R

)
|St| · exp

(
ε(OPT∗−t)

2∆R

)
=
|S̄2t|
|St|

· exp

(
−εt
2∆R

)
. (22)

Based on (22), we have

Pr[M(b,A) ∈ S2t] ≥ 1− |S̄2t|
|St|

· exp

(
−εt
2∆R

)
≥ 1− |Θk| · exp

(
−εt
2∆R

)
(23)
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since Pr[M(b,A) ∈ S2t] + Pr[M(b,A) ∈ S̄2t] = 1, |S̄2t| ≤
|Θk|, and |St| ≥ 1. Thus, the expected revenue E[R(b,A)]
can be expressed as

E[R(b,A)] ≥
∑

p∈S2t

Pr[M(b,A) = p] ·R((b,A),p)

≥ Pr[M(b,A) ∈ S2t] · (OPT ∗ − 2t)

≥
[
1− |Θk| · exp

(
−εt
2∆R

)]
· (OPT ∗ − 2t)

For any t satisfying

t ≥ 2∆R

ε
· ln
(
|Θk|OPT ∗

t

)
(24)

we have exp
( −εt

2∆R

)
≤ t

OPT∗|Θk| . Thus,

E[R(b,A)] ≥
(

1− |Θk| · t

OPT ∗|Θk|

)
· (OPT ∗ − 2t)

= OPT ∗ − 3t+
2t2

OPT ∗

≥ OPT ∗ − 3t. (25)

By giving t = 2∆R
ε ln

(
e+ εOPT∗|Θk|

2∆R

)
, we have

t =
2∆R

ε
· ln
(
e+

εOPT ∗|Θk|
2∆R

)
≥ 2∆R

ε
· ln
(
OPT ∗|Θk| ε

2∆R

)
≥ 2∆R

ε
· ln
(
|Θk|OPT ∗

t

)
where it satisfies (24) because ln

(
e+ εOPT∗|Θk|

2∆R

)
≥ 1 and

t ≥ 2∆R
ε . Finally, we substitute t = 2∆R

ε ·ln
(
e+ εOPT∗|Θk|

2∆R

)
into (25), we have

E[R(b,A)] ≥ OPT ∗ − 3t

≥ OPT ∗ − 6∆R

ε
· ln
(
e+

εOPT ∗|Θk|
2∆R

)
≥ F (Θ) ·OPT − 6∆R

ε
· ln
(
e+

εOPT |Θk|
2∆R

)
.

Therefore, Theorem 6 has been proven.

VI. IMPLEMENTATION AND SIMULATION

Shown as Theorem 5, the running time of Algorithm 1 can
be bounded by |Θk|, which is not computationally efficient.
Thus, in this section, we first discuss an implementation
technique to reduce the time complexity to polynomial time.
Then, we implement and evaluate our proposed mechanism by
extensive simulations.

A. Implementation Technique

In order to reduce the running time, we can learn from the
recent research in [13] to select the unit price of each resource
one by one instead of selecting the price vector. The procedure
is shown in Algorithm 2.

First of all, we define an average unit bid of each buyer
TDi ∈ TD as b̄i = bi/(

∑k
z=1 d

z
i ). The main loop that iterates

Algorithm 2 DPAM-S
Input: ({Bi}TDi∈TD, {Aj}ENj∈EN), ε, Θ
Output: Xp, p

1: Initialize b̄i = bi/(
∑k

z=1 d
z
i ) for each TDi ∈ TD

2: Initialize ε′ = ε/k
3: for `← 1 to k do
4: Initialize ∆R` =

∑n
j=1(cmax − cmin) ·

∑`
z=1 h

z
j

5: for each p` ∈ Θ do
6: Initialize xij = 0 for each xij ∈X`,p`

7: Initialize TD`
c ← ∅

8: for each TDi ∈ TD do
9: if

∑`
z=1 pz · dzi ≤ b̄i ·

∑`
z=1 d

z
i then

10: TD`
c ← TD`

c ∪ {TDi}
11: end if
12: end for
13: Sort the TD`

c s.t.
∑k

z=1 d
z
1 ≥

∑k
z=1 d

z
2 ≥ · · ·

14: Initialize {h1
j
′
, h2

j
′
, · · · , h`j

′} where hzj
′ = hzj ∈ Hj

15: for each TDi ∈ TD`
c do

16: Initialize EN`
c,i ← ∅

17: for each ENj ∈ EN do
18: if hzj

′ ≥ dzi for each rz ∈ {r1, · · · , r`}, δij ≤
dmi, and

∑`
z=1(pz − az) · dzi ≥ 0 then

19: EN`
c,i ← EN`

c,i ∪ {ENj}
20: end if
21: end for
22: if EN`

c,i 6= ∅ then
23: ENj∗ ← arg minENj∈EN`

c,i
{δij}

24: for each rz ∈ {r1, · · · , r`} do
25: hzj∗

′ ← hzj∗
′ − dzi

26: end for
27: xij∗ ← 1
28: end if
29: end for
30: R`((b,A), p`) =

∑n
j=1[

∑`
z=1(pz−azj )

∑m
i=1 xijd

z
i ]

31: end for
32: Select a p` ∈ Θ according to the selection distribution:

Pr[M `(b,A) = p`] =
exp

(
ε′R`((b,A),p`)

2∆R`

)
∑

p′
`
∈Θ exp

(
ε′R`((b,A),p′

`
)

2∆R`

)
33: end for
34: return Xk,pk

, p = {p1, p2, · · · , pk}

k times to check all kinds of resources. When checking the
`-th unit price p` ∈ Θ (1 ≤ ` ≤ k), we have known
the previous first ` − 1 unit pricings. A partial price vector
(p1, p2, · · · , p`−1) has been determined. Given a unit price
p` ∈ Θ, we select partial winning buyer candidates TD`

c ⊆ TD
such that for each buyer TDi ∈ TD`

c, we have∑̀
z=1

pz · dzi ≤ b̄i ·
∑̀
z=1

dzi . (26)

Then, it geneerates an allocation matrix X`,p`
similar to the

DPAM. The partial revenue can be calculate by

R`((b,A), p`) =

n∑
j=1

[∑̀
z=1

(pz − azj ) ·
m∑
i=1

xij · dzi

]
. (27)
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Here, the sensitivity of partial score function R`(·) can be
written as ∆R` =

∑n
j=1(cmax− cmin) ·

∑`
z=1 h

z
j . According

to the exponential mechanism, the probability distribution of
selection a unit price p` ∈ Θ can be defined as follows.

Pr[M `(b,A) = p`] =
exp

(
ε′R`((b,A),p`)

2∆R`

)
∑

p′`∈Θ exp
(

ε′R`((b,A),p′`)

2∆R`

) (28)

where ε′ = ε/k. Therefore, the time complexity is reduced
from O((mn+m logm) · |Θk|) to O((mn+m logm) · k|Θ|)
according to Algorithm 2.

Theorem 7. The DPAM-S achieves ε-differential privacy, γ-
truthfulness, individual rationality, budget balanced, computa-
tional efficiency. Moreover, the expected revenue E[Rk(b,A)]
achieved by DPAM-S satisfies that E[Rk(b,A)] ≥

F (Θ) ·OPT − 6k∆R

ε
· ln
(
e+

εOPT |Θ|
2∆R

)
. (29)

Proof. Based on Theorem 1 to Theorem 6 in this paper and
Theorem 7 in [13], this theorem can be proven.

There are two mechanisms, DPAM and DPAM-S, to max-
imize the revenue of edge computing platform and satisfy
desirable properties. Given a fixed privacy budget ε, the
revenue achieved by DPAM is better, but the running time
of DPAM-S is better. Which mechanism is better depends on
the requirements between performance and running time.

B. Simulation Setup

To simulate this scenario, we construct a virtual rectangular
region with 1000×1000, where there are m IoT devices and n
edge nodes distributed in this area uniformly. For each TDi ∈
TD, we define its coordinate as (xi, yi). Similarly, we have
(xj , yj) for each ENj ∈ EN. The distance δij between IoT
device TDi and edge node ENj can be written as δij =√

(xi − xj)2 + (yi − yj)2. For each buyer TDi ∈ TD, its
bidding information contains a maximum permitted distance
dmi, which is distributed in [200

√
2, 1000

√
2] uniformly since

the maximum distance between IoT devices and edge nodes
is 1000

√
2 in this area.

Suppose the price of a unit of resources can be normalized
in [0, 1], then Θ = [cmin, cmax] = [0, 1]. To implement our
mechanisms, the first step is to discretize this intervel [0, 1]
so as to traverse all possible price vectors in the space Θk.
Here, we define a concept called “granularity”, denoted by σ.
The σ = 0.02 implies that we divide the interval [0, 1] equally
into fifty parts, that is Θ = {0, 0.02, 0.04, · · · , 0.98, 1}. The
granularity can be used as an effective method to balance
the performance and time complexity. Since Θ = [0, 1],
we sample azj for each seller ENj ∈ EN and rz ∈ R
uniformly in [0, 1]. Next, we assume the number of resource
types k ∈ {1, 2, · · · , 5}, and the available range of each
resource [hmin, hmax] = [0, 20]. Therefore, in the simulation,
we make hzj ∈ Hj for each seller ENj ∈ EN and rz ∈ R
distributed in [10, 20] uniformly. Similarly, we assume the
[dmin, dmax] = [1, 5], thus we make dzi ∈ Di for each buyer
TDi ∈ TD and rz ∈ R distributed in [1, 5] uniformly.

In the next step, we need to discuss how buyers decide their
total bids. That is, how can we sample a total bid bi for each
buyer TDi ∈ TD. According to our preceding description, the
average price per unit resource is (1 + 0)/2 = 0.5. Here, we
point out a reasonable assumption that the total bid is related
to the total demand of the buyer for resources. Thus, we can
sample the bi for each buyer TDi ∈ TD as follows:

bi = (0.5) ·
k∑

z=1

dzi · U(0.7, 1.3) (30)

where the U(0.7, 1.3) is a value sampled from the interval
[0.7, 1.3] uniformly.

Due to the introduction of differential privacy, the auction
results have certain randomness. Thus, given a mechanism,
its result is the average value of 500 trials. To analyze the
performance of our mechanisms based on differential privacy,
we need a reference. For example in line 32 of Algorithm 1,
we select a p ∈ Θk such that maximizing R((b,A),p) as the
final result. By removing the randomness (differential privacy)
of the DPAM and DPAM-S, we can define two deterministic
auction mechanisms, marked by “DTAM” and “DTAM-S”, as
references. Here, “DT” implies “deterministic”. Finally, we
select three typical metrics to evaluate the performance of our
proposed mechanisms, which are shown as follows.

1) Expected revenue of edge computing platform: it can be
computed by (18).

2) Expected satisfaction: the ratio of the number of satisfied
IoT devices to the total number of IoT devices.

3) Running time: the time taken to execute a trial.

C. Simulation Results and Analysis

In any time slot t ∈ T , there are m IoT devices (buyers)
and n edge nodes. Generally, the number of IoT devices is
much larger than that of edge nodes, thus we assume that
m ≥ n in our following simulations. Our task in this part
can be divided into four parts, which discuss the impact
of granularity, the number of resource types, the number of
IoT devices, and privacy budget on the performance of our
proposed mechanisms respectively.

Granularity: Figure 2 plots the revenues, satisfactions, and
running times of four different mechanisms vary with the
increase of granularity, where we assume m = 100, n = 10,
k = 3, and ε = 200. Shown as Figure 2 (a), we can see
that the revenue will decrease slightly with the increase of
granularity. This is because smaller granularity means higher
accuracy, thus we can compute more price vectors and select
the better one. Similar results are also reflected in users’
satisfaction. Shown as Figure 2 (c), the running time will
increase significantly with the decrease of granularity. Here,
let us make a rough analysis. Supposing σ1 = 0.1 · σ2, we
have |Θ1| = 10 · |Θ2|. In the DPAM (DTAM), the running
time under the granularity σ1 is 10k times as much as that
under the granularity σ2. And in the DPAM-S (DPTM-S), the
running time under the granularity σ1 is 10·k times as much as
that under the granularity σ2. The simulation results in Figure
3 (c) meets our expectations in general. We have mentioned
that the granularity is a method to balance performance and
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(a) (Expected) Revenue (b) (Expected) Satisfaction (c) Running time

Fig. 2. The performances of proposed mechanisms on different granularities, where m = 100, n = 50, k = 3, and ε = 200.

(a) (Expected) Revenue (b) (Expected) Satisfaction (c) Running time

Fig. 3. The performances of proposed mechanisms on different number of resourse types, where m = 100, n = 50, σ = 0.1, and ε = 200.

time complexity. Based on the results of Figure 2, we set the
granularity σ = 0.1 in the following simulations.

The number of resource types: Figure 3 plots the per-
formances vary with the increasing number of resource types,
where we assume m = 100, n = 10, σ = 0.1, and ε = 200.
Shown as Figure 3 (a), we observe that the revenue will show
an upward trend with the increase of resource types. This is
because the increase in resource types enables each edge nodes
to sell more resource units. However, there is an exception
when k = 4. From Figure 3 (b), we can see that the users’
satisfaction drops obviously when k = 4. This may be due to
the randomness of data, which makes the resource request of
IoT devices difficult to realize, which leads to the decline of
their satisfaction. In addition, another important discovery is
that the gap between DPAM (DPAM-S) and DTAM (DTAM-
S) increases with the increase of resource types. Under a
larger k, the sample space Θk will become larger, resulting in
higher randomness. In other words, the probability of choosing
the optimal solution will become smaller. Shown as Figure
3 (c), the running time will increase significantly with the
increasing number of resource types. Similarly, we suppose
k1 = k2 + 1. In the DPAM (DTAM), the running time under
the k1 is |Θ| times as much as that under the k2 since we
have |Θ|k1 = |Θ|k2 · |Θ|. And in the DPAM-S (DPTM-S),
the running time under the k1 is (k2 + 1)/k2 times as much

as that under the k2. If there are a large number of resource
types, the DPAM (DTAM) is undisirable since its running time
grows exponentially. By contrast, the running time of DPAM-S
(DTAM-S) grows linearly.

The number of IoT devices: Figure 4 plots the revenues,
satisfactions, and running times of four different mechanisms
vary with the increasing number of IoT devices, where we
assume n = 10, k = 3, σ = 0.1, and ε = 200. Shown
as Figure 4 (a) and (b), we can see that the revenue will
increase and the satisfaction will decrease with the increasing
number of IoT devices. This is because there are more feasible
buyer candidates requesting resources, so that the resources
of edge nodes can be more fully utilized. Although more
IoT devices can be satisfied, the total number of IoT devices
becomes much more, resulting in a decline in satisfaction.
Shown as Figure 4 (c), the running time will grow linearly
with the increasing number of IoT devices, which meets our
expectations in general.

Privacy budget: Figure 5 plots the performances vary with
the increase of privacy budget, where we assume m = 100,
n = 10, k = 3, and σ = 0.1. Shown as Figure 5
(a) and (b), we observe that the revenue and satisfaction
remain unchanged in the DTAM and DTAM-S since they
are deterministic mechanisms and have nothing to do with
the value of privacy budget. In the DPAM and DPAM-S, the
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(a) (Expected) Revenue (b) (Expected) Satisfaction (c) Running time

Fig. 4. The performances of proposed mechanisms on different number of edge nodes, where n = 50, k = 3, σ = 0.1, and ε = 200.

(a) (Expected) Revenue (b) (Expected) Satisfaction (c) Running time

Fig. 5. The performances of proposed mechanisms on different privacy budgets, where m = 100, n = 50, k = 3, and σ = 0.1.

revenue and satisfaction show upward trends with the increase
of privacy budget. Actually, the privacy budget controls the
degree of protection provided by differetial privacy. The higher
the privacy budget, the higher the revenue and satisfaction,
but the degree of privacy protection will be weakened. Shown
as Figure 5 (c), the running time remains the same with the
increase of privacy budget, which indicates that the running
time has no concern with the choice of privacy budget.

Based on the above four tasks, the main conclusions can
be summarized as follows. The granularity affects the running
time significantly, and it is usually not necessary to choose
a very small granularity to ensure accuracy. In the case
of a large number of resource types, the DPAM (DTAM)
is not applicable due to the limitation of time complexity.
Under the condition of sufficient network bandwidth, the more
participating IoT devices, the better the revenue. We need
to balance the contradiction between privacy protection and
revenue by choosing a privacy budget.

VII. CONCLUSION

In this paper, we propose an edge-thing system based on
blockchain technology and smart contract, which achieves
complete decentralization and tampering-proof. In order to
model the resources allocation and pricing between IoT de-
vices and edge nodes, we formulate a novel combinatorial

double auction problem. Then, we introduce differential pri-
vacy into the auction so as to prevent privacy leakage further.
First, we design the DPAM mechanism, and prove it satis-
fies ε-differential privacy, γ-truthfulness, individual rationality,
budget balance, but not computational efficiency. It is not
suitable to use in the case of too many resource types.
Then, we propose the DPAM-S mechanism to reduce the time
complexity to polynomial time, and satisfy the above desired
properties as well. Finally, we built a virtual region to test
our proposed mechanisms by extensive simulations, which
confirms our theoretical analysis.
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