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Abstract

While the vast majority of the literature on models for temporal networks focuses on binary graphs,

often one can associate a weight to each link. In such cases the data are better described by a weighted,

or valued, network. An important well known fact is that real world weighted networks are typically

sparse. We propose a novel time varying parameter model for sparse and weighted temporal networks as

a combination of the fitness model, appropriately extended, and the score driven framework. We consider

a zero augmented generalized linear model to handle the weights and an observation driven approach

to describe time varying parameters. The result is a flexible approach where the probability of a link

to exist is independent from its expected weight. This represents a crucial difference with alternative

specifications proposed in the recent literature, with relevant implications for the flexibility of the model.

Our approach also accommodates for the dependence of the network dynamics on external variables.

We present a link forecasting analysis to data describing the overnight exposures in the Euro interbank

market and investigate whether the influence of EONIA rates on the interbank network dynamics has

changed over time.

Keywords: Temporal Networks, Weighted Networks, Score Driven Models, Interbank Market

1. Introduction

In the last two decades, networks, or graphs, have attracted an enormous amount of attention as an

effective way of describing pairwise relations in complex systems ([1]). The ever increasing abundance,

and variety of graph data has motivated a great deal of applications of statistical models to graphs [see,
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for example 2, for a review]. More recently, the availability of time varying networks’ data has stimulated

the development of models for temporal networks [3, 4, 5, 6, 7]. While the vast majority of this literature

focuses on binary graphs, i.e. graphs that are defined solely by a set of nodes and a set of links between

pairs of nodes, often one can associate a weight to each link. Links’ weights are typically positive, discrete

or continuous, numbers and can be associated, for instance, to the strength of the relation described by

each link. In standard binary descriptions, such relevant information is completely lost. For example,

in a network of exposures among financial institutions the weight could be the value of the credit. In

this case, a binary network would describe in the same way a link associated to an exposure of 1 million

to that associated to an exposure of 1 billion. Indeed it is very common for network data to have also

informative weights associated with their links. Some additional examples of the importance of weights

in networks can be found, for example in: the International Trade Network [8, 9], migration flows [10],

scientific collaborations [11], transportation networks [12], just to mention a few. In these cases the

data are better described by a weighted, or valued, network, that can be associated with a positive, real

valued matrix Yij ∈ R+. Yij is the weight of the directed link from node i to node j, and Yij = 0 if the

link is not present. Moreover, it is well known that real world networks, both binary and weighted, are

very often found to be sparse, i.e. their adjacency matrices have an abundance of zero entries. That is

the case, for example, of interbank networks ([13]), a class of weighted temporal networks of paramount

importance, that are known to be extremely relevant to financial stability ([14, 15]), and have motivated

the application and development of a number of statistical models for networks (see, for example, [16, 6]

and references therein).

In spite of their relevance, networks’ weights have received less attention in the literature on models

for temporal networks. Indeed there are only a few models for temporal networks that take them into

account. In this paper we propose a novel model for sparse and weighted temporal networks, that

also accommodates for the dependency of the network dynamics on external covariates. Our efforts

are originally motivated by the need to properly model weighted temporal network data, describing

overnight exposures in the Euro interbank market (eMID). In a previous work [7], we disregarded the

information associated with the links’ weight and we only focused on the temporal evolution of binary

relations. We achieved that by extending the Exponential Random Graph models (ERGM), a class of

statistical models for random networks, whose first and probably most famous example is the Erdős-Rényi

model [17]. In the novel framework, the ERGM parameters change over time following an observation-

driven dynamics [18]. The relevant information for the time evolution is encoded in the filtration Ft. It
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determines the update of the time varying parameters through an autoregressive process whose innovation

term corresponds to the scaled score of the observation probability mass function. Such specification,

known as Dynamic Conditional Score-driven (DCS) or Generalized Autoregressive Score (GAS), has

been pioneered and recently introduced in the econometric literature by [19, 20]. In this paper, we

extend the well known fitness model [21, 22, 23, 24, 25, 26] for static binary networks, combining it

with a simple generalized linear model to handle the weights and the DCS approach to time varying

parameters. The generalization is non trivial. We need to explicitly account for the abundance of zeros

that follow from the sparse nature of real world networks. We solve the issue by resorting to zero

augmentation (ZA). The resulting modeling framework is very general and extremely flexible. It allows

to decouple the probability of a link to exist from its expected weight – a fact that will prove to be

crucial in the forecasting exercise – leaving us full flexibility concerning the specification of the weight

distribution and the possibility to explore the influence of external covariates on the network’s dynamics.

We provide convincing Monte Carlo evidence that the score driven model is an effective filter of the latent

fitness dynamics in miss-specified settings. We document a clear computational advantage, in terms of

mean squared error and mean absolute difference, with respect to competitor models also in presence

of external covariates and omitted variables. Interestingly, by we exploitIn the empirical analysis, we

explore from different perspectives the role played by the Euro Overnight Index Average (EONIA) rates

on the dynamics of the lending relations. Consistently with similar findings discussed in the literature,

we observe that lower interest rates are related with a reduction of network interconnectdness but an

increase of the average liquidity flow for the loans that are present. However, the novelty of our results

rely on two important facts: i) the time varying fitness model accounts explicitly for bank specific effects

and thus provides a measure of the impact of EONIA rates decoupled from node specific effects; ii) our

results leverage the full information available in the description of the eMID network without the need

to collapse the network matrices into a single statistic, as done in [27] and [28]. Finally, concerning the

link and weight persistence analysis, we complement the work of [29] highlighting the tendency of banks

to form links whose weight is positively related with the weights at previous time steps. We call weight

persistence this aspect of the dynamics of interbank relations.

The rest of the paper is organized as follows. The next section provides an overview of the main

contributions proposed in the literature for the modeling of temporal weighted networks. Section 2

defines a novel observation driven model for sparse and weighted temporal network, generalizing the

well-known fitness model for binary networks to the sparse weighted case and leveraging the score driven
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approach to time varying parameters. Section 3 presents an extensive Monte Carlo analysis of the score

driven generalized fitness model. Section 4 details the application of the new model to the eMID market.

Section 5 draws the main conclusions and provides some ideas for future research.

1.1. Literature Review

An econometric model for weighted temporal networks can be described in terms of a probability

distribution P
(
Y

(t)
ij |Y(t−1), . . .Y(1),X

(t)
1 , . . . ,X

(t)
K

)
that describes the probability of the weight Y

(t)
ij of

the link between node i and j at time t as potentially depending on previous realizations of the network

and a set of contemporaneous, matrix valued, external variables X1 . . .XK . The external variables can

be different for each link. Even disregarding the dependency on external variables, it is immediately

evident that the matrix valued nature of networks’ data implies that the problem is typically very high

dimensional.

Formally, observations of a weighted temporal network Y
(t)
ij are no different from balanced panel data,

where the cross sectional index ij runs over all possible N2 links. Thus, one could directly apply the

non-linear panel regression methods [described, for example, in 30] to the sequence of positive valued

matrix observations and estimate, for example, the effect of external variables. Such a direct application

would nevertheless disregard the network structure and the fact that links observations are very much

influenced by their association with specific nodes. Moreover, the high dimensional nature of the problem

complicates the estimation and interpretation of link specific fixed effects. For this reasons, the direct

approach of treating sequences of networks as standard panel data, possibly with lagged dependency, is

not widespread in the literature, and restrictions to reduce the number of parameters to be estimated are

used in most cases. For example, [5], driven by system specific insights, select a set of network statistics

Gi (Y) and estimate the dependency of each link Y
(t)
ij on G

(
Y(t−1)

)
, by means of a Tobit model with

few covariates, for each link. Moreover they use a local-likelihood method to estimate time varying

coefficients of the regression. The censored regression used in their paper has the downside of requiring

a joint modeling of the presence of a link and of its weight. While this choice allows for straightforward

estimates and builds on the well known Tobit regression, it models jointly the effect that a covariate has

on the probability of observing a link and the one that it has on its expected weight. In this work we

propose a more flexible method that, among other things, allows to disentangle the probability of a link

being present from its expected weight.

Another widespread approach is that of dynamical latent space models ([31]) where a set of time

4



varying parameters is associated to each node, and, at each time, the probability of observing a link

between two nodes depends on a measure of distance between two nodes in such a latent space. Latent

space models have also been considered for sparse weighted networks [for example in 4], with the aim of

inferring from the network’s dynamics the positions of nodes in a latent space. The resulting embedding

of the nodes is typically analyzed and compared with available metadata on the nodes. While very

informative, the analysis of networks’ embeddings is fundamentally different from the purpose of our

work, as one of main aims is to leverage the availability of data on external variables that are expected

to be related with network dynamics and estimate how much the latter depends on them.

Models that allow each one of the matrix elements Y
(t)
ij to depend on each of the Yij

(t−1) have also

been considered in the literature. For example, [32] estimate a tensor regression (very similar to a VAR

on vec(Y)), with rank restrictions on the (huge) matrix of model’s parameters. Differently from our

work, they do not take the sparse nature of networks explicitly into account. [33] consider a penalized

logistic auto-regression model for binary networks (basically a logistic regression for each link, using

all lagged matrix elements, and also products, with a lasso penalization). The same approach can in

principle be extended to sparse weighted networks, and in the ZA framework.

We conclude this literature review citing some contributions that are relevant to the present work,

even if they do not address directly the temporal evolution of weighted networks. Among the many

papers that address the issue of modeling static sparse weighted networks, [34] consider a combination

of the fitness and the gravity model of [35] to reconstruct sparse weighted financial networks. Even if

they do not investigate temporal networks, their approach has proved to be very effective in modeling

sparse weighted networks describing financial systems [as discussed in 36]. Another interesting recent

contribution is [37], where the authors propose a modelling framework for weighted network data based

on the compound Poisson model. They incorporate the binary fitness model as a special case but use

an additional set of fitness to describe the distribution of the weights, in addition to the probability of a

link being present.

Finally, we mention three recent contributions related to our work that model binary temporal net-

works. The first one is that of [6], where the authors consider a model with time varying fitness and

combine it with Discrete Auto-regressive Models [38] to investigate link persistence in financial networks.

Their approach is very much related to ours as it extends the binary fitness model to the temporal

domain, by allowing the fitness to evolve in time. In their case the fitness follows a parameter driven

dynamics. Moreover they consider a mechanism to copy links from the past, and explore the possibility
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of decoupling the link persistence implied by this mechanism from the probability to form new connec-

tions captured by the fitness. The second one is the recent [39] which introduces a non-Markovian model

of binary temporal networks based on an extension of Discrete Autoregressive Models. Interestingly,

authors considers also a local likelihood estimation approach to take into account non-stationarty and

infer time varying parameters. The third paper, anticipated in the Introduction, is [7] where we extend

the ERGMs for binary networks – a class which includes the fitness model – to the temporal context

by allowing its parameters to evolve in time. The updating equation of the time varying parameters

follows an autoregressive process whose innovation corresponds to the scaled score of the observation

distribution. We show how to exploit the model as an effective filter of miss-specified dynamics and how

to deal with cases where one does not have full knowledge of the likelihood function. The present paper

owns a lot to the score-driven extension of the ERGM framework (SD-ERGM). Nonetheless, as it will be

clear in the next section, the generalization of the static fitness model to the temporal sparse weighted

case following the steps of the SD-ERGM is far from being trivial.

2. Score Driven Generalized Fitness Model

In this work, we propose a model for sparse and weighted temporal networks that we refer to as

score driven generalized fitness model. Our model combines the well known fitness model - that was first

discussed in [40], appropriately extended to a weighted zero augmented version to handle the weights,

and the DCS approach to time varying parameter models [19, 20]. Before presenting the details of our

model, we deem appropriate to review some preliminary concepts on the binary fitness model and the

score driven framework.

2.1. Preliminary Concepts

The first concept that we use in our work is the fitness model. Multiple variations of the fitness

model have been considered in the literature [21, 22, 23, 24, 25, 26] and the same specification of the

probability for a binary, directed or undirected, networks is known also as beta model or configuration

model. Hereafter we will define the fitness model as a model for binary networks where, in the case

of directed networks, two parameters are assigned to each node i, the in-fitness
←−
θ i and the out-fitness

−→
θ i, that describe the tendency of each node to form incoming and outgoing connections, respectively.

Because the occurrence of a link is very likely influenced by both intrinsic and external factors, we focus
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in the following on a specification that allows for the links’ probability to depend also on the external,

possibly link specific, covariates [26]. Hence the probability of a link to exist is described by

pij =
1

1 + e−(
←−
θ i+
−→
θ j+Xijβ)

,

where β is the coefficient tied to the information of the, link specific, covariate X. This model is very

convenient because it allows for a parsimonious modeling of the matrix associated with a network, via

node specific fitness.

The second key ingredient of our approach is the DCS framework for time varying parameter models,

introduced by [19] and [20]. In order to review it, let us consider a sequence of observations
{
z(t)
}T
t=1

,

where each z(t) ∈ RM , and a conditional probability density P
(
z(t)|f (t)

)
, that depends on a vector of

time varying parameters f (t) ∈ RK . Defining the score as ∇(t) =
∂ logP(z(t)|f(t))

∂f(t)′ , a score-driven model

assumes that the time evolution of f (t) is ruled by the recursive relation

f (t+1) = w + bf (t) + aI(t)∇(t), (1)

where w, a and b are static parameters, w being a K dimensional vector and a and bK×K matrices. I(t)

is a K×K scaling matrix, that is often chosen to be the inverse of the square root of the Fisher information

matrix associated with P
(
y(t)|f (t)

)
, i.e. I(t) = E

[
∂ logP(y(t)|f(t))

∂f(t)′
∂ logP(y(t)|f(t))

∂f(t)′

′]− 1
2

. However, this is

not the only possible specification and different choices for the scaling are discussed in [19]. A score

driven model can be regarded both as data generating process (DGP) or as a filter of an unknown

dynamics. In both cases, the most important feature of (1) is the role of the score as the driver of

the dynamics of f (t). The structure of the conditional observation density determines the score, from

which the dependence of f (t+1) on the vector of observations y(t) follows. When the model is viewed

as a DGP, the update results in a stochastic dynamics thanks to the random occurrence of z(t). When

the score-driven recursion is regarded as a filter, the update rule in (1) is used to obtain a sequence of

filtered
{
f̂ (t)
}T
t=1

. In this setting, the static parameters are estimated maximizing the log-likelihood of

the whole sequence of observations [for a detailed discussion, see 20, 41],

(
ŵ, b̂, â

)
= arg max

(w,b,a)

T∑
t=1

logP

(
z(t)|f (t)

(
w, b,a,

{
z(t
′)
}t−1

t′=1

))
.
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Score driven models have seen an explosion of interest in recent years due to their flexibility and

ease of estimation. Indeed, many state of the art wildly popular econometric models turn out to be-

long to the family of score driven models. Examples are the Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) model of [42], the Exponential GARCH model of [43], the Autoregressive

Conditional Duration model of [44], and the Multiplicative Error Model of [45]. Moreover, there are

motivations, originating in information theory, for the optimality of the score-driven updating rule [46].

The introduction of this framework in its full generality has been investigated from a theoretical point

of view [41, 46, 47, 48] and opened the way to applications in various contexts 1.

2.2. Definition of the Model

In order to introduce the score driven weighted fitness model, let us describe a sequence of networks

with a set of random variables Y
(t)
ij , one for each link. We propose to use Zero Augmentation to model

separately the probability of observing a link, Y
(t)
ij > 0, and the probability to observe a specific weight

Y
(t)
ij . We prefer Zero Augmentation over censoring, as we believe the former to be much more flexible in

the context of network data. With this choice the probability distribution for the link ij is

P
(
Y

(t)
ij = y

)
=


1− p(t)

ij for y = 0

p
(t)
ij g

(t)
ij (y) for y > 0 .

(2)

where g
(t)
ij (y) is the distribution for the positive continuous weight for link ij, conditional on the presence

of the link.

We then model the binary temporal network and its weights by means of time varying fitness, allowing

also for the dependency on external covariates Xij . In our model the probability of a link to exist is

described by

p
(t)
ij =

1

1 + e−(
←−
θ

(t)

i +
−→
θ

(t)

j +X
(t)
ij βbin)

, (3)

where, for simplicity we consider only one external covariate X
(t)
ij with its own associated parameter βbin,

while in general nothing prevents us to have multiple covariates. With this choice, the log-likelihood for

1Please refer to http://www.gasmodel.com/index.htm for the updated collection of papers dealing with GAS models.
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the single observation
(
Y(t)

)
in (2) is

logP

(
Y(t)|

←−
θ

(t)
,
−→
θ

(t)
, βbin, βw,X

(t)

)
=
∑
ij

(
I
(
Y

(t)
ij

)
− 1
)(←−

θ
(t)

i +
−→
θ

(t)

j + βbinX
(t)
ij

)

− log

(
1 + e

−
(
←−
θ

(t)

i +
−→
θ

(t)

j +βbinX
(t)
ij

))
+ I
(
Y

(t)
ij

)
log g

(t)
ij

=
∑
i

←−
D i
←−
θ

(t)

i +
−→
D i
−→
θ

(t)

i

+
∑
ij

I
(
Y

(t)
ij

)
βbinX

(t)
ij +

←−
θ

(t)

i +
−→
θ

(t)

j + βbinX
(t)
ij

− log

(
1 + e

−
(
←−
θ

(t)

i +
−→
θ

(t)

j +βbinX
(t)
ij

))
+ I
(
Y

(t)
ij

)
log g

(t)
ij ,

where the indicator function I is zero if its argument is less or equal than zero and one otherwise.

We denote the in and out degrees of vertex i at time t respectively as
←−
D i =

∑
j I
(
Y

(t)
ij

)
and

−→
D i =∑

j I
(
Y

(t)
ji

)
. As in the standard fitness model for binary networks, the time varying binary fitness

parameters

(
←−
θ

(t)
,
−→
θ

(t)
)

describe the tendency of nodes at time t to form links, that are not explained

by the external covariate X(t). In order to model the weights of the observed links, we consider a

generalized version of the fitness model where we associate to each node i, at time t, also the parameters

←−η (t)
i ,−→η (t)

i , that we call weighted fitness. They describe the propensity of a node to have more or less

heavy weights in incoming and outgoing links respectively, and are related to the distribution of the

weights of present links g
(t)
ij by

E
[
Yij

(t)|Y (t)
ij > 0

]
= e

(←−η (t)
i +−→η (t)

j +X
(t)
ij βw

)
, (4)

where we considered the dependency on a single external covariate X
(t)
ij and indicated the associated

regression coefficient with βw to distinguish it from the coefficient for the binary part in (3). This choice

of linking the weighted fitness to the mean of the distribution g provides dynamics and heterogeneity

only to one parameter of the conditional distribution, as shown in the following with a concrete example.

The score driven weighted fitness model can be defined for a generic distribution g, for both continuous

and discrete data, as we discuss in Appendix Appendix A. Nevertheless in the following, for concreteness,
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we will focus on the gamma distribution to model links’ weights

gij (y) =
(µij)

−σ
y(σ−1)

Γ (σ)
e
− y
µij ,

where σ is a positive constant. Given a sequence of observed weighted adjacency matrices
{
Y(t)

}T
t=1

,

we denote by f (t) a K dimensional vector, where K = 4 × N , containing all the time varying fitness

parameters
←−
θ

(t)
,
−→
θ

(t)
,←−η (t)

,−→η (t)
. With this notation, the model’s distribution takes the following form

P
(
Y

(t)
ij = y|f (t), βbin, βw, σ

)
=



e
−(
←−
θ

(t)
i

+
−→
θ

(t)
j

+X
(t)
ij
βbin)

1+e
−(
←−
θ

(t)
i

+
−→
θ

(t)
j

+X
(t)
ij
βbin)

for y = 0

(
µ
(t)
ij

)−σ
Γ(σ)−1

1+e
−(
←−
θ

(t)
i

+
−→
θ

(t)
j

+X
(t)
ij
βbin)

y(σ−1)e
− y

µ
(t)
ij for y > 0 .

(5)

with

µ
(t)
ij = σ−1e

(←−η (t)
i +−→η (t)

j +X
(t)
ij βw

)
.

We let the fitness, both binary and weighted, evolve in time, following the score-driven recursive

update rule in (1), that in this case takes the form

f (t+1) = w + bf (t) + aI(t) ∂ logP
(
Y(t)|f (t)

)
∂f (t)′ , (6)

where w, a and b are three K dimensional vectors of static parameters 2. I(t) is a K×K scaling matrix.

Hence, conditionally on the value of the parameters f (t) at time t and the observed adjacency matrix

Y(t), the parameters at time t+1 are deterministic. The element k of the score for the in and out binary

2Hence, in our definition we have three static parameters for each time varying fitness. While in the general formulation
of score driven models [as given, for example, in 19], the parameters b and a are defined as matrices, it is very common to
impose some restriction on them in order to limit the number of parameters to be estimated, as we do here.
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fitness takes the following form

∂ logP
(
Y|f (t), βbin, βw,X

(t)
)

∂
←−
θ

(t)′
k

=
←−
Dk −

∑
j

1

1 + e−(
←−
θ

(t)

k +
−→
θ

(t)

j +X
(t)
kj βbin)

∂ logP
(
Y|f (t), βbin, βw,X

(t)
)

∂
−→
θ

(t)′
k

=
−→
Dk −

∑
i

1

1 + e−(
←−
θ

(t)

i +
−→
θ

(t)

k +X
(t)
ik βbin)

(7)

and does not depend on the choice of g. The element k of the score for the weighted in and out fitness

are

∂ logP
(
Y|f (t), βbin, βw,X

(t)
)

∂←−η (t)′
k

=
∑
j

I
(
Y

(t)
kj

) ∂ log gkj
∂←−η k

=
∑
j

I
(
Y

(t)
kj

)(Y (t)
kj

µ
(t)
kj

− σ

)

∂ logP
(
Y|f (t), βbin, βw,X

(t)
)

∂−→η (t)′
k

=
∑
i

I
(
Y

(t)
ik

) ∂ log gik
∂−→η k

=
∑
i

I
(
Y

(t)
ik

)(Y (t)
ik

µ
(t)
ik

− σ

)
. (8)

In (7) and (8), as scaling matrix we use the Hessian of the log-likelihood.

As any score driven model, our model can be regarded both as a DGP or as a filter of a misspecified

dynamics. When used as a DGP, it describes a stochastic dynamics because, at each time t, the adjacency

matrix is not known in advance. It is randomly sampled from P
(
Y(t)|f (t)

)
and then used to compute

the score that, as a consequence, becomes itself stochastic. When the sequence of networks
{
Y(t)

}T
t=1

is observed, and the model is applied as a filter of the time varying parameters, the static parameters

(w, b, a), that best fit the data, can be estimated maximizing the log-likelihood of the whole time series.

Taking into account that each network Y(t) is independent from all the others conditionally on the

value of f (t), the log-likelihood can be written as

logP

({
Y(t)

}T
t=1
|w, b, a

)
=

T∑
t=1

logP

(
Y(t)|f (t)

(
w, b, a,

{
Y(t′)

}t−1

t′=1

))
. (9)

Then the filtered time varying fitness f̂ (t) are obtained by an iterative application of (6) using as param-

eter values the maximum likelihood estimates (MLEs).

For ease of exposition, so far we introduced a baseline version of our model where the probabilities
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depend on a single external covariate through the scalar βbin and βw. This implies uniform, i.e. equal

across all links, dependency on the covariates. In order to explore node specific dependency on the

external variables, we could easily consider the specification Xij

(
βbini + βbinj

)
, where we associate two

covariate coefficients to each node, one for outgoing links and one for incoming links.

2.2.1. Poisson Distribution for Discrete Weights and Inference from Partial Information

As mentioned before, our method is not restricted to a specific distribution for the weights and we

can easily consider a different specification for gij in (2), instead of the gamma distribution. For example,

in some settings it might be more appropriate to model weights as discrete variables. In this section we

show how we can describe discrete weights by means of the Poisson distribution, defined as follows

gij (y) =
µyije

−µij

y!
y ∈ N.

If we consider a specification without external covariates, hence where µ
(t)
ij = σ−1e

(←−η (t)
i +−→η (t)

j

)
, the log-

likelihood takes the following form

logP
(
Y(t)|f (t)

)
=
∑
i

←−
D

(t)

i

←−
θ

(t)

i +
−→
D

(t)

i

−→
θ

(t)

i +
∑
ij

←−
θ

(t)

i +
−→
θ

(t)

j − log

(
1 + e

−
(
←−
θ

(t)

i +
−→
θ

(t)

j

))

+
∑
ij

I
(
Y

(t)
ij

)
log g

(t)
ij

=
∑
i

←−
D

(t)

i

←−
θ

(t)

i +
−→
D

(t)

i

−→
θ

(t)

i +
∑
ij

←−
θ

(t)

i +
−→
θ

(t)

j − log

(
1 + e

−
(
←−
θ

(t)

i +
−→
θ

(t)

j

))

+
∑
i

(
←−
S

(t)

i
←−η (t)
i +

−→
S

(t)

i
−→η (t)
i −

←−
D

(t)

i e
←−η (t)
i −

−→
D

(t)

i e
−→η (t)
i

)
− log

(
Y

(t)
ij !
)
,

where we defined the in and out strengths as
←−
S

(t)

i =
∑
j Y

(t)
ij and

−→
S

(t)

i =
∑
j Y

(t)
ji , respectively. Inter-

estingly the log-likelihood of the model based on the Poisson distribution depends only on the degrees(
←−
D

(t)
,
−→
D

(t)
)

and strengths

(
←−
S

(t)
,
−→
S

(t)
)

and, apart from the last not essential additive term, does not

depend on the full matrix Y(t). The score of
(←−
θ ,
−→
θ
)

does not depend on the distribution of the weights
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and reads as in (7), while the element k of the score for the weighted in and out fitness is

∂ logP
(
Y|f (t)

)
∂←−η (t)′

k

=
←−
S

(t)

k −
←−
D

(t)

k e
←−η (t)
k

∂ logP
(
Y|f (t)

)
∂−→η (t)′

k

=
−→
S

(t)

k −
−→
D

(t)

k e
−→η (t)
k .

Hence we could use the score driven update and estimate the model only relying on the sequences of

strengths and degrees, ignoring the full matrix Y(t). This has interesting implications as it allows for

a parsimonious implementation of the inference procedure. Indeed, the observations can be compressed

from a sequence of T matrices each with N (N − 1) elements 3 to only 4 sequences of vectors each of

length N , for a total of 4N elements. More importantly, it is not uncommon in practice not to have

access to the full adjacency matrix, but only to the degree and strength sequences. This circumstance is

so relevant that has stimulated an important stream of literature on the reconstruction of networks from

partial information [49, 36, 13, 50]. We do not further investigate this aspect in this paper but leave it

for future research.

3. Numerical Simulations in Misspecified Settings

In this section we discuss the results of extensive numerical simulations 4 that we run to evaluate the

performance of the score driven weighted fitness model as a misspecified filter, i.e. when the true DGP

of the simulated data is not the same as the score driven update rule. This is the typical situation in

practical applications, where the true DGP is unknown.

When modeling a sequence of observed weighted networks with time varying fitness as in Eq. (5),

we compare the score driven update rule to two simple alternative filters. The first one is to specify

the fitness, both binary and weighted, as static. This amounts to consider a zero augmented generalized

linear model, accounting for node specific effects by means of the fitness. The probability of observing

a link is that of the standard fitness model (3), where the parameters
(←−
θ ,
−→
θ
)

do not change for all

time steps T = 1, . . . , T , while the distribution of the weights depends on the constant weighted fitness

3Not considering the diagonal elements that would describe self-loops.
4The python code used for the simulations is available at https://github.com/domenicodigangi/DynWGraphsPaper
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(←−η ,−→η ) such that

E
[
Yij

(t)|Y (t)
ij > 0

]
= e

(←−η i+−→η j+X(t)
ij βw

)
.

The second alternative consists in estimating a static fitness model for each observed snapshot, i.e. at

each time t. This procedure results in a sequence of single snapshot estimates for the fitness, where

clearly the number of parameters to be estimated grows with the number of networks observed. This

sequence of single snapshot estimates provides a filter for the time varying fitness, and has already been

discussed, for the binary case, in [7].

In the rest of this section we compare the score driven weighted fitness model, when appropriate,

with these two alternatives in three numerical experiments.

3.1. Filtering Time Varying Fitness

In our first numerical experiment we focus on filtering the fitness that evolves in time following a

DGP different from the score driven dynamics. Specifically, we assess how accurately the score driven

methodology allows us to filter the fitness when no external covariates are present, and compare it with

the sequence of single snapshot MLEs. Since the focus here in on filtering time varying fitness, we

do not consider the alternative version with constant fitness. In [7] we already carried out a similar

comparison for the binary part of the model and we showed that, for the binary part, the sequence

of cross sectional estimates clearly under-performs the score driven fitness model, both in numerical

simulations and empirical applications. Here we repeat a similar exercise considering also the weighted

fitness.

Specifically, we analyze sequences of networks sampled from Eq. (5) where each fitness, both binary

and weighted, evolves according to an auto-regressive process of order one, f
(t+1)
i = b0 + b1f

(t)
i + ε(t)

where ε ∼ N (0, 0.1) , b1 = 0.98 and b0 is chosen for each parameter in order to sample networks that

resemble a real world realization. We also consider one example of a deterministic DGP where the fitness

evolve in time following a sin function, as shown in Figure 1. In practice, in order to obtain realistic

parameters values for the DGPs, we first estimate the fitness models, both binary and weighted on the

first observation available for the temporal interbank network data that we describe in Section 4.2 5.

Then, we sample time series of 150 observations from the AR(1) processes for each fitness independently.

5The numerical values for the fitness used are available at https://github.com/domenicodigangi/dynwgraphs. We have
checked that similar results hold true using different numerical values for the fitness parameters.
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We use the simulated fitness paths as parameters to sample from the model specification in Eq. (5).

Using only the sequence of sampled matrices as input, with the two methods we filter the time varying

evolution of the fitness. For each fitness we compute the mean squared error (MSE) over the time series

and then average it across nodes, keeping separate the MSE for binary and weighted fitness. Finally, we

repeat the sampling and filtering procedure 50 times and average the obtained MSE across the repetitions.

The results, showed in Table 1, confirm that, also for the weighted fitness, the score driven update rule

Figure 1: Filtered paths for one of the time varying weighted fitness parameters. The path from the true DGP is in black.
The blue dots are the single snapshot estimates, and the red lines the paths filtered with the score driven generalized fitness
model.

DGP AR(1) SIN

Filter SS SD SS SD

Avg. MSE
(←−
θ ,
−→
θ
)

0.36 0.11 0.66 0.04

Avg. MSE (←−η ,−→η ) 0.54 0.25 0.6 0.18

Table 1: Results from the first experiment: MSE of the filtered fitness averaged across all nodes, for both the single snapshot
(SS) and score driven (SD) filters.

is clearly a better choice in filtering misspecified paths for the time varying fitness.

Having established that as a misspecified filter of the fitness, the sequence of single snapshot esti-

mates under-performs the score driven alternative, also for the weighted fitness, let us mention a second

limitation of the single snapshot approach. In the usual empirical setting, only one network realization

is available at each time step. In such a situation, we might not be able to jointly estimate the sequence

of single snapshots estimates and the coefficients βbin, or βw, due to the low number of observations per

parameter. This is the case, for instance, if we consider as covariate a variable that is uniform across all

links i.e. X
(t)
ij = x(t) for all i, j, a case that we consider in the empirical application of Section 4.2. An
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identification issue arises for the single snapshot estimates for both the binary and weighted parameters.

In fact, the probability of the sequence of observations, given the sequence of weighted fitness, remains

unchanged under the following transformation

←−η (t)
i →←−η

(t)
i + c1x

(t), ∀i
−→η (t)
i → −→η

(t)
i + c2x

(t), ∀i

βw → βw + c3,

for any choice of (c1, c2, c3) such that c1 + c2 + c3 = 0, since for each t such a transformation does

not change the sum ←−η (t)
i + −→η (t)

j + βwx
(t)6. Hence, in the model specification with a uniform external

covariate, we cannot identify the parameter of interest βw and this prevents us to use sequences of single

snapshot estimators. With a simple change of notation we can see that the same issue arises for the

binary parameters. We point out that the model with static fitness, that we use for comparison, and our

score driven version, do not suffer from this identification issue, as in both cases the number of static

parameters to be estimated does not increase with the number of time steps observed. For instance, in

the score driven model, the sequence of time varying parameters
(←−η (t)

,−→η (t)
)

for t = 1, . . . , T , is not

estimated directly but follows from the score driven update rule (6) that is uniquely identified given the

sequence of observations and the static parameters (w, b, a). For this reason, in the rest of this section,

we compare the score driven weighted fitness model only with the alternative having constant fitness.

3.2. External Covariates and Omitted Variables Misspecification

We present here two numerical experiments to assess how effective the score driven weighted fitness

model can be in estimating the dependency of the network dynamics on external covariates. We show

that, in synthetically generated datasets, introducing the binary and weighted time varying fitness reduces

errors due to unobserved variables.

Our second experiment is designed to show that the score driven model properly describes the effect

of external covariates, even when the time varying fitness is generated by a misspecified DGP. Moreover it

highlights the importance of taking into account time varying node specific effects. In fact, assuming the

fitness to be constant, when they are actually time varying, results in poor estimates of the dependency

6The need to fix an identification condition in fitness models, even without external covariates, is well known as we
discuss in Appendix Appendix B.
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on external covariates. In order to show that, we consider samples from the model in Eq. (5), where we

let the fitness evolve with the AR(1) DGP of the previous experiment. We also assume that the network

dynamics depends on the realization of two independent, predetermined, external variables, Xbin and

Xw. The first covariate enters the binary part of the DGP

p
(t)
ij =

1

1 + e
−(
←−
θ

(t)

i +
−→
θ

(t)

j +X
(t)
binij

βbin)
,

and the second one influences the expected weights in 5 as follows

µ
(t)
ij = σ−1e

(←−η i+−→η j+X(t)
wij

βw
)
.

We fix βbin = 1, βw = 1 and consider two possible specifications for the DGP of the synthetic external

covariates. In the first one, both external variables are scalar, X
(t)
binij

= x
(t)
bin and X

(t)
wij = x

(t)
w for all

i, j, and follow an AR(1) process equal to the one followed by the fitness in the previous example 7. In

the second specification, we set X
(t)
binij

= I
(
Y

(t−1)
ij

)
and X

(t)
wij = I

(
Y

(t−1)
ij

)
log
(
Y

(t−1)
ij

)
for all i, j. The

latter DGP, due to the explicit dependency of the network at time t from its realization at previous time

t− 1, simulates a temporal network with link persistence, i.e. a higher probability of observing at time

t a link if this was present at time t − 1 and weight persistence, i.e. the weight at time t, if the link is

present, is affected by its weight at time t− 1.

We sample 50 sequences of networks, and external covariates, each of 150 time steps. For each sampled

sequence, we estimate the score driven weighted fitness model maximizing the likelihood of the static

parameters. We then compute the MSE between simulated and estimated values of βbin and βw across

the sample. In order to test the effect of neglecting time varying effects, we repeat the same procedure

for a version of the model with static fitness and report the results in Table (2). It emerges clearly that

not taking into account the dynamics of the fitness can severely deteriorate the estimation of the effect

of external covariates.

In order to motivate our third and last numerical experiment, let us mention that the topic of

estimation errors due to omitted variables has been discussed widely in the econometric literature [51,

52, 30]. The standard approach to mitigate it consists in using control variables. This approach has some

7We set the parameter b0 so that the unconditional mean of the AR(1) process is equal to 1.
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DGP AR(1) Scalar External Regressors Persistent links and weights

Filter Constant Fitness SD Fitness Constant Fitness SD Fitness

MSE βbin 0.14 0.06 0.23 0.02

MSE βw 0.34 0.02 0.18 0.015

Table 2: Results for the second experiment: MSE of the estimated regression coefficients (average over 50 samples). The
fitness dynamics follow an AR(1) process. Two columns on the left: external regressors are scalar and follow two AR(1)
processes. Two columns on the right: regressors induce a persistent dynamics in both links and weights.

known downsides [refer for instance to 53, 54, 55] and, most importantly, it is not always viable since the

data on appropriate controls might not be available. Indeed, this is very common for financial networks,

as the one that we consider in Section 4.2, where the variables that one would like to use as controls are

likely to be privacy protected and often unavailable to researchers. Considering, for example the case

of interbank networks, we could very well expect the current leverage of a bank to have a significant

influence on the decision to borrow or lend, i.e. create interbank links. Nevertheless it is very unlikely

for this information to be available, at the frequency required. This issue is even more frequent when

the datasets are anonymous, and the identity of the nodes is not known. For these reasons, in the third

experiment we show that allowing the fitness to vary in time is extremely beneficial to mitigate the

errors due to omitted variables, at least in the context of controlled numerical simulations. We assume

the network dynamics, both of the links and of the weights, to be determined by two external covariates.

We then assume that, for whatever reason, only one of them is observed. Specifically the considered

DGP is similar to the one in Eq. (5) but with parameters defined as

p
(t)
ij =

1

1 + e−(β1,binx
(t)
1 +β2,binx

(t)
2 )

,

and

µ
(t)
ij = σ−1e

(
β1,wx

(t)
1 +β2,wx

(t)
2

)
.

We assume that x
(t)
2 is not observed and assess the effect of omitting it when estimating the coefficients

βbin1
and βw1

. We show that the score driven fitness compensates the impact of the neglected variable

on the estimates. The external variables x
(t)
1 and x

(t)
2 are independent and follow an AR(1) model with

high persistence, b1 = 0.98. We sample the DGP and estimate the coefficients 50 times for a sequence

of networks 150 time step long. We then compare the MSE for the estimates of parameters β1,bin and
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DGP No Fitness and two regressors

Filter No Fitness Constant Fitness SD Fitness

MSE βbin1 5.66 0.53 0.01

MSE βw1
133 0.39 0.08

Table 3: Misspecified filtering of a DGP with two covariates and no fitness. First column: MSE for the estimates of βbin1

and βw1 , when no fitness is used (average over 50 samples). Second column: MSE for estimates with constant fitness.
Third column: MSE using a model with score driven fitness.

β1,w, obtained using three different specifications of the model in (5): one without node heterogeneity,

hence no fitness, where the probability of observing a link depends only on the observed covariate. The

second is a model with constant fitness a the model with score driven fitness and the third uses the

observed external covariate. From the results that we report in Table (3), it follows that considering

a model with time varying fitness is extremely beneficial when the DGP is misspecified and does not

feature node specific effects. We believe that the results presented in this section strongly support the

choice to describe temporal weighted networks by means of time varying fitness. Moreover, they give us

clear insights to interpret the results of Section 4, where we find a clear advantage, in terms of goodness

of fit, in using the score driven weighted fitness model to describe the empirical data.

4. Link and Weight Dynamics in the Italian e-MID

We apply our model to the interbank overnight loans market described as a temporal weighted

network. Interbank markets are an important point of encounter for banks’ supply and demand of extra

liquidity, and have received much attention in the literature [see 56, for a review]. In particular, e-MID

has been investigated in many papers [see, for example 57, 58, 6, 59, and references therein]. We use

data from the e-MID, a market where banks can extend loans to one another for a specified term and/or

collateral. Our dataset contains the list of all credit transactions in each day from June 6, 2009 to

February 27, 2015. In our analysis, we investigate the interbank network of overnight loans, aggregated

weekly. The standard approach in the literature to model temporal interbank networks is to disregard

the size of the exposures and consider only the presence or absence of links, i.e. to consider only the

binary network. Thanks to the flexibility of the score driven weighted fitness model, we are able to take

into account and explicitly model the strength of the links. We consider a link from bank j to bank i

as present at week t if bank j lent money overnight to bank i, and the associated weight as the total
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amount lent over that period. This results in a set of T = 298 weekly aggregated weighted networks.

For a detailed description of the dataset, we refer the reader to [59].

Figure 2: Left panel: number of links present in the data at each time step. Right panel: average weight in Millions of
Euro of the present links.

As it is evident from the left panel of Figure 2, the number of links in e-MID is significantly lower in

the second half of the dataset. In particular it started declining in 2011, most likely as a consequence

of the European sovereign debt crisis and of the ECB unconventional measures, namely the long term

refinancing operations (LTROs) that took place on the 22nd of December 2011 and on the 29th of

February 2012 (see [59] for an in-depth discussion). The number of links then fluctuated around a new

lower level since the beginning of 2012. As discussed in [59], the decreased number of links corresponds

to a lower number of banks being active in the market. Both the network density 8 and the average

weight of present links has not followed a similar clear transition to a different level.

4.1. Link and Weight Prediction

As a first empirical application, we explore the possibility of using our approach to predict the presence

of future links and the value of their weights. The problem of link prediction in temporal networks is

extremely relevant in practical applications and has been discussed widely in the literature on binary

networks [60, 61, 62, 63]. It can be defined in multiple ways depending on the context, the type of data

at hand, and whether we want to predict the existence of a link in a partially observed network or the

presence of a link in a future network. We focus on the latter case that is often referred to as temporal

8Number of links present divided by the number of possible links, given the number of active banks.
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link prediction. On the other hand, the prediction of weights in weighted temporal networks has received

much less attention so far mainly due to the lack of models suited to describe both links and weights.

For this reason, here we run an exercise using the full dataset described in the previous section and focus

on forecasting the weights of the network at time t+ 1, using only a subset of the information available

at time t. This means that, when forecasting observations at time t+ 1, we use only observations from

t − Ttrain to t for training, extremes included. This is very much in line with what we did in [7], with

the important difference that there we only considered binary link prediction, i.e. the sole prediction of

links’ presence. For a detailed discussion of how to employ the binary component of our model for the

link prediction, we refer the reader to our previous work.

Our first goal is to assess how effective can a model with time varying fitness in Eq. (5) be in

forecasting the weights and to benchmark the proposed score driven approach against an alternative

model. To this end, we compare the forecasts obtained using two methods, both based on Eq. (5)

and differing only in their dynamics for the fitness. The first approach uses the score driven model to

forecast the fitness at time t + 1 with the update rule of Eq. (6). This is very easy to do in practice

since, as mentioned in Section 2.2, the score driven fitness at time t + 1 are deterministic conditionally

on the observations at time t. The second approach is a combination of the sequence of single snapshot

estimates, described at the beginning of Section 3, and a set of AR(1) models, one for each fitness. In

the latter approach, we first obtain the sequence of single snapshot estimates on the training set and

then use them to estimate an AR(1) process for each fitness. Then, we use the estimated AR(1) models

to forecast one value of the fitness at time t + 1. Practically, we repeatedly estimate the two models

on rolling windows of length Ttrain = 100 time steps and, once for each estimate, we forecast the first

out-of-sample observation for each train window. We then compare the weights of present link at time

t+1 with the expected values obtained from the two models and quantify the error by the mean squared

error between the logarithms of observed and predicted weights

MSE Log. =

∑
ij I
(
Yij

(t+1)
)(

log

(
E
[
Yij |←̂−η

(t+1)
, ←̂−η

(t+1)
])
− log

(
Yij

(t+1)
))2

∑
ij I
(
Yij

(t+1)
) ,

where ←̂−η
(t+1)

and ←̂−η
(t+1)

are the forecasts for the in and out weighted fitness, obtained using only
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observations up to time t. Similarly we compute the mean absolute difference (MAD)

MAD Log. =

∑
ij I
(
Yij

(t+1)
) ∣∣∣∣log

(
E
[
Yij |←̂−η

(t+1)
, ←̂−η

(t+1)
])
− log

(
Yij

(t+1)
)∣∣∣∣∑

ij I
(
Yij

(t+1)
) .

We compare the logarithms of predicted and observed weights because the distribution of observed

weights is quite heterogeneous. It roughly spans five order of magnitudes, and directly comparing the

weights would result in a measure of goodness of fit mainly describing the fit of the largest weights 9.

Method SD SS - AR(1) Diebold-Mariano (p-value)

MSE Log. 0.859 0.882 1.73× 10−7

MAD Log. 0.726 0.737 1.21× 10−7

Table 4: Weight prediction exercise: MSE and MAD between the logarithms of observed and predicted weights. First and
second columns: results from the score driven (SD) model and the approach based on single snapshot estimates and AR(1)
processes ((SS) - AR(1)), respectively. Third column: p-values of a Diebold-Mariano test for the null hypothesis that the
two forecasts are equivalent.

From the results reported in Table 4 we conclude that, similarly to the binary case, the score driven

approach is a better choice to predict the weights with respect to a prediction based on sequence of single

snapshot estimates, both in terms of MSE and MAD for the logarithms. The Diebold-Mariano [64, 65]

test rejects the null hypothesis that the two forecasts are statistically equivalent.

4.1.1. Comparison With Link Specific Regressions

Among the models for weighted temporal networks reviewed in Section 1.1, [5] is the most relevant

reference for the current work. Authors run a forecasting exercise on an interbank network of overnight

loans. Differently from our case, they focus on the sterling interbank market that is very dense and

somewhat small, when compared with the e-MID dataset. This is due to the structure of the UK

interbank market that they consider. Indeed the fraction of links present at every time step for the

full temporal network is always above 40%, while in our data it is typically equal to 6%. Furthermore,

[5] run a weight forecasting exercise restricted to the sub-network composed by the 4 largest banks in

the system, thus increasing the density of the actual considered network. They propose to model each

link by means of a Tobit regression estimating the parameters with a local likelihood approach. Aside

9Similar results hold using measures of relative error for the comparison between predicted and observed weights.
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Model Ttrain MSE Log. MAD Log. AUC

Localized Tobit 100 2.351 1.067 0.714
ZA Regression 100 2.785 1.240 0.830
Localized Tobit 200 2.267 1.043 0.795
ZA Regression 200 2.912 1.282 0.867
SD Generalized Fitness 100 0.859 0.726 0.896

Table 5: Results of the link and weights prediction exercise on e-MID data. We compare the Localized Tobit model of [5]
with a simple Zero Augmented regression that uses the same regressors. We also report the results of running the same
exercise with the score driven generalized fitness model.

their methodological contributions, a key element of their work is the accurate selection of regressors to

capture relevant network properties that are expected to influence the future network structure. They

design a set of simple functions of the network at the previous time step and use them as regressors.

Specifically, for the link going from bank i to bank j, they consider as regressors the weight of that same

link at the previous time step (lagged) plus the following quantities

• lagged total daily amount lent by i to all other banks except j ;

• lagged total daily amount borrowed by j from all other banks except i ;

• lagged total daily amount lent by j to all other banks except i ;

• lagged total daily amount borrowed by i from all other banks except j ;

• lagged total daily lending and borrowing not involving either i or j.

Here the goal is to compare their approach to link forecasting with ours, in an application to the e-MID

data introduced in the previous sections, and investigate the reasons of different performances in links

and weights prediction. In order to guide our intuition, in the following we also consider a version of their

regression based on a simple Zero Augmented approach instead of the censoring that defines the Tobit

approach. For the sake of simplicity, in this third approach, we separately consider a logistic regression

on the binary part and a linear regression for the weights, both estimated with a standard, non local,

maximum likelihood approach. As before we repeatedly estimate the models on rolling windows of length

Ttrain and report the results in Table 5. It emerges clearly that the score driven generalized fitness model

achieves better results in forecasting both links and weights, for the dataset that we considered, with

respect to the localized Tobit regression of [5]. We believe this result to be mainly driven by two factors.

The first one is that the Tobit model uses censoring to assign a finite probability to zero observations,
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i.e. missing links. Thus, the probability of observing a link and the expected values of the weights are

modelled by the same set of parameters. In contrast, the generalized score driven fitness model employs

zero augmentation to separately model the probability of observing a link and the expected weight of

present links. Indeed, this intuition is confirmed by looking at the performances of the simple Zero

Augmented regression, that significantly improves the prediction of the existence of links – as assessed

by the area under the curve (AUC) measure – but achieves slightly worst performances on predicting the

weights of existing links with respect to the local likelihood Tobit. We empirically found the performances

of both models to deteriorate significantly for the links that are rarely observed in the training set. In

fact, as we show in Figure 3, both the out-of-sample log-MSE and AUC deteriorate when computed for

subsets of links with a low fraction of non zero observations in the training set. Interestingly, the log MSE

of the ZA regression seems to be monotonically decreasing when the density in the training set increases,

while the Tobit regression does not. We interpret this as an additional indication of the advantages in

separating the modelling of links’ presence from their expected weight.

Figure 3: Out-of-sample Forecast accuracy as a function of the density in the training set for the models based on link
specific regressions. Each line is obtained by averaging the log MSE (top panel) and the AUC (bottom panel) over rolling
subsets of 1000 links sorted by the fraction of non zero observations in the training sample.
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The second factor is that approaches based on running one regression for each link are extremely

over-parametrized. They require the estimation of a large number of parameters that scales with the

number of links (N (N − 1)), as opposed to our approach which requires the estimation of 6 parameters

per each node, thus scaling as N . While the idea of running a separate model for each link has clear

advantages for parallelizing the execution, such a high number of parameters can result in overfit and

poor out-of-sample generalization, when the dataset at hand does not allow for a large number of time

steps to be used in training. Indeed we corroborate this intuition by noting that the results of both

the localized Tobit and the Zero Augmented regression improve if we consider a training set of 200 time

steps, instead of one of 100 (see the third and fourth lines of Table 5).

4.2. The Effect of Interest Rates on Interbank Lending

In this section, by means of the score driven model, we investigate the effect of interest rates on the

dynamics of the interbank network data introduced above. To track average interest rates, we use the

EONIA benchmark. EONIA “is a measure of the effective interest rate prevailing in the Euro interbank

overnight market. It is computed as a weighted average of the interest rates on unsecured overnight

contracts on deposits denominated in Euro, as reported by a panel of contributing banks” 10.

Intuitively we expect that banks’ funding rates and the topology of the interbank market are deeply

related. This relation is of clear interest from the point of view of policymakers and has received much

attention in the literature [see, for instance, 27, 66, 67, 68, 28]. Of particular relevance for the results

discussed in this section is the work of [27] that investigated the effects of banks’ characteristics and

the conditions of the network as a whole on the interest rates that each bank faces on the interbank

market. They exploited a remarkable dataset, obtained from Norges Bank real time gross settlement

system, that allowed them to model bank specific interest rates as dependent on a set of variables and

controls, including overall market’s liquidity. From basic supply and demand reasoning one would expect

that excess liquidity in the market would have a negative pressure on the interest rates on average, and

indeed they found that interest rates tend to be lower when the overall liquidity available on the market

is higher.

A second relevant work for the purposes of this section is [28], where authors considered data on the e-

MID interbank market for a period ranging from the beginning of 2006 to the end of 2012, focusing solely

10Definition from https://stats.oecd.org/.

25

https://stats.oecd.org/


on the binary part of the daily temporal network of overnight loans. They computed various aggregated

network statistics for each time step, thus obtaining one univariate time series for each statistic. Among

other quantities, they computed the density of each network – defined as the number of connections as a

proportion of all possible connections – and, using a standard linear regression, found it to be positively

related with EONIA.

In the following, we explore the impact of interest rates on the probability of observing each link

and on the expected weight of observed links by applying the score driven weighted fitness model to

the e-MID dataset, using as external covariate the EONIA rate. For our estimates, we use a training

set comprising the first 80% of time steps and left the last 20% to assess goodness of fit out-of-sample.

Moreover, similarly to what done in the numerical simulations discussed in Section 3, we compare the

score driven time varying fitness with two alternative specifications: a model without fitness and one

with constant fitness, as defined in Section 3, both with EONIA as the only external variable. We then

compare their goodness of fit both in-sample and out-of-sample. In Table 6 we show the results that

clearly confirm the importance of including time varying fitness to improve goodness of fit. We report

the Bayesian Information Criterion (BIC) for each model, computed separately for the likelihood of

observing links and the likelihood of their weights, to compare goodness of fit in-sample. The binary

and weighted parts of each model are evaluated separately out of sample. We quantify out of sample

accuracy in predicting link’s presence by means of the AUC, while for the weights we compute the MSE

of the logs of the weights, only for the present links. Since the model without fitness is clearly not a good

Model No Fitness Constant Fitness SD Fitness

BIC Bin 1.75× 106 0.53× 106 0.45× 106

BIC Weight 1.90× 106 1.46× 106 1.46× 106

AUC - Test Set 0.48 0.82 0.92

MSE Log. - Test Set 58.15 1.01 0.78

Table 6: EONIA effect on e-MID: in sample BIC, for both the binary and weighted part of model (5), AUC for the out of
sample evaluation of the binary part, and the MSE of the logarithms for the out of sample evaluation of the weighted part.
First and second columns: results for a model without and with constant fitness, respectively. Third column: score driven
fitness.

fit for the data we do not discuss it further, and in Table 7 we report the estimated regression coefficients

using the models with constant and score driven fitness. The model with score driven fitness is clearly

the best fit for the data, both in sample and out of sample, as measured by the metrics reported in

26



Model Constant Fitness SD Fitness

βbin 0.69± 0.06 0.29± 0.05

βw 0.022± 0.029 −0.13± 0.02

Table 7: EONIA effect on e-MID. Estimates of the regression coefficients using models with constant or score driven fitness.

Table 6. Moreover, the parameters estimated by the score driven fitness model are always statistically

significant while the βw estimated from the constant fitness model is not. We interpret this discrepancy as

a sign that disregarding the fitness dynamics can lead us also to miss-guided qualitative interpretations,

consistently with the numerical results discussed in Section 3.2.

From the estimate βbin = 0.29±0.05, we can deduce that, in the considered period, the probability of

observing a link in the network is positively related with the interest rates, hence the lowering of interest

rates tends to reduce the overall market interconnectdness, even taking into account bank specific effects

captured by the fitness. This result is coherent with the relation between network density and EONIA

found in [28], although the approach based on standard regression on aggregated network statistics is

different from ours. In fact, thanks to the time varying binary fitness in our model, the estimated effect

of EONIA is decoupled from bank specific effects that are instead accounted for by the fitness. Such a

separation of bank specific effects from the impact of a covariate is instead not possible when considering

the density of the whole network as done in [28].

For what concerns the effect on the liquidity exchanged through the observed links, i.e. the links’

weights, the estimated βw = −0.13 ± 0.02, indicates that the weight of the observed overnight loans is

negatively related with the average interest rate in the market. Our result is coherent with the work [27]

on the Norwegian interbank market, but our methodology allows us to explore a different aspect of

the relation between liquidity and interest rates. In fact, that result regards the relation between bank

specific rates and aggregated liquidity, while we explore the relation between average rates on the market

and the weight of present links, controlling for time varying bank specific effects by means of the time

varying fitness. Thanks to zero augmentation and separate modelling of links and weights, our finding is

directly related with the average magnitude of the overnight loans that are actually present, more than

with the total liquidity in the market. In summary, the data considered indicate that lower interest rates

are related with a reduction of network interconnectdness but an increase of the average liquidity flow

for the loans that are present.
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Finally, we mention that, as we show in Appendix Appendix C, if we do not include EONIA as

external covariate the dynamical fitness tend to correlate with it. This corroborates the fact that the

estimated coefficients are found to be statistically significant.

We point out that our results on the relation between the dynamics of the e-MID interbank network

and EONIA are obtained leveraging the full information available in the description of a temporal network

as a temporal sequence of matrices, and considering the impact of the covariate both on the probability of

each individual link and the expected weight of observed links. Differently from [27] and [28], we do not

need to collapse the matrices into a single network statistic to estimate the effects of external variables.

We directly use matrix valued network data and, thanks to the time varying latent fitness parameters, we

can decouple the impact of EONIA from unobserved time varying node specific effects. The advantage of

using matrix valued network data will become even more evident in the next section where we consider

link specific covariates and carry out an analysis that would be impossible with standard regression

methods on univariate network statistics.

4.3. Link and Weight Persistence

As a final application, we use our model to contribute to the literature on the persistence in interbank

networks [69, 70, 29, 6] by exploring both the persistence of links and that of the weights. The existence

of privileged lending relations between pairs of banks is a well known phenomenon and it is often referred

to as preferential trading [69]. The motivations behind it can be explained by the relevance of strong

lending relationships between banks as a way to overcome monitoring of creditworthiness and limit the

risk of counter-party default [70]. The existence of preferential trading behaviours has been assessed

quantitatively by means of statistical methods specifically developed for the purpose [29], in the case of

binary networks. Additionally, models for binary temporal networks have been proposed that explicitly

take it into account [6].

In this section we exploit the flexibility of our model and estimate the effect of two predetermined

covariates that are meant to capture the persistence of links and weights. For what concerns link

persistence of the binary network, we explore how the presence of a link at time t − 1 influences the

probability of observing a link at time t. That amounts to use I
(
Y

(t−1)
ij

)
as covariate in Eq. (3).

To assess persistence in the links’ weights, we estimate the effect of the weight of a link at t − 1 in

determining its weight at time t by using log
(
Y

(t−1)
ij

)
as covariate in Eq. (4). Let us recall that we have

tested numerically the possibility to estimate such effects in synthetically generated data in Section 3.
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As in the previous section, we compare three models, a model without fitness, one with constant fitness,

Model No Fitness Constant Fitness SD Fitness

βbin 0.064± 0.038 2.875± 0.045 2.048± 0.045

βw 1.050± 0.003 0.073± 0.002 0.064± 0.002

BIC Bin 5.66× 106 4.46× 106 4.16× 106

BIC Weight 2.61× 106 1.45× 106 1.45× 106

AUC - Test Set 0.748 0.882 0.932

MSE Log. - Test Set 21.22 0.90 0.76

Table 8: Results on estimates of link persistence in e-MID. One column for each one of the three alternative model
specifications. In the third and fourth rows, we show the in sample BIC for the binary and weighted parts of the model in
(5), respectively. The last two rows are out of sample measures of goodness of fit. The fifth one is the out of sample AUC
for the binary part. The last row is the out of sample MSE of the logarithms of the weights.

and the score driven fitness model, all using the same external covariates and two scalar coefficients, βbin

and βw that quantify the persistence of links and weights respectively. The results in Table 8 confirm

that neglecting node specific time varying effects results in worst fitting of the data. This is evident by

looking at the superior performances, both in-sample and out-of-sample of the models with score driven

fitness, with respect to those without or with constant fitness. The three model specifications all result

in positive coefficients both for the binary and the weighted covariates. With the best performing model

among those three, the model with score driven fitness, we estimate βbin = 2.048± 0.045. This indicates

that globally the presence of a link at time t−1 positively impacts the probability of observing that same

link at time t. This is in agreement with the current consensus in the literature, supporting preferential

trading behaviours in e-MID, that has been validated empirically only on the binary part of temporal

interbank networks, for example by [29] and [6]. The novel aspect of our analysis lays in the estimated

βw = 0.064 ± 0.002, that highlights a weight persistence effect. This result complements the analysis

of [29], as they considered the weighted networks of the number of loans between each pair of banks,

neglecting altogether the amount lent for each loan. By design, our model allows us to highlight the

tendency of banks to form links whose weight is positively related with the weight at previous steps, a

tendency that we might refer to as weight persistence.
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5. Conclusions

In this work, we proposed a model for the description of sparse and weighted temporal networks

that extends the well known fitness model for static binary networks. In the new score driven weighted

fitness model, we also model links’ weights with an additional set of fitnesses. Both binary and weighted

fitness follow a stochastic dynamics driven by the score of the conditional likelihood. Additionally, we

also considered the possibility for the network dynamics to depend on a set of external covariates.

Our numerical simulations proved the advantages of the score driven fitness over static fitness and

over a sequence of standard cross sectional estimates. As an empirical application, we investigated the

determinants of the dynamics of links and weights in the e-MID interbank network. We proved that there

is a significant advantage in using score driven time varying parameters to forecast weights, with respect

to single snapshot estimates. We exploited the flexibility of the new model to estimate the impact of

the EONIA rate in determining the links and weights dynamics. We used it to inform the discussion on

persistence in interbank networks providing empirical evidence of weights’ persistence.

We run an empirical analysis on the prediction of links and weights that highlighted the superior

performances of our approach with respect to alternatives based on single snapshot estimation and link

specific regressions. Most notably, for the dataset that we considered, we found our model to attain clearly

superior performances with respect to the local likelihood Tobit model by [5]. In short, we believe this

to be a direct consequence of our modelling choices that allow for a flexible description with a moderate

number of parameters. Specifically, using zero augmentation we describe separately the probability of a

link to exist and its expected weight, and leveraging the score driven approach we only need to estimate

order N parameters instead of N2.

Our work provides several perspectives for future research. First, the possibility to jointly model and

predict the presence of a link and the associated weight could find relevant applications in the financial

stability literature. Weighted financial networks are known to be among the determinants of systemic

risk and their dynamical description has so far neglected the role of the weights. Second, score driven

weighted fitness model could be applied on multiple instances of real world sparse and weighted temporal

networks, where the standard approach of ignoring the weights might result in significant information

loss. Finally, we plan to investigate the temporal evolution of the community structure of real world

networks. Community detection has attracted an enormous amount of attention in various streams of

literature [71], in particular in the context of temporal networks [72]. We believe that the score driven
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fitness approach could provide a flexible modeling framework and offer valuable support to assess the

degree of persistence of a given partition of nodes into groups.
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Appendix A. Alternative Distributions for the Weights

In the main text, we employed the gamma distribution to model the links’ weights. It is extremely

easy to move to different specifications. If, for example, we consider the log-normal distribution, we can

substitute its parametric form

gij (y) =
1

yσ
√

2π
e
−(ln y−µij)

2

2σ2

in place of the gamma distribution, and obtain a different update equation for the time varying param-

eters. The fitness would be driven by the score of the log-normal

∇i
(
Y(t),←−η ,−→η , σ

)
=
∑
j

 1

σ2
log

E
[
Y

(t)
ij |Y

(t)
ij > 0

]
Y

(t)
ij

− I (Yij)

 .

Indeed, extending our approach to different specifications is practically straightforward. The interested

reader would only need to compute the log-likelihood, sample from the distribution, and compute the

score and scaling matrix. Conveniently the log-likelihood and sampling methods are already available

for many distributions in PyTorch [73], upon which we built the core library for this work available at

https://github.com/domenicodigangi/dynwgraphs.

Appendix B. Fitness Identification

It is easy to see that, as for the static version, the fitness parameters of the fitness model for a directed

network are not identified. This fact is well known for the binary fitness model [25] and remains true

for the weighted fitness that we consider here. Let us indicate here with ←−ϕ and −→ϕ the vectors of in and

out fitness respectively, without specifying whether they are binary or weighted. With this notation it
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is immediately clear that the following transformation

←−ϕ i →←−ϕ i + c, ∀i
−→ϕ i → −→ϕ i − c, ∀i

does not change the sum ←−ϕ i + −→ϕ j + βXij and leaves the probability distribution unchanged, for any

c ∈ R. The parameters are not uniquely identified and, in order to compare estimates across different

time steps, we need to impose an identification restriction, as commonly done in the literature [25, 6].

In this work we require that ∑
i

←−ϕ i =
∑
j

−→ϕ j ,

at each time step.

Appendix C. Filtered Fitness Dynamics Wwith External Covariates

Here, we inspect the dynamical behaviour and the role of the fitness filtered with the score driven

weighted fitness model, defined in Section 2.2, in presence of external covariates. In particular, we discuss

how the dynamical evolution of the filtered fitness changes when we consider the dependency on EONIA,

estimated as described in Section 4.2, with respect to the case of no covariate.

To this end, for a subset of the most active links 11, we compute the sum of the in and out fitness

corresponding to their probabilities, and expected weights. For example, for link (i, j) we consider
←̂−
θ i +

−̂→
θ j and ←̂−η i + −̂→η j . We compute these quantities using two sets of filtered fitness. The first set is

obtained by estimating and running the score driven weighted fitness model as a filter without considering

any external covariate, similarly to what we did in Section 4. The second set is obtained with a similar

approach, now including in the model specification also the dependency on EONIA, exactly as in Section

4.2. Then, given these two sets of fitness sums we look at their Spearman rank correlation [74] over time

with EONIA, thus obtaining four correlations for each considered link: for each of the two sets of filtered

fitness (with and without EONIA as covariate) we have one correlation for the binary fitness and one

for the weighted fitness. We consider the sum of fitness because, as it is evident from (3) and (4), they

are related to the probability of observing a link and to the expected weight of that link. Moreover,

11We consider the links that are present at least 5% of the weeks.
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given that the EONIA rate had a substantial drop around the middle of 2012, as showed in Figure C.4,

in computing the correlation with the sums of fitness we split the data set in two periods and consider

them separately.

Figure C.4: Weekly average of EONIA rate over the considered time period.

The plots shown in Figure C.5 highlight the different behaviour of the fitness, with respect to EONIA,

when the latter is explicitly considered as an external covariate. We notice that in the first period, i.e.

when EONIA rates are higher, the correlation between the fitness sums and EONIA are significantly

different when we include EONIA as covariate or we do not. To statistically confirm the difference we

run a Kolmogorow-Smirnov test having as null hypothesis the fact that the two distributions are identical.

In the first period, the null hypothesis is rejected at 5% confidence level for both the binary and weighted

part. In the second period instead, we cannot reject the hypotheses that the two distributions are the

same. Hence the relation of the fitness with EONIA in the second period does not seem to be affected

by whether the latter is explicitly included or not as external covariate.

We believe that the tendency of the dynamical fitness to correlate with EONIA, when the latter is

not considered explicitly as an external variable, corroborates the fact that the estimated coefficients are

found to be significantly different from zero.
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Figure C.5: Distribution of the Spearman correlation between the fitness sums and EONIA computed in two periods. The
first period ranges from the beginning of the sample up to 15/07/2012, the second one from 22/07/2012 to the end of the
sample. Left panels: correlations computed for the first period; right panels: correlations computed in the last period. Top
panels: correlations between EONIA and the sums of binary fitness; bottom panels: correlations with the weighted fitness.

In order to better understand this behaviour we repeated the same analysis artificially modifying the

regression coefficients before filtering the fitness. We keep everything equal except the values of βbin and

βw. Instead of their MLE values, we now artificially set the values to βbin = 3 and βw = 3 in Figure C.7

and βbin = −3 and βw = −3 in Figure C.6. In practice, we change the regression coefficients and then

filter the time varying fitness using the score driven update rule. We notice that, when the regression

coefficient is artificially inflated, see Figure C.7, the fitness sums tend to negatively correlate with EONIA.

While, when we force the coefficients to be negative, the fitness positively correlate with EONIA. In both

cases the filtered fitness behaviour tends to mitigate the impact of the spurious regression coefficients.

These effect is more evident in the first period than in the second, as expected due to the higher values

of EONIA.
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Figure C.6: Similar plots as in Figure C.5, now repeated after forcing the values of the regression coefficients to βbin = −3
and βw = −3.
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Figure C.7: Similar plots as in Figure C.5, now repeated after forcing the values of the regression coefficients to βbin = 3
and βw = 3.
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