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A wonderful triangle in compressed sensing

Jun Wanga,∗

aSchool of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Abstract

In order to determine the sparse approximation function which has a direct

metric relationship with the ℓ0 quasi-norm, we introduce a wonderful triangle

whose sides are composed of ‖x‖0, ‖x‖1 and ‖x‖∞ for any non-zero vector

x ∈ R
n by delving into the iterative soft-thresholding operator in this paper.

Based on this triangle, we deduce the ratio ℓ1 and ℓ∞ norms as a sparsity-

promoting objective function for sparse signal reconstruction and also try to

give the sparsity interval of the signal. Considering the ℓ1/ℓ∞ minimization

from a angle β of the triangle corresponding to the side whose length is ‖x‖∞−
‖x‖1/‖x‖0, we finally demonstrate the performance of existing ℓ1/ℓ∞ algorithm

by comparing it with ℓ1/ℓ2 algorithm.

Keywords: Compressed sensing, sparsity-promoting, the ℓ0 minimization,

iterative soft-thresholding operator, nonconvex optimization, sparse signal

reconstruction, the ℓ1/ℓ∞ algorithm.
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1. Introduction

Compressed Sensing (CS) [1, 2] is mostly known for finding the exact or

approximate sparsest solutions for underdetermined linear systems of equations

Ax = b, where b ∈ Rn, x ∈ Rn and A ∈ Rm×n for m ≪ n. CS arises in a

wide range of applications such as signal and image processing [3], single pixel
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camera [4], statistics [5] and machine learning [6], etc. Mathematically, the core

problem of CS can be formulated by the ℓ0 minimization [7, 8]

min
x∈Rn

‖x‖0 s.t. Ax = b, (1.1)

or its ℓ0 regularized problem [9, 10]

min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖0, (1.2)

where ‖x‖0 measures the number of nonzero components in x and λ > 0.

Under the assumption that the signal is sparse, Candés, Romberg and Tao

[11] and Donoho [12] provided a breakthrough work that S1 (x) = ‖x‖1 can

replace ‖x‖0 of problem (1.1) and (1.2), which called be BP and BPDN, when

the sensing matrix A satisfies some condition including the restricted isometry

property (RIP) [13] or null space property (NSP) [14].

Over the next decade, many researchers have been continuously finding new

sparse alternative functions. Based on the formula

‖x‖0 = | supp (x) | =
∑

i∈supp(x)

|xi|
|xi|

≈
n∑

i=1

|xi|
|xi|+ ǫ

,

Boyd et al. [15], Zhao et al. [16] and the authors [17, 18] have replaced ‖x‖0
with the surrogate functions S2 (x) =

∑n
i=1 w̄i|xi| and S3 (x) =

∑n
i=1 ŵix

2
i with

the positive weights w̄i and ŵi, respectively. Taking into account the following

‖x‖0 = lim
p→0

‖x‖pp = lim
p→0

n∑

i=1

|xi|p,

some authors [19, 20, 21, 22] supersede ‖x‖0 by the ℓp quasi-norm S4 (x) = ‖x‖pp
with the parameter 0 < p < 1. Recently, many researchers have started to

consider mixed norms as an alternative function to the ℓ0 quasi-norm. The

authors [23, 24, 25, 26, 27] considered the difference and the rate of ℓ1 and ℓ2

norms, i.e. S5 (x) = ‖x‖1−‖x‖2 and S6 (x) =
‖x‖1

‖x‖2
, respectively. Wang [28, 29]

considered S7 (x) = ‖x‖1 − ‖x‖∞ and S8 (x) =
∑

i∈S
1 +

∑
i∈Sc

|xi|, where

‖x‖∞ , max1≤i≤n |xi| and the support S ⊆ N := {1, 2, . . . , n} is estimated

iteratively and Sc denotes the complement of S with respect to N.
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However, there are two notable key points here from the above researches

and corresponding conclusions.

(1) The original signal is required to be sparse.

(2) These surrogate functions Si (x) , i = 1, 2, . . . , 9 can replace ‖x‖0 for sparse

reconstructions.

For these two key points, we have been confused with doubts (i) and (ii) related

to (1) and (2), respectively. Next, we will show our specific ideas in detail.

To the best of our knowledge, we first noticed that in the numerical sim-

ulations about successful recovery rate, the sparsity tested does not generally

exceed 50. For instance, Xu et al. [26] demonstrated that the maximum spar-

sity of recovery rate is 24 with the reason that the successful recovery rate is

0 after 25. Although we have known that if the dimension n and sparsity s of

the signal are given in advance, then the number of measurements m satisfying

m ≥ Cs log(n) [30] for some constant C, we are still confused at the following

question:

(i) for given dimension n of some signal xo ∈ Rn, what value the sparsity

s = ‖xo‖0(s ≪ n) should be set to claim that the signal xo is sparse?

Specifically, assume that the dimension and sparsity of some signal is n = 500

and s = 60 respectively, then can we call this signal is sparse ?

Suppose that the signal is sparse, although there are many algorithms that

handle the models (1.1) or (1.2), we still hope to find a computable objec-

tive function that yields a better approximate solutions without the additional

conditions on the sensing matrix A. In addition, most of the above objective

functions considered are related to the ℓp (0 < p ≤ ∞) norm. Thus, a natural

question is that

(ii) is there any other quantitative relationship between ℓ0 and ℓp (0 < p ≤
∞)?
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These two doubts (i) and (ii) have always surrounded the CS theory, so

that we are unconsciously thinking about how explain them to have a clear

understanding. The contributions of the paper are three-fold:

(1) We demonstrate that a signal is called to be sparse when its sparsity is in

a certain interval (0, 50].

(2) We reveal the connection of the rate of ℓ1 and ℓ∞ to the ℓ0 quasi-norm.

As the sparsity s ≥ 5 of the signal increases, we theoretically give a metric

relationship between ‖x‖1/‖x‖∞ and ‖x‖0, i.e.

‖x‖1
‖x‖∞

≈ ‖x‖0.

And if the sparsity s ≤ 5, we can get very good results by directly using

the BP or BPDN, because that the more sparse the signal, the better the

recovery of these two models. Specially, it is noteworthy that this idea is

new in CS.

(3) We construct an iterative DCA with linearization and our empirical results

shed light about the effects of sparse recovery.

The rest of the paper is organized as follows. We try to give some heuristic

answers that do not completely solve these two questions, but at least give

us a beginning of understanding by using the ℓ1 norm of the iterative soft-

thresholding operator in Section 2. To verify the validity of problem (2.7), we

construct an algorithm to test whether the sparse solution can be recovered

by imitating the literature [24] in Section 3. In Section 4, we summarize our

findings as well as point out some possible directions for future investigation.

2. Main results

Before continuing, we provide here some notations used throughout the pa-

per. We use Rn to denote the n-dimensional Euclidean space. Matrices are bold

capital, vectors are bold lower-cases, and scalars or entries are not bold. For

instance, x = (x1, x2, . . . , xn)
T ∈ Rn is a vector and xi its i-th component. For
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any x,y ∈ Rn, 〈x,y〉 = x⊤y is their inner product. The Euclidean norm of x

is denoted by ‖x‖2. The ℓ1 and ℓ∞ norm of x is denoted by ‖x‖1 and ‖x‖∞,

respectively.

The shrinkage operator is the most critical core component of ISTA/FISTA

[31, 32] for recovering the sparse solutions. For any non-zero vector y ∈ Rn, we

have that the shrinkage operator

Sσ (y) := argminx∈Rn

1

2
‖x− y‖22 + σ‖x‖1, (2.1)

where σ ≥ 0. The non-negative real number σ adjusts the sparsity of the

recovered solutions. Hence, it is crucial to set the value of the parameter σ,

which forces us to do more in-depth exploration for the shrinkage operator

Sσ (y). From (2.1), we obtain

Sσ (y) =





y, σ = 0

0, σ ≥ σmax , ‖y‖∞,

and therefore require that σ ∈ [0, σmax] for making the shrinkage operator mean-

ingful.

Define ϕ : [0, σmax] → [0, ‖y‖1] by

ϕ (σ) := ‖Sσ (y) ‖1. (2.2)

Fornasier [33, Lemma 4.12] showed that ϕ (σ) is a piecewise linear, continuous,

strictly decreasing function of σ. Here, we will further enrich these results about

ϕ (σ) in Proposition 2.1 which is deduced from [18, Lemma 2.1, Lemma 2.3].

Proposition 2.1. For any given nonzero vector y ∈ Rn, let ϕ (σ) be defined by

(2.2). Then

(i) ϕ (0) = ‖y‖1 and ϕ (σmax) = 0;

(ii) ϕ (σ) is a strictly monotonically decreasing and continuous convex function

of σ;
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(iii) The right-hand derivative of ϕ (σ) with respect to σ is that

ϕ
′

r
(σ) = −‖Sσ (y) ‖0

with two special cases of ϕ
′

r
(0) = −‖y‖0 and ϕ

′

r
(σmax) = 0.

Proof. Using the definition of Sσ (y) in (2.1), it is easy to check that (i) is valid.

We then obtain from [18, Lemma 2.1, Lemma 2.3] that (ii) holds.

Now, it follows from [18, Lemma 2.1] that, for any ǫ ≥ 0,

ǫ‖Sσ+ǫ (y) ‖0 ≤ ϕ (σ)− ϕ (σ + ǫ) ≤ ǫ‖Sσ (y) ‖0,

and therefore

‖Sσ+ǫ (y) ‖0 ≤ ϕ (σ)− ϕ (σ + ǫ)

ǫ
≤ ‖Sσ (y) ‖0,

which educes that

ϕ
′

r (σ) = lim
ǫ→+0

ϕ (σ + ǫ)− ϕ (σ)

ǫ
= −‖Sσ (y) ‖0.

Finally, if σ = 0 or σ = σmax, then we can directly obtain ϕ
′

r (0) = −‖y‖0 and

ϕ
′

r (σmax) = 0, respectively.

Remark 2.1. Proposition 2.1 extends to a better result that ϕ (σ) is a convex

function and obtains the right derivative exactly with respect to the ℓ0 norm.

This may give us more insight into other related findings.

(1) We obtain from the fact ϕ (σ) is a convex function that [18, Theorem 2.5]

‖y‖1
‖y‖∞

≤ ‖y‖1 − ‖Sσ (y) ‖1
σ

≤ ‖y‖0, σ ∈ (0, σmax] ;

(2) Proposition 2.1 shows that how to set the value of the parameter σ in

ISTA/FISTA [31, 32]. In general, we obtain from ϕ
′

r
(0) = −‖y‖0 that

the parameter σ is very small, such as, σ = 10−4. In fact, the sparsity

‖Sσ (y) ‖0 of the next iteration Sσ (y) does show a stepwise decrease as

the parameter σ is gradually increased from 0 to the maximum σmax. The

typical dynamics of the sparsity ‖Sσ (y) ‖0 are illustrated in Figure 1. In
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0 max

||
y
||

0

Figure 1: The echelon form of ‖Sσ (y) ‖0 for any given non-zero vector y ∈ Rn with the

parameter σ ∈ [0, σmax] .

addition, if the parameter σ is taken too large, it can cause many more

entries in Sσ (y) to be made zero. However, these indices corresponding

to them maybe the non-zero part of the solution that we need to recover.

Then, this will lead to a final solution that is not an approximate sparse

solution of problem (1.1) and (1.2).

Next, we will use Proposition 2.1 to construct a wonderful triangle in CS.

Firstly, we draw ϕ (σ) in Cartesian coordinate system (σ, ϕ) . A schematic illus-

tration for Proposition 2.1 is given in Figure 2. Note that the coordinates of

the three points A, B and C are (0, ‖y‖1),
(

‖y‖1

‖y‖0
, 0
)

and (‖y‖∞, 0), respectively.

Then, the lengths of all three sides of ∆ABC can be calculated by the followings





|AB| =
√

‖y‖21 +
‖y‖2

1

‖y‖2
0

> 0

|AC| =
√

‖y‖21 + ‖y‖2∞ > 0

|BC| = ‖y‖∞ − ‖y‖1

‖y‖0
≥ 0

(2.3)
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Figure 2: The wonderful triangle ∆ABC formed by ‖y‖0, ‖y‖1 and ‖y‖∞ for any given non-

zero vector y ∈ Rn. The side AB of ∆ABC is a segment of the tangent line of the curve ϕ (σ)

at the vertex A.

for any n-dimensional nonzero vector y.

Let β = ∠BAC, which is the angle corresponding to side BC of ∆ABC, then

we obtain from (2.3), the cosine rule and the law of sines that





sinβ =
1− 1

‖y‖0

‖y‖1
‖y‖∞

√

(

1+ 1

‖y‖2
0

)(

1+
‖y‖2

1

‖y‖2∞

)

,

cosβ =
‖y‖1
‖y‖∞

+ 1
‖y‖0

√

(

1+ 1

‖y‖2
0

)(

1+
‖y‖2

1

‖y‖2∞

)

,

tanβ =
1− 1

‖y‖0

‖y‖1
‖y‖∞

‖y‖1
‖y‖∞

+ 1
‖y‖0

.

(2.4)

It follows from

1 ≤ t ,
‖y‖1
‖y‖∞

≤ s , ‖y‖0 ≤ n (2.5)
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and (2.4) that 



sinβ = s−t√
(1+s2)(1+t2)

∈
[
0, 1√

1+t2

]
,

cosβ = 1+st√
(1+s2)(1+t2)

∈
[

t√
1+t2

, 1
]
,

tanβ = s−t
1+st ∈

[
0, 1

t

]
.

(2.6)

From (2.4), we can see that the dynamic parameter β is composed of ‖y‖0,
‖y‖1 and ‖y‖∞. As these three terms change, will this parameter be a very

small immobile constant? If this is in case, then perhaps this parameter implies

a certain quantitative relationship among ‖y‖0, ‖y‖1 and ‖y‖∞.

Next, we will demonstrate our interesting observation from the following two

aspects.

2.1. tanβ approximates sinβ in three dimensions

Firstly, it is important to note that if s = 1, then it follows from (2.5) that

t = 1 and if t = 1, then it follows from ‖y‖1 = ‖y‖∞ and [28, Lemma 2.1] that

s = 1. Then, we draw them in Maple1 or Mathematica2 with the condition that

the sparsity s ranges from 2 to some given positive integer and t is set from

1.0 + 10−6 to s. Finally, these results are given in Figure 3, 4, 5 and 6

Figure 3: sinβ is plotted with the sparsity s ranges from 2 to 100 and t is set from 1.0+10−6

to s. The top (red) plant with 0.7, middle (green) plant with 0.5 and bottom (blue) plant

with 0.1.

1Maple: plot3d((s− t)/sqrt((1 + s ∗ s) ∗ (1 + t ∗ t), s = 2..100, t = 1.0000001..s)
2Mathematica: P lot3D[(s− t)/(Sqrt[1+ t∗ t] ∗Sqrt[1+ s ∗ s]), {s, 2, 100}, {t, 1.0000001, s}]
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Figure 4: tan β is plotted with the sparsity s ranges from 2 to 100 and t is set from 1.0+10−6

to s. The top (red) plant with 0.8, middle (green) plant with 0.5 and bottom (blue) plant

with 0.2.

It can seen from Figure 3 and 4 that sinβ ≈ tanβ ∈ [0, 0.2] as s and t

increase. More specifically, Figure 5 shows that sinβ ≈ β ≈ tanβ ∈ [0, 0.1]

when s ≥ t ≥ 5. Then, we obtain from (2.4) that

Figure 5: tan β is plotted with the sparsity s ranges from 2 to 20 and t is set from 1.0+ 10−6

to s. The top (red) plant with 0.3, middle (green) plant with 0.2 and bottom (blue) plant

with 0.1.

√(
1 +

1

‖y‖20

)(
1 +

‖y‖21
‖y‖2∞

)
≈ ‖y‖1

‖y‖∞
+

1

‖y‖0

which means that
‖y‖1
‖y‖∞

≈ ‖y‖0.
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The above discussion may give us an idea that maybe we consider the ℓ1/ℓ∞

minimization

min
x∈Rn

‖x‖1
‖x‖∞

s.t. Ax = b, (2.7)

or its regularized problem

min
x∈Rn

1

2
‖Ax− b‖22 + λ

‖x‖1
‖x‖∞

, (2.8)

where the parameter λ > 0. Besides, we can obtain the same idea from Figure

6. In fact, when s ≥ t ≥ 5, we have that cosβ ≈ 1 which means

s ≈ t ⇐⇒ ‖y‖1
‖y‖∞

≈ ‖y‖0.

Figure 6: cos β is plotted with the sparsity s ranges from 2 to 100 and t is set from 1.0+10−6

to s. The middle (red) plant with 0.95, bottom (green) plant with 0.85 and top (blue) plant

with 1.0.

2.2. Average tanβ about the sparsity in two dimensions

From (2.3), it follows that

‖y‖0 =
tanβ + ‖y‖1

‖y‖∞

1− tanβ
(

‖y‖1

‖y‖∞

) . (2.9)

If there exits an approximate parameter βs := tanβ corresponding to each

sparsity s, then using (2.9), we can construct an optimization problem

min
x∈Rn

βs +
‖x‖1

‖x‖∞

1− βs

(
‖x‖1

‖x‖∞

) s.t. Ax = b. (2.10)
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If s = 1, then βs = 0. In this case, problem (2.10) reduces (2.7). Hence, we

assume that s ≥ 2 in subsequent analysis and discussion.

Dinkelbach [34] provided an iteration method whose key feature is the solu-

tion of a series of the following problem

min
x∈Rn

βs +
‖x‖1
‖x‖∞

− αk

(
1− βs‖x‖1

‖x‖∞

)
s.t. Ax = b,

which is equivalent to

min
x∈Rn

(1 + αkβs)
‖x‖1
‖x‖∞

s.t. Ax = b, (2.11)

where the parameter

αk =
βs +

‖xk‖1

‖xk‖∞

1− βs

(
‖xk‖1

‖xk‖∞

) .

It is easy to see that problem (2.11) and (2.7) have the same solution set.

Hence, we can directly solve (2.7) instead of (2.10). Then how to determine the

parameter βs corresponding to each sparsity s?

There are two basic idea that arithmetic and geometric means that removing

the variable t from tanβ of (2.6). By (2.5) and (2.6), we define arithmetic mean

βA (s) :=
1

s− 1

∫ s

1

s− t

1 + st
dt, (2.12)

and geometric mean

βG (s) := exp



∫ s

1
ln
(

s−t
1+st

)
dt

s− 1


 , (2.13)

with the special case βG (1) = 0 and βA (1) = 0. By the fact that the arithmetic

mean is greater than the geometric mean, we have that βG (s) ≤ βA (s).

In Figure 7, we see that if the sparsity s ≥ 60, then the means βG (s) and

βA (s) slowly decrease. When s = 100, we have that βA (s) ≈ 0.036422 and

βG (s) ≈ 0.00944564. If s < 60, βG (s) and βA (s) first increase to a maximum

value and then decrease, followed by a gentle decrease as the sparsity s increases.

In addition, the increase and decrease of βG (s) and βA (s) are very rapid when

the sparsity s ≤ 10, and we can also see this phenomenon as a manifestation of

the sparsity. Please see more details about βG (s) and βA (s) in Figure 7.
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βA(s)

βG(s)

Maximum : 0.1088 (s= 3 )

Maximum : 0.1835 (s= 4 )

20 40 60 80 100

s

0.05

0.10

0.15

Figure 7: Arithmetic mean βA (s) and Geometric mean βG (s) with the sparsity s ranges from

1 to 100.

Next, we further demonstrate the confusion about (2.10) you may have en-

countered. It is because that ‖y‖0 ≥ 1. Therefore we obtain from (2.10) that

1− βs

( ‖x‖1
‖x‖∞

)
> 0,

which means that ‖x‖∞

‖x‖1
> βs. In fact, problem (2.10) should be rewritten by

min
x∈Rn

βs +
‖x‖1

‖x‖∞

1− βs

(
‖x‖1

‖x‖∞

)

s.t. Ax = b,
‖x‖1
‖x‖∞

<
1

βs
.

In order to make sense of the above problem, then we should require the parame-

ter βs to be as small as possible. Moreover, we need a relatively small parameter

βs, while we don’t want it to be too large. Therefore, we construct the above

two mean values βG (s) and βA (s) which limit the range of βs and then use

the arithmetic mean βA(s) to replace the unknown parameter βs for some given

sparsity s. It follows from ‖x‖1 ≤ ‖x‖0‖x‖∞ = s‖x‖∞ that 1/s ≥ βs. When

s = 100, then we have that 0.01 > βG (s) ≈ 0.00944564. Therefore, we can take

this constant βs as the geometric mean βG (s). In this setting, problem (2.10)

can be replaced by problem (2.11) which is equivalent to the ℓ1/ℓ∞ minimization

(2.7).

In summary, we can find a parameter βs for a given sparsity s = ‖y‖0. We

call βs to be the sparse metric of the sparsity s. Then the final result shows

13



that we can solve the solution of problem (2.7) which approximates one sparse

solution to the ℓ0 minimization (1.1).

In end of the subsection, we present a numerical experiment to complement

our previous theoretical investigation. In the settings of numerical experiments,

we take n = 3000. Then, the sparsity s ranges from 1 to 1000 by increment of 1,

and for each s we perform 100000 independent experiments with tanβ recorded

and calculate the average value β(s) of tanβ. The entries of signal y with the

sparsity s on its support are i.i.d. Gaussian random variables with zero mean

and unit variances. The results are given in Figure 8.

100 200 300 400 500 600 700 800 900 1000

Sparsity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

10 20 30 40 50 60 70 80 90 100

Sparsity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 8: Arithmetic mean βA (s) and Geometric mean βG (s) with the sparsity s ranges from

1 to 1000.
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3. Numerical experiments

In this section, we will consider (2.7) with the noiseless case. The noisy case

(2.8) can be carried out similarly by tuning the parameter of the penalty term

arising from the constraint. Note that ℓ1/ℓ∞ minimization (2.7) is non-convex,

our algorithms solve the problem approximately. In particular, we utilize the

semblable algorithms from [24], which is essentially the Inverse Power Method

[35] with extra augmented quadratic term in x-update.

We briefly explain how the algorithm works: it was observed in [24, 34]

that subject to Ax = b, minimizing ‖x‖1/‖x‖∞ is equivalent to minimizing

‖x‖1 − γ∞‖x‖∞ for some γ∞ ∈ [1, ‖x‖0], where γ∞ is some case-dependent

parameter. Following the Difference of Convex Algorithms (DCA) framework

[36] to minimizing ‖x‖1 − γ∞‖x‖∞, we will consider the following problem

min
x∈Rn

{‖x‖1 − γ∞‖x‖∞ : Ax = b} .

By linearizing the second term ‖x‖∞, the DCA iterates as follows

xk+1 = argminx∈Rn

{
‖x‖1 − γ∞

k 〈ξk,x〉 : Ax = b
}
, (3.1)

where ξk ∈ ∂‖xk‖∞ and γ∞
k = ‖xk‖1/‖xk‖∞. Notice that (3.1) can be for-

mulated as a linear programming (LP) problem [12, IV.1, pp. 1296], which

unfortunately has no guarantee that the optimal solution exists [24] (as the

problem can be unbounded). To increase the robustness of the above method ,

we try to incorporate a quadratic term into (3.1) and then obtain that

xk+1 = argminx∈Rn

{
‖x‖1 − γ∞

k 〈ξk,x〉+ ρ

2
‖x− xk‖22 : Ax = b

}
.

Hence, given an initialization x0 = e , (1, 1, . . . , 1)
⊤ ∈ R250 and γ∞

0 = γ2
0 =

3, the alternating algorithm for solving (2.7) can be summarized in





xk+1 = argminAx=b

{
‖x‖1 + ρ

2

∥∥∥x−
(
xk +

γ∞
k

ρ ξk
)∥∥∥

2

2

}

γ∞
k+1 = ‖xk+1‖1

‖xk+1‖∞
,

(3.2)
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while the iterations for solving minx∈Rn

{
‖x‖1 − γ2‖x‖2 : Ax = b

}
, where the

parameter γ2 > 0, as follows





xk+1 = argminAx=b

{
‖x‖1 + ρ

2

∥∥∥x−
(
xk +

γ2
k
xk

ρ‖xk‖2

)∥∥∥
2

2

}

γ2
k+1 = ‖xk+1‖1

‖xk+1‖2
,

(3.3)

where ξk ∈ ∂‖xk‖∞ denotes the subdifferential of the ℓ∞-norm and ρ = 0.5.

Since the x-subproblem is convex programming, we solve it by using the Matlab

tool CVX [37] with default settings.

All test code was written and tested in MATLAB R2020b running on the

Linuxmint 20.1 ulyssa (x86_64 Linux 5.4.0-89-generic) which was installed in

a Dell Inc. Precision 5820 Tower X-Series with Intel(R) Core(TM) i9-10900X

(3.7GHz) and 32 (4 × 8) GB of UDIMM memory.

It can be seen from (9) that these two algorithms (3.2) and (3.3) can suc-

cessfully recover sparse signals. In addition, the left-hand figure (a) of Figure
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Figure 9: Comparison for recovery of the condition that the sparsity s = 10 with the linear

system b = Ax, where A ∈ R100×250 and x ∈ R250
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(10) shows that the relative error defined by

RelErr =
‖xr − xo‖2

‖xo‖2
of (3.2) is a little better than one of (3.3), where xo is a original signal and xr

is a recovery. However, this does not mean that the method (3.2) is better than

method (3.3). It is possible that the parameters γ and ρ were set just right

this time. Overall, the algorithm (3.2) is almost at the same level as (3.3) since

used the same parameter ρ and the solver CVX [37] in the computation. The

right-hand figure (b) of Figure (10) verifies the point.
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Figure 10: Comparison of the relative error (a) and the parameter γk (b) with the condition

that the sparsity s = 10 with the linear system b = Ax, where A ∈ R100×250 and x ∈ R250.

4. Conclusions

We have theoretically investigated the relationship between the ℓ1/ℓ∞ and

ℓ0 norm. By summarizing some important objective functions, we found an

interesting phenomenon that those objective functions that have a simple and

direct connection with the ℓ0 norm are able to obtain much more sparse solution

to some extent. Then, we derive a expected objective function ℓ1/ℓ∞ from the

deep investigation of the shrinkage operator. In fact, we have considered this

issue after studying ℓ1/ℓ2 minimization. The ultimate goal is to be able to have

a clear understanding of the previous doubts (i) and (ii).
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Although our analysis in this article only establishes a relationship between

the ℓ0 norm and the ratio ℓ1 and ℓ∞ norms, it does not give a uniform recover-

ability condition and theoretical justification of whether problem (2.7) and (2.8)

can be solved sparsely or not. More theoretical works which analogous to ones

of [26] and algorithmic research which is similar to that [24] in this direction are

also worth exploring in the future.
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