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ABSTRACT
The integration of Reinforcement Learning (RL) and Evolutionary Algorithms (EAs) aims at simulta-
neously exploiting the sample efficiency as well as the diversity and robustness of the two paradigms.
Recently, hybrid learning frameworks based on this principle have achieved great success in various
challenging tasks. However, in these methods, policies from the genetic population are evaluated
via interactions with the real environments, limiting their applicability when such interactions are
prohibitively costly. In this work, we propose Surrogate-assisted Controller (SC), a novel and efficient
module that can be integrated into existing frameworks to alleviate the burden of EAs by partially
replacing the expensive fitness evaluation. The key challenge in applying this module is to prevent
the optimization process from being misled by the possible false minima introduced by the surrogate.
To address this issue, we present two strategies for SC to control the workflow of hybrid frameworks.
Experiments on six continuous control tasks from the OpenAI Gym platform show that SC can not
only significantly reduce the cost of interacting with the environment, but also boost the performance
of the original hybrid frameworks with collaborative learning and evolutionary processes.

1. Introduction
Reinforcement Learning (RL) has demonstrated promis-

ing achievements in various domains, ranging from Atari
games [26], GO [36], to robot control tasks [20]. Among
these successes, Deep Learning (DL) techniques [11] such
as Deep Neural Networks (DNNs) have been widely used
for decision-making [40, 47]. The combination of RL with
DL is generally calledDeepReinforcement Learning (DRL).
However, recent studies show that DRL suffers from pre-
mature convergence to local optima in the training process,
and the RL agents are highly sensitive to hyperparameter
settings, implementation details and uncertainties of the en-
vironmental dynamics [14], preventing agents from learning
stable policies.

In the meantime, black-box optimization techniques
such as Evolutionary Algorithms (EAs) [50, 8] have shown
competitive results compared to DRL algorithms [33, 48].
Firstly, the population-based mechanismmakes EAs explore
the parameter space better than DRL. Secondly, since EAs
only consider the total returns across the entire episode,
they are indifferent to the issue of sparse reward and robust
to environmental noise [33]. However, EAs suffer from
low sample efficiency [18], due to their inherent black-
box properties, and they often do not make full use of the
feedback signals and historical data from the environment.

An emergent research direction is dedicated to exploiting
the benefits of both solutions following the theory of evo-
lution [45], where the learning of individuals can increase
the evolutionary advantage of species, which can subse-
quently make the population learn faster. Recently proposed

∗Corresponding author at: The Center for Artificial Intelligence and
Robotics, Shenzhen International Graduate School, Tsinghua University,
Shenzhen 518055, China. E-mail address:boyuan@ieee.org.

ORCID(s):

Figure 1: An overview of Surrogate-assisted Controller (SC).
The SC switches between the real fitness function and the
approximated fitness function constructed by the surrogate
model to efficiently evaluate the genetic population in hybrid
frameworks, while boosting the performance of the original
hybrid frameworks. As shown at the bottom, in some cases,
inaccurate surrogates may bring extra benefits: the predicted
fitness function (dashed curve) has large deviations from the
real one (solid curve) but nevertheless features the same global
minimum and constructs a new fitness landscape that is more
friendly to evolutionary search.

Evolutionary Reinforcement Learning (ERL) [18], Proximal
Distilled ERL (PDERL) [2] and other hybrid frameworks
based on EA and off-policy DRL [29, 23, 49, 22] have
demonstrated encouraging progresses on single-objective
hard-exploration tasks with large continuous state and action
spaces [3], outperforming pure DRL and EA. Particularly,
one common feature of these approaches is that a diverse
genetic population of policies is generated by EA to drive the
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exploration, while an off-policy actor-critic algorithm thor-
oughly exploits the population’s environmental experience
to search for high-performing policies.

However, there is a notable issue with these hybrid
frameworks: the evaluation of the genetic population re-
quires all individuals to be presented to the environment
during the training process. Although population-based in-
teractions can provide diverse historical experiences, they
usually require a large amount of computational time and
can be prohibitively expensive [34, 16]. For instance, in
robotic scenarios, frequent evaluations may lead to massive
resources consumption or even equipment damage. These
unfavorable characteristics greatly limit the applicability of
existing hybrid frameworks in complex simulated circum-
stances or non-trivial real-world scenarios.

A possible solution is to introduce the mechanism of
surrogate. In typical Surrogate-assisted Evolutionary Opti-
mization (SEO), surrogates, also known as meta-models, are
trained to partially replace the expensive fitness functions
[42, 28]. Surrogate models such as Kriging [7], polynomials
[17] and neural networks have been successfully applied to
domains including constrained optimization [1] and multi-
objective optimization [21, 44]. Nevertheless, in the standard
RL context, due to the large uncertainties of genotype-
phenotype-fitness mapping [38], conventional methods face
great challenges of high computational cost and modeling
complexity (Section 2.2) with only very limited studies
conducted on simple discrete control tasks.

In this paper, we design a generic and effective mod-
ule, called Surrogate-assisted Controller (SC), that can be
conveniently combined with existing hybrid RL frameworks
to improve their practicability. As shown in Figure 1, SC
employs an approximated fitness function together with the
real fitness function to help evaluate the genetic population.
Its sample-efficient surrogate model can be naturally im-
plemented in the existing hybrid RL frameworks, making
full use of the diverse experiences to evaluate the fitness
of individuals without environmental interactions. Note that
the primary criterion for applying the surrogate model is
the introduced prediction error [32]. SC mitigates this risk
using two management strategies with an elite protection
mechanism (Section 4.2), which can strategically schedule
the real and the surrogate-assisted evaluation as well as
effectively prevent the dramatic fluctuation of performance
and the spread of detrimental information from individu-
als with inaccurate fitness values. Our empirical studies in
Section 5 show that SC can not only successfully transfers
the computational burden of real fitness evaluations to the
efficient surrogate model and boost the performance of orig-
inal hybrid approaches, but also stabilize the interactions
between the RL agent and the genetic population.

The major contributions of our work are summarized as
follows:

• A novel module named Surrogate-assisted Controller
(SC) is proposed that can be easily integrated into
existing hybrid RL frameworks to significantly relieve

the computational cost of interacting with the real
environment during the optimization process.

• Two effective management strategies are presented
for SC to control the workflow of the hybrid frame-
works, which can strategically schedule the surrogate-
assisted evaluation and the real fitness evaluation.

• We combine SC with ERL and PDERL, creating
two new frameworks named SERL and SPDERL,
respectively, to highlight its principle and flexibil-
ity. Comprehensive experimental studies on Mujoco
benchmarks show that SC can not only effectively
bring better sample-efficiency to the original hybrid
frameworks, but also stabilize the learning and evolu-
tion processes with superior performance.

The remainder of this paper is organized as follows.
Section 2 introduces the related work on hybrid frameworks
and surrogate-assisted methods for solving RL problems.
The problem definition is specified in Section 3 and the
details of SC and its components are presented in Section 4.
In Section 5, the numerical validation and in-depth analyses
are conducted and Section 6 concludes our work with some
discussions on future research directions.

2. Related work
2.1. Combining EA and off-policy DRL

As an alternative solution for RL problems [33], EAs
have also been combined with DRL to leverage the benefits
of both solutions. The first hybrid framework ERL [18]
combines an off-policy DRL agent based on DDPG [20]
with a population evolved by the Genetic Algorithm (GA)
[46]. In each generation, individuals are evaluated over a
few episodes and the fitness is given by averaging the total
rewards. Based on this information, policy optimization is
then conducted over the parameter space by genetic oper-
ators. Meanwhile, the RL agent is trained on the diverse
experiences produced by the population. In the periodical
synchronization step, it is injected into the population and
this bi-directional interaction controls the information flow
between the RL agent and the genetic population. To further
extend the ERL framework, PDERL [2] uses the distillation
crossover operator to alleviate the catastrophic forgetting
caused by the recombination of neural networks. In addition,
various evolutionary methods [29, 23, 39] have also been
combined with other DRL frameworks such as TD3 [10]
and SAC [13] to further leverage the advantages of both
gradient-based and gradient-free methods. In our paper, we
mainly focus on the paradigm of ERL and PDERL to show
the effectiveness of our proposed methods.
2.2. Surrogate-assisted methods for RL problems

Surrogate-assisted methods have been widely investi-
gated to reduce unnecessary expensive evaluations [15]. Re-
cently, a few studies on using the surrogate model to enhance
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RL algorithms or EAs in the context of sequential decision-
making tasks have been conducted and can be generally
divided into two categories.

The first category focuses on learning a model of the
environment. Many studies [4, 12, 6] try to construct a
transition model, which is trained in a standard supervised
manner using a large amount of historical data, to imitate at
least some aspects of the system’s physical dynamics. Then,
the fixed surrogate model is embedded into RL algorithms to
help learn a control strategy from the experiences obtained
by continuous interactions with the surrogate model. How-
ever, for domains with high noise or when the availability of
the historical data is limited, this kind of methods may no
longer be effective.

The other category does not require modeling the en-
vironment and mainly focuses on evaluation. For exam-
ple, Kriging can be employed to directly map the relation-
ships between neural networks (policies) and their fitness.
Typically, genotypic distances between neural networks are
needed by the Kriging model [37]. However, the large-scale
settings and complex problems may make the computation
of these distances practically impossible. Although approxi-
mate distances such as the phenotypic distance [38] can offer
some help, the high dimensionality of the inputs can result
in an increase of computational costs, and the parameter
settings for Kriging remain a challenge for input vectors of
different sizes [38].

For instance, Evolutionary Surrogate-assisted Prescrip-
tion (ESP) [9] incorporates a surrogate model into the EA.
Given a set of input states S , the policy neural network
takes each s ∈ S as the input and outputs the action a. The
surrogate model of ESP, represented by a random forest or a
deep neural network, is used to predict the outcome of each
state-action pair (s, a), and the fitness of each policy is given
by averaging the outcomes over S . In each generation, the
surrogate is first trained on the historical data by minimizing
the Mean Square Error (MSE) loss between the real and
the predicted outcomes. Subsequently, individuals (called
prescriptors) in the population are evolved with the trained
surrogate. Finally, selected elites are presented to the real
environment to generate new training data for the surrogate.
Unfortunately, for challenging environments with large con-
tinuous state and action spaces or with rich feedback signals,
the lack of gradient information makes EAs suffer from
brittle convergence [33, 18]. Furthermore, the update of the
policy neural networks in ESP is purely based on predicted
fitness, which increases the risk of misleading the evolu-
tionary optimization in the wrong direction under complex
circumstances. Consequently, the frequency of applying the
surrogate also needs to be managed properly to ensure the
stability of the training process.

In general, apart from limited successes on simple
discrete control tasks such as Cart-Pole [3], conventional
surrogate-assisted EAs [38, 37, 9] still face significant
challenges. To explore the potential of surrogate-assisted
methods in continuous and complex RL contexts, in this

work, we extend the surrogate model to hybrid RL frame-
works with the objective to reduce the cost of evaluations
while making full use of the efficiency of the RL agent and
the exploration capability of the EA.

3. Preliminaries
In DRL, each problem is modeled as a Markov Deci-

sion Process (MDP), which can be specified by a 5-tuple
⟨S ,A ,P , r, ⟩. With the state space S and the action space
A , P ∶ S ×S ×A → [0, 1] is the transition function of the
environment; r(s, a) ∶ S × A → ℝ is the reward function,
and the discount factor  ∈ (0, 1] specifies the degree to
which rewards are discounted over time.

Q(s, a|�Q) = E

[ ∞
∑

i=0
 irt+i+1

|

|

|

st = s, at = a

]

(1)

The actor-critic architecture based on the policy gradient
approach is widely used in DRL [40]. The critic network
Q(s, a|�Q), as shown in Eq.(1), is used to estimate the
expectation of the discounted accumulative rewards of the
state-action pair (s, a). According to the Bellman equation,
its recursive expression is:

Q(s, a|�Q) = E
[

r(s, a) + Q(s′, a′|�Q)
] (2)

where s′ and a′ represent the next state and action, respec-
tively. In each iteration, transitions with the batch size of
N are sampled randomly from the experience replay buffer
to update the parameters of Q(s, a|�Q) by minimizing the
Temporal Difference (TD) loss based on the standard back-
propagation:

ℒQ(s,a|�Q) =
1
N

∑

i

(

yi −Q(si, ai|�Q)
)2 (3)

yi = r(si, ai) + Q
(

s′, �(s′|��)|�Q
) (4)

∇��J ≈ 1
N

∑

i
Q
(

si, �(si|��)
)

∇���(si|��) (5)

Then, the critic is used to assist the training of the actor
network �(s|��) via policy gradient, according to Eq.(5).
With the back-propagation method, the parameter �� of the
actor network is updated in the direction towards maximiz-
ing the Q value.

4. Methodology
In this section, we present the Surrogate-assisted Con-

troller (SC) with two management strategies and introduce
how to incorporate it into the hybrid framework. Figure 2
shows an example of combining SC with ERL, where the
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Figure 2: Integration of SC and ERL. The ERL framework
is shown in the light gray box and SC is shown in the light
green box. To evaluate the population without environment
interactions, the recent state information is sampled from the
replay buffer as the evaluation memory. After that, the RL-
Critic plays the role of a surrogate model to evaluate actors
based on the historical data. Finally, the predicted population
fitness is consumed by evolutionary methods.

Algorithm 1 Surrogate-assisted Evaluation
Input: Policy set of population �pop = {�1, �2, ..., �n};

The surrogate model Q(s, a|�Q);
Replay buffer  for RL agent training.

Output: Population fitness F
1: Sample k latest states from to the evaluation memory

eva as the evaluation samples;
2: for i = 1 to n do
3: Initialize the fitness of �i: fi = 0;
4: for j = 1 to k do
5: fi = fi +Q

(

sj , �i(sj|��i )|�Q
)

∕k;
6: end for
7: end for
8: return Population fitness F = {f1, f2, ..., fn}.

RL-Critic exploits the diverse experiences collected by the
genetic population to simultaneously train the RL-Actor and
assist the evaluation, referred to as Surrogate-assisted Evo-
lutionary Reinforcement Learning (SERL). In practice, SC
includes three components: critic-based surrogate model,
management strategies and evaluation memory.
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Figure 3: The preliminary experiment on the surrogate’s
approximation accuracy over two environments: Hopper (left,
trained for 1 million steps) and Walker (right, trained for 3
million steps). The curves of approximation accuracy clearly
show that the accuracy of the surrogate tends to increase
during the training process.

4.1. Critic-based surrogate model
Using the real fitness function can be time-consuming or

even dangerous for expensive problems. A surrogate, which
is a predictive model, can be used to assist the evaluation.
Note that, in the domain of Evolutionary Computation (EC),
the fitness of an individual can be determined inmany forms,
even as a non-markovian definition. In our work, we consider
the real fitness value as the sum of the reward over the
episode, following the typical setting of RL paradigm.

However, the genotype-phenotype-fitness mapping of
sequential decision-making problems is often difficult to
learn, but with the definition of fitness mentioned above, it
is straightforward for the surrogate model to estimate the
outcome of a state-action pair (s, a), as shown in Eq.(1).
In ESP [9], individuals are evaluated by an extra dedi-
cated surrogate model. However, in hybrid frameworks, the
critic module Q(s, a|�Q) of the off-policy RL agent can be
naturally used as a surrogate. The actor module �(s|��)
represented by a fully connected policy neural network takes
a state vector s as the input and decides what action vector
a to perform. Then, the concatenated vector (s, a) is eval-
uated by the critic-based surrogate model. Thus, with the
evaluation memory (described in Section 4.3) that contains
the information of the k latest state vectors drawn from the
replay buffer, the fitness value of an actor in the genetic
population can be obtained by averaging its predicted Q
values over all states. Then we have:

f = 1
k
∑k
j=1Q

(

sj , �(sj|��)|�Q
) (6)

The complete process of the surrogate-assisted evalua-
tion is presented in Algorithm 1, and its intrinsic motivation
is to evaluate a policy whether it is powerful and robust
enough to perform as much as high-quality actions when
facing diverse states. Furthermore, a prominent feature is
that there is no extra cost involved in training the surrogate
model, as it is part of the standard training procedure of the
RL. Different from conventional actor-critic methods such
as Asynchronous Advantage Actor-Critic (A3C) [24], where
the critic is only used to guide the improvement of policies,
the critic-based surrogate model is able to simultaneously
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Figure 4: Two kinds of management strategies: the Generation-based Control (GC) and the Individual-based Control (IC). For
GC, the parameter update direction is partially based on real fitness information, while the update direction is totally provided by
the real fitness of the pre-selected candidates in IC.

train the RL-Actor via policy gradient and provide relatively
accurate fitness estimations for individuals with various
improvements in the estimation of Q values [10, 43].

The approximation quality of the surrogate is measured
by the Spearman’s rank correlation coefficient rs ∈ [−1, 1]
between the real and the predicted fitness values, where n is
the number of data points (population size) and d represents
the difference between the two ranks:

rs = 1 −
6
∑n
i=1 d

2
i

n(n2 − 1)
(7)

A preliminary experiment on two standard continuous
control tasks from MuJoCo [41] is conducted to show how
the approximation accuracy of the critic-based surrogate
changes during ERL’s training process. In each generation,
we apply the surrogate-assisted evaluation to the newly
generated population with k = 50, 000 in the first place.
After evaluating the population in the real environment, rsis calculated to report the current approximation accuracy
of the surrogate. The result in Figure 3 is reported over 6
runs, it suggests that the approximation accuracy increase
during the training process. Although at the beginning of
training, the surrogate has relatively low approximation ac-
curacy, previous studies [15, 9] suggest that this kind of
uncertainty may not cause negative effects on evolutionary
search. Instead, it may further push the population to explore
the fitness landscape. Moreover, the training data generated
by these candidates can subsequently help improve the ap-
proximation accuracy of the surrogate.
4.2. Management strategies

Although the surrogate model can provide an approxi-
mately accurate fitness estimation, using predicted fitness to
assist the evolutionary operations throughout the optimiza-
tion process may easily introduce false minima, leading to

a drop in performance or an increase in the computational
cost of evaluating low-performing policies. As a result, sur-
rogates should be used along with real fitness functions and
we consider the following two methods: generation-based
and individual-based strategies.
Algorithm 2 Generation-based control
Input: Policy set of population �pop = {�1, �2, ..., �n};The surrogate model Qrl;Replay buffer  for RL agent training;

Control factor !;
Random number generator Grand ∈ (0, 1].

Output: New population �pop∗
1: if Grand > ! then
2: Freal = Evaluation(�pop)
3: Copy the elite actor
4: �pop∗ = Evolutionary methods(Freal, �pop)
5: else
6: Fpre = Surrogate-assisted evaluation(�pop, Qrl,)
7: �pop∗ = Evolutionary methods(Fpre, �pop)
8: Maintain the recorded elite actor in �pop∗
9: end if
10: return New population �pop∗

4.2.1. Generation-based control
In the generation-based control, a fixed hyperparameter

! ∈ [0, 1) is used to indicate the probability of using the
surrogate-assisted evaluation. In this setting, the evolution-
ary operators are partially based on predicted fitness values.
Note that, at the beginning of evolution, the population is
evaluated in the real environment to collect necessary state
data. Algorithm 2 shows the pseudo-code of the generation-
based control.

Previous studies have provided some theoretical analyses
of the convergence of surrogate-assisted EAs [5, 31]. Here,
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Algorithm 3 Individual-based control
Input: Policy set of population �pop = {�1, �2, ..., �n};The surrogate model Qrl; The RL actor �rl;Replay buffer  for RL agent training;

Candidate population size n∗; Scaling factor �.
Output: New population �pop∗
1: for i = 1 to n∗ − n do
2: Sample �i ∼  (0, 1)
3: Inject a new candidate (�rl + ��i) to �pop
4: end for
5: Fpre = Surrogate-assisted evaluation(�pop, Qrl,)
6: Retain the best n − 1 actors in �pop according to Fpre
7: Inject the recorded elite actor to �pop
8: Freal = Evaluation(�pop)
9: Copy the elite actor
10: �pop∗ = Evolutionary methods(Freal, �pop)
11: return New population �pop∗

we demonstrate how the evolution of parameters is affected
by different management strategies. As shown in Figure
4, inaccuracy may be introduced by the surrogate model
under the generation-based control, misguiding the update
direction. However, it can be corrected appropriately based
on real fitness evaluations, as the SC switches between the
real and the predicted fitness functions.
4.2.2. Individual-based control

In our individual-based approach, the evolutionary oper-
ators work on real fitness. Assume that the population size is
n. Before the population is evaluated in the real environment,
a candidate population with n∗ offspring is generated with
n∗ > n. After being evaluated by the surrogate model, only
the best n individuals are presented to the real environment.
This method is also referred to as “preselection strategy”. In
principle, to generate the candidate population, apart from
the original population, n∗−n extra individuals are produced
by adding Gaussian noise to the RL actor or the best actor
found so far (Algorithm 3). By default, we mutate the RL
actor to better explore its surrounding landscape.

As shown in Figure 4, the surrogate model preselects
those mutated individuals with relatively higher predicted
fitness and filters out any solution that are likely to fail, then
the preselected genetic population actually forms a “trust
region” [30]. The real fitness evaluation is finally conducted
for stable optimization, resulting in a more directional and
smooth parameter update path.
4.2.3. Elite protection

The evolution parts of previous hybrid methods such as
ERL and PDERL follow the spirit of elitism mechanism
[18], where the selected elites with high fitness are kept in the
population. In practice, the elites copy a part of their genes
to other individuals and are protected from mutations.

Apart from the elitism mechanism within hybrid frame-
works, another issue may arise when the surrogate model
is used for fitness evaluation. As discussed in Section 4.1,

Table 1
Action and state dimensions in various environments

Environment State dimension Action dimension
Ant 111 8

Hopper 11 3
Walker 17 6
Swimmer 8 2
Reacher 11 2

HalfCheetah 17 6

inevitably, the ranking of individuals based on the predicted
fitness may not perfectly align with that based on the real
fitness, resulting in instability of evolution and fluctuation
of performance.

To handle this issue, in the generation-based control, SC
keeps track of the current best actor when the population is
evaluated by the real fitness function, and makes sure it stays
in the population after performing evolutionary operators
based on predicted fitness. In the individual-based control,
the top n − 1 actors from the candidate population and the
current best actor constructs a new population to be applied
to the real environment. Our experiment in Section 5.5 shows
that the elite protection mechanism effectively prevents the
dramatic fluctuation of performance and the spread of detri-
mental information from individuals with inaccurate fitness
while using the fixed evolution control.
4.3. Evaluation memory

Off-policy DRL methods such as DQN [25], DDPG
[20], and TD3 [10] maintain a constantly updated replay
buffer to improve the sample efficiency of the RL agent.
In our approach, the most recent part of the historical data
(state information only), referred to as evaluation memory,
is exploited to evaluate the population. This memory not
only contains diverse state samples but also keeps track
of the current optimization process. In addition, evaluation
memory does not have to bemaintained all the time. It is only
created when the surrogate model is called for evaluating
individuals and has a negligible memory footprint.

5. Experiments and Evaluations
To highlight the value of SC, we focus on the imple-

mentation of SCwith two state-of-the-art hybrid frameworks
ERL and PDERL, referred to as SERL and SPDERL, respec-
tively. We aim to answer the following questions: (1) Does
SC improve the computational efficiency and the perfor-
mance of the original hybrid frameworks? (2) How sensitive
is the optimization process to the control parameters of SC’s
management strategies? (3) What impacts does SC bring to
the internal dynamics of the original hybrid frameworks?
5.1. Environmental settings

We performed experiments on 6 continuous control
tasks: HalfCheetah, Ant, Hopper, Swimmer, Reacher and
Walker with the MuJoCo1 physics engine [41], and Table

1https://mujoco.org/
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Table 2
Summary of the baselines and the proposed algorithms

Algorithms EA Part RL Part Surrogate Fitness Management Strategies
ERL GA (N-point Crossover & Gaussian Mutation) DDPG No No

SERL-I GA (N-point Crossover & Gaussian Mutation) DDPG Yes Individual-based Control
SERL-G GA (N-point Crossover & Gaussian Mutation) DDPG Yes Generation-based Control
PDERL GA (Distillation Crossover & Proximal Mutation) DDPG No No

SPDERL-I GA (Distillation Crossover & Proximal Mutation) DDPG Yes Individual-based Control
SPDERL-G GA (Distillation Crossover & Proximal Mutation) DDPG Yes Generation-based Control

Table 3
Hyperparameters of SERL and SPDERL

Hyperparameter Value
Hidden layers of the actor network (64, 64)
Hidden layers of the critic network (400, 300)
Activation function of the actor network Tanh
Activation function of the critic network ELU
Target weight � 0.001
RL actor learning rate 5e−5
RL critic learning rate 5e−4
Replay buffer size 1e6
RL agent batch size 128
Discount factor 0.99
Optimizer Adam
Genetic actor learning rate 1e−3
Genetic memory size 8000
Population size 10
Genetic agent crossover batch size 128
Genetic agent mutation batch size 256
Distillation crossover epochs 12
Mutation probability 0.9
Mutation strength 0.1

1 shows the action and state dimensions in all environments.
All these tasks are packaged according to the standard Ope-
nAI Gym API2 and friendly to simulation. At the beginning
of each simulation, an initial state vector determined by
internal random seeds is provided, and at each subsequent
time step, the policy neural network calculates what action to
perform according to the latest state vector. The environment
simulates this action and returns a new state vector and the
corresponding reward. Additionally, the reward function is
task-specific and we consider the real fitness value as the
sum of the rewards over one episode or the average reward
over several runs.
5.2. Algorithm settings

We use the official implementations of ERL3 [18] and
PDERL4 [2] as the major baselines and follow all their
hyperparameter settings for EAs, RL agents, neural networks
and the population size (n = 10). The actor (agent’s policy)
is represented by a fully connected neural network with two
hidden layers, each containing 64 neurons. The number of
neurons in the input and output layers is task-specific (Table
1), and the hidden and output layers take the Tanh activa-
tion function. Thus, the policy space is encoded by 5702

2https://gym.openai.com/
3https://github.com/ShawK91/Evolutionary-Reinforcement-Learning
4https://github.com/crisbodnar/pderl

Table 4
Hyperparameters used in various environments

Environment Algorithm Elite Trials Sync

Ant SERL 0.3 1 1
SPDERL 0.2 1 1

Hopper SERL 0.3 5 1
SPDERL 0.2 3 1

Walker SERL 0.2 3 1
SPDERL 0.2 5 1

Swimmer SERL 0.1 1 10
SPDERL 0.1 1 10

Reacher SERL 0.1 1 10
SPDERL 0.1 1 10

HalfCheetah SERL 0.1 1 1
SPDERL 0.1 1 10

parameters in the Walker task, 5702 in HalfCheetah, 5058
in Reacher, 11848 in Ant and 5123 in Hopper. Furthermore,
the critic network is also fully connected, and the numbers
of neurons in the first and second hidden layers are 400 and
300, respectively.We use the ELU activation between hidden
layers.

The main difference between ERL and PDERL is in
the EA part. In ERL, the GA employs the typical N-point
crossover and Gaussian mutation, while in PDERL, the
crossover is implemented by distillation, and the Proximal
mutation, based on the SM-G-SUM operator [19] is used.
Table 2 provides a brief summary of ERL, PDERL and our
methods. Moreover, we use a standard Genetic Algorithm
[18] and the DDPG implemented by OpenAI Spinningup 5
as extra baselines to compare our methods against pure EA
and RL algorithms. Table 3 shows the hyperparameters of
SERL and SPDERL in this work, they are common over all
environments. “Elite” in Table 4 represents the proportion
of elite individuals in the genetic population. “Trials” is
referred to as the number of evaluation times of an individ-
ual, for Walker and Hopper, where the reward variance is
relatively higher than other environments, policies need run
more times to obtain their average fitness. Finally, “Sync” is
the synchronization period of the RL-Actor.

For SC’s default hyperparameters, the maximum evalu-
ation memory size k is limited to 50, 000, and we fix ! to
0.6 for the generation-based control, which means that, in
each generation, the population has a 60% chance of being

5https://github.com/openai/spinningup
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Figure 5: Learning curves on six MuJoCo environments: HalfCheetah, Ant, Hopper, Swimmer, Reacher and Walker.

evaluated by the surrogate model. For the individual-based
control, � = (n∗−n)∕n is the control factor for the candidate
population size with � = 1 in our experiments and we set
the scaling factor � = 0.01 for generating Gaussian noise.
During the training, SC keeps recording the current best ac-
tor when the population is evaluated in the real environment
for elite protection. The periodical synchronization of the RL
actor and the population is performed only after real fitness
evaluation. We refer to SERL and SPDERLwith generation-
based control as SERL-G and SPDERL-G. Similarly, SERL-
I and SPDERL-I indicate the combination of SERL and
PDERL with individual-based control, respectively.
5.3. Overall performance

We train each proposed method with 6 different random
seeds on 6 MuJoCo environments following the convention
in literature [41]. During the training process, the average of
5 test results of the best actor from the genetic population
is reported as the performance of each algorithm. Figure 5
illustrates their learning processes during training. The solid
curves represent the mean values and the shaded regions
indicate the standard deviations.

In most environments, SC can significantly improve the
learning speed and the performance of the original hybrid
frameworks, and also make the learning process more stable
with lower variance. For example, SERL-G can outperform
ERL across all environments. Except for Swimmer, the
improvement of SERL-I is more evident in the early training
phase (within 1 million steps) compared to SERL-G, and
it outperforms other methods in Reacher. When it comes
to SPDERL, both SPDERL-I and SPDERL-G outperform
PDERL in Hopper and Walker. For Ant and HalfChee-
tah, SPDERL-I can achieve higher final performance while

SPDERL-G can accelerate the performance improvement in
the early training phase. As for pure RL and EA methods,
GA struggles in most environments except Swimmer. In
HalfCheetah, DDPG performs better than any other methods
in the early training phase but the performance tends to
converge after 3 million steps.

It is worth noting that DDPG and all methods under the
individual-based control fail in Swimmer and, as explained
in [18, 29], DRLmethods face great challenges in effectively
learning the gradient information. To alleviate this issue, we
generate the candidate population by mutating the best actor
that has been found by genetic operations (Appendix A). In
this specific environment, the evolutionary search is more
suitable for driving the optimization process.
5.4. Parameter analysis

In this part, we investigate the influence of the following
parameters: the ratio of surrogate-assisted evaluation !, the
control factor � of the candidate population size, and the
capacity k of evaluation memory, as shown in Figure 6.

Control factors. We vary ! from 0.2 to 0.8 in SERL-G
and � from 0.5 to 2.0 in SERL-I, respectively. The results
indicate that both the final performance and the learning
speed are generally improved by increasing ! under the
generation-based control. Although a high value (e.g., ! =
0.8) may lead to a little drop in the final performance, it sig-
nificantly reduces the number of interactions with the envi-
ronment and speeds up the learning process. For individual-
based control, a relatively small � value (e.g., � = 0.5)
is more cost-effective. As the surrogate model needs to
evaluate additional individuals generated by mutations, a
high value of � may result in overhead, especially when the
input of the surrogate model is high-dimensional.
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Figure 6: Parameter analysis of SERL-G with different generation-based control factors and evaluation memory sizes (first two
columns) and SERL-I with different individual-based control factors and evaluation memory sizes (last two columns) in Walker
and Hopper environments.
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Figure 7: Comparisons of SERL-G (first two figures) and SERL-I (last two figures) with and without Elite Protection (EP)
mechanism in Walker and Hopper environments.

Memory capacity. Furthermore, we investigate the im-
pact of the capacity of the evaluation memory. The second
row of Figure 6 shows the performance of SERL-G and
SERL-I with fixed control factors ! = 0.6, � = 1.0
and various k values in two environments. Overall, a large
evaluation memory contains more diverse state data and
significantly helps improve the quality of the evaluation, but
it also increases the computational cost of SC. In general,
the generation-based control is better suited with large eval-
uation memories to counteract the bias in surrogate-assisted
evaluation. By contrast, since the evolutionary methods are
based on real fitness evaluation with low deviations, a rela-
tively small k is suitable for individual-based control.
5.5. Elite protection evaluation

Figure 7 shows the performance of SERL-I and SERL-G
without the elite protection mechanism. In this setting, SC
only speeds up the policy improvement in the early period
of the training process and then encounters a dramatic drop
in performance. Although the surrogate model can provide
a roughly accurate estimation of population fitness, its esti-
mation of elites is possibly biased, which increases the risk
of discarding elites from the population. This experiment
underlines the importance of elite protection while using the
surrogate for fitness evaluation.

5.6. Changes of the internal dynamics
Interactions between RL and EA. To gain a deeper

insight into the internal transformation of hybrid frameworks
in the presence of SC, we highlight the changes in the
internal dynamic between the RL agent and the genetic
population. We keep a separate record of the accumulative
rates of the RL actor being selected, discarded, or chosen as
an elite in the population in Hopper. In Figure 8, although
ERL, SERL-G, and SERL-I present similar dynamics, the
integration of SC significantly stabilizes the internal dy-
namic of learning and evolution, which is more pronounced
in PDERL and the two variants of SPDERL, where the
evolutionary search is themajor driving force for the training
process. It is reasonable to hypothesize that optimization
based both on the real and predicted fitness function may
benefit the evolutionary search and make the optimization
process more stable.

Intriguing behavioral patterns. A notable discovery is
that the agents trained by our proposed methods can produce
highly intriguing behavioral patterns than the original hybrid
approaches, as shown in Figure 9. The solutions found by
hybrid frameworks with SC are more intriguing and stable.
On some control tasks, they can better adapt themselves to
the environments and perform more competently.
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Figure 8: Accumulative rates of the RL agent being selected, discarded, or chosen as the elite during the training process in
Hopper. The results indicate that SC can potentially stabilize the internal dynamics of the original frameworks.

(a) HalfCheetach agent

(b) Hopper agent

Figure 9: Several intriguing behavioral patterns of the agents trained by SPDERL-I and SPDERL-G. (a) A HalfCheetah agent
trained by SPDERL-I with average performance of 14000 points over 50 test seeds. The agent is able to adjust its posture more
appropriately and run faster. (b) A Hopper agent trained by SPDERL-G with average performance of 4100 points over 50 test
seeds. The agent jumps faster and learns to better stabilize the center of gravity.

5.7. Computational efficiency
The number of real evaluations is potentially limited

due to time and/or money, it is critical to make full use
of available resources to achieve expected performance. In
this part, we aim to validate the improvement of com-
putational efficiency of original hybrid frameworks when
SC is introduced, mainly from the following aspects: the
sample reduction, time consumption and the Floating Point
Operations (FLOPs).

Sample consumption. We conduct a sample reduction
study of different methods in various environments when
reaching the target scores. The number of environmental

interactions (time steps) is equal to the number of consumed
samples, and the results are reported over 6 suns. According
to Table 5, SC can significantly reduce the sample consump-
tion acrossmost domains, especially in the environment with
relatively higher noise and the reward variance like Walker
and Hopper. For instance, ERL needs to perform almost 3
million environmental interactions more than SERL-G and
SERL-I in Walker to reach the same score, and PDERL
needs to consume 3 hundred thousand interactionsmore than
SPDERL-G and SPDERL-I in Hopper. For different control
strategies, the individual-based control requires a relatively
small number of samples compared with generation-based
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Table 5
The average time steps (in million, equal to the number of consumed samples) of different algorithms in various environments
when reaching the target score. “−” represents that DDPG or GA can not reach the target.

Env Score DDPG GA ERL SERL-G SERL-I PDERL SPDERL-G SPDERL-I
Ant 5, 000 − − 4.266 1.564 1.685 1.464 1.784 1.085
Hopper 2, 500 − − 2.519 1.073 0.786 0.857 0.554 0.561
Walker 2, 000 0.775 − 3.572 0.767 0.505 1.312 0.796 0.508
Swimmer 300 − 2.640 0.968 0.516 1.034 0.742 1.489 3.568
Reacher −5 − − 1.051 0.322 0.224 0.717 0.513 0.672
HalfCheetah 10, 000 0.986 − 4.092 2.565 1.761 2.234 2.153 2.201
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Figure 10: Comparison of ERL, SERL-I and SERL-G in terms
of the training time and performance in Ant and Hopper.
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Figure 11: Comparison of ERL, SERL-I and SERL-G in terms
of the number of FLOPs and performance (red star) achieved
at 3M environment steps in Walker.

control, due to its mechanism of pre-selecting potential
high-performing individuals, which can be subsequently
presented in real environments to generate higher-quality
samples, as discussed in Section 4.2.2. In a nutshell, SC can
further improve the sample-efficiency of the original hybrid
frameworks, as the diverse historical data is not only used
for training the DRL algorithm but also employed to help
evaluate the genetic population.

Time consumption. We focus on the training time and
corresponding performance of different methods, especially
on the time costs reduced by the surrogate model. As SC
is applied on top of the original algorithms, there are no
changes in the network structures of actors and critics. The
real evaluation of the genetic population is serial, and the
results reported are averaged over 6 runs, and the total
training time of each run is limited to 8 hours. The parameter
settings are: ! = 0.6 for SERL-G and � = 1.0 for SERL-I.
According to Figure 10, in the Ant environment, it is hard

for ERL to reach 3000 points within 8 hours, while SERL-
G takes approximately 8 hours and SERL-I only takes 4.5
hours. In theHopper environment, it takes 8 hours for ERL to
reach above 1500 points, 7 hours for SERL-G to reach 2500
points, while SERL-I is much more time-efficient, achieving
the same performance as SERL-G in only 3 hours. When
using real fitness evaluation, the actor only needs to perform
forward propagation through its policy neural network, such
as the calculation of �(sj|��), and the reward is provided
by the environment itself, which may be time-consuming
and expensive. While using the surrogate-assisted evalua-
tion, additional forward propagation will be introduced to
calculate the averaged value of Q(sj , �(sj|��)|�Q) via di-
verse historical state information. SC can efficiently transfer
the computational burden of real evaluations to additional
forward propagation through the surrogate model, and the
computational time of these calculations can be easily re-
duced by parallelization and shared memory.

Floating Point Operations. The computational effi-
ciency of SC is finally verified by comparing the FLOPs
consumed by ERL, SERL-I, SERL-G and their correspond-
ing performance (Figure 11). The neural networks in our
work are all fully connected and the number of updates of the
RL agent is equal to the environment steps. Thus, regardless
of which hybrid framework that SC is combined with, the
computational cost of the entire training process can always
be divided into the surrogate-assisted evaluation cost and
the original optimization cost, as shown in Appendix B. As
mentioned above, while bringing significant performance
improvement, SC is computationally efficient in that only a
small amount of forward propagation for surrogate-assisted
evaluations is introduced.

6. Conclusion and Future Work
The application of hybrid RL frameworks to expensive

learning problems has largely been limited by the cost of
evaluating the population in real environments. In this work,
we propose a surrogate-assisted controller with twomanage-
ment strategies, which can be easily integrated into existing
hybrid frameworks to simultaneously facilitate the optimiza-
tion of the RL agent and the evaluation of the population.
To the best of our knowledge, this is the first attempt on
introducing the surrogate model into hybrid RL frameworks.
Empirical evaluations show that the combination of SC
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Figure 12: Learning curves using different approaches of gen-
erating the candidate population in the Swimmer environment.

with two state-of-the-art evolutionary reinforcement learn-
ing frameworks ERL and PDERL can effectively reduce the
evaluation cost and boost the performance. Furthermore,
SC brings beneficial changes to the internal dynamics of
learning and evolution, resulting in more collaborative in-
teractions between the RL agent and the EA population.

Learning and evolution are two symbiotic counterparts
in nature. It is of great scientific importance to fully ap-
preciate and explore this hybrid paradigm towards imple-
menting truly competent artificial intelligence. As to future
work, there are plenty of fascinating directions to advance
our proposed techniques, including real-world settings, such
as embodied AI, designing self-adaptive evolution control
strategies andmore effective evaluation criteria for the surro-
gate. For complex and challenging settings, multi-agent evo-
lutionary reinforcement learning with multiple surrogates is
expected to further extend the horizon.

Appendix A. The Swimmer environment
Results in Figure 5 demonstrate that all individual-based

control methods fail in the Swimmer environment because
the RL agent is unfortunately misled by the deceptive gradi-
ent information, and candidates mutated from the RL actor
could not provide useful information for policy improve-
ment. To alleviate this issue, we generate the candidate
population by mutating the best actor that has been found by
genetic operations (Figure 12). In this specific environment,
the evolutionary search is more suitable for driving the
optimization process.

Appendix B. Measurement of FLOPs
In this section, we introduce how the FLOPs values in

Figure 11 are calculated. The neural networks in our work
are all fully connected and the number of updates of the RL
agent is equal to the environment steps. Similar to [35], we
consider the FLOPs of each forward pass being half of that

Table 6
Symbolic meanings and values in the Calculation of FLOPs

Symbol Value
Environment steps T 3, 000, 000
Population size n 10
Candidate population size nc 20
RL Agent batch size b 128
Evaluation memory size k 50, 000
Evolutionary generations G 240
Evolutionary generations using the surrogate Gs 390
Flops of forward propagation of RL-Actor Af 11, 136
Flops of forward propagation of RL-Critic Cf 249, 800
Flops of backward propagation of RL-Actor Ab 22, 272
Flops of backward propagation of RL-Critic Cb 499, 600

of the backward pass. We also assume that the consumed
FLOPs of activation functions and operations that do not
require passing through neural networks are negligible. We
follow the procedures in [27] to measure the FLOPs con-
sumed by each method within 3M environment steps. The
calculation formulas for FLOPs consumed by ERL, SERL-I
and SERL-G are shown in Eqs.(8), (9) and (10), respectively.

FERL = T (Af + b × (2Af + 3Cf + Cb + Ab)) (8)

FSERL(I) = FERL + Gs × n × k × (Af + Cf ) (9)

FSERL(G) = FERL + G × nc × k × (Af + Cf ) (10)
All the symbols and their symbolic meanings that are

involved in calculating are shown in Table 6.

Appendix C. Combining SC with CEM-RL
We conduct an additional experiment on combining SC

with another state-of-the-art hybrid framework CEM-RL
[29], referred to as Surrogate-assisted CEM-RL (SCEM-
RL), to show SC can be applied to a different type of EA.
The EA parts of ERL and PDERL are based on GA, while
in CEM-RL, it is based on Cross-Entropy Method (CEM),
which is a typical Evolutionary Strategy (ES). CEM-RL
combines CEM with TD3 learners [10], an off-policy DRL
algorithm related to DDPG [20].

We train SCEM-RL-G (SCEM-RL with generation-
based control) and SCEM-RL-I (SCEM-RLwith individual-
based control) with 6 different random seeds. Figure 13 illus-
trates their learning curves during training on three control
tasks from MuJoCo [41]. Apart from the clear advantages
of SC in the training performance and sample consumption,
similar to the results in Section 5.3, on HalfCheetah and
Ant, the improvement over the original hybrid framework
is more evident under the individual-based control, while
the generation-based control method is more favorable on
Walker.
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Figure 13: Learning curves on three MuJoCo environments: Ant, HalfCheetah and Walker.
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