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Abstract

It has a long tradition to study trust behavior among humans or artificial
agents by investigating the trust game. Although previous studies based on
evolutionary game theory have revealed that trust and trustworthiness can be
promoted if network structure or reputation is considered, they often assume
that interactions among agents are one-shot and investors do not consider
the investment environment before making decisions, which collide with many
realistic situations. In this paper, we introduce the conditional investment
strategy into the repeatedN -player trust game, in which conditional investors
decide to invest or not depending on their assessment of the trustworthiness
level of the group. By using the approach of the Markov decision process, we
study the evolutionary dynamics of trust in repeated group interactions with
the conditional investment strategy. We find that conditional investors can
form an effective alliance with trustworthy trustees, hence they can sweep
out untrustworthy trustees. Moreover, we verify that such alliance can exist
in a wide range of model parameters. These results may explain why trusting
in others and reciprocating them with trustworthy actions can be sustained
in game interactions among intelligent agents.
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1. Introduction

Trust is a value-laden concept in Distributed Artificial Intelligence (DAI), and
it is also fundamental for cooperative behavior and other forms of prosocial
behavior [17, 27, 32, 42, 45]. However, a basic fact accepted by the public is
that trust is often accompanied by risks. As Deutsch defined, entering a trust
relationship is to choose an ambiguous path that can lead to a beneficial event
or a harmful event depending on the behavior of the other person [13]. In
other words, there are risks in the interactions with potentially untrustworthy
agents, while the interactions with trusted agents will lead to benefits [39].
Thus understanding how trust and trustworthiness evolve in Multi-agent
Systems (MAS) and exploring the conditions in which they will emerge have
always been great challenges [19].

Evolutionary game theory provides a theoretical framework to study the
above problems [15, 25, 29, 31, 41, 48], and the trust game (TG) has been
widely used to study trust and trustworthiness as a typical paradigm [1,
22]. The classical TG model involves interactions between an investor and
a trustee where the investor first decides whether he/she is willing to invest
his/her funds to the trustee, and then the trustee decides how much to give
back to the investor (or not at all) [4, 23]. Previous theoretical work has
proved that the subgame perfect equilibrium of TG is that the investor invests
zero and the trustee returns zero [18]. The above two-player TG model
perfectly characterizes pairwise interactions between an investor and a trustee
and has recently been extended to group interactions of multiple players
[1, 8, 22, 24]. A representative N -player trust game (NTG) framework was
developed by Abbass et al. [1], and then introduced to a population of agents
playing TG concurrently in a well-mixed environment. Along this line, many
researchers have considered network structure [8, 9, 24], punishment strategy
[16], asymmetric demographic parameters [26], and reputation [22], into the
NTG model to explore the evolution of trust.

Although there were attempts for enhancing the level of trust from dif-
ferent aspects, we notice that these studies are usually carried out in the
framework of one-shot interaction, to our knowledge [8, 9, 16, 24, 26]. In-
deed, real interactions are repeated rather than the one-shot interaction as-
sumed above [11, 10, 30, 33, 28]. For example, we are likely to interact
frequently with friends, co-workers, and economic partners in our daily life.
Second, agents’ behaviors may be affected by noise (such as imitation error
and behavioral mutation) in the process of social learning [37, 38, 47], which
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is usually ignored by previous theoretical models. Furthermore, in repeated
interactions, investors have the opportunity to adjust their actions according
to the investment environment they encountered [30, 34, 28]. Furthermore,
it is very common for investors to choose conditional investment behavior
in their daily economic activities when interacting with other agents [2, 5].
Concretely, the decision to invest or not will depend on one’s own assessment
of the abundance of trustworthy trustees in the group. However, it is still
unclear what the effects of conditional investment strategy on the evolution
of trust in the repeated NTG are.

In order to answer the above question, we construct an evolutionary game
model based on the NTG where the interactions among agents are repeated
(see Fig.1). In our model, we consider three strategists: investor, untrustwor-
thy trustee, and trustworthy trustee. Different from previous works [22, 24],
we assume investors will invest deterministically in the first round of the
game, but in the subsequent game rounds their decision to invest or not
depends on the number of the trustworthy trustee in the group. Using the
approach of the Markov decision process (MDP), we study the stochastic evo-
lutionary dynamics in finite populations. We find that the introduction of
the conditional investment strategy can lead to the emergence of high trust
and high trustworthiness in repeated group interactions. Furthermore, we
verify that such evolutionary outcomes are robust against model parameters.

2. Related Works

The formalization of the NTG that we follow here was proposed in Ref. [1],
where Abbass et al. investigated the evolutionary dynamics of trust in an
infinite well-mixed population. By analyzing the replicator dynamics, they
found that both the whole society and all agents can obtain the maximal
wealth when the initial population contains no untrustworthy agents. While
the initial population consists of one single untrustworthy agent, untrustwor-
thy agents would spread rapidly to the whole population. Furthermore, they
found that the system will eventually converge to a stable state, in which
untrustworthy agents will not completely occupy the whole population, be-
cause a fraction of the population would always remain trustworthy even if
there are few or no investors.

Nevertheless, the analysis of replicator dynamics in the previous litera-
ture requires that the network structure is a complete graph, and thus this
approach cannot be used to analyze the evolutionary dynamics when agents
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interact with local neighborhoods in social networks. Subsequently, Chica
et al. studied the evolution of trust in different social networks including
regular lattices, scale-free, and random networks [8]. By performing simu-
lations, they found that trust can be promoted when agents interact on a
social network even if there are untrustworthy agents in the population ini-
tially. In addition, the level of trust is influenced by network structure, the
temptation to defect, and the initial number of untrustworthy trustees in the
population. Along this line, the effects of different evolutionary update rules
on promoting the evolution of trust were investigated [9], and simulation re-
sults showed that updating rules play an important role in promoting trust
and improving global net wealth.

However, some other studies have found that social networks cannot pro-
duce a high level of trust [22, 24]. Recently, Kumar et al. investigated the
trust game where the trustor’s investment and the trustee’s return of the in-
vestment are two important parameters on different social networks [24]. By
performing Monte Carlo simulations, they found that the network structure
has little effect on the evolution of trust and trustworthiness. In particular,
trust cannot evolve in well-mixed populations, lattices, random, or scale-free
networks. Considering that in the real society, the investment behavior of in-
vestors is often related to the reputation of the trustees, and agents with good
reputation are more likely to attract investors’ investment, Hu et al. studied
networked NTG with an adaptive reputation based on the third-party moral
assessment system [22]. They showed that the frequency of untrustworthy
trustees will decrease when rational investors can get the reputation score of
the trustee.

The literature mentioned above does not consider the case in which
agents’ decision-making may be affected by random factors, including im-
itation error and behavioral mutation. Considering this, Lim explored the
evolutionary dynamics of trust in finite populations and found that the com-
bination of strong selection in the population of investors and weak selection
in the population of trustees can promote the emergence of high trustworthi-
ness and high trust [26]. It is worth noting that they analyzed the stationary
distribution of the system in the assumption of weak-mutation limit. The
above assumption has been justified in population genetics [12, 14], but this
approximate does not seem to be suitable for modeling social learning [47].

Different from previous works both in infinite populations [1] and struc-
ture populations [8], we study the evolutionary dynamics of trust in a finite
population where imitation error and behavioral mutation are both exist. Be-
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sides, we release the assumptions that the mutation rate is significantly small
[26] and the interactions between agents are one-shot [1, 8, 24, 26], and in-
vestigate the stochastic dynamics of trust in finite populations with repeated
group interactions when mutation rates are arbitrarily large. Accordingly,
we are committed to solving the following questions: can potentially richer
evolutionary dynamics be produced? Can a high level of trust and trust-
worthiness be reached in the NTG with repeated group interactions? To
answer these questions, we establish an NTG model where the conditional
investment strategy is involved in repeated group interactions. Concretely,
conditional investors decide to invest only when the number of trustworthy
trustees in the game group reaches their expected threshold. We study the
evolutionary dynamics of strategies in a finite population by using the ap-
proach of MDP. Our concrete theoretical model and methods are presented
in the following section.

Conditional investor (CI)

Trustworthy agent (T)

Untrustworthy agent (U)

Whether conditional investors choose to invest depends 

on the number of trustworthy agents.

S
am

p
lin

g

The 1st round

⋯

The 2nd round

Unconditional investment

The r-th round

⋯

Figure 1: Illustration of two different interactions scenarios in repeated N -player trust
games where the repeated probability is set as w. N agents are randomly sampled to form
a group for playing the repeated trust game where a conditional investor will act as an
unconditional investor in the first round, and then can agree or refuse to invest depending
on whether the number of trustworthy agents in the group exceeds the expected threshold
in subsequent game rounds.
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3. Theoretical Model and Methods

3.1. Repeated NTG

Let us assume a finite well-mixed population with Z agents who play a
repeated NTG [1, 8]. At every time step, N agents are chosen and offered the
opportunity to participate in the repeated NTG. As considered in previous
work [28], the trust game will be repeated with probability w with 0 < w < 1
(also called the discount factor in previous work [21]), resulting in an average
number of r = 1/w rounds. In this game, each agent needs to make two
decisions in advance. First, agent needs to decide whether to act as a trustee
or an investor. The second is to decide whether to be trustworthy or not.
Here, we consider three baseline strategists in this NTG:

• Conditional Investor (CI): Pays an observation cost σ before the game
to gather information including the number of trustworthy agents and
untrustworthy agents in the group, and always chooses to invest tv in
the first round. Subsequently, CI agents invest only when the num-
ber of trustworthy agents in the group is not less than their expected
threshold M .

• Trustworthy Agent (T ): Returns the received fund obtained in each
round multiplied by RT to the investors.

• Untrustworthy Agent (U): Returns nothing to the investors in all game
rounds.

We shall first notice that, by adopting CI, an agent will always invest in
the first round and subsequently either act as an investor or as an outsider,
depending on whether the number of trustworthy trustees in the group has
reached the expected level M (see Fig.1). If the expected level is reached,
CI agents are willing to pay tv to trustees, and each trustee receives the
same amount of benefit NCI tv

NT+NU

, where NCI , NT , and NU respectively denote
the number of CI, T , and U agents in the group. Then each T agent returns
RT tv

NT+NU

to every CI agent and reserves RTNCI tv

NT+NU

for himself/herself. While each

U agent returns nothing to CI agents, but keeps RUNCI tv

NT+NU

for himself/herself.
The parameters RT and RU respectively denote the multiply factor of T
agents and U agents. If the number of T agents in the group does not reach
the expected level, every agent in the group can obtain nothing from the
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subsequent game rounds. Thus the payoffs of CI, T , and U agents obtained
from the game are depicted by

ΠCI =







RTNT tv

N −NCI − 1
− tv + (

RTNT tv

N −NCI − 1
− tv)(r − 1)Θ(NT −M)− σ, if NCI 6= N − 1 ;

0, otherwise.

(1)

ΠT =







RTNCItv

N −NCI

+
RTNCItv

N −NCI

(r − 1)Θ(NT + 1−M), if NCI 6= N ;

0, otherwise.

(2)

ΠU =







RUNCItv

N −NCI

+
RUNCItv

N −NCI

(r − 1)Θ(NT −M), if NCI 6= N ;

0, otherwise,

(3)

where Θ(k) is the Heaviside function (that is, Θ(k) = 1 whenever k ≥ 0,
being zero otherwise). The threshold values M range from 1 to N − 1. If
M < 1 all CI agents will choose to invest unconditionally and M > N − 1
means always choosing not to invest fund.

In a finite population with Z agents, N agents are randomly sampled to
form a game group and accumulate their payoffs by interacting with other
group agents according with the payoff functions of NTG defined above.
Concretely, when there are iCI agents choosing to adopt the CI strategy, iT
agents choosing to adopt the T strategy, iU = Z − iCI − iT agents choosing
to adopt the U strategy in a finite population, the probability of finding jCI

CI agents, jT T agents, and jU U agents in a sample game group can be
depicted by the multiple hypergeometric distribution, given as

H(jCI , jT , N, iCI , iT , Z) =

(

iCI

jCI

)(

iT
jT

)(

Z−iCI−iT
N−jCI−jT

)

(

Z

N

) ,

which describes the configuration of the population for a given time. Accord-
ingly, for a given configuration i = (iCI , iT ), the average payoffs of CI, T , and
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U agents can be respectively computed as

fCI =
N−1
∑

jCI=0

N−1−jCI
∑

jT=0

(

iCI−1
jCI

)(

iT
jT

)(

Z−iCI−iT
N−1−jCI−jT

)

(

Z−1
N−1

)

× ΠCI(jCI + 1, jT ),

fT =
N−1
∑

jCI=0

N−1−jCI
∑

jT=0

(

iCI

jCI

)(

iT−1
jT

)(

Z−iCI−iT
N−1−jCI−jT

)

(

Z−1
N−1

)

× ΠT (jCI , jT + 1),

fU =
N−1
∑

jCI=0

N−1−jCI
∑

jT=0

(

iCI

jCI

)(

iT
jT

)(

Z−iCI−iT−1
N−1−jCI−jT

)

(

Z−1
N−1

)

× ΠU(jCI , jT ),

where ΠCI ,ΠT , and ΠU are respectively shown in Eqs. (1)-(3).

3.2. Social Learning

The average payoffs of agents obtained above stand for their social success,
then we can analyze the evolutionary dynamics of strategy adopting by using
social learning [35, 36, 37], which means that the most successful strategy will
more often tend to be adopted by other agents. Generally, the above social
learning can be characterized by the pairwise comparison rule. Concretely,
the probability that an agent adopting strategy A with the payoff fA imitates
another agent’s strategy B with payoff fB is given by the Fermi function [40]

P (fB − fA) =
1

1 + exp(−β(fB − fA))
, (4)

where β characterizes the intensity of selection, controlling how the imita-
tion process depends on the difference between the payoffs of two agents. For
β → ∞ (strong imitation), any difference in the payoffs will produce a size-
able effect on imitation probability. For β → 0 (weak selection), the strategy
is imitated randomly. In between these extremes, the difference of the pay-
offs and stochastic effects associated with errors can both impact imitation
probability.

Furthermore, we introduce the exploration term: with probability 1 −
µ, an agent with strategy A adopts another agent’s strategy B according
to the social learning rule described above, and with probability µ, he/she
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randomly selects a strategy different from the current one from the strategy
space. Thus, the probability that an agent with strategy A adopts strategy
B according to the mutation-selection process can be written as

TA→B = (1− µ)[
iA
Z

iB
Z − 1

1

1 + exp(−β(fB − fA))
] + µ

iA
2Z

. (5)

The existence of behavioral mutation makes the population never fixate in
any of the three possible monomorphic configurations. This fact renders
the stationary distribution and the gradient of selection as the appropriate
quantities to analyze the behavior of the population.

3.3. Markov Decision Process

We know that the update process only relies on the current state i(t) of the
system, so that i(t) = {iCI , iT} has Markov property. Thus the evolutionary
dynamics of CI, T, and U can be described by the Markov chain in two-
dimensional space. Then the evolutionary dynamics of the system can be
analyzed by investigating the probability distribution function pi(t) providing
information about the pervasiveness of each configuration at time t, and it
satisfies the following discrete time Master Equation [46]

pi(t+ τ)− pi(t) =
∑

i
′

{

T
ii
′p

i
′ (t)− T

i
′

i
pi(t)

}

,

where T
ii
′ and T

i
′

i
denote the transition probabilities between configurations

i′ and i. Technically, we can obtain the so-called stationary distribution p̄i, by
searching the eigenvector associated with the eigenvalue 1 of the transition
matrix Λ = [Tij]

T with dimension (Z+1)(Z+2)
2

× (Z+1)(Z+2)
2

. The transition
probability between two adjacent states can be computed as

T
i(iCI ,iT )→i

′

(iCI+1,iT ) = TU→CI ,

T
i(iCI ,iT )→i

′

(iCI−1,iT ) = TCI→U ,

T
i(iCI ,iT )→i

′

(iCI ,iT+1)
= TU→T ,

T
i(iCI ,iT )→i

′

(iCI ,iT−1) = TT→U ,

T
i(iCI ,iT )→i

′

(iCI−1,iT+1) = TCI→T ,

T
i(iCI ,iT )→i

′

(iCI+1,iT−1) = TT→CI .

The transition probability between two nonadjacent states i and v is Tiv = 0.
Thus the probability of the system staying in the current state is

Ti(iCI ,iT )→i(iCI ,iT ) = 1−
∑

i6=i
′

(T
ii
′ + T

i
′

i
).
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In one discrete time step, the probability of the system transferring from one
state to another can be calculated by equation (5).

In addition to the analysis of the stationary distribution of the system,
another important quantity for studying the evolutionary dynamics in finite
populations is the gradient of selection, which indicates the most likely evo-
lutionary path when the system leaves the current configuration [47]. The
gradient of selection is described as

∇i = (TCI+
i − TCI−

i )uCI + (T T+
i − T T−

i )uT, (6)

where uCI and uT are a set of standard orthogonal bases, and we set uCI =
(1, 0)T and uT = (0, 1)T in this work. TCI+

i (TCI−
i ) and T T+

i (T T−
i ) respec-

tively denote the probabilities that the numbers of CI agents and T agents
increase (decrease) one, which read

TCI+
i = TU→CI + TT→CI ,

TCI−
i = TCI→U + TCI→T ,

T T+
i = TU→T + TCI→T ,

T T−
i = TT→U + TT→CI .

Furthermore, we provide an important index to describe the average level of
each strategy. Concretely, the average levels of CI, T, and U strategies, av-
eraging over all possible states i, weighted with the corresponding stationary
distribution p̄i, are computed as

ρ̄CI =
∑

i

iiCI
p̄i

Z
,

ρ̄T =
∑

i

iiT p̄i
Z

,

ρ̄U =
∑

i

iiU p̄i
Z

,

where iiCI
, iiT , and iiU denote the number of CI, T , and U agents in the

configuration i, respectively.
Subsequently, by using fS(i) combined with the stationary distribution

p̄i, we can calculate the average payoff of one agent with S strategy as

f̄S =
∑

i

p̄ifS(i),
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Figure 2: Evolutionary dynamics of Conditional Investor (CI), Trustworthy agents (T ),
and Untrustworthy agents (U) for three different threshold values M in finite populations.
Arrows in the simplex S3 represent the gradient of selection, which shows the most likely
evolutionary paths after the system leaving the current state, calculated from equation
(6). The colorbar describes the values of stationary distribution at each configuration.
The darker the color, the longer the population spends in these states. Parameters are
Z = 100, N = 4, tv = 1, RU = 8, RT = 6, µ = 1/Z,w = 0.8, σ = 0.1, and β = 5. Here,
M = 0 in panel (a), M = 2 in panel (b), and M = 4 in panel (c).

where S = CI, T, or U .
In the following, we investigate the gradient of selection and the stationary

distribution to study the evolutionary dynamics of CI, T , and U strategies
in finite well-mixed populations.

4. Results

We first present the results of evolutionary dynamics in finite populations
with the conditional investment strategy for different values of M . In Fig.
2, we investigate the stationary distribution and the gradient of selection
to study what roles conditional investment plays in the evolution of trust.
Clearly, if the investment tendency is strong enough (M = 0), CI agents
will become unconditional investors. We can notice that the population will
spend a significant time on configurations near the TU -edge (T means trust-
worthy agents and U means untrustworthy agents) of the triangle simplex,
as shown in Fig. 2(a). Besides, most of the arrows flow to the coexistence
states of T and U where U is highly prevalent. The weakening of investment
tendency will lead the population to spending most of the time in states
with a high prevalence of T and CI (see Fig. 2(b)). If M further increases
to M = N , CI agents invest in the first round but refuse to invest during
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Figure 3: Average frequency of strategies CI (blue cylinder), T (red cylinder), and U (pur-
ple cylinder) for different investment threshold M . The intermediate investment threshold
is conducive to the formation of CI and T alliance, and then effectively improves the level of
trust. Parameters are Z = 100, N = 4, tv = 1, RU = 8, RT = 6, w = 0.8, µ = 1/Z, σ = 0.1,
and β = 5.

the remaining rounds. In this case, each agent only retains the benefits of
the first round of the game, and no one can obtain non-zero payoffs from
the remaining rounds. The evolutionary outcomes in finite populations are
similar to the result reported in Fig. 2(a), that is, the system spends most
of the time in states where T and U agents coexist (see Fig. 2(c)).

Furthermore, we investigate how the investment threshold influences the
stationary frequency of strategies CI, T, and U , as shown in Fig. 3. We find
that when the threshold M is zero, U can be more prevalent than CI and T .
With the increase of threshold, CI and T agents can form a strong alliance,
preventing the invasion of U agents. If M further increases to N , CI agents
only invest in the first round, and thus all agents can only obtain benefit
from the first round. In this case, the advantage of U agents is greater than
that of T and CI agents.
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Figure 4: Average payoffs of CI (blue cylinder), T (red cylinder), and U (purple cylin-
der) agents for different investment threshold values M . The advantage of the alliance
formed by CI and T agents can be boosted by the intermediate investment threshold M .
Parameters are Z = 100, N = 4, tv = 1, RU = 8, RT = 6, µ = 1/Z,w = 0.8, σ = 0.1, and
β = 5.

To probe deeper into the underlying mechanisms responsible for such a
significant improvement of trust stemming from the investment threshold,
we show in Fig. 4 how the overall average payoffs of CI, T , and U agents
change with M . It can be seen that the average payoffs of all agents increase
first and then decrease. Particularly, when M = 0 or M = N , the average
payoffs of CI agents are negative (see the inset of Fig. 4). In general, an
intermediate investment threshold can ensure a more evident advantage of
alliance formed by CI and T agents over U agents, even if this advantage
can shrink with the increase of M .

In order to illustrate the robustness of all results obtained in this paper,
we first present how evolutionary dynamics of CI, T , and U change with the
multiply factor of U agents, RU (see Fig. 5). Concretely, we show how the
average levels of three strategies vary with RU in Fig. 5(a), and we find
the average levels of CI, T , and U remain almost constant with the increase
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Figure 5: Robustness of the evolutionary outcomes of CI, T , and U to the changes of the
multiply factor of U agents RU . Panel (a) shows the average levels of three strategies
as a function of RU . Panels (b)-(d) show the stationary distribution and the gradient
of selection for three different RU values. Parameter values are Z = 100, N = 4,M =
2, tv = 1, w = 0.8, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (a); Z = 100, N = 4,M =
2, tv = 1, RU = 6.66, w = 0.8, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (b); Z = 100, N =
4,M = 2, tv = 1, RU = 7.98, w = 0.8, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (c);
Z = 100, N = 4,M = 2, tv = 1, RU = 9.96, w = 0.8, σ = 0.1, RT = 6, µ = 1/Z, β = 5 in
panel (d).
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Figure 6: Robustness of the evolutionary outcomes of CI, T , and U to the changes of the
investment cost tv. Panel (a) shows the average levels of three strategies as a function
of tv. Panels (b)-(d) show the stationary distribution and the gradient of selection for
three different tv values. Parameter values are Z = 100, N = 4,M = 2, RU = 8, w =
0.8, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (a); Z = 100, N = 4,M = 2, tv =
3, RU = 8, w = 0.8, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (b); Z = 100, N =
4,M = 2, tv = 7, RU = 8, w = 0.8, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (c);
Z = 100, N = 4,M = 2, tv = 11, RU = 8, w = 0.8, σ = 0.1, RT = 6, µ = 1/Z, β = 5 in
panel (d).

of RU . In addition, we show the evolutionary outcomes of the gradient of
selection and the stationary distribution, which allow visualization of the
dynamics, for three different values RU in Fig. 5(b)-(d). It shows that the
population spends a significant time near the CI-T edge of the simplex S3,
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Figure 7: Robustness of the evolutionary outcomes of CI, T , and U to the changes of the
observation cost σ. Panel (a) shows the average levels of three strategies as a function of
σ. Panels (b)-(d) show the stationary distribution and the gradient of selection for three
different σ values. Parameter values are Z = 100, N = 4,M = 2, RU = 8, w = 0.8, RT =
6, µ = 1/Z, β = 5, tv = 1 in panel (a); Z = 100, N = 4,M = 2, tv = 3, RU = 8, w =
0.8, RT = 6, µ = 1/Z, β = 5, σ = 1 in panel (b); Z = 100, N = 4,M = 2, tv = 1, RU =
8, w = 0.8, RT = 6, µ = 1/Z, β = 5, σ = 3 in panel (c); Z = 100, N = 4,M = 2, tv =
1, RU = 8, w = 0.8, σ = 5, RT = 6, µ = 1/Z, β = 5 in panel (d).
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Figure 8: Robustness of the evolutionary outcomes of CI, T , and U to the changes of the
discount factor w. Panel (a) shows the average levels of three strategies as a function of
w. Panels (b)-(d) show the stationary distribution and the gradient of selection for three
different w values. Parameter values are Z = 100, N = 4,M = 2, RU = 8, σ = 0.1, RT =
6, µ = 1/Z, β = 5, tv = 1 in panel (a); Z = 100, N = 4,M = 2, tv = 3, RU = 8, w =
2/3, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (b); Z = 100, N = 4,M = 2, tv = 1, RU =
8, w = 4/5, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (c); Z = 100, N = 4,M = 2, tv =
1, RU = 8, w = 6/7, σ = 0.1, RT = 6, µ = 1/Z, β = 5 in panel (d).

and most of the arrows in the simplex flow to the intermediate region of
CI-T edge, indicating that conditional investors can form an alliance with
trustworthy trustees. It is worth pointing out that we set RU = 6.66, 7.98,
and 9.96, which can respectively correspond to the mild, moderate, and harsh
interaction environment in the trust game (see Ref. [8]). Different from
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previous findings in [8], our results show that trust can be maintained no
matter whether the environment of the trust game is mild or harsh.
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Figure 9: Robustness of the evolutionary outcomes of CI, T , and U to the changes of the
intensity of selection β. Panel (a) shows the average levels of three strategies as a function
of β. Panels (b)-(d) show the stationary distribution and the gradient of selection for
three different β values. Parameter values are Z = 100, N = 4,M = 2, RU = 8, σ =
0.1, RT = 6, w = 0.8, µ = 1/Z, tv = 1 in panel (a); Z = 100, N = 4,M = 2, tv =
3, RU = 8, w = 0.8, RT = 6, µ = 1/Z, β = 2, σ = 0.1 in panel (b); Z = 100, N =
4,M = 2, tv = 1, RU = 8, w = 0.8, RT = 6, µ = 1/Z, β = 6, σ = 0.1 in panel (c);
Z = 100, N = 4,M = 2, tv = 1, RU = 8, w = 0.8, σ = 0.1, RT = 6, µ = 1/Z, β = 10 in
panel (d).
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Figure 10: Robustness of the evolutionary outcomes of CI, T , and U to the changes of the
mutation rate µ. Panel (a) shows the average levels of three strategies as a function of
µ. Panels (b)-(d) show the stationary distribution and the gradient of selection for three
different µ values. Parameter values are Z = 100, N = 4,M = 2, RU = 8, σ = 0.1, RT =
6, w = 0.8, β = 5, tv = 1 in panel (a); Z = 100, N = 4,M = 2, tv = 3, RU = 8, w =
0.8, RT = 6, µ = 10−5, β = 5, σ = 0.1 in panel (b); Z = 100, N = 4,M = 2, tv = 1, RU =
8, w = 0.8, RT = 6, µ = 10−4, β = 5, σ = 0.1 in panel (c); Z = 100, N = 4,M = 2, tv =
1, RU = 8, w = 0.8, σ = 0.1, RT = 6, µ = 10−3, β = 5 in panel (d).
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Figure 11: Robustness of the evolutionary outcomes of CI, T , and U to the changes of
the group size N . Panel (a) shows the average levels of three strategies as a function of
N . Panels (b)-(d) show the stationary distribution and the gradient of selection for three
different N values. Parameter values are Z = 100,M/N = 0.5, RU = 8, σ = 0.1, RT =
6, w = 0.8, β = 5, µ = 1/Z, tv = 1 in panel (a); Z = 100, N = 6,M = 3, tv = 3, RU =
8, w = 0.8, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (b); Z = 100, N = 8,M = 4, tv =
1, RU = 8, w = 0.8, RT = 6, µ = 1/Z, β = 5, σ = 0.1 in panel (c); Z = 100, N = 10,M =
5, tv = 1, RU = 8, w = 0.8, σ = 0.1, RT = 6, µ = 1/Z, β = 5 in panel (d).

In what follows, we investigate the impact of the investment cost of in-
vestors on the evolutionary dynamics (see Fig. 6). We find that with the
increase of tv value, the average levels of three strategies are almost un-
changed (see Fig. 6(a)). In addition, we find that changing the tv values
does not influence the gradient of selection and the stationary distribution
of the system (see Fig. 6(b)-(d)).

In Fig. 7, we further present how observation cost affects the evolu-
tionary dynamics of CI, T , and U strategies. We find that the increase of
observation cost will not change the evolutionary advantage of CI and T
alliance over U agents. Concretely, the average level of CI decreases with
the observation cost, the average level of T increases, but the average level
of U remains almost unchanged (see Fig. 7 (a)). Furthermore, we find that
the entire population will spend most time near configurations in which CI
and T agents coexist. In addition, with the increase of observation cost, the
background shadow area is gradually moving towards the vertex T (see Fig.
7(b)-(d)).

In Fig. 8, we investigate the role of discount factors w in the evolutionary
dynamics of CI, T , and U strategies. Our results show that the average levels
of these three strategies remain almost unchanged with the increase of w (see
Fig. 8 (a)). Besides, for three different w values, we find that our results are
robust, that is, the population will spend most of the time in the intermediate
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region of CI − T edge, and most arrows flow to the coexistence states of CI
and T (see Fig. 8(b)-(d)).

Furthermore, the effects of the mutation rate µ and the intensity of se-
lection β on the evolutionary dynamics are investigated (Figs. 9 and 10).
When β is small (β < 10−3) or when µ is significantly large (close to 1),
the evolutionary process is mainly affected by imitation error or behavioral
mutation, which leads to the average levels of all strategies close to 1/3 (see
Figs. 9(a) and 10(a)). As β increases or µ decreases, a strategy’s perfor-
mance becomes increasingly important for the strategy’s survival, eventually
favoring the emerging alliance of the CI and T strategies, which crowds out
the most U agents (see Fig. 9 (b)-(d) and Fig. 10 (b)-(d)).

In what follows, we investigate how evolutionary dynamics of CI, T , and
U strategies change with the group size N (Fig. 11). Here we set M/N = 0.5,
and we find that with the increase of N , the average levels of CI, T , and U
remain almost unchanged (see Fig. 11(a)). In particular, the average level of
T is the highest, the second largest frequency is formed by CI, while U makes
up the smallest fraction. In addition, the dynamic visualization results show
that the population spends most time in the intermediate region of CI − T
edge, and most arrows point to the states where CI and T agents coexist
when N changes appropriately (see Fig. 11(b)-(d)).

At the end of this section, we would like to point out that the work done
here can have wider implications on other areas such as cognitive science,
behavioral science, artificial intelligence, economics, and management sci-
ence. Particularly, in the management system, developing and maintaining
trust can promote the emergence of social exchange and economic transac-
tions, which is significantly important for the effectiveness of management
and organization. By investigating the evolutionary dynamics of trust in re-
peated group interactions, we show that the introduction of the conditional
investment strategy can lead to the emergence of high trust and high trust-
worthiness in repeated group interactions, which can explain why trusting in
others and reciprocating them with trustworthy actions can be sustained in
social and economic interactions.

5. Conclusions and Discussion

In this work, we study the evolutionary dynamics of the conditional in-
vestment strategy in the NTG in which agents engage in repeated group
interactions. Different from the setting of NTG considered in previous works
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[1, 22], we consider that investors can adjust their investment decisions ac-
cording to the investment environment in repeated group interactions frame-
work. Concretely, we use the tolerance threshold as an important parameter
to describe the investment tendency of investors. We find that an intermedi-
ate threshold can lead to the evolution of high trust and high trustworthiness,
while too low threshold level or too high threshold level cannot promote the
evolution of trust. In summary, as the answers to the initially proposed ques-
tions, we can conclude that the introduction of the conditional investment
strategy provides an avenue for trust to thrive in repeated group interactions.

As we have emphasized above, our model setup is well aligned with reality
in which investors generally make decisions based on the current investment
environment rather than investing blindly. A good example where our model
could apply is the trust relationship between consumers and suppliers [20].
Consumers will refuse to consume if they find more suppliers selling inferior
products during daily shopping on Amazon. Therefore, the collection of
information is particularly important. The key assumption of conditional
investment is that investors pay a permanent observation cost σ to collect
information about the trustworthiness of the trustee, and then make decisions
in the subsequent possible group interactions based on what they observe.
We have shown that increasing σ leads to the decrease of the frequency of
conditional investors and the increase of the frequency of trustworthy agents,
while has little effect on the frequency of untrustworthy agents. Therefore,
the result that the alliance formed by CI and T agents can effectively resist
the invasion of U agents is robust to the observation cost.

Lastly, it is worth emphasizing that in addition to the observation cost,
our results are more robust to the change of other model parameters. Previ-
ous work on networked NTG has revealed that the level of trust is correlated
with how “difficult” the game is [8]. In our model, even though the so-
cial dilemma is extremely difficult (i.e. the ratio of temptation to defect
RU

RT
> 1.66), a high level of trust can always be achieved (see Fig. 5(a)).

Besides, for the sake of mathematical convenience, analysis of evolutionary
dynamics of NTG has been mostly dealt with either in the limit of rare mu-
tations [26] or in the limit of weak selection [44]. Here our approach can be
applied to arbitrary mutation rate and arbitrary intensity of selection values.
We find that appropriate changes in mutation rate and intensity of selection
will not affect our main results (see Fig. 9 and Fig. 10).

Future work could explore the evolutionary dynamics of the repeated
NTG in structured populations where the interactions among agents are typ-
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ically not random but rather limited to a subset of the population [6, 43, 49].
Indeed, the network where agents interact with others has different struc-
tures, and the MDP approach adopted in our work is suitable for complete
graph networks and can also be extended to other network structures [7].
Besides, we can use theoretical approximation and agent-based simulations
to study the evolutionary dynamics of trust on any population structure [3].
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