
TiWS-iForest: Isolation Forest in Weakly Supervised

and Tiny ML scenarios

Tommaso Barbariola, Gian Antonio Sustoa,b

aDepartment of Information Engineering, University of Padova, Via Giovanni
Gradenigo 6, Padova, 35131, PD, Italy

bHuman Inspired Technology Research Centre, University of Padova, Via Luigi Luzzatti
4, Padova, 35121, PD, Italy

Abstract

Unsupervised anomaly detection tackles the problem of finding anomalies
inside datasets without the labels availability; since data tagging is typically
hard or expensive to obtain, such approaches have seen huge applicability
in recent years. In this context, Isolation Forest is a popular algorithm able
to define an anomaly score by means of an ensemble of peculiar trees called
isolation trees. These are built using a random partitioning procedure that
is extremely fast and cheap to train. However, we find that the standard
algorithm might be improved in terms of memory requirements, latency and
performances; this is of particular importance in low resources scenarios and
in TinyML implementations on ultra-constrained microprocessors. Moreover,
Anomaly Detection approaches currently do not take advantage of weak su-
pervisions: being typically consumed in Decision Support Systems, feedback
from the users, even if rare, can be a valuable source of information that is
currently unexplored. Beside showing iForest training limitations, we pro-
pose here TiWS-iForest, an approach that, by leveraging weak supervision is
able to reduce Isolation Forest complexity and to enhance detection perfor-
mances. We showed the effectiveness of TiWS-iForest on real word datasets
and we share the code in a public repository to enhance reproducibility.

Keywords: Anomaly Detection, Decision Support Systems, Isolation
Forest, Outlier Detection, TinyML, Weakly Supervised

Preprint submitted to Information Sciences December 1, 2021

ar
X

iv
:2

11
1.

15
43

2v
1 

 [
cs

.L
G

] 
 3

0 
N

ov
 2

02
1



1. Introduction

In recent years, the cost of sensors and microprocessors (MCUs) have
significantly decreased; moreover, the new technological scenarios brought by
the Internet of Things (IoT) and Industry 4.0, are pushing to the embedding
of such sensors and MCUs in an increasing number of systems and devices
with edge computing capabilities. On one side, the combined availability
of sensing and computational capabilities into local devices paves the way
for new applications [1], like for example the automatic monitoring of the
data sensed by edge computing devices [2] by means of Machine Learning
(ML) approaches; on the other hand, such new scenario inspires the research
community towards the development of algorithms able to run ML models
onto these ultra-constrained devices [3]. Low resources ML models need to be
as light as possible in order to fit the available memory and to be computed
on MCUs, moreover they need to efficiently handle multidimensional data
that come from a variety of sensors that might be linked to the board.

Concerning the computing paradigm, at the moment we are witnessing a
change in the considered architectures: traditional IoT-designed ML models
usually heavily rely on cloud computations with resulting latency, bandwidth
and privacy concerns that are nowadays representing in many cases an ob-
stacle to the adoption of such solutions [4]. We now instead see the increase
of a new paradigm that comes under the name of TinyML, where computa-
tions are done on the edge tiny devices like MCUs [5]. This change allows
to drastically reduce the latency and the energy consumption caused by the
transmission process, and to send to the cloud only the necessary data packet,
enhancing the system security. Unfortunately these improvements come at
the cost of stricter constraints on the memory and complexity a model can
handle to run on these device: the memory capacity goes from some giga-
bytes (cloud GPUs) to kilobytes (MCUs), with coherent computational speed
scaling [6].

In the context of this work, we focus on a particular ML application,
Anomaly Detection (AD), that is gaining increasing attention in past recent
years. AD algorithms are particularly useful in order to monitor large amount
of data [7], and to provide efficient feedback on the data reliability; these
models are specifically designed to find unusual patterns inside data that
are generated by complex multidimensional processes. This task is usually
unsupervised, meaning the labels describing if a sample is anomalous, are
few or totally absent. In this context the Isolation Forest (IF) is a very

2



appealing algorithm due to its good detecting performances compared to
its algorithmic complexity [8]. However, in the case of ultra-constrained
devices, even small improvements in the algorithm can make a difference: the
detection performance is only one of the factors that might be considered in
the choice of an algorithm to be run on an edge device; other factor might
be memory, latency, computational power and energy cost to run on battery
power [8].

The goal of this paper is to show an algorithm like Isolation Forest that
is very cheap to train, could be shrunken in a way that simultaneously re-
duces its hardware requirements and increases its performances. This can
be achieved adding a weak supervision in the form of few labels, allowing
the forest to be rearranged without a proper retraining; indeed the proposed
methodology might be used to train a new forest from scratch or to retrofit a
previously trained forest with newly obtained labels, similarly to an Online
Learning scenario [9, 10].

The relaxation of the unsupervised settings is typically reasonable in the
context of Decision Support Systems (DSS). In recent years DSSs became
pervasive and today are applied to all fields where complex and delicate de-
cision have to be made to assist human operators in the decision-making
process like in medicine [11], precision agriculture [12], energy [13], environ-
ment [14] and security [15, 16]. These systems are equipped with anomaly
detection functionalities that allow to automatically monitor the process, giv-
ing feedback and alerting the human user to make a possible action; in this
context end-users can provide feedback on anomaly detection module sug-
gestions [17], making the weakly-supervised scenario that will be considered
in this work reasonable.

Moreover, it has to be taken into account that the development of effective
AD model is typically a collaborative and iterative process between data
scientists (AD developers) and end-users (AD users): the firsts choose the
algorithm that best fits the given requirements, while the latter ones evaluate
if the model ranks the anomalies according to the their expectations. This
is necessary since outliers are not uniquely defined but they depend on the
user and the context [17], therefore requiring different detection strategies
[18]; for a more detailed dissertation we refer the interested reader to [17].

In this context, we propose here the TiWSiF algorithms that is intended
to dialogue with the DSS, following the TinyML paradigm: the DSS system
shares with the model the available annotations provided by the end-user,
in a weakly supervised fashion [19, 20], that can be exploited to enhance

3



performance and reduce complexity. Indeed, by assuming that a first model
is trained on a fully unlabelled dataset and put in operation on a DSS, during
its lifetime it is not unlikely to collect some weak supervision in the form of
few labels that can be used to improve the existing detection algorithm.
This allows the model to adapt to the user definition of true outliers, giving
a more domain-specific prediction of outlierliness [21, 10]. To the best of our
knowledge, TiWSiF is one of the first approaches in the Isolation Forest
literature designed to work in a weakly-supervised scenario and to enforce
the user-definition of anomaly in an iterative way. Moreover it is the first
that, exploiting the available knowledge, reduces the algorithm complexity
in view of edge implementations; to enhance the reproducibility we share the
code at https://github.com/tombarba/TinyWeaklyIsolationForest.

This paper is organized as follows: in Section 2 the Isolation Forest al-
gorithm will be described focusing on the algorithmic complexity and the
ensemble strategy; the datasets employed to test the proposed strategy will
be described in the same Section. Then Section 3 will go deeper in the anal-
ysis of the algorithm describing some issues related to the standard training
procedure and showing many examples. Starting from this point, Section 4
will describe a weakly-supervised algorithm whose goal is to overcome the
previously mentioned obstacles. Here a number of results concerning the ap-
plication of this new algorithm to real world datasets will be shown, proving
the effectiveness of the proposed approach. In the final Section the work will
be summarized and future improvements discussed.

2. Isolation Forest Algorithm and Testing Datasets

Isolation Forest (IF) [22] is an ensemble of binary trees named isolation
trees since their goal is to isolate data points. This algorithm relies on the
assumption that anomalies are few and different from normal points, and that
recursive space partitioning should isolate anomalous data points (outliers)
in an easier way w.r.t. normal data points (inliers). This is done by means
of an isolation tree that recursively splits the space, choosing randomly with
uniform probability the feature and the threshold where to split the space
[23]; this process is repeated until every point is isolated in a leaf, or the
isolation tree reaches a maximum depth. Since it is reasonable to expect
that anomalies are isolated faster than inliers, their path length along the
tree should be smaller when compared to normal data points. This allows to

4

https://github.com/tombarba/TinyWeaklyIsolationForest


define an anomaly score s(·) as:

s(x, n) = 2−E[h(x)]
c(n)

where x is the input data point, c(n) is a normalising factor representing the
average depth of a binary tree with n samples and E[h(x)] is the expected
isolation tree depth reached by the point x. Then, in many applications, the
anomaly score is transformed in a binary label by means of a threshold τ
(usually 0.5): if the anomaly score associated to a point is higher than the
threshold, the point is flagged as an anomaly, otherwise is considered normal.

As previously mentioned, IF is an ensemble of different isolation trees
that are constructed in a way to guarantee robustness also in the presence
of random choices that are present in the isolation procedure: each isolation
tree is trained using a bagging strategy, i.e. by using different sub-samples of
the same dataset. Experimentally, the IF authors suggested as a guideline to
use t = 100 trees with sub-samples of ψ = 256 points for obtaining a stable
estimate E[h(x)] using the sampling mean:

ĥ(x) =
1

t

t∑
i

wihi(x)

where every isolation tree is implicitly assumed to be equally informative, and
therefore weighted by the same constant value wi = 1. The aforementioned
choices for t and ψ are typically adopted by many authors in the literature
and they are the default choice in many libraries implementing IF.

Bagging allows IF to achieve linear time-complexity together with small
memory requirements [22], that are very interesting properties when consid-
ering tiny implementations on MCUs. Indeed the time complexities in the
training stage is O(tψ logψ) while in the testing is only O(nt logψ) where n
is the number of tested instances [24]; the memory requirements are bounded
by the number of nodes of each isolation tree, that is 2ψ− 1 and the number
of trees in the forest t [22], therefore are O(tψ).

In the rest of the paper, the original Isolation Forest algorithm with 100
randomly grown trees will be referred as the standard or original one.

2.1. Real world datasets

As introduced, in this paper we will analyse the original IF algorithm and
the proposed TiWS-iForest in terms of efficiency and detection capabilities;

5



we will make this comparison on several datasets that were retrieved in [25]
and that are adaptations of the UCI Machine Learning datasets [26] for the
Anomaly Detection task. Such datasets consists of labelled data coming from
different domains:

• biomedical (annthyroid, arrhythmia, breastw, cardio, mammography,
pima, thyroid, vertebral);

• environmental (cover, ionosphere, satellite, satimage-2 );

• human language (letter, mnist,optdigits, pendigits, pendigits, speech,
vowels);

• others (musk, shuttle).

In Table 1, the datasets are all summarized by providing the number
of samples, features, anomalies and the contamination, i.e. the percentage
of anomalies inside the datasets. The number of samples varies from few
hundreds (vertebral) to hundreds of thousands (cover), while the number
of features starts from 6 to 400 in the speech dataset. However, the most
important characteristic in this context is the contamination: some datasets
have less than 1% of anomalies (cover) and reach above the 35% (ionosphere).
All of them have a number of anomalies that exceeds 30 in order to obtain
reliable results in the following analysis. Moreover, all the datasets contain
labelled anomalies that allow to measure a posteriori the performance of
the detection algorithms: the metric employed in this task is the average
precision; the average precision

p̄ =
nτ∑
i

pi(ri − ri−1)

summarises the precision pi and recall scores ri that can be obtained varying
the classification threshold τ and is better than the area under the ROC
curve when the dataset is highly unbalanced [27].

3. Analysis of the standard Isolation Forest algorithm

In the previous Section, Isolation Forest is described as an ensemble i.e.
a collection of weak learners (isolation trees) that are trained following a
completely random procedure. This might induce to believe that all of the

6



n. data n. features n. anomalies contamination

annthyroid 7200 6 534 7.42
arrhythmia 452 274 66 14.60
breastw 683 9 239 34.99
cardio 1831 21 176 9.61
cover 286048 10 2747 0.96
ionosphere 351 33 126 35.90
letter 1600 32 100 6.25
mammography 11183 6 260 2.32
mnist 7603 100 700 9.21
musk 3062 166 97 3.17
optdigits 5216 64 150 2.88
pendigits 6870 16 156 2.27
pima 768 8 268 34.90
satellite 6435 36 2036 31.64
satimage-2 5803 36 71 1.22
shuttle 49097 9 3511 7.15
speech 3686 400 61 1.65
thyroid 3772 6 93 2.47
vertebral 240 6 30 12.50
vowels 1456 12 50 3.43

Table 1: Summary of the main characteristics of the real word dataset employed in this
paper.

learners have similar impact and averaging their contribution is the best pos-
sible approach, but is it true? Are the isolation trees similarly informative?

A first evidence this is not the case can be seen in Figure 1a and 1b where
two isolation trees are constructed on the same toy dataset composed of a
unique central normal cluster and some quite simple anomalies. It is clear
that while the first isolation tree makes use of its partitions in an effective
way isolating quickly the anomalies, the second focuses too much on normal
points and therefore it looses many chances to isolate data.

From the previous qualitative example it seems that not all the isolation
trees have the same role in the IF and their equal weighting might not be
the best choice. To get a quantitative feeling of the previous intuition it was
settled a more rigorous experiment: 100 isolation trees were randomly grown

7



(a) Good random isolation: the splitting values lie in between nor-
mal and anomalous values.

(b) Bad random isolation: the splitting process focuses on normal
data and ignores anomalous ones. This leads to not effective isola-
tion.

Figure 1: Two different isolation trees grown on the same dataset. The anomalies included
in the dataset are depicted in red.

8



following the standard procedure, creating the forest named F100. Then
each tree was individually tested using the available labels together with the
average precision p̄(·) and the histogram of their average precision plotted in
Figure 2b. From this picture it easy to see that not all the isolation trees
behave in the same way: the range between the best and the worst is quite
large and the majority lies in between.

This analysis led us to the following idea, which is at the core of the pro-
posed TiWSiF algorithm: why not to exploit the available weak supervision
in order to sort the trees and possibly to get only the best performing isola-
tion trees? This might reduce the model complexity, following the TinyML
paradigm, and fine-tune the detection algorithm towards the outlier defini-
tion expected by the end-user of the DSS.

With this idea in mind, we made additional analysis by sorting the iso-
lation trees according to three ordering strategies: i) the best strategy, the
worst strategy and the random strategy that will be described in the next
few lines. The best consists in sorting the isolation trees according to their
p̄ score in descending order i.e. from the best tree to the worst; the worst
strategy is the opposite and sorts the trees from the worst to the best. The
random instead, chooses a random permutation of the trees and therefore it
simply shuffles them.

Using the best strategy, 100 different isolation forests were built using an
increasing number of trees: the first forest contained only the best isolation
tree, the second one only the two best trees and so on, until the 100-th
forest contained all the 100 trees like the standard Isolation Forest. At each
iteration the average precision of the forest was measured, leading to the blue
line in Figure 2c. The same was performed with the worst strategy (orange
line) and with the random (green dashed line); however, since the random
permutation is a non-deterministic strategy, it was repeated 100 times in
order to get stable results and to draw the green area.

Figure 2c shows quite interesting results that anticipate some aspects
that are also visible in real world datasets: the first and most evident is that
good performances can be reached with just 5-40 isolation trees instead of
100. This means that many isolation trees are just overabundant or little
informative. The three lines obviously terminate with the same value (the
standard Isolation Forest performances) but follow quite different paths: the
blue line starts very well and rapidly reaches p̄100 while the others require
many isolation trees to reach appropriate average precision.

Other interesting results can be observed in Figure 3 where a second toy

9



(a) Simple dataset made up of
two clusters and some scattered
anomalies.

(b) Histogram of the average precision
scores obtained measuring the perfor-
mances of the isolation trees.

(c) Average precision of different forests built with
different strategies.

Figure 2: Toy example: double cluster dataset.

10



dataset is considered: a toroidal dataset with some anomalies in its center;
also in this case, the same type of experiments, previously performed on
the first toy dataset, were considered, but the previously discussed aspects
became even more evident. First of all, the random training procedure gen-
erates a lot of very ineffective isolation trees, and very few good ones are
present in Figure 3b. This behaviour directly reflects on the IF construction:
not only the standard performances were reached very quickly like in the
previous toy example, but the best achievable performances are much higher
than the standard ones. In this example, the best isolation tree alone is bet-
ter than the whole forest, and with few more trees the forest can reach even
better results; indeed on a scale between 0 and 1 with very poor standard
performances around 0.2, the best achievable performance exceeds 0.7. Un-
fortunately, due to the corrupting effect introduced by the bad isolation trees
on the left of Figure 3b, adding more trees means poisoning the solution lead-
ing to quite bad standard results (Figure 3c). Actually this effect is visible
in Figure 2c too, but is less evident and the gap between best performances
(blue line) and the mean performances (green line) is smaller. This suggests
that in many datasets the IF results may be improved, depending also on
the structure of the dataset itself.

Repeating the same procedure with some of the most used dataset (the
benchmark datasets described in Section 2.1) it is possible to see similar
results (reported in Figure 4) that can be connected to the examples dis-
cussed so far: there seems to be two peculiar behaviours, one described by
a logarithmic-shape curve (for example breastw and satimage-2 ) and the
other by a bell-shape (like cardio or vowels). Both of them reach the best
performance very quickly, i.e. with 5-20 isolation trees, but the bell-shaped
starts with higher performances than the standard, reaching very fast the
best achievable scores and then degrading. In this case, the gap between
best and average results (blue and green lines) is very large, suggesting the
standard IF algorithm might have a lot of room for improvements. It is not
clear the underling motivation of these behaviours: we expect them to be
dependent to the structure of the dataset and the definition of outlier that,
as explained in the Introduction, it is very dependent on the domain and the
end-user expectations.

11



(a) Normal data organized in
a square toroid and anomalous
points inside.

(b) Histogram of the average precision
scores obtained measuring the perfor-
mances of the isolation trees. There are
many very bad trees and some few good
ones.

(c) Average precision of different forests built with
different strategies.

Figure 3: Toy dataset: square cluster. A more complex example where the advantages of
carefully choosing the best isolation trees makes a huge difference in performances.

12



Figure 4: Real-world examples. It can be seen how in some cases the gap between the
random results (green distribution) and best achievable (blue line) is quite large, meaning
that there is a lot of room to improve the original algorithm.

13



4. Weakly-supervised algorithm

One may ask how the analysis reported in the previous Section can be
exploited in order to improve the original algorithm, and if these results are
just over-fitted, meaning the best isolation trees here obtained are valid only
for the employed data, or can be generalized to new data points. In other
words, can the procedure that selects the best isolation trees lead to over-
fitting results? Or, on the contrary, might such procedure be used to learn
the best performing trees on a portion of the dataset and to apply those trees
on other data coming from the same dataset distribution? This procedure
might help in many ways: it can be used to reduce the number of trees and
therefore the memory and power consumption of the algorithm, but it might
also be used to increase the average performance of the forest.

Based on these questions, a new weakly-supervised algorithm, called Ti-
WSiF , was designed and tested on multiple real word datasets. This is made
up of two parts: the unsupervised training of the Isolation Forest, and the
supervised choice of the best performing forest, using the few available labels
provided by the domain expert or the DSS. In practice, TiWSiF consists of
the following steps:

i) training of a standard Isolation Forest on the full training dataset. Here
100 trees are randomly grown without any supervision;

ii) using the supervised portion of dataset, the previously grown trees are
measured according to the average precision metric and sorted accord-
ingly with the descending order;

iii) 100 forests are created according to the best isolation tree choice pre-
viously discussed i.e. using for each IF the first i best isolation trees.
The i-th IF will therefore be composed of i isolation trees;

iv) the average precision of each of these 100 IF is measured on the same
supervised portion of the dataset.

v) the forest having the highest average precision is selected. If more
than two forests reach the highest precision, the forest with less trees is
discarded in favour of the largest; this choice to select the most robust
forest among the best ones.

14



Figure 5: Application of the proposed algorithm to the real word datasets, with supervision
applied to 20% of the training dataset. The blue curve shows the performance of the
algorithm on the supervised part of the training dataset, while the orange are obtained
on the test dataset (50% of the full dataset). The two black dots highlight: the average
precision obtained on the test set obtained with the forest that maximises the average
precision during training, the number of trees needed to get these performances, and the
average precision of the standard algorithm during test.

15



The proposed algorithm was tested over multiple datasets, splitting the
full dataset into two equally large sets keeping constant the outlier contami-
nation. Then, to simulate the role of the domain expert or the DSS, a fraction
of the training set with the same anomaly contamination was labelled and
used in the supervised part of the algorithm.

An example of the results is visible in Figure 5 where the algorithm is
tested on the same datasets shown in Figure 4, but with a supervised fraction
of the training set of about 20%. As expected, the reported results resemble
the ones shown in Figure 4, but they are different since now the training
algorithm does not see the full dataset (and its anomalies) but a very small
portion of those. In this picture the blue line shows the performances ob-
tained from each forest in the supervised portion of the dataset, and the
orange line represents the average precision that is measured using the same
forests but over the testing set. The vertical line lies in correspondence with
the maximal point reached by the blue curve, while the horizontal highlights
the performances obtained by the standard forest on the test set. Larger is
the interval between the two black dots, better is performing the proposed
algorithm. The first aspect that needs to be discussed is the performances of
the last forest, i.e. the last point of the curves in Figure 5, that depicts the
average performances of the standard algorithm in the training (blue) and
testing phase (orange); sometimes they perfectly overlap but unfortunately
this not always happen due to the presence of different kind of anomalies
inside the two datasets, since they are very few and different with respect to
the whole dataset. This therefore justifies the different shapes of the training
and testing curves that are very often, but not always, similar. The value
of the proposed approach lies in the fact that choosing the best trees in the
supervised set leads to maximise the chances to get a forest that outperforms
the standard one even in the test set, and this is clearly visible in Figure 5.
The only dataset where TiWSiF fails is the speech dataset that has very high
dimensionality (400 features) compared with the contamination (1.65%). On
the contrary, the algorithm very often is able to choose a IF that reaches bet-
ter performances with respect to the standard ones and even in many cases
it selects a point that is close to optimal.

Obviously, the previously mentioned Figure 5 proved the TiWSiF valid-
ity, but it needs to be repeated to get robust results and to better quantify
the improvements lead by this choice of trees: since anomalies are few and
different a particular split of the data may affect the results; to filter out the
randomness introduced by this aspects, the algorithm is tested with 10 repe-

16



titions, with varying fraction of the labelled training set, and the results are
shown in Figure 6 and 7. During the experiments, three values are collected:
the baseline i.e. the value of the standard forest on the test set, the number
of best trees learnt during training and the average precision measured in the
test phase using this subset of trees.

The detection results are depicted in Figure 6, while in Figure 7 the mem-
ory savings due to the forest reduction can be noticed by means of the tree
cardinality of the selected forest. In Figure 6 the value of the standard forest
on the test set is drawn using the blue color while the red represents the
improvement due to the proposed strategy. Even if these can be appreciated
in almost every dataset, they are most evident where the standard algo-
rithm behaves in an intermediate way, that is where there is more space for
improvement. The biggest absolute improvement is measured on the cover
dataset, where the average precision goes from about 0.1 to 0.8, probably due
to the huge quantity of available data and repeatable anomalies. However,
the second biggest relative improvement is on the optdigits dataset that does
not have any special property with respect to the other datasets.

Looking at Figure 7 instead it is possible to see the number of trees that
the forest needs to get the results shown in Figure 6. The model reduction is
most of the times very large, indeed the bars seldom exceed 20-40, saving a
lot of memory and computational power since, as previously explained, both
memory requirements and time complexity scales linearly with the number of
trees. It is interesting to note that as the fraction of labelled data increases,
the algorithm is able to reduce more the size of the selected forest.

The algorithm moreover seems to tolerate quite small training sizes: in all
the cases except the arrhythmia and the vowels dataset, the improvements
are present even in experiments with only the 5% the dataset labelled, and
as expected they increase as the train set becomes bigger.

5. Conclusion

The detection of anomalies is a critical task in many real life scenarios,
however the majority of algorithms are not designed to run on edge devices,
learning from unsupervised data and getting the most out of few labelled
data, when available. This paper tried to cope with these challenges, pri-
marily observing that even one of the most popular and effective algorithm
like the Isolation Forest can be improved considering this scenario. This is
due to the creation of randomly grown isolation trees that, even tough they

17



Figure 6: Detection performances: results obtained on 24 real word datasets; for each
dataset, four different training size percentages are analyzed: the algorithm seems to
be robust even with very small training sets. The average precision of the forest without
TiWSiF are depicted in blue while the red represents the improvement due to the described
strategy.

18



Figure 7: Reduction performances: results obtained on 24 real word datasets; for each
dataset, four different training size percentages are analyzed: the algorithm seems to be
robust even with very small training sets. The bars represent the number of trees that the
proposed strategy needs to reach its performances. As opposed to the standard algorithms,
the described one needs a small fraction of memory and computations.

19



are the key aspect of the original algorithm being very cheap to train, some
of them risk to damage the solution accidentally. This work tries to solve
this problem, designing a simple solution to remove the unnecessary trees,
keeping only the most informative with the aid of few labels, named TiWSiF
. As shown in experiments on real world datasets, the forest highly benefits
from this procedure and allows the practitioner to include some information
in the unsupervised algorithm without a retraining procedure. Not only the
detection performances increase, but also the memory and computational
cost highly decreases, allowing the implementation of even more constrained
devices.

A similar approach might be used vice-versa to generate the maximum
number of isolation trees that fits into a given memory, that are the best with
respect to the available supervised data, or it can be applied to other variants
of Isolation Forest, like Extended Isolation Forest [28] and Isolation Mondrian
Forests [29]. As future works, we will investigate optimized procedure to
speed up the search of the TiWSiF solution.

Acknowledgement

This work has been supported by MIUR (Italian Minister for Education)
under the initiative “Departments of Excellence” (Law 232/2016) and by
”Black-box Anomaly Detection: Advanced Approaches and Applications -
BADA3” funded by the Department of Information Engineering of University
of Padova.

References

[1] B. Pishgoo, A. A. Azirani, B. Raahemi, A hybrid distributed batch-
stream processing approach for anomaly detection, Information Sciences
543 (2021) 309–327.

[2] L. Dutta, S. Bharali, Tinyml meets iot: A comprehensive survey, Inter-
net of Things (2021) 100461.

[3] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holle-
man, X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, et al., Bench-
marking tinyml systems: Challenges and direction, arXiv preprint
arXiv:2003.04821 (2020).

20



[4] J. Schneible, A. Lu, Anomaly detection on the edge, MILCOM 2017
- 2017 IEEE Military Communications Conference (MILCOM) (2017)
678–682.

[5] A. Huč, J. Šalej, M. Trebar, Analysis of machine learning algorithms for
anomaly detection on edge devices, Sensors 21 (14) (2021) 4946.

[6] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, P. Whatmough, Micronets: Neural net-
work architectures for deploying tinyml applications on commodity mi-
crocontrollers, Proceedings of Machine Learning and Systems 3 (2021).

[7] C. Eiras-Franco, D. Martinez-Rego, B. Guijarro-Berdinas, A. Alonso-
Betanzos, A. Bahamonde, Large scale anomaly detection in mixed nu-
merical and categorical input spaces, Information Sciences 487 (2019)
115–127.

[8] F. P. Rubin, P. S. S. de Souza, W. dos Santos Marques, R. R. de Oliveira,
F. D. Rossi, T. Ferreto, Evaluating energy and thermal efficiency of
anomaly detection algorithms in edge devices, in: 2020 International
Conference on Information Networking (ICOIN), IEEE, 2020, pp. 208–
213.

[9] H. Ren, D. Anicic, T. Runkler, Tinyol: Tinyml with online-learning on
microcontrollers, arXiv preprint arXiv:2103.08295 (2021).

[10] S. Das, W.-K. Wong, A. Fern, T. G. Dietterich, M. A. Siddiqui, In-
corporating feedback into tree-based anomaly detection, arXiv preprint
arXiv:1708.09441 (2017).

[11] R. T. Sutton, D. Pincock, D. C. Baumgart, D. C. Sadowski, R. N.
Fedorak, K. I. Kroeker, An overview of clinical decision support systems:
benefits, risks, and strategies for success, NPJ digital medicine 3 (1)
(2020) 1–10.

[12] M. Kukar, P. Vračar, D. Košir, D. Pevec, Z. Bosnić, et al., Agrodss:
A decision support system for agriculture and farming, Computers and
Electronics in Agriculture 161 (2019) 260–271.

21



[13] R. Nybø, D. Sui, Closing the integration gap for the next generation of
drilling decision support systems, in: SPE Intelligent Energy Conference
& Exhibition, OnePetro, 2014, pp. 497–506.

[14] C. Corradino, G. Ganci, G. Bilotta, A. Cappello, C. Del Negro, L. For-
tuna, Smart decision support systems for volcanic applications, Energies
12 (7) (2019) 1216.

[15] P. A. Legg, Human-machine decision support systems for insider threat
detection, in: Data Analytics and Decision Support for Cybersecurity,
Springer, 2017, pp. 33–53.

[16] Z. Wang, J. Tian, H. Fang, L. Chen, J. Qin, Lightlog: A lightweight
temporal convolutional network for log anomaly detection on the edge,
Computer Networks (2021) 108616.

[17] J. H. Sejr, A. Schneider-Kamp, Explainable outlier detection: What, for
whom and why?, Machine Learning with Applications 6 (2021) 100172.

[18] T. Barbariol, F. D. Chiara, D. Marcato, G. A. Susto, A review of tree-
based approaches for anomaly detection, Control Charts and Machine
Learning for Anomaly Detection in Manufacturing (2022) 149–185.

[19] F. Carcillo, Y.-A. Le Borgne, O. Caelen, Y. Kessaci, F. Oblé, G. Bon-
tempi, Combining unsupervised and supervised learning in credit card
fraud detection, Information sciences 557 (2021) 317–331.

[20] J. Lesouple, J.-Y. Tourneret, Incorporating user feedback into one-class
support vector machines for anomaly detection, in: 2020 28th European
Signal Processing Conference (EUSIPCO), IEEE, 2021, pp. 1608–1612.

[21] S. Das, W.-K. Wong, T. Dietterich, A. Fern, A. Emmott, Incorporating
expert feedback into active anomaly discovery, in: 2016 IEEE 16th Inter-
national Conference on Data Mining (ICDM), IEEE, 2016, pp. 853–858.

[22] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation-based anomaly detection,
ACM Transactions on Knowledge Discovery from Data (TKDD) 6 (1)
(2012) 1–39.

[23] M. Tokovarov, P. Karczmarek, A probabilistic generalization of isolation
forest, Information Sciences (2021).

22



[24] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 eighth ieee
international conference on data mining, IEEE, 2008, pp. 413–422.

[25] S. Rayana, ODDS library (2016).
URL http://odds.cs.stonybrook.edu

[26] D. Dua, C. Graff, UCI machine learning repository (2017).
URL http://archive.ics.uci.edu/ml

[27] T. Saito, M. Rehmsmeier, The precision-recall plot is more informa-
tive than the roc plot when evaluating binary classifiers on imbalanced
datasets, PloS one 10 (3) (2015) e0118432.

[28] S. Hariri, M. C. Kind, R. J. Brunner, Extended isolation forest, IEEE
Transactions on Knowledge and Data Engineering (2019).

[29] H. Ma, B. Ghojogh, M. N. Samad, D. Zheng, M. Crowley, Isolation
mondrian forest for batch and online anomaly detection, in: 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
IEEE, 2020, pp. 3051–3058.

23

http://odds.cs.stonybrook.edu
http://odds.cs.stonybrook.edu
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	1 Introduction
	2 Isolation Forest Algorithm and Testing Datasets
	2.1 Real world datasets

	3 Analysis of the standard Isolation Forest algorithm
	4 Weakly-supervised algorithm
	5 Conclusion

