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Abstract

Momentum methods, including heavy-ball (HB) and Nesterov’s accelerated gradient (NAG),
are widely used in training neural networks for their fast convergence. However, there is
a lack of theoretical guarantees for their convergence and acceleration since the optimiza-
tion landscape of the neural network is non-convex. Nowadays, some works make progress
towards understanding the convergence of momentum methods in an over-parameterized
regime, where the number of the parameters exceeds that of the training instances.
Nonetheless, current results mainly focus on the two-layer neural network, which are
far from explaining the remarkable success of the momentum methods in training deep
neural networks. Motivated by this, we investigate the convergence of NAG with con-
stant learning rate and momentum parameter in training two architectures of deep linear
networks: deep fully-connected linear neural networks and deep linear ResNets. Based
on the over-parameterization regime, we first analyze the residual dynamics induced by
the training trajectory of NAG for a deep fully-connected linear neural network under
the random Gaussian initialization. Our results show that NAG can converge to the
global minimum at a (1 − O(1/

√
κ))t rate, where t is the iteration number and κ > 1

is a constant depending on the condition number of the feature matrix. Compared to
the (1 − O(1/κ))t rate of GD, NAG achieves an acceleration over GD. To the best of
our knowledge, this is the first theoretical guarantee for the convergence of NAG to the
global minimum in training deep neural networks. Furthermore, we extend our analysis
to deep linear ResNets and derive a similar convergence result.
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1. Introduction

Deep learning has achieved great empirical success in various areas, such as image
classification [1], natural language processing [2] and game playing [3]. In practice, they
often involve networks with stacked layers, whose depth vary from 16 [4] to 96 [5] and
even more. Typically, deep neural networks are trained using first-order methods, which
only exploit the objective values and gradients. Gradient descent (GD) is the most well-
known first-order method, whose history can be dated back to the XIX century [6]. Later
on, various variants of GD have been developed by adding momentums to improve its per-
formance, such as heavy-ball (HB) [7] and Nesterov’s accelerated gradient (NAG) [8]. In
practice, NAG is widely used in training neural networks and attains faster convergence
over GD [9, 10]. Moreover, it has been the default momentum scheme implementing
in many popular deep learning libraries such as PyTorch [11], Keras [12] and Tensor-
Flow [13].

Despite the fact that the optimization problem for training neural networks is non-
convex, first-order methods are capable of achieving near-zero training loss [14]. However,
there is a lack of theoretical guarantees for gradient-based methods to find the global
minimum for non-convex problems [15]. Recently, some progress has been achieved via
analyzing the optimization landscape of the neural network [16, 17, 18, 19, 20]. But
these works do not provide the convergence results. In addition to the landscape anal-
ysis, some works aim at studying the training trajectory of GD for a two-layer neural
network in an over-parameterized regime [21, 22, 23], where the number of parameters
is larger than that of training instances. [24, 25] further showed that GD converges to
the global minimum for training deep linear fully-connected neural networks with differ-
ent initialization schemes. Nonetheless, these results are limited to GD, and momentum
methods are rarely explored except three works [26, 27, 28]. Wang et al. [28] showed that
HB converges to the global minimum in training over-parameterized neural networks.
The other two works [26, 27] provided the convergence results of NAG on the two-layer
neural network, which is far from explaining the remarkable success of NAG in training
deep neural networks.

In this work, we extend and generalize the existing analysis of NAG in training
the two-layer neural network to deep linear networks, including deep fully-connected
linear neural networks and deep linear ResNets. Although deep linear networks have
simple frameworks, their optimization landscapes are high-dimensional and non-convex.
Meanwhile, the deep linear neural has a layered structure. These features are similar to
deep non-linear networks, leading to increased interest in characterizing their properties.
As a result, analyzing the deep linear network will be helpful in providing insights into
understanding deep non-linear networks. Our work is inspired by recent advances in
deep linear neural networks [24, 28, 29]. The main technical challenge lies in analyzing
the residual dynamics induced by the training trajectory of NAG. Our contribution can
be summarized as follows:

1. We first establish the convergence of NAG in training an L-layer fully-connected
linear neural network under the random Gaussian initialization. Specifically, uti-
lizing the gram matrix defined on the feature matrix and the parameters of the
network, we derive the corresponding residual dynamics. When the width of the
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neural network satisfies m = Ω̃(L)1, with high probability, we show that the resid-
ual error of NAG can reach zero at a (1−O(1/

√
κ))t rate, where t is the iteration

number and κ = O(‖X‖2/σ2
min(X)) > 1 (X is the feature matrix). Compared to

the convergence rate (1−O(1/κ))t of GD [24], NAG achieves an acceleration over
GD.

2. Based on the same analysis framework, we extend the convergence result to the
deep linear ResNet. We demonstrate that NAG can achieve convergence to the
global minimum at a similar rate as the result of the deep fully-connected linear
neural network, where the corresponding convergecne rate is also faster than that
of GD as proved in [29]. Moreover, the requirement of the width m for the deep
linear ResNet has no dependence on depth L.

To the best of our knowledge, this is the first theoretical convergence and acceleration
guarantee for NAG in training deep linear neural networks, which may shed light on
understanding the optimization behavior of NAG for deep non-linear neural networks.

2. Related works

2.1. Momentum methods

Momentum methods date back to the seminal work by Polyak [7], in which the HB
method was proposed. When the objective function is twice differentiable, strongly
convex and smooth, they proved HB converges to the global minimum at an asymptotic
linear rate. By blending gradients and iterates, Nesterov [8] proposed the NAG method
for smooth convex problems, which attains the accelerated convergence rate O(1/t2)
compared to the rate O(1/t) of GD.

In the non-convex regime, some works provided convergence results of momentum
methods in terms of the first-order stationary point instead of global minimum [31, 32].
Recently, remarkable progress has been achieved in deriving the global convergence of
momentum methods in the over-parameterization regime. Wang et al. [28] provided the
convergence of HB in training a two-layer neural network and a deep linear network under
the identity initialization. They proved that HB linearly converges to a global minimum
at a faster rate than that of GD. Liu et al. [27] established the convergence result of
NAG in training a two-layer ReLU neural network. From a continuous view, Bu et
al. [26] derived the global convergence of HB and NAG by exploiting the approximation
between optimizers with infinitesimal learning rate and ordinary differential equation.
However, the above results of NAG are all limited to the two-layer neural network.

2.2. Deep linear networks

Recent works investigated the loss landscape of deep linear networks[16, 17, 18, 19, 33],
which showed that all local minimums are global minimums with certain assumptions.
Their results only provide the existence of the global minimum, but can not explain
why neural networks trained by gradient-based methods are capable to attain the global
minimum as shown in [14].

1We omit the dependence on other parameters here. The details of the requirement is referred to
Theorem 1
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Based on the over-parameterization assumption, a series of works studied the conver-
gence of gradient-based methods in training neural networks. Du et al. [24] showed that
GD converges to the global minimum for training a deep linear network with the ran-
dom Gaussian initialization. The requirement of the width of the hidden layers depends
linearly on the depth of the network. Hu et al. [25] extended the analysis to deep linear
networks with the orthogonal initialization, and its requirement of the width is indepen-
dent of the depth. Wang et al. [28] generalized the above result to HB, and provided
theoretical guarantee for the acceleration of HB over GD. Zou et al. [29] focused on the
deep residual linear network and provided the convergence of GD and stochastic GD.

3. Preliminaries

3.1. Notations

We use lowercase, lowercase boldface and uppercase boldface letters to represent
scalars, vectors and matrices, respectively. We denote W j:i =

∏j
l=iW

l for 1 ≤ i ≤ j
and W i−1:i = I. In addition, we denote In and 0n as the identity matrix and zero
matrix with n×n dimension. We use ‖ ·‖ as the ℓ2 norm of a vector or the spectral norm
of a matrix, and use ‖ · ‖F as the Frobenius norm of a matrix. We denote vec(A) as the
vectorization of a matrix A in column-first order. We denote ⊗ as the Kronecker product.
We use the standard O(·), Ω(·) and Θ(·) asymptotic notations for hiding constant factors.

3.2. Problem Setup

In this paper, we consider an empirical risk minimization problem with the square
loss

min
w

ℓ(w) =
1

2

n∑

i=1

(fw(xi)− yi)
2, (1)

where w is the parameter of the model f , xi ∈ R
dx and yi ∈ R

dy denote the feature and
label of the i−th training instance, respectively.

GD is the most widely used method for optimizing the model f , it follows

wt+1 = wt − η∇wℓ(wt), (2)

where η > 0 is the learning rate and t is the iteration number. To accelerate the conver-
gence, NAG was proposed by combining the history of gradients into the current learning
procedure as

vt+1 = wt − η∇wℓ(wt)

wt+1 = vt+1 + β(vt+1 − vt)g, (3)

where 0 ≤ β ≤ 1 is the momentum parameter. The model is initialized as v0 = w0 = w−1.
Meanwhile, NAG has an equivalent form as

Mt = βMt−1 − ηβ (∇wℓ(wt)−∇wℓ(wt−1))− η∇wℓ(wt)

wt+1 = wt +Mt, (4)

where M is the momentum term with initialized value M−1 = 0.
In this work, we consider the following two architectures of deep linear networks.
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• Deep fully-connected linear neural network: Following the work [24], we
consider a fully-connected linear neural network with L hidden layers

fW (x) =
1

√

mL−1dy
WL · · ·W 1x, (5)

where W 1 ∈ R
m×dx , W 2, · · · ,WL−1 ∈ R

m×m and WL ∈ R
dy×m are the pa-

rameters of each layer. All the elements of W 1, · · · ,WL are i.i.d initialized with
standard Gaussian distribution N (0, 1). This initialization scheme is also known
as the Xavier initialization [34]. Note that 1√

mL−1dy

is a scaling factor according

to [24].

• Deep linear ResNet: Deep ResNet architecture was proposed by He et al. [35],
which applies the residual links to enable gradient-based methods to optimize
deeper networks. For the deep linear ResNet, we consider the following architecture
as studied in [29]

fW (x) = B(I +WL) · · · (I +W 1)Ax, (6)

where {W i ∈ R
m×m, i ∈ [L]} denotes the hidden layers, A ∈ R

m×dx and B ∈
R

dy×m denote the input and output layers, respectively. We adopt the initialization
scheme as [29], in which the hidden layers are initialized with zero matrices, the
initialization of the input and output layers uses N (0, 1). In addition, we follow the
settings in [29] that only train the hidden layers and keep A and B fixed during
training.

4. Theoretical results

In this section, we introduce the main convergence results of NAG. To start with, we
briefly state the procedures of our proof.

1. Firstly, we establish the residual dynamics of NAG as

[
ξt+1

ξt

]

= G

[
ξt
ξt−1

]

+

[
ϕt

0

]

,

where ξt denotes the residual error at iteration t, G is a fixed coefficient matrix
and ϕt is a perturbed term. By recursively applying the residual dynamics, it has[
ξt+1

ξt

]

= Gt+1

[
ξ0
ξ−1

]

+
∑t

s=0 G
t−s

[
ϕs

0

]

. Additionally, there is a bound for the

multiplication between the powers of G and any vector x that ‖Gix‖ ≤ cρi‖x‖,
where 0 < ρ < 1 and c > 0 is a constant.

2. Secondly, we introduce the inductive hypotheses. Assume that (i) the distance
between the parameterwi and its initial valuew0 has a bound R > 0 as ‖wi−w0‖ ≤
R, and (ii) the residual dynamics satisfies

∥
∥
∥
∥

[
ξi
ξi−1

]∥
∥
∥
∥
≤ 2cθi

∥
∥
∥
∥

[
ξ0
ξ−1

]∥
∥
∥
∥
for any i ≤ t,

where ρ < θ < 1.

3. Finally, we prove the convergence of NAG by induction. The above two hypotheses
trivially hold for the base case i = 0. Assume them hold for any i ≤ t. Apply-
ing the inductive hypotheses, we can derive the upper bounds for ‖ϕt‖ and the
distance ‖wt+1 − w0‖. Combining the bound of ‖ϕt‖ and ‖Gix‖ ≤ cρi‖x‖, one
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can prove

∥
∥
∥
∥

∑t
s=0 G

t−s

[
ϕs

0

]∥
∥
∥
∥

≤ cθt+1

∥
∥
∥
∥

[
ξ0
ξ−1

]∥
∥
∥
∥
. In the end, it has

∥
∥
∥
∥

[
ξt+1

ξt

]∥
∥
∥
∥

≤
∥
∥
∥
∥
Gt+1

[
ξ0
ξ−1

]∥
∥
∥
∥
+

∥
∥
∥
∥

∑t
s=0 G

t−s

[
ϕs

0

]∥
∥
∥
∥
≤ 2cθt+1

∥
∥
∥
∥

[
ξ0
ξ−1

]∥
∥
∥
∥
.

Denote X = (x1, · · · ,xn) ∈ R
dx×n as the feature matrix and Y = (y1, · · · ,yn) ∈

R
dy×n as the corresponding label matrix. When m ≥ dy, it is noted that the two

models we analyzed have the same expressive power as the linear model. Following
the assumption in [28, 24, 25], we assume there exists a W ∗ satisfying Y = W ∗X,
X ∈ R

dx×r, and r = rank(X) without losing generality (refer to Appendix B in [24] for
details).

4.1. Deep fully-connected linear neural network

Denote U = 1√
mL−1dy

WL:1X as the outputs of the network. Denote M l
t as the

momentum term in the t-th iteration for the l-th layer. We first introduce the residual
dynamics of NAG in training an L-layer fully-connected linear neural network.

Lemma 1. Denote

H lin
t = 1

mL−1dy

∑L
l=1[(W

l−1:1
t X)⊤(W l−1:1

t X)⊗WL:l+1
t (WL:l+1

t )⊤] ∈ R
dyn×dyn.

Applying NAG for training a fully-connected linear neural network with L hidden layers,
the residual dynamics follows

[
ξt+1

ξt

]

=

[
(1 + β)(Idyn − ηH lin

0 ) β(−Idyn + ηH lin
0 )

Idyn 0dyn

] [
ξt
ξt−1

]

+

[
ϕt

0dyn

]

, (7)

where

ξt = vec(Ut − Y ), ϕt = φt +ψt + ιt,

φt =
1

√

mL−1dy
vec (ΦtX) with Φt = Πl(W

l
t +M

l
t)−WL:1

t −
L∑

l=1

WL:l+1
t M l

tW
l−1:1
t ,

ψt =
1

√

mL−1dy
vec

(

(L− 1)βWL:1
t X + βWL:1

t−1X − β

L∑

l=1

WL:l+1
t W l

t−1W
l−1:1
t X

)

+
ηβ

√

mL−1dy
vec

(

(

L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t −

L∑

l=1

WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t−1 )X

)

,

ιt = −η(1 + β)(H lin
t −H lin

0 )ξt + ηβ(H lin
t−1 −H lin

0 )ξt−1.

Lemma 1 shows that the residual errors of two consecutive iterates follow a linear
dynamical system with a perturbed term [ϕ;0]. When the gram matrixH lin

0 is positive-
definite, the spectral norm of the constant coefficient matrix of (7) is less than 1 with
specific hyperparameters η and β according to Lemma 12 in Appendix C The details of
the proof for verifying the positive-definite ofH lin

0 are referred to (A.7). If the perturbed
term is small enough, we can bound the residual error.

In the following Lemma, we show that the three parts of ϕ can be bounded based
on the inductive hypotheses (i) the residual error decrease at a linear rate, and (ii) the
parameters of the network are not far from initial values.
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Lemma 2. Following the settings in Theorem 1, for any s ≤ t, assume (i) the resid-

ual dynamics satisfies

∥
∥
∥
∥

[
ξs
ξs−1

]∥
∥
∥
∥
≤ 24

√
κθs

∥
∥
∥
∥

[
ξ0
ξ−1

]∥
∥
∥
∥
, and (ii) ∀l ∈ [L], ∀s ≤ t, the dis-

tance between the parameter W l
s and its initial has a bound as ‖W l

s −W l
0‖F ≤ Rlin =

792‖X‖
√

dyκ

Lσ2
min

(X)
B0, then

‖φt‖ ≤ 1

180
√
κ
θ2t‖U0 − Y ‖F , ‖ψt‖ ≤ 1

90
√
κ
θ2t‖U0 − Y ‖F +

2

23
√
κ
θt‖U0 − Y ‖F

‖ιt‖ ≤ 5

39
√
κ
θt‖U0 − Y ‖F .

Consequently, ϕt in Lemma 1 can be bounded by

‖ϕt‖ ≤ 1

60
√
κ
θ2t‖U0 − Y ‖F +

5

23
√
κ
θt‖U0 − Y ‖F .

From Lemma 2, it is observed that the bounds of φ, ψ and ι all decrease at a linear
rate, leading to a controllable perturbed term ϕ. Before introducing the convergence
result of NAG, we provide the bound of the distance between W l

t+1 and its initial for
any l ∈ [m].

Lemma 3. Following the settings in Theorem 1, for any s ≤ t, assume the residual

dynamics satisfies

∥
∥
∥
∥

[
ξs
ξs−1

]∥
∥
∥
∥
≤ θs24

√
κ

∥
∥
∥
∥

[
ξ0
ξ−1

]∥
∥
∥
∥
, then

‖W l
t+1 −W l

0‖F ≤ Rlin =
792‖X‖B0

√
dyκ

Lσ2
min(X)

.

Finally, with specific hyperparameters, NAG has the following convergence result in
training the deep fully-connected linear neural network.

Theorem 1. Denote λmin = (0.8)4Lσ2
min(X)/dy, λmax = (1.2)4Lσ2

max(X)/dy, κ =

λmax/λmin, θ = 1 − 1
2
√
κ
and B2

0 = O(max{1, log(r/δ)dy
, ‖W ∗‖2}‖X‖2F ). By setting η =

1
2λmax

, β = 3
√
κ−2

3
√
κ+2

and m = Ω(Lmax{rκ5dy(1+‖W ∗‖2), rκ5 log r
δ , logL}), for any t ≥ 0,

with probability at least 1− δ over the random Gaussian initialization, the residual error
of NAG in training an L-layer fully-connected linear neural network has the following
bound for any t ≥ 0

∥
∥
∥
∥

[
ξt
ξt−1

]∥
∥
∥
∥
≤ 24

√
κ

(

1− 1

2
√
κ

)t ∥
∥
∥
∥

[
ξ0
ξ−1

]∥
∥
∥
∥
. (8)

Remarks. The above theorem shows that NAG can reach the global minimum at a
(1 − 1

2
√
κ
)t rate. Compared to the (1 −O( 1κ ))

t rate of GD [24], our results demonstrate

that NAG converges faster than GD. The details of the over-parameterization and hyper-
parameters selection can be found in Table 1. Note that the width m linearly depends
on the depth L, which means deeper fully-connected linear neural network needs more
wider layers to obtain convergence for NAG.
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Table 1: Summary of the convergence results for the deep fully-connected linear neural network un-
der the random Gaussian initialization. Let m, L and dy denote the width, depth and output di-
mensions of neural network. Let X denotes the training feature matrix. Let δ denotes the failure
probability. Let t denotes the iteration number. Define r = rank(X), λmin = 0.84Lσ2

min(X)/dy ,
λmax = 1.24Lσ2

max(X)/dy and κ = λmax/λmin.

Method Width m Hyperparameters Convergence rate

GD [24]
Ω(Lmax{rκ3dy(1 + ‖W ∗‖2),

rκ3 log r/δ, logL}) η = O(
dy

L‖X⊤X‖ ) (1−O( 1κ))
t

NAG
Ω(Lmax{rκ5dy(1 + ‖W ∗‖2),

rκ5 log r/δ, logL}) η = 1
2λmax

, β = 3
√
κ−2

3
√
κ+2

(1 − 1
2
√
κ
)t

4.2. Deep linear ResNet

In this subsection, we provide the convergence result of NAG in training an L-layer
deep linear ResNet under the zero initialization. For brevity, we define W̃ l = I +W l

and W̃ j:i = Πj
l=i(I +W l).

Lemma 4. Denote

Hres
t =

∑L
l=1

[(

(W̃ l−1:1
t AX)⊤(W̃ l−1:1

t AX)
)

⊗
(

BW̃L:l+1
t (BW̃L:l+1

t )⊤
)]

∈ R
dyn×dyn.

Applying NAG for training an L-layer linear ResNet, the residual dynamics satisfies

[

ξt+1

ξt

]

=

[

(1 + β)(Idyn − ηHres
0 ) β(−Idyn + ηHres

0 )

Idyn 0dyn

][

ξt

ξt−1

]

+

[

ϕt

0dyn

]

(9)

where

ξt = vec(Ut − Y ) ∈ R
dyn,ϕt = φt +ψt + ιt

φt = vec(BΦtAX) with Φt = Πl(W̃
l
t +M

l
t)− W̃L:1

t −
L∑

l=1

W̃L:l+1
t M l

tW̃
l−1:1
t ,

ψt = vec

(

B((L − 1)βW̃L:1
t + βW̃L:1

t−1 − β

L∑

l=1

W̃L:l+1
t W̃ l

t−1W̃
l−1:1
t )AX

)

+ vec

(

ηβB(

L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t −

L∑

l=1

W̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1 )AX

)

,

ιt = −η(1 + β)(Hres
t −Hres

0 )ξt + ηβ(Hres
t−1 −Hres

0 )ξt−1.

Lemma 5. Following the settings in Theorem 2, for any s ≤ t, assume (a) the residual

dynamics satisfies

∥
∥
∥
∥
∥

[

ξs

ξs−1

]∥
∥
∥
∥
∥

≤ 24
√
κθs

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
, and (b) for all l ∈ [L] and for any

s ≤ t, ‖W l
s‖F ≤ Rres = 1/(2000Lκ), then

‖φt‖ ≤ 1

180
√
κ
θ2t‖U0 − Y ‖F ,‖ψt‖ ≤ 2

45
√
κ
θ2t‖U0 − Y ‖F , ‖ιt‖ ≤ 3

17
√
κ
θt‖U0 − Y ‖F .
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Table 2: Summary of the convergence results for the deep linear ResNet under the zero initialization.
Let m and L denote the width and the depth of the neural network. Let dx and dy denote the input
and output dimensions of the neural network. Let X denotes the training feature matrix. Let n
denotes the number of the training instances. Let δ denotes the failure probability. Let t denotes
the iteration number. Define a = ‖A‖‖B‖‖X‖, r = rank(X), λmin = (0.9)4Lα2γ2m2σ2

min(X),
λmax = (1.1)4Lα2γ2m2σ2

max(X) and κ = λmax/λmin.

Method Width m Hyperparameters
Convergence

rate

GD [29]
Ω(max{dyrκ2 log(n/δ),√

rκ‖W ∗‖/αγ, dx + dy + log(1/δ)}) η = O( 1
La(B0+a)

) (1−O( 1κ))
t

NAG
Ω(max{dyrκ5 log(n/δ),√

rκ2.5a‖W ∗‖/αγ, dx+dy+log(1/δ)}) η = 1
2La2 β = 3

√
κ−2

3
√

κ+2
(1 − 1

2
√
κ
)t

Consequently, ϕt in Lemma 4 satisfies

‖ϕt‖ ≤ 1

30
√
κ
θ2t‖U0 − Y ‖F +

3

17
√
κ
θt‖U0 − Y ‖F .

Theorem 2. Denote λmin = (0.9)4Lα2γ2m2σ2
min(X), λmax = (1.1)4Lα2γ2m2σ2

max(X),

κ = λmax/λmin and θ = 1 − 1
2
√
κ
. By setting η = 1

2L‖A‖2‖B‖2‖X‖2 , β = 3
√
κ−2

3
√
κ+2

and

m = Ω(max{dyrκ5 log(n/δ),
√
rκ2.5a‖W ∗‖/αγ, dx + dy + log(1/δ)}), with probability at

least 1−δ over the random initialization, the residual error of NAG in training an L-layer
linear ResNet has the following bound for any t ≥ 0,

∥
∥
∥
∥
∥

[

ξt

ξt−1

]∥
∥
∥
∥
∥
≤ 24

√
κ

(

1− 1

2
√
κ

)t
∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
. (10)

Remarks. NAG is capable of attaining the global minimum for training an L-layer
linear ResNet, where the convergence rate is faster than that of GD [29]. Moreover, note
that the requirement of the width for deep linear ResNets has no dependence on L.

5. Conclusion and future work

In this paper, we analyze the convergence of NAG in training deep linear networks,
including deep fully-connected neural networks and deep linear ResNets. We show that
NAG is capable of converging to the global minimum for above two architectures of neural
networks. Moreover, the convergence results demonstrate NAG achieves acceleration over
GD.

In future work, we will consider other types of neural networks, such as deep fully-
connected neural networks with non-linear activation functions, deep convolution neural
networks and so on. In addition, we will extend our analysis to other modern momentum
methods, such as Adam [36], AMSGrad [37] and AdaBound [38]. We hope our results
may provide insights to understand the training behavior of momentum methods for
neural networks.
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Appendix A. Deep fully-connected linear neural network

Appendix A.1. Proof of Lemma 1

Proof. According to the update rule (4) of NAG, it has

WL:1
t+1 = Πl

(
W l

t +M
l
t

)
=WL:1

t +

L∑

l=1

WL:l+1
t M l

tW
l−1:1 +Φt, (A.1)

where M l
t = β(W l

t −W l
t−1)− ηβ(

∂ℓ(WL:1
t )

∂W l
t

− ∂ℓ(WL:1
t−1)

∂W l
t−1

)− η
∂ℓ(WL:1

t )

∂W l
t

denotes the momen-

tum term for the layer l at iteration t, and Φt contains all the high-order terms of the
momentum term. Then (A.1) can be rewritten as

WL:1
t+1 = WL:1

t − (1 + β)η
L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t )

∂W l
t

W l−1:1
t + ηβ

L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t

+
L∑

l=1

WL:l+1
t β(W l

t −W l
t−1)W

l−1:1
t

= WL:1
t − η(1 + β)

L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t )

∂W l
t

W l−1:1
t + β(WL:1

t −WL:1
t−1)

+ ηβ

L∑

l=1

WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t−1 + (L− 1)βWL:1

t + βWL:1
t−1 − β

L∑

l=1

WL:l+1
t W l

t−1W
l−1:1
t

+ ηβ(

L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t −

L∑

l=1

WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t−1 ) + Φt.

Multiplying both sides of the above equality with 1√
mL−1dy

X, it has

Ut+1 = Ut −
η(1 + β)

mL−1dy

L∑

l=1

WL:l+1
t (WL:l+1

t )⊤(Ut − Y )(W l−1:1
t X)⊤W l−1:1

t X + β(Ut −Ut−1)

+
ηβ

mL−1dy

L∑

l=1

WL:l+1
t−1 (WL:l+1

t−1 )⊤(Ut−1 − Y )(W l−1:1
t−1 X)⊤W l−1:1

t−1 X

+
1

√

mL−1dy

(

(L− 1)βWL:1
t + βWL:1

t−1 − β

L∑

l=1

WL:l+1
t W l

t−1W
l−1:1
t

)

X +
1

√

mL−1dy
ΦtX

+
ηβ

√

mL−1dy
(

L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t −

L∑

l=1

WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t−1 )X.
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Using vec(ACB) = (B⊤ ⊗A)vec(C), it has

vec(Ut+1)− vec(Ut)

= −η(1 + β)H lin
t vec(Ut − Y ) + β (vec(Ut)− vec(Ut−1)) + ηβH lin

t−1vec(Ut−1 − Y )

+ vec

(

1
√

mL−1dy
((L − 1)βWL:1

t + βWL:1
t−1 − β

L∑

l=1

WL:l+1
t W l

t−1W
l−1:1
t )X

)

+ vec

(

ηβ
√

mL−1dy
(

L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t −

L∑

l=1

WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t−1 )X

)

+
1

√

mL−1dy
vec(ΦtX), (A.2)

where

H lin
t =

1

mL−1dy

L∑

l=1

[(
(W l−1:1

t X)⊤(W l−1:1
t X)

)
⊗WL:l+1

t (WL:l+1
t )⊤

]
. (A.3)

Then (A.2) can be reformulated as

[

ξt+1

ξt

]

=

[

(1 + β)(Idyn − ηH lin
t ) β(−Idyn + ηH lin

t−1)

Idyn 0dyn

][

ξt

ξt−1

]

+

[

φt +ψt

0dyn

]

=

[

(1 + β)(Idyn − ηH lin
0 ) β(−Idyn + ηH lin

0 )

Idyn 0dyn

] [

ξt

ξt−1

]

+

[

ϕt

0dyn

]

, (A.4)

where ϕt = φt+ψt+ιt ∈ R
dyn and Idyn is the dyn×dyn-dimensional identity matrix.

Before presenting the proof of our main results, we introduce some supporting lemmas.

Lemma 6. (Proposition 6.2 and Proposition 6.3 in [24]) For any i ∈ (1, L] and j ∈ [1, L),
with probability at least 1− exp(−Ω(m/L)), it has

σmax(W
L:i
0 ) ≤ 1.2m

L−i+1

2 , σmin(W
L:i
0 ) ≥ 0.8m

L−i+1

2

σmax(W
j:1
0 X) ≤ 1.2m

j
2σmax(X), σmin(W

j:1
0 X) ≥ 0.8m

j
2σmin(X)

Lemma 7. (Proposition 6.4 in [24]) For any 1 < i ≤ j < L,with probability at least
1− exp(−Ω(m/L)), it has

‖W j:i
0 ‖ ≤ O(

√
Lm

j−i+1

2 ) (A.5)

Lemma 8. (Proposition 6.5 in [24]) Suppose m ≥ CL logL for a sufficiently large
constant C > 0. With probability at least 1− exp(−Ω(m/L))− δ/2, it has

ℓ(0) ≤ B2
0 = O(max{1, log(r/δ)

dy
, ‖W ∗‖2}‖X‖2F ) (A.6)
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Therefore, according to the properties of the Kronecker product, it has the bounds
for the spectrum of the matrix H0 as

λmin(H
lin
0 ) ≥ 0.84Lσ2

min(X)

dy
, λmax(H

lin
0 ) ≤ 1.24Lσ2

max(X)

dy
(A.7)

For abuse of the notation, we define λmin =
0.84Lσ2

min(X)
dy

, λmax =
1.24Lσ2

max(X)
dy

and

κ = λmax/λmin.

Lemma 9. (Claim 7.2 in [24]) Suppose m = Ω(Lmax{rκ5dy(1+‖W ∗‖2), rκ5 log r
δ , logL}).

Assume ‖W k
t −W k

0 ‖F ≤ Rlin =
792‖X‖B0

√
dyκ

Lσ2
min

(X)
for any k ∈ [L] and any t, it has

σmax(W
L:i
t ) ≤ 1.25m

L−i+1

2 , σmin(W
L:i
t ) ≥ 0.75m

L−i+1

2 ∀1 < i ≤ L

σmax(W
j:1
t X) ≤ 1.25m

j
2 σmax(X) , σmin(W

j:1
t X) ≥ 0.75m

j
2σmin(X) ∀1 ≤ j < L

‖W j:i
t ‖ ≤ O(

√
Lm

j−i+1

2 ) ∀1 < i ≤ j < L (A.8)

Proof. For completeness, we replicate the proof in [24], but consider a universe Rlin.
For the bounds of ‖WL:i

t −WL:i
0 ‖ with any 1 < i ≤ L, it has

‖WL:i
t −WL:i

0 ‖F ≤ 1.2
L−i+1∑

l=1

(
L− i+ 1

l

)

(Rlin)l(O(
√
L))lm

L−i+1−l
2

≤ 1.2(
√
m)L−i+1

(

(1 +O(Rlin
√
L)/

√
m)L−i+1 − 1

)

≤ 1.2(
√
m)L−i+1

(

(1 +O(Rlin
√
L)/

√
m)L − 1

)

(a)

≤ 1.2

(

(1 +
1

C1Lκ
)L − 1

)

(
√
m)L−i+1

(b)

≤1.2

(

1+(e−1)
1

C1κ
−1

)

(
√
m)L−i+1

(c)

≤ 1

1500κ
(
√
m)L−i+1,(A.9)

where (a) uses m ≥ CL3(Rlin)2κ2, which leads to O(Rlin
√
L)/

√
m ≤ 1/(C1Lκ), for

some sufficiently large C > 0 and C1 > 0 (b) uses (1 + x/n)n ≤ ex, ∀x ≥ 0, n > 0 and
Bernoulli’s inequality er ≤ 1 + (e − 1)r, ∀0 ≤ r ≤ 1, and (c) uses any sufficiently larger
C′. Combining Lemma 6, it proves the first line of A.8, where the proof of the second
line result follows a similar approach.

For any ‖W j:i
t −W j:i

0 ‖ with L > j ≥ i > 1, denotes ∆k
t =W k

t −W k
0 , it has

W
j:i
t =

(

W
j
0 +∆j

t

)

· · ·
(
W i

0 +∆i
t

)
. (A.10)
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Applying binomial theorem, ‖∆k
t ‖ ≤ ‖W k

t −W k
0 ‖F ≤ R and Lemma 7, it has

‖W j:i
t −W j:i

0 ‖F ≤
j−i+1
∑

l=1

(
j − i+ 1

l

)

(Rlin)l(O(
√
L))l+1m

j−i+1−l
2

≤ O(
√
L)(

√
m)j−i+1

(

(1 +O(Rlin
√
L)/

√
m)j−i+1 − 1

)

≤ O(
√
L)(

√
m)j−i+1

(

(1 +O(Rlin
√
L)/

√
m)L − 1

)

(a)

≤ O(
√
Lm

j−i+1

2 ) (A.11)

where (a) uses m > CL3(Rlin)2 for a sufficiently large C. Moreover, it is noted that
m ≥ C1Lκ

5rmax{dy(1 + ‖W ∗‖2), log(r/δ)} ≥ C2L
3(Rlin)2κ2 using ‖X‖F ≤ √

r‖X‖ for
some sufficient large constants C1 and C2. Combining the bound of m in Lemma 7, we
complete the proof.

Appendix A.2. Proof of Lemma 2

Proof. According to Lemma 1, ϕt = φt +ψt + ιt ∈ R
dyn, where

φt=
1

√

mL−1dy
vec(ΦtX) , with Φt = Πl(W

l
t +M

l
t )−WL:1

t −
L∑

l=1

WL:l+1
t M l

tW
l−1:1
t ,

(A.12)

and

ψt =
1

√

mL−1dy
vec

(

(L− 1)βWL:1
t X + βWL:1

t−1X − β

L∑

l=1

WL:l+1
t W l

t−1W
l−1:1
t X

)

+
ηβ

√

mL−1dy
vec

(

(
L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t −

L∑

l=1

WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t−1 )X

)

.

(A.13)

and

ιt = −η(1 + β)(H lin
t −H lin

0 )ξt + ηβ(H lin
t−1 −H lin

0 )ξt−1. (A.14)

Applying the subadditivity ‖ϕt‖ ≤ ‖φt‖+ ‖ψt‖+ ‖ιt‖, we can bound ‖ϕt‖ by sepa-
rately deriving the bounds of ‖φt‖, ‖ψt‖ and ‖ιt‖.

Firstly, we consider the upper bound of the momentum term ‖Mt,l‖, where Mt,l is

composed of the gradients
∂ℓ(WL:1

s t)

∂W l
t

and
∂ℓ(WL:1

t−1)

∂W t−1
s

as shown in (4). For any
∂ℓ(WL:1

s )
∂W l

s

with s ≤ t, it has the bound as

‖∂ℓ(W
L:1
s )

∂W l
s

‖F ≤ 1
√

mL−1dy
‖WL:l+1

s ‖‖Us − Y ‖F ‖W l−1:1
s X‖

≤ 1
√

mL−1dy
1.25m

L−l
2 θs24

√
κ
√
2‖U0 − Y ‖F 1.25m

l−1

2 ‖X‖

≤ 54‖X‖√κ
√
dy

θs‖U0 − Y ‖F , (A.15)
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where the second inequality uses Lemma 9, the induction hypothesis

∥
∥
∥
∥
∥

[

ξs

ξs−1

]∥
∥
∥
∥
∥
≤ 24

√
κθs

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥

and ‖ξ−1‖ = ‖ξ0‖. Then M l
t can be bounded by

‖M l
t‖ = ‖ − η

t∑

s=0

βt−s

(
∂ℓ(WL:1

s )

∂W l
s

+ β(
∂ℓ(WL:1

s )

∂W l
s

− ∂ℓ(WL:1
s−1)

∂W l
s−1

)

)

‖

≤ η(1 + β)

t∑

s=0

‖βt−s ∂ℓ(W
L:1
s )

∂W l
s

‖+ ηβ

t∑

s=0

‖βt−s ∂ℓ(W
L:1
s−1)

∂W l
s−1

‖

≤ 54‖X‖√κ
√
dy

η‖U0 − Y ‖F
(

(1 + β)

t∑

s=0

βt−sθs + β

t∑

s=0

βt−sθs−1

)

≤ 168‖X‖√κ
√
dy

θt

1− θ
‖U0 − Y ‖F , (A.16)

where the last inequality uses β ≤ θ2.
From the definition of Φt in (A.12), it includes the summation of all the high-order

momentum terms, e.g. 1√
mL−1dy

βW
L:kj+1
t ·Mkj

t W
kj−1:kj−1+1
t ·Mkj−1

t · · ·Mk1

t ·W k1−1:1
t ,

where 1 ≤ k1 < · · · < kj ≤ L for any j ≥ 2.
Thus we can derive the upper bound of ‖ 1√

mL−1dy

ΦtX‖F as

‖ 1
√

mL−1dy
ΦtX‖F

(a)

≤ 1
√

mL−1dy

L∑

j=2

(
L

j

)(

η
168‖X‖√κ
√
dy

θt

1− θ
‖U0 − Y ‖F

)j

(1.25)2(O(
√
L))j−1m

L−j
2 ‖X‖

(b)

≤ 1.252

O(
√
L)
√

mL−1dy

L∑

j=2

Lj

(

η
168‖X‖√κ
√
dy

θt

1− θ
‖U0 − Y ‖FO(

√
L)

)j

m
L−j
2 ‖X‖

≤ 1.252

O(
√
L)

√
m

dy
‖X‖

L∑

j=2

(

η
168L‖X‖√κ
√
mdy

θt

1− θ
‖U0 − Y ‖FO(

√
L)

)j

, (A.17)

where (a) uses (A.16) and Lemma 9 for and (b) uses that
(
L
j

)
≤ Lj

j!

With the specific η = 1
2λmax

=
dy

2∗1.24Lσ2
max(X) , it is easy to derive the bound of

η 168L‖X‖√κ√
mdy

θt

1−θ‖U0 − Y ‖FO(
√
L) in (A.17) as

η
168L‖X‖√κ
√
mdy

θt

1− θ
‖U0 − Y ‖FO(

√
L) ≤ 48

√

dyκ

m

1

‖X‖
θt

1− θ
‖U0 − Y ‖FO(

√
L)

≤ 0.5, (A.18)

where the last inequality uses the lower bound on the width m as m ≥ C
dyB

2
0κ

2L
‖X‖2 with a
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sufficent large constant C. As a result, φt has the bound as

‖φt‖ = ‖ 1
√

mL−1dy
ΦtX‖F

≤ 1.252

O(
√
L)

√
m

dy
‖X‖

(

η
168L‖X‖√κ
√
mdy

θt

1− θ
‖U0 − Y ‖FO(

√
L)

)2 L−2∑

j=2

(0.5)
j−2

≤ 1.252

O(
√
L)

√
m

dy
‖X‖

(

η
168L‖X‖√κ
√
mdy

θt

1− θ
‖U0 − Y ‖FO(

√
L)

)2

≤ O(
√
L)

‖X‖

√

dy
m

(
θt

1− θ
64

√
κ‖U0 − Y ‖F

)2

≤ 1

180
√
κ
θ2t‖U0 − Y ‖F , (A.19)

where the last inequality uses m ≥ C
LdyB

2
0κ

5

‖X‖2 for a sufficently large C ≥ 0.

Then we turn to analyze ‖ψt‖, which is composed of two parts: 1√
mL−1dy

β(L −
1)WL:1

t X + 1√
mL−1dy

βWL:1
t−1X − 1√

mL−1dy

β
∑L

l=1W
L:l+1
t W l

t−1W
l−1:1
t X

and ηβ√
mL−1dy

(
∑L

l=1W
L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t −∑L

l=1W
L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t−1 )X.

The first part can be rewritten as

1
√

mL−1dy
β(L− 1) ·ΠL

l=1

(
W l

t−1 +M
l
t−1

)
X

︸ ︷︷ ︸

first term

+
1

√

mL−1dy
βWL:1

t−1X

︸ ︷︷ ︸

second term

− 1
√

mL−1dy
β

L∑

l=1

ΠL
i=l+1

(
W i

t−1 +M
i
t−1

)
W l

t−1Π
l−1
j=1

(

W
j
t−1 +M

j
t−1

)

X

︸ ︷︷ ︸

third term

.

(A.20)

According to the numbers of momentum terms, we can reformulate (A.20) as E0 +E1 +
E2+· · ·+EL, whereEi is composed of the multiplication of i distinctM l

t−1 for 1 ≤ l ≤ L.
Specifically, E0 and E1 are 0 due to

E0 =
1

√

mL−1dy
β(L − 1)WL:1

t−1X

︸ ︷︷ ︸

belongs to the first term

+
1

√

mL−1dy
βWL:1

t−1X

︸ ︷︷ ︸

belongs to the second term

− 1
√

mL−1dy
βLWL:1

t−1X

︸ ︷︷ ︸

belongs to the third term

= 0

E1 = − 1
√

mL−1dy
β(L− 1)

L∑

l=1

WL:l+1
t−1 M l

t−1W
l−1:1
t−1

︸ ︷︷ ︸

belongs to the first term

+
1

√

mL−1dy
β

L∑

l=1

∑

k 6=l

WL:k+1
t−1 Mk

t−1W
k−1:1
t−1

︸ ︷︷ ︸

belongs to the third term

= 0.

(A.21)

Then we anaylze the high-order terms. Consider the p-th order term (p ≥ 2), the first and
third terms on (A.20) provide the coefficients − 1√

mL−1dy

β(L− 1) and 1√
mL−1dy

β(L− p)

respectively, which results in the coefficient for all the p-th order terms as 1√
mL−1dy

β(1−
p).

17



Applying the bound of the momentum term in (A.16), it has

‖ 1
√

mL−1dy
β(L − 1)WL:1

t X +
1

√

mL−1dy
βWL:1

t−1X − 1
√

mL−1dy
β

L∑

l=1

WL:l+1
t W l

t−1W
l−1:1
t X‖F

≤ β
√

mL−1dy

L∑

j=2

(j − 1)

(
L

j

)(

η
336‖X‖√κ
√
dy

θt−1

1− θ
‖U0 − Y ‖F

)j

1.252(O(
√
L))j−1m

L−j
2 ‖X‖

(a)

≤ 1.252
β

O(
√
L)
√

mL−1dy

L∑

j=2

Lj

(

η
168‖X‖√κ
√
dy

θt−1

1− θ
‖U0 − Y ‖FO(

√
L)

)j

m
L−j
2 ‖X‖

(b)

≤ 1.252

O(
√
L)

β

√
m

dy
‖X‖

L∑

j=2

(

η
168L‖X‖√κ
√
mdy

θt−1

1− θ
‖U0 − Y ‖FO(

√
L)

)j

,

≤ 1.252

O(
√
L)

β

√
m

dy
‖X‖

(

η
168L‖X‖√κ
√
mdy

θt−1

1− θ
‖U0 − Y ‖FO(

√
L)

)2 L−2∑

j=2

(0.5)j−2

(c)

≤ 2 ∗ 1.252
O(

√
L)

β

√
m

dy
‖X‖

(

η
168L‖X‖√κ
√
mdy

θt−1

1− θ
‖U0 − Y ‖FO(

√
L)

)2

(d)

≤ O(
√
L)

‖X‖

√

dy
m

(
θt−1

1− θ
90

√
κ‖U0 − Y ‖F

)2

≤ 1

90
√
κ
θ2t‖U0 − Y ‖F , (A.22)

where (a) uses
(
L
j

)
≤ Lj

j! and (b) uses the same analysis way as (A.18) (c) uses η =
dy

2∗1.24Lσ2
max(X) (d) uses m ≥ C

LdyB
2
0κ

5

‖X‖2 for some sufficently large C ≥ 0.

For the bound of the second part, it has

ηβ
√

mL−1dy
‖

L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t X −

L∑

l=1

WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t−1 X‖

≤ ηβ
√

mL−1dy

L∑

l=1







‖ (WL:l+1

t −WL:l+1
t−1 )

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t X‖

︸ ︷︷ ︸

first term

+ ‖WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

(W l−1:1
t −W l−1:1

t−1 )X‖
︸ ︷︷ ︸

second term








.

(A.23)

Considering the bound of the first term in (A.23), it has

‖(WL:l+1
t −WL:l+1

t−1 )
∂ℓ(WL:1

t−1)

∂W l
t−1

W l−1:1
t X‖F ≤ ‖WL:l+1

t −WL:l+1
t−1 ‖‖∂ℓ(W

L:1
t−1)

∂W l
t−1

‖F ‖W l−1:1
t X‖.

(A.24)
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Then, it has

‖WL:l+1
t −WL:l+1

t−1 ‖ ≤ ‖WL:l+1
t −WL:l+1

0 +WL:l+1
0 −WL:l+1

t−1 ‖
≤ ‖WL:l+1

t −WL:l+1
0 ‖+ ‖WL:l+1

0 −WL:l+1
t−1 ‖

≤ 1

750κ
m

L−l
2 , (A.25)

and
‖W l−1:1

t X‖ ≤ 1.25m
l−1

2 ‖X‖, (A.26)

where the above two inequalities all use Lemma 9. Based on (A.25), (A.26) and (A.15),
it has

ηβ
√

mL−1dy
‖

L∑

l=1

WL:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t X −

L∑

l=1

WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t−1 X‖

≤ ηβ
√

mL−1dy

L∑

l=1







‖ (WL:l+1

t −WL:l+1
t−1 )

∂ℓ(WL:1
t−1)

∂W l
t−1

W l−1:1
t X‖

︸ ︷︷ ︸

first term

+‖WL:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

(W l−1:1
t −W l−1:1

t−1 )X‖
︸ ︷︷ ︸

second term








≤ ηβ
√

mL−1dy

L∑

l=1

(
1

750κ
m

L−l
2

54‖X‖√κ
√
dy

θt−1‖U0 − Y ‖F 1.25m
l−1

2 ‖X‖

+ 1.25m
L−l
2

54‖X‖√κ
√
dy

θt−1‖U0 − Y ‖F
1

750κ
m

l−1

2 ‖X‖)

≤ ηβ
√
dy

L∑

l=1

(
9‖X‖2
50
√
κdy

‖U0 − Y ‖F θt−1) ≤ 1

23
√
κ
θt−1‖U0 − Y ‖F ≤ 2

23
√
κ
θt‖U0 − Y ‖F , (A.27)

where the last inequality uses β < θ2 and θ = 1− 1
2
√
κ
≥ 1/2.

Combining (A.22) and (A.27), it has

‖ψt‖ ≤ 1

90
√
κ
θ2t‖U0 − Y ‖F +

2

23
√
κ
θt‖U0 − Y ‖F (A.28)

Finally we analyze the term ‖ιt‖ ≤ ‖η(1 + β)(Ht −H0)ξt‖+ ‖ηβ(Ht−1 −H0)ξt−1‖,
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which is closely related to the bound of ‖(Hi −H0)ξi‖ for i ≤ t. It has

‖(Hi −H0)ξi‖

=
1

mL−1dy
‖

L∑

l=1

WL:l+1
i (WL:l+1

i )⊤(Ui − Y )(W l−1:1
i X)⊤W l−1:1

i X

−
L∑

l=1

WL:l+1
0 (WL:l+1

0 )⊤(Ui − Y )(W l−1:1
0 X)⊤W l−1:1

0 X‖F

≤ 1

mL−1dy

L∑

l=1

‖WL:l+1
i (WL:l+1

i )⊤(Ui − Y )(W l−1:1
i X)⊤W l−1:1

i X

− WL:l+1
0 (WL:l+1

0 )⊤(Ui − Y )(W l−1:1
0 X)⊤W l−1:1

0 X‖F

≤ 1

mL−1dy

L∑

l=1

(
‖
(
WL:l+1

i (WL:l+1
i )⊤ −WL:l+1

0 (WL:l+1
0 )⊤

)
(Ui − Y )(W l−1:1

i X)⊤W l−1:1
i X‖F

︸ ︷︷ ︸

first term

+ ‖WL:l+1
0 (WL:l+1

0 )⊤(Ui − Y )
(
W l−1:1

i X)⊤W l−1:1
i X − (W l−1:1

0 X)⊤W l−1:1
0 X

)
‖F
)

︸ ︷︷ ︸

second term

. (A.29)

For the first term, it has

‖
(
WL:l+1

i (WL:l+1
i )⊤ −WL:l+1

0 (WL:l+1
0 )⊤

)
(Ui − Y )(W l−1:1

i X)⊤W l−1:1
i X‖F

︸ ︷︷ ︸

first term

≤ ‖WL:l+1
i (WL:l+1

i )⊤ −WL:l+1
0 (WL:l+1

0 )⊤‖‖Ui − Y ‖F ‖(W l−1:1
t X)⊤W l−1:1

t X‖.
(A.30)

Using ‖WL:i
t −WL:i

0 ‖ ≤ 1
1500κ (

√
m)L−i+1 as proved in (A.9), we have

‖WL:l+1
i (WL:l+1

i )⊤ −WL:l+1
0 (WL:l+1

0 )⊤‖
≤ ‖(WL:l+1

i −WL:l+1
0 )(WL:l+1

i )⊤ +WL:l+1
i (WL:l+1

i −WL:l+1
0 )⊤

+ (WL:l+1
i −WL:l+1

0 )(WL:l+1
i −WL:l+1

0 )⊤‖
≤ 2‖WL:l+1

i −WL:l+1
0 ‖ · σmax(W

L:l+1
t ) + ‖WL:l+1

i −WL:l+1
0 ‖2

≤ (
2.5

1500κ
+

1

(1500κ)2
)mL−l, (A.31)

where the last inequality uses Lemma 9.
For ‖(W l−1:1

i X)⊤W l−1:1
i X‖, with Lemma 9, it has

‖(W l−1:1
i X)⊤W l−1:1

i X‖ ≤
(
σmax(W

l−1:1
i X)

)2 ≤
(

1.25m
l−1

2 σmax(X)
)2

. (A.32)

Thus,

‖
(
WL:l+1

t (WL:l+1
t )⊤ −WL:l+1

0 (WL:l+1
0 )⊤

)
(Ui − Y )(W l−1:1

t X)⊤W l−1:1
t X‖F

︸ ︷︷ ︸

first term

≤ (
2.5

1500κ
+

1

(1500κ)2
)mL−l

(

1.25m
l−1

2 σmax(X)
)2

‖Ui − Y ‖F

≤ σ2
min(X)

1940
mL−1‖Ui − Y ‖F , (A.33)
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where the last inequality uses κ = (1.2/0.8)4
σ2
max(X)

σ2
min

(X)
.

Following a similar approach, the second part can be bounded by

‖(WL:l+1
0 (WL:l+1

0 )⊤(Ui − Y )
(
W l−1:1

i X)⊤W l−1:1
i X − (W l−1:1

0 X)⊤W l−1:1
0 X

)
‖F
)

︸ ︷︷ ︸

second term

≤ ‖(WL:l+1
0 (WL:l+1

0 )⊤‖‖Ui − Y ‖F ‖(W l−1:1
i X)⊤W l−1:1

i X − (W l−1:1
0 X)⊤W l−1:1

0 X‖

≤ (1.25m
L−l
2 )2(

2.5

1500κ
+

1

(1500κ)2
)ml−1σ2

max(X)‖Ui − Y ‖F

≤ σ2
min(X)

1940
mL−1‖Ui − Y ‖F . (A.34)

Combining (A.33) and (A.34), it has

‖(Hi −H0)ξi‖

≤ 1

mL−1dy

L∑

l=1

(
‖
(
WL:l+1

i (WL:l+1
i )⊤ −WL:l+1

0 (WL:l+1
0 )⊤

)
(Ui − Y )(W l−1:1

i X)⊤W l−1:1
i X‖F

︸ ︷︷ ︸

first term

+ ‖WL:l+1
0 (WL:l+1

0 )⊤(Ui − Y )
(
W l−1:1

i X)⊤W l−1:1
i X − (W l−1:1

0 X)⊤W l−1:1
0 X

)
‖F
)

︸ ︷︷ ︸

second term

≤ 1

mL−1dy

L∑

l=1

2
σ2
min(X)

1940
mL−1‖Ui − Y ‖F ≤ 12

√
2Lσ2

min(X)
√
κ

485dy
θi‖U0 − Y ‖F . (A.35)

Then, it has

‖ιt‖ ≤ ‖η(1 + β)(Ht −H0)ξt‖+ ‖ηβ(Ht−1 −H0)ξt−1‖

≤ 12
√
2

(0.8)4485
√
κ
θt‖U0 − Y ‖F +

12
√
2θ

2(0.8)4485
√
κ
θt‖U0 − Y ‖F

≤ 5

39
√
κ
θt‖U0 − Y ‖F , (A.36)

where the second inequality uses η =
dy

2∗1.24Lσ2
max(X) , β ≤ θ2, and κ = (1.2/0.8)4

σ2
max(X)

σ2
min(X)

.

Combining (A.19), (A.28), and (A.36), it has

‖ϕt‖ ≤ ‖φt‖+ ‖ψt‖+ ‖ιt‖

≤ 1

180
√
κ
θ2t‖U0 − Y ‖F +

1

90
√
κ
θ2t‖U0 − Y ‖F +

2

23
√
κ
θt‖U0 − Y ‖F +

5

39
√
κ
θt‖U0 − Y ‖F

≤ 1

60
√
κ
θ2t‖U0 − Y ‖F +

5

23
√
κ
θt‖U0 − Y ‖F . (A.37)
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Appendix A.3. Proof of Lemma 3

Proof. We have

‖W l
t+1 −W l

0‖F
(a)

≤
t∑

s=0

‖Ms,l‖F

(b)
= η

t∑

s=0

‖
s∑

τ=0

βs−τ

(
∂ℓ(WL:1

τ )

∂W l
τ

+ β(
∂ℓ(WL:1

τ )

∂W l
τ

− ∂ℓ(WL:1
τ−1)

∂W l
τ−1

)

)

‖F

≤ η

t∑

s=0

s∑

τ=0

(1 + β)βs−τ‖∂ℓ(W
L:1
τ )

∂W l
τ

‖F + η

t∑

s=0

s∑

τ=0

βs−τ+1‖∂ℓ(W
L:1
τ−1)

∂W l
τ−1

‖F

(c)

≤ η(1 + β + θ)
54‖X‖√κ
√
dy

‖U0 − Y ‖F
t∑

s=0

s∑

τ=0

θ2(s−τ)θτ .

≤ 162‖X‖√κη
√
dy

‖U0 − Y ‖F
1

(1− θ)2

(d)

≤ 792‖X‖B0

√
dyκ

Lσ2
min(X)

, (A.38)

where (a) is by recursively using (4), (b) usesM l
t =

∑t
s=0 β

t−s ∂ℓ(WL:1)
∂W l

s
, (c) uses ‖∂ℓ(WL:1)

∂W l
s

‖F =
108‖X‖√κ√

dy

θs‖U0 −Y ‖F as (A.15) and β ≤ θ2, (d) uses 1
(1−θ)2 = 2

ηλmin
, the upper-bound

B0 ≥ ‖U0 − Y ‖ defined in Lemma 8 and λmin = (0.8)4Lσ2
min(X)/dy .

Appendix A.4. Proof of Theorem 1

Proof. We prove the theorem by induction. The base case s = 0 holds. Assume
∥
∥
∥
∥
∥

[

ξs

ξs−1

]∥
∥
∥
∥
∥
≤ θs24

√
κ

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
holds for s ≤ t− 1.

Based on Lemma 1, it is noted that
[

ξt

ξt−1

]

= M

[

ξt−1

ξt−2

]

+

[

ϕt−1

0dyn

]

,

where G =

[

(1 + β)(Idyn − ηH lin
0 ) β(−Idyn + ηH lin

0 )

Idyn 0dyn

]

. By recursively using above

equation, it has
[

ξt

ξt−1

]

= Gt

[

ξ0

ξ−1

]

+

t−1∑

s=0

Gt−s−1

[

ϕs

0dyn

]

. (A.39)

From Lemma 12 and Lemma 13, it has the bound for the first term on the right hand
side of (A.39) as

∥
∥
∥
∥
∥
Gt

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
≤ 12

√
κρt

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
, (A.40)
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where ρ = 1− 2
3
√
κ
.

Applying the inductive hypothesis and Lemma 3, it has the upper bound for the
distance ‖W l

i −W l
0‖ ≤ Rlin for any i ≤ t and l ∈ [m]. In turn, we can bound the second

term on the right hand side of (A.39) as

∥
∥
∥
∥
∥

t−1∑

s=0

Gt−1−s

[

ϕs

0

]∥
∥
∥
∥
∥

(a)

≤
t−1∑

s=0

12
√
κρt−1−s‖ϕs‖

(b)

≤
t−1∑

s=0

ρt−1−s12
√
κ(

1

60
√
κ
θ2s‖U0 − Y ‖F +

5

23
√
κ
θs‖U0 − Y ‖F )

(c)

≤ 12
√
κθt(

√
2

20
+

15
√
2

23
)

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥

≤ 12
√
κθt

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
, (A.41)

where (a) uses Lemma 12 and Lemma 13, (b) uses the bound of ‖ϕs‖ in Lemma 2, (c)

uses
∑t−1

s=0 ρ
t−1−sθs = θt−1

∑t−1
s=0

(
ρ
θ

)t−1−s ≤ θt−1 1−(ρ/θ)t

1−ρ/θ ≤ 6
√
κθt and ‖ξ−1‖ = ‖ξ0‖.

Combining (A.40) and (A.41), it completes the proof.
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Appendix B. Deep linear Resnet

Appendix B.1. Proof of Lemma 4

Proof. According to the update rule of NAG, it has

W̃L:1
t+1 = ΠL

l=1

(

W̃
l)
t +M l

t

)

= W̃L:1
t +

L∑

l=1

W̃L:l+1
t M l

tW̃
l−1:1
t +Φt, (B.1)

where Φt contains all the high-order multiplication of momentum terms, i.e. second-order
Mt,iMt,j for ∀i 6= j and higher terms. Based on the equivalent update expression of

NAG andM l
t = −η

∂ℓ(WL:1
t )

∂W l
t

− ηβ(
∂ℓ(WL:1

t )

∂W l
t

− ∂ℓ(WL:1
t−1)

∂W l
t−1

) + β(W l
t −W l

t−1) we can rewrite

(B.1) as

W̃L:1
t+1 = W̃L:1

t − η(1 + β)

L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t )

∂W l
t

W̃ l−1:1
t + ηβ

L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t

+

L∑

l=1

W̃L:l+1
t β(W l

t −W l
t−1)W̃

l−1:1
t +Φt

= W̃L:1
t − η(1 + β)

L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t )

∂W l
t

W̃ l−1:1
t + β(W̃L:1

t − W̃L:1
t−1)

+ ηβ
L∑

l=1

W̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1 + (L− 1)βW̃L:1

t + βW̃L:1
t−1 − β

L∑

l=1

W̃L:l+1
t W̃ l

t−1W̃
l−1:1
t

+ ηβ(

L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t −

L∑

l=1

W̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1 ) + Φt.

Left multiplying the above equality with B and right with AX, we get

Ut+1 = Ut − η(1 + β)

L∑

l=1

BW̃L:l+1
t (BW̃L:l+1

t )⊤(Ut − Y )(W̃ l−1:1
t AX)⊤W̃ l−1:1

t AX

+ β(Ut −Ut−1) + ηβ

L∑

l=1

BW̃L:l+1
t−1 (BW̃L:l+1

t−1 )⊤(Ut−1 − Y )(W̃ l−1:1
t−1 AX)⊤W̃ l−1:1

t−1 AX

+ B

(

(L− 1)βW̃L:1
t + βW̃L:1

t−1 − β
L∑

l=1

W̃L:l+1
t W̃ l

t−1W̃
l−1:1
t

)

AX +BΦtAX

+ ηβB

(
L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t −

L∑

l=1

W̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1

)

AX. (B.2)
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With vec(ACB) = (B⊤ ⊗A)vec(C), (B.2) can be vectorized as

vec(Ut+1)− vec(Ut)

= −η(1 + β)Htvec(Ut − Y ) + β (vec(Ut)− vec(Ut−1)) + ηβHt−1vec(Ut−1 − Y )

+ vec

(

B

(

(L − 1)βW̃L:1
t + βW̃L:1

t−1 − β

L∑

l=1

W̃L:l+1
t W̃ l

t−1W̃
l−1:1
t

)

AX

)

+ vec

(

ηβB

(
L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t −

L∑

l=1

W̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1

)

AX

)

+ vec(BΦtAX), (B.3)

where

Hres
t =

L∑

l=1

[(

(W̃ l−1:1
t AX)⊤(W̃ l−1:1

t AX)
)

⊗
(

BW̃L:l+1
t (BW̃L:l+1

t )⊤
)]

. (B.4)

Then (B.3) can be rewritten as

[

ξt+1

ξt

]

=

[

(1 + β)(Idyn − ηHres
t ) β(−Idyn + ηHres

t−1)

Idyn 0dyn

] [

ξt

ξt−1

]

+

[

φt +ψt

0dyn

]

=

[

(1 + β)(Idyn − ηHres
0 ) β(−Idyn + ηHres

0 )

Idyn 0dyn

][

ξt

ξt−1

]

+

[

ϕt

0dyn

]

, (B.5)

where ϕt = φt +ψt + ιt ∈ R
dyn.

Lemma 10. (Proposition 3.3 in [29]) By the initialization as shown in Section, with
m ≥ C(dx + dy + log(1/δ)) for some constant C, with probability at least 1− δ, it has

0.9α
√
m ≤ σmin(A) ≤ σmax(A) ≤ 1.1α

√
m , 0.9β

√
m ≤ σmin(B) ≤ σmax(B) ≤ 1.1β

√
m

λmin(H
res
0 ) ≥ (0.9)4Lα2γ2m2σ2

min(X) , λmax(H
res
0 ) ≤ (1.1)4Lα2γ2m2σ2

max(X),

κ(Hres
0 ) ≤ 1.14σ2

max(X)

0.94σ2
min(X)

, ℓ(W0) ≤ B2
0 = (6.05α2γ2dym log(2n/δ) + ‖W ∗‖2)‖X‖2F .

Appendix B.2. Proof of Lemma 5

Proof. By Lemma 4, it has ϕt = φt +ψt + ιt ∈ R
dyn, where

φt = vec(BΦtAX) , with Φt = Πl(W̃
l
t +M

l
t )− W̃L:1

t −∑L
l=1 W̃

L:l+1
t M l

tW̃
l−1:1
t ,

and

ψt = vec

(

B((L− 1)βW̃L:1
t + βW̃L:1

t−1 − β

L∑

l=1

W̃L:l+1
t W̃ l

t−1W̃
l−1:1
t )AX

)

+ vec

(

ηβB(

L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t −

L∑

l=1

W̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1 )AX

)

.
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and

ιt = −η(1 + β)(Hres
t −Hres

0 )ξt + ηβ(Hres
t−1 −Hres

0 )ξt−1.

If we can bound ‖φt‖, ‖ψt‖, and ‖ιt‖ respectively, then the bound of ‖ϕt‖ can be
derived by the triangle inequality.

‖ϕt‖ ≤ ‖φt‖+ ‖ψt‖+ ‖ιt‖. (B.6)

Let us first provide the bound of ‖φt‖. Note that Φt is the sum of all the high-order
momentum terms in the product,

W̃L:1
t+1 = Πl

(

W̃ l
t +M

l
t

)

= W̃L:1
t +

L∑

l=1

W̃L:l+1
t M l

tW̃
l−1:1 +Φt. (B.7)

Using the inductive hypothesis, we can bound the gradient norm of each layer as

‖∂ℓ(W
L:1
s )

∂W l
s

‖F = ‖(BW̃L:l+1
s )⊤(Us − Y )(W̃ l−1:1

s AX)⊤‖F
(a)

≤ (1 +Rres)L−1‖A‖‖B‖‖X‖‖Us − Y ‖F
(b)

≤ 36‖A‖‖B‖‖X‖√κθs‖U0 − Y ‖F , (B.8)

where (a) uses ‖W̃ i
s‖ = ‖I +W i

s‖ ≤ 1 + ‖W i
s‖ ≤ 1 + ‖W i

s‖ ≤ 1 + Rres for any s ≤ t,
(b) uses the induction hypothesis and (1 + Rres)L−1 ≤ (1 +Rres)L ≤ exp(1/(2000κ)) ≤
1 + e−1

2000κ ≤ 1.001.
Thus the momentum term of each layer can be bounded as

‖M l
t‖ = ‖ − η

t∑

s=0

βt−s{∂ℓ(W
L:1
s )

∂W l
s

+ β(
∂ℓ(WL:1

s )

∂W l
s

− ∂ℓ(WL:1
s−1)

∂W l
s−1

)}‖

≤ η(1 + β)

t∑

s=0

‖βt−s ∂ℓ(W
L:1
s )

∂W l
s

‖+ ηβ

t∑

s=0

‖βt−s ∂ℓ(W
L:1
s−1)

∂W l
s−1

‖

≤ 36‖A‖‖B‖‖X‖√κη‖U0 − Y ‖F
(

(1 + β)

t∑

s=0

βt−sθs + β

t∑

s=0

βt−sθs−1

)

(a)

≤ 36‖A‖‖B‖‖X‖√κη‖U0 − Y ‖F (1 + β + θ)
θt(1 − θt+1)

1− θ
(b)

≤ 108‖A‖‖B‖‖X‖√κη‖U0 − Y ‖F
θt

1− θ
, (B.9)

where (a) uses β ≤ θ2, (b) uses β, θ ≤ 1.
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Combining all these pieces together, we can bound ‖BΦtAX‖F as

‖BΦtAX‖F
(a)

≤ ‖B‖
L∑

j=2

(
L

j

)(

108‖A‖‖B‖‖X‖√κη‖U0 − Y ‖F
θt

1− θ

)j

(1 +Rres)L−j‖A‖‖X‖

(b)

≤
L∑

j=2

Lj

(

η108‖A‖‖B‖‖X‖√κ
θt

1− θ
‖U0 − Y ‖F

)j

(1 +Rres)L−j‖A‖‖B‖‖X‖

≤ 1.001‖A‖‖B‖‖X‖
L∑

j=2

(

L
108‖A‖‖B‖‖X‖√κ

1 +Rres
η

θt

1− θ
‖U0 − Y ‖F

)j

,

where (a) uses (B.9) and ‖W̃ i
t ‖ ≤ 1 +Rres for bounding a j ≥ 2 higher-order terms like

βW̃
L:kj+1
t ·Mkj

t W̃
kj−1:kj−1+1
t ·Mkj−1

t · · ·Mk1

t · W̃ k1−1:1
t , where 1 ≤ k1 < · · · < kj ≤ L

and (b) uses that
(
L
j

)
≤ Lj

j! .

Then we turn to bound L 108‖A‖‖B‖‖X‖√κ
1+Rres η θt

1−θ‖U0 − Y ‖F in the sum above, it has

L
108‖A‖‖B‖‖X‖√κ

1 +R
η

θt

1− θ
‖U0 − Y ‖F

(a)

≤ 145

1 +R

L‖A‖‖B‖‖X‖√ηκ√
λmin

‖U0 − Y ‖F

≤ 127
√
κ

(1 +R)αγmσmin(X)
‖U0 − Y ‖F ≤ 0.5,

(B.10)

where (a) uses θ = 1 − 1
2
√
κ
≤ 1 −

√
ηλmin

2 , (b) uses η = 1
2L‖A‖2‖B‖2‖X‖2 and λmin =

(0.9)4Lα2γ2m2σ2
min(X), (c) uses Lemma 10 andm ≥ C·max{ dyκ log(2n/δ)‖X‖2

F

σ2
min(X)

,
√
κ‖W ∗‖‖X‖F

αγσmin(X) }
for a sufficient large constant C > 0. Combining the above results, we have

‖φt‖ = ‖BΦtAX‖F
(a)

≤ 1.001‖A‖‖B‖‖X‖
(

ηL
108‖A‖‖B‖‖X‖√κ

1 +R

θt

1− θ
‖U0 − Y ‖F

)2 L∑

j=2

(0.5)
j−2

(b)

≤ 11676κ2

‖A‖‖B‖‖X‖
(
θt‖U0 − Y ‖F

)2

(c)

≤ 1

180
√
κ
θ2t‖U0 − Y ‖F , (B.11)

where (a) uses (B.10), (b) uses η = 1
2L‖A‖2‖B‖2‖X‖2 and θ = 1− 1

2
√
κ
, (c) uses Lemma 10

and m ≥ C ·max{ dyκ
4 log(2n/δ)‖X‖2

F

σ2
min(X)

, κ2‖W ∗‖‖X‖F

αγσmin(X) } for a sufficiently large constant C > 0.

Then we turn to analyze the bound of ‖ψt‖. We need to derive the Frobenius norm

of B
(

(L− 1)βW̃L:1
t + βW̃L:1

t−1 − β
∑L

l=1 W̃
L:l+1
t W̃ l

t−1W̃
l−1:1
t

)

AX and

ηβB(
∑L

l=1 W̃
L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t −∑L

l=1 W̃
L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1 )AX. The first term
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can be rewritten as

Bβ(L − 1) ·ΠL
l=1

(

W̃ l
t−1 +Mt−1,l

)

AX
︸ ︷︷ ︸

first term

+BβW̃L:1
t−1AX

︸ ︷︷ ︸

second term

−Bβ

L∑

l=1

ΠL
i=l+1

(

W̃ i
t−1 +Mt−1,i

)

W̃ l
t−1Π

l−1
j=1

(

W̃
j
t−1 +Mt−1,j

)

AX

︸ ︷︷ ︸

third term

,

which can be further rewritten as E0+E1+E2+· · ·+EL for some matrices E0, . . . ,EL ∈
R

dy×n, where Ei is composed of the multiplication of i momentum terms. Specifically,
we have

E0 = B(L − 1)βW̃L:1
t−1AX

︸ ︷︷ ︸

due to the first term

+ BβW̃L:1
t−1AX

︸ ︷︷ ︸

due to the second term

−BβLW̃L:1
t−1AX

︸ ︷︷ ︸

due to the third term

= 0

E1 = −B(L− 1)β

L∑

l=1

W̃L:l+1
t−1 M l

t−1W̃
l−1:1
t−1 AX

︸ ︷︷ ︸

due to the first term

+Bβ

L∑

l=1

∑

k 6=l

W̃L:k+1
t−1 Mk

t−1W̃
k−1:1
t−1 AX

︸ ︷︷ ︸

due to the third term

= 0.

(B.12)

So what remains on (B.12) are all the higher-order momentum terms, i.e. those with
M i

t−1 and M j
t−1, ∀i 6= j or higher.

To continue, observe that for a fixed (i, j), i < j, the second-order term E2 that
involvesM i

t−1 andM j
t−1 on (B.12) is with coefficient β, because the first term on (B.12)

contributes to (L − 1)β, while the third term on (B.12) contributes to −(L − 2)β. Fur-
thermore, for a fixed (i, j, k), i < j < k, the third-order term that involvesM i

t−1, M
j
t−1,

and Mk
t−1 on (B.12) is with coefficient −2β, as the first term on (B.12) contributes to

(L−1)β, while the third term on (B.12) contributes to −(L−3)β. Similarly, for a p-order
term, the coefficient is −(p− 1)β.

Combining all the pieces together, we have

‖B
(

(L− 1)βW̃L:1
t + βW̃L:1

t−1 − β

L∑

l=1

W̃L:l+1
t W̃ l

t−1W̃
l−1:1
t

)

AX‖F

(a)

≤β‖A‖‖B‖‖X‖
L∑

j=2

(j − 1)

(
L

j

)(

η108‖A‖‖B‖‖X‖√κ
θt−1

1− θ
‖U0 − Y ‖F

)j

(1 +Rres)L−j

(b)

≤ β‖A‖‖B‖‖X‖
L∑

j=2

Lj

(

η108‖A‖‖B‖‖X‖√κ
θt−1

1− θ
‖U0 − Y ‖F

)j

(1 +Rres)L−j

≤ 1.001β‖A‖‖B‖‖X‖
L∑

j=2

(
Lη108‖A‖‖B‖‖X‖√κ

1 +R

θt−1

1− θ
‖U0 − Y ‖F

)j

, (B.13)

where (a) uses (B.9) and higher-order terms for any j ≥ 2 have the form as Bβ(j −
1)(−1)jW̃

L:kj+1
t−1 ·Mkj

t−1W̃
kj−1:kj−1+1
t−1 ·Mkj−1

t−1 · · ·Mk1

t−1 · W̃ k1−1:1
t−1 AX, where 1 ≤ k1 <

· · · < kj ≤ L and (b) uses that
(
L
j

)
≤ Lj

j!
28



For the term ηL108‖A‖‖B‖‖X‖√κ
1+Rres

θt−1

1−θ ‖U0−Y ‖F in the sum above, it follows a similar
analysis as (B.10) to derive its bound as

ηL108‖A‖‖B‖‖X‖√κ

1 +Rres

θt−1

1− θ
‖U0 − Y ‖F ≤ 0.5, (B.14)

with m ≥ C ·max{ dyκ log(2n/δ)‖X‖2
F

σ2
min(X)

,
√
κ‖W ∗‖‖X‖F

αγσmin(X) } for a sufficent large constant C > 0.

Combining (B.13) and (B.14), it has

‖B
(

(L− 1)βW̃L:1
t + βW̃L:1

t−1 − β

L∑

l=1

W̃L:l+1
t W̃ l

t−1W̃
l−1:1
t

)

AX‖F

≤ 11676κ2

‖A‖‖B‖‖X‖
(
θt−1‖U0 − Y ‖F

)2

(a)

≤ 1

180
√
κ
θ2t−2‖U0 − Y ‖F

(b)

≤ 1

45
√
κ
θ2t‖U0 − Y ‖F , (B.15)

where (a) uses m ≥ C · max{ dyκ
4 log(2n/δ)‖X‖2

F

σ2
min(X)

, κ2‖W ∗‖‖X‖F

αγσmin(X) } for a sufficiently large

constant C > 0, (b) uses θ = 1− 1
2
√
κ
≥ 1/2.

Then we turn to bound ηβB
(
∑L

l=1 W̃
L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t −∑L

l=1 W̃
L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1

)

AX,

it has

ηβ‖B
(

L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t −

L∑

l=1

W̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1

)

AX‖F

≤ ηβ

L∑

l=1

(‖B(W̃L:l+1
t − W̃L:l+1

t−1 )
∂ℓ(WL:1

t−1)

∂W l
t−1

W̃ l−1:1
t AX‖

︸ ︷︷ ︸

first term

+ ‖BW̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

(W̃ l−1:1
t − W̃ l−1:1

t−1 )AX‖
︸ ︷︷ ︸

second term

). (B.16)

For the first term of the above formulation, it has

‖B(W̃L:l+1
t −W̃L:l+1

t−1 )
∂ℓ(WL:1

t−1)

∂W l
t−1

W̃ l−1:1
t AX‖F ≤ ‖B‖‖W̃L:l+1

t −W̃L:l+1
t−1 ‖‖∂ℓ(W

L:1
t−1)

∂W l
t−1

‖F ‖W̃ l−1:1
t AX‖.

It is noted that

‖W̃ j:i
t − W̃ j:i

t−1‖ = ‖W̃ j:i
t − W̃ j:i

t−1‖
≤ ‖Πj

l=i(W̃
l
t−1 +Mt−1,l)− W̃ j:i

t−1‖

≤
j−i+1
∑

k=1

(
j − i+ 1

k

)

(1 +Rres)j−i+1−k(108‖A‖‖B‖‖X‖√κ
θt−1

1− θ
η‖U0 − Y ‖F )k

≤ (1 +Rres)j−i+1

j−i+1
∑

k=1

(108‖A‖‖B‖‖X‖√κ
j − i+ 1

1 +Rres

θt−1

1− θ
η‖U0 − Y ‖F )k.(B.17)
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Thus, it has

ηβ

L∑

l=1

‖B(W̃L:l+1
t − W̃L:l+1

t−1 )
∂ℓ(WL:1

t−1)

∂W l
t−1

W̃ l−1:1
t AX‖F

≤ ηβ

L∑

l=1

‖B‖‖W̃L:l+1
t − W̃L:l+1

t−1 ‖‖∂ℓ(W
L:1
t−1)

∂W l
t−1

‖F ‖W̃ l−1:1
t AX‖

(a)

≤ 36
√
κηβ(‖A‖‖B‖‖X‖)2θt−1‖U0 − Y ‖F (1 +Rres)L−1

·
L∑

l=1

L−l∑

k=1

(108‖A‖‖B‖‖X‖√κ
L− l

1 +Rres

θt−1

1− θ
η‖U0 − Y ‖F )k

(b)

≤ 36
√
κηβ(‖A‖‖B‖‖X‖)2θt−1‖U0 − Y ‖F (1 +Rres)L−1

·108‖A‖‖B‖‖X‖√κ
L

1 +Rres

θt−1

1− θ
η‖U0 − Y ‖F

L∑

l=1

L−l∑

k=1

0.5k−1

(c)

≤ 3920κ3/2

‖A‖‖B‖‖X‖(θ
t−1‖U0 − Y ‖F )2

(d)

≤ 1

360
√
κ
θ2t−2‖U0 − Y ‖F ≤ 1

90
√
κ
θ2t‖U0 − Y ‖F , (B.18)

where (a) uses (B.8) and (B.17), (b) uses and (B.14), (c) uses β ≤ 1, η = 1
2L‖A‖2‖B‖2‖X‖2

and (1+Rres)L−1 ≤ (1+Rres)L ≤ 1.001, (d) usesm ≥ C·max{ dyκ
3 log(2n/δ)‖X‖2

F

σ2
min(X)

, κ3/2‖W ∗‖‖X‖F

αγσmin(X) }
For the second part of (B.16), it has the same bound as

ηβ

L∑

l=1

‖BW̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

(W̃ l−1:1
t − W̃ l−1:1

t−1 )AX‖

≤ 36
√
κηβ(‖A‖‖B‖‖X‖)2θt−1‖U0 − Y ‖F (1 +Rres)L−1

·
L∑

l=1

L−l∑

k=1

(108‖A‖‖B‖‖X‖√κ
L− l

1 +Rres

θt−1

1− θ
η‖U0 − Y ‖F )k

≤ 1

90
√
κ
θ2t‖U0 − Y ‖F . (B.19)

Combining (B.15), (B.18) and (B.19), it has

ψt = vec

(

B((L − 1)βW̃L:1
t + βW̃L:1

t−1 − β

L∑

l=1

W̃L:l+1
t W̃ l

t−1W̃
l−1:1
t )AX

)

+ vec

(

ηβB(

L∑

l=1

W̃L:l+1
t

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t −

L∑

l=1

W̃L:l+1
t−1

∂ℓ(WL:1
t−1)

∂W l
t−1

W̃ l−1:1
t−1 )AX

)

‖ψt‖F ≤ 2

45
√
κ
θ2t‖U0 − Y ‖F .

(B.20)
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Now let us switch to bound ‖ιt‖ ≤ ‖η(1 + β)(Ht −H0)ξt‖+ ‖ηβ(Ht−1 −H0)ξt−1‖.
It has

‖η(1 + β)(Ht −H0)ξt‖

= η(1 + β)‖
L∑

l=1

BW̃L:l+1
t (BW̃L:l+1

t )⊤(Ut − Y )(W̃ l−1:1
t AX)⊤W̃ l−1:1

t AX −
L∑

l=1

BB⊤(Ut − Y )(AX)⊤AX‖F

≤ η(1 + β)

L∑

l=1

‖BW̃L:l+1
t (BW̃L:l+1

t )⊤(Ut − Y )(W̃ l−1:1
t AX)⊤W̃ l−1:1

t AX −
L∑

l=1

BB⊤(Ut − Y )(AX)⊤AX‖F

≤ η(1 + β)

L∑

l=1

(
‖
(

BW̃L:l+1
t (BW̃L:l+1

t )⊤ −BB⊤
)

(Ut − Y )(W̃ l−1:1
t AX)⊤W̃ l−1:1

t AX‖F
︸ ︷︷ ︸

first term

+ ‖BB⊤(Ut − Y )
(

(W̃ l−1:1
t AX)⊤W̃ l−1:1

t AX − (AX)⊤AX
)

‖F
)

︸ ︷︷ ︸

second term

.

(B.21)
Denote ∆L:l+1

t = BW̃L:l+1
t −BW̃L:l+1

0 = BW̃L:l+1
t −B, it has

‖BW̃L:l+1
t (BW̃L:l+1

t )⊤ −BB⊤‖ ≤ ‖(B +∆L:l+1
t )(B +∆L:l+1

t )⊤ −BB⊤‖

≤ 2‖B‖‖∆L:l+1
t ‖+ ‖∆L:l+1

t ‖2 ≤ ‖B‖2
579κ

,

where the last inequality uses

‖∆j:i
t ‖ ≤ ‖BW̃ j:i

t −B‖ ≤ ‖B‖‖Πj
l=i(W

l
t + I) − I‖ ≤ ‖B‖

j−i+1
∑

l=1

(
j − i+ 1

l

)

(Rres)l

≤ ‖B‖[(1 +Rres)j−i+1 − 1] ≤ ‖B‖
1160κ

.

Similarly, we can derive

‖(W̃ l−1:1
t AX)⊤(W̃ l−1:1

t AX)− (AX)⊤AX‖ ≤ ‖A‖2‖X‖2
579κ

. (B.22)

Therefore, the first part of (B.21) has the bound as

η(1 + β)

L∑

l=1

‖
(

BW̃L:l+1
t (BW̃L:l+1

t )⊤ −BB⊤
)

(Ut − Y )(W̃ l−1:1
t AX)⊤W̃ l−1:1

t AX‖F

≤ η(1 + β)

L∑

l=1

‖B‖2
579κ

√
2θtνC0‖U0 − Y ‖(1 +Rres)2l−2‖A‖2‖X‖2

(a)

≤ 1

17
√
κ
θtνC0‖U0 − Y ‖,

where (a) uses η = 1
2L‖A‖2‖B‖2‖X‖2 and (1 +Rres)L ≤ 1.001.
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η(1 + β)

L∑

l=1

‖BB⊤(Ut − Y )
(
(W l−1:1

t AX)⊤W l−1:1
t AX − (AX)⊤AX

)
‖F

≤ η(1 + β)

L∑

l=1

‖B‖2‖Ut − Y ‖F
‖A‖2‖X‖2

579κ
≤ 1

17
√
κ
θt‖U0 − Y ‖F .

Thus ‖η(1 + β)(Ht − H0)ξt‖ ≤ 2
17

√
κ
θt‖U0 − Y ‖F . The bound of ‖ηβ(Ht−1 −

H0)ξt−1‖ ≤ 1
17

√
κ
θt+1‖U0 − Y ‖F can be derived with a similar way.

Combining the above bounds and θ ≤ 1, it has

‖ιt‖ ≤ 3

17
√
κ
θt‖U0 − Y ‖F . (B.23)

Now we have (B.11), (B.20), and (B.23), which leads to

‖ϕt‖ ≤ ‖φt‖+ ‖ψt‖+ ‖ιt‖

≤ 1

180
√
κ
θ2t‖U0 − Y ‖F +

2

45
√
κ
θ2t‖U0 − Y ‖F +

3

17
√
κ
θt‖U0 − Y ‖F

≤ 1

30
√
κ
θ2t‖U0 − Y ‖F +

3

17
√
κ
θt‖U0 − Y ‖F .

In addition, it hasm ≥ C1 max{dyrκ5 log(2n/δ),
√
rκ2.5‖W ∗‖

αγ } ≥ C2·max{ dyκ
4 log(2n/δ)‖X‖2

F

σ2
min(X)

, κ2‖W ∗‖‖X‖F

αγσmin(X) }
for some sufficiently large constant C1, C2 > 0 using ‖X‖F ≤ √

r‖X‖.

Lemma 11. Following the setting as Lemma 5, for any s ≤ t, assume the residual

dynamics satisfies

∥
∥
∥
∥
∥

[

ξs

ξs−1

]∥
∥
∥
∥
∥
≤ θs · 24√κ

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
, then

‖W l
t −W l

0‖F ≤ Rres =
1

2000Lκ
.

Proof. We have

‖W l
t+1 −W l

0‖F
(a)

≤
t∑

s=0

‖Ms,l‖F

(b)

≤ 3.003‖A‖‖B‖‖X‖η24√κ‖U0 − Y ‖F
t∑

s=0

θs

1− θ

(c)

≤ 145κ3/2

L‖A‖‖B‖‖X‖‖U0 − Y ‖F
(d)

≤ 1

2000Lκ
, (B.24)

where (a) uses the update rule of momentum W l
t+1 −W l

t = −ηM l
t , where M l

t , (b)
uses the bound of M l

t in (B.9), (c) uses 1
(1−θ)2 = 4κ and η = 1

2L‖A‖2‖B‖2‖X‖2 , (d)
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uses Lemma 10 and m ≥ C ·max{ dyκ
4 log(2n/δ)‖X‖2

F

σ2
min(X)

, κ2‖W ∗‖‖X‖F

αγσmin(X) } for a sufficient large

constant C > 0.

Appendix B.3. Proof of Theorem 2
Proof. We prove the theorem by induction. The base case s = 0 holds. Assume
∥
∥
∥
∥
∥

[

ξs

ξs−1

]∥
∥
∥
∥
∥
≤ θs24

√
κ

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
holds for s ≤ t− 1.

Based on Lemma 4, it is noted that
[

ξt

ξt−1

]

= G

[

ξt−1

ξt−2

]

+

[

ϕt−1

0dyn

]

,

where G =

[

(1 + β)(Idyn − ηHres
0 ) β(−Idyn + ηHres

0 )

Idyn 0dyn

]

. By recursively using above

equation, it has
[

ξt

ξt−1

]

= Gt

[

ξ0

ξ−1

]

+

t−1∑

s=0

Gt−s−1

[

ϕs

0dyn

]

. (B.25)

From Lemma 12 and Lemma 13, it has the bound for the first term on the right hand
side of (B.25) as

∥
∥
∥
∥
∥
Gt

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
≤ 12

√
κρt

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
, (B.26)

where ρ = 1− 2
3
√
κ
.

Applying the inductive hypothesis and Lemma 11, it has the upper bound for the
distance ‖W l

i −W l
0‖ ≤ Rres for any i ≤ t and l ∈ [m]. In turn, we can bound the second

term on the right hand side of (B.25) as

∥
∥
∥
∥
∥

t−1∑

s=0

Gt−1−s

[

ϕs

0

]∥
∥
∥
∥
∥

(a)

≤
t−1∑

s=0

12
√
κρt−1−s‖ϕs‖

(b)

≤
t−1∑

s=0

ρt−1−s12
√
κ(

1

30
√
κ
θ2s‖U0 − Y ‖F +

3

17
√
κ
θs‖U0 − Y ‖F )

(c)

≤ 12
√
κθt(

√
2

10
+

9
√
2

17
)

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥

≤ 12
√
κθt

∥
∥
∥
∥
∥

[

ξ0

ξ−1

]∥
∥
∥
∥
∥
, (B.27)

where (a) uses Lemma 12 and Lemma 13, (b) uses the bound of ‖ϕs‖ in Lemma 5, (c)

uses
∑t−1

s=0 ρ
t−1−sθs = θt−1

∑t−1
s=0

(
ρ
θ

)t−1−s ≤ θt−1 1−(ρ/θ)t

1−ρ/θ ≤ 6
√
κθt and ‖ξ−1‖ = ‖ξ0‖.

Combining (B.26) and (B.27), it completes the proof.
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Appendix C. Supporting Lemmas

Lemma 12. (Lemma 2 in [27]) Assume H ∈ R
n×n is a symmetry positive definite

matrix. Let G =

[

(1 + β)(In − ηH) β(−In + ηH)

In 0n

]

∈ R
2n×2n. Suppose a sequence of

iterates {vi} satisfy vt = Gvt−1 for any t ≤ T . If β and η are chosen that satisfy

1 > β ≥ 1−
√

ηλmin(H)

1+
√

ηλmin(H)
and 0 < η ≤ 1/λmax(H), then it has the bound at any iteration

k ≤ T as

‖vk‖ ≤ C
(√

β(1 − ηλmin(H))
)k‖v0‖, (C.1)

where C = 2β(1−ηλmin(H))+2√
min{g(β,ηλmin(H)),g(β,ηλmax(H))}

and the function g is defined as g(x, y) =

4x(1 − y)− [(1 + x)(1 − y)]2.

Lemma 13. (Lemma 3 in [27]) Assume 0 < λ ≤ λmin(H) ≤ λmax(H) ≤ λmax. Denote

κ = λmax/λ. With η = 1/2λmax and β = 3
√
κ−2

3
√
κ+2

, it has

√

β(1− ηλmin(H)) ≤ 1− 2

3
√
κ
, C ≤ 12

√
κ. (C.2)
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