
Sampled-data Control of Probabilistic Boolean Control Networks:1

A Deep Reinforcement Learning Approach2

Amol Yerudkara,∗, Evangelos Chatzaroulasb, Carmen Del Vecchioc and Sotiris Moschoyiannisb
3

aCollege of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China.4

bDepartment of Computer Science, University of Surrey, Guildford, GU2 7XH, United Kingdom.5

cDepartment of Engineering, University of Sannio, Benevento 82100, Italy.6

7

A R T I C L E I N F O
Keywords:
Sampled-data control (SDC)
Probabilistic Boolean control net-
works (PBCNs)
Markov decision processes (MDPs)
Deep reinforcement learning
Gene regulatory networks (GRNs)

8 A B S T R A C T9
10

The rise of reinforcement learning (RL) has guided a new paradigm: unraveling the intervention11

strategies to control systems with unknown dynamics. Model-free RL provides an exhaustive12

framework to devise therapeutic methods to alter the regulatory dynamics of gene regulatory13

networks (GRNs). This paper presents an RL-based technique to control GRNs modeled14

as probabilistic Boolean control networks (PBCNs). In particular, a double deep-𝑄 network15

(DD𝑄N) approach is proposed to address the sampled-data control (SDC) problem of PBCNs,16

and optimal state feedback controllers are obtained, rendering the PBCNs stabilized at a given17

equilibrium point. Our approach is based on options, i.e., the temporal abstractions of control18

actions in the Markov decision processes (MDPs) framework. First, we define options and19

hierarchical options and give their properties. Then, we introduce multi-time models to compute20

the optimal policies leveraging the options framework. Furthermore, we present a DD𝑄N21

algorithm: i) to concurrently design the feedback controller and the sampling period; ii) wherein22

the controller intelligently decides the sampled period to update the control actions under the23

SDC scheme. The presented method is model-free and offers scalability, thereby providing an24

efficient way to control large-scale PBCNs. Finally, we compare our control policy with state-25

of-the-art control techniques and validate the presented results.26

27

1. Introduction28

Markov decision processes (MDPs) [30] provide a framework for modeling and optimization of stochastic systems,29

including but not limited to manufacturing, automatic control, robotics, and gene regulatory networks (GRNs).30

Devising an optimal temporal decision in such systems is one of the important control problems that can be solved by31

resorting to MDP models. Such models are distinguished by i) state-transition dynamics; ii) a control policy that assigns32

an action to each state; iii) a transition cost from the current state to the next state. An MDP control problem is to design33

an optimal control policy that leads to the desired path, sequence of actions and states at the lowest cumulative cost. A34

well-known example of this type of problem is a reinforcement learning (RL) [34] problem, in which the cost at each35

step is revealed at the end of each transition. The most prevalent approaches to equip RL problems with an MDP as the36

underlying structure are dynamic programming [30], value iteration, policy iteration [30], and linear programming [8].37

In addition, RL offers a model-free framework, such as𝑄-learning (𝑄L) [42], and solves a discrete-time optimal control38

problem modeled as an MDP.39

In this paper, a model-free RL framework is utilized to design an optimal control policy that feedback stabilizes40

probabilistic Boolean control networks (PBCNs) [25] modeled as an MDP. Shmulevich et al. [33] first introduced41

probabilistic Boolean networks to model GRNs with stochastic uncertainty, which then extended to PBCNs with42

Boolean control inputs. PBCNs are a collection of Boolean control networks (BCNs) switching randomly between43

constituent BCNs with a certain probability distribution. With the probabilistic switching law, PBCNs show innate44

capabilities to study various regulatory functions of GRNs in the presence of random perturbations. So far many45

control problems of PBCNs (and BCNs) have been studied in model-based settings, for example, controllability46

and observability [17, 21], stabilization [15, 11, 48], output regulation [14, 47, 50], detectability [39, 10], optimal47

control [43, 9, 13], and disturbance decoupling [16, 31].48

∗Corresponding author
amol_yerudkar@hotmail.com (A. Yerudkar); e.chatzaroulas@surrey.ac.uk (E. Chatzaroulas); c.delvecchio@unisannio.it

(C.D. Vecchio); s.moschoyiannis@surrey.ac.uk (S. Moschoyiannis)
ORCID(s): 0000-0003-3994-3842 (A. Yerudkar); 0000-0001-6937-9678 (C.D. Vecchio); 0000-0002-0164-8322 (S. Moschoyiannis)

Yerudkar et al.: Preprint submitted to Elsevier Page 1 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

Stabilization is a fundamental control problem studied by systems biologists and control theorists from a practical49

point of view. For example, in disease treatment, modeling the development of a disease in terms of tumor (diseased50

cell) growth and developing therapeutic intervention strategies to steer the organelle’s growth towards a healthy state51

by eradicating the tumor. The feedback stabilization problem of GRNs modeled as PBCNs has been extensively52

investigated in the literature. The majority of the results are obtained in model-based framework developed with the help53

of the semi-tensor product (STP) [7] of matrices. For example, authors in [41, 36] studied the finite-time stabilization of54

PBCNs. Zhou et al. [49] and Yang el al. [45] addressed the asymptotical feedback stabilization of PBCNs, which was55

then extended to output tracking problem in [6]. Recently, robust state stability and the effect of stochastic function56

perturbation on the same were investigated in [40] and [15], respectively. The controller developed in the above-57

mentioned studies is a traditional state feedback controller that is active at all time instants. Such continuous application58

of control actions may have detrimental effects on GRNs. To mitigate this issue, the sampled-data control (SDC)59

has been designed for PBCNs in [22, 20, 44], where the feedback controller is updated after each sampling period.60

As a result, the SDC can reduce the amount of controller updates while delivering the same effect as a traditional61

controller. However, there are several shortcomings of the STP-based controller design techniques: i) computationally62

demanding; ii) limited applicability to small-scale networks; iii) system model is required. Further, for large-scale63

GRNs, the network models are unavailable. These difficulties limit the application of model-based strategies for64

controlling PBCNs, instigating interest in finding novel model-free methods to control GRNs modeled as PBCNs.65

By following this stream of research, we consider an MDP as the underlying structure to model PBCNs, and66

study the SDC of PBCNs by using double deep-𝑄 network (DD𝑄N) in a model-free framework. In particular, we67

update DD𝑄N algorithm using prioritized experience replay (PER) and well-known RL concept called options to68

design a state feedback controller and sampled period to update the controller in tandem. The options framework69

provides a temporal abstraction of control actions which forms the basis for designing an SDC strategy in a model-free70

setting. Recently, several model-free algorithms have been proposed to solve various control-theoretic problems of71

PBCNs. For example, a DD𝑄N with PER algorithm has been applied to the controllability of probabilistic Boolean72

networks by authors in [27] and of Kauffman’s standard BNs in [26]. In addition, authors in [12] have applied rule-73

based 𝑄L, in the form of an extended classifier system to the controllability of the BN model of the cell-cycle fission74

yeast GRN. Another 𝑄L-based algorithm to design state-flipped control of BNs is presented in [23]. Acernese et al.75

presented 𝑄L algorithm to find a shortest-path state feedback controller [3] and DD𝑄N algorithm for solving output76

tracking problem [1] of PBCNs. Further, deep𝑄 network algorithm [4] and random forest-based𝑄L algorithm [5] were77

presented to design aperiodic sampled-data controller and shorted path controller, respectively, for PBCNs. Recently, a78

self-triggering control co-design algorithm has been presented in [2] wherein the aim of the controller was to minimize79

the communication with the system (i.e., unknown environment) by keeping the same control action and stabilize the80

system to a given equilibrium point. Nonetheless, a generalized scalable algorithm that can provide a versatile control81

design framework is still missing and deserves further investigation. Motivated by the above discussion, we present a82

comprehensive model-free algorithm to control large-scale PBCNs. The main contributions of the paper are as follows:83

i) We adopt the MDP framework to represent the PBCN dynamics and state the model-free SDC problem for84

feedback stabilizing GRNs modeled as PBCNs;85

ii) We introduce options, hierarchical options, and augmented action-space to setup the SDC problem. Further,86

we prove various mathematical properties of options with MDP framework and derive the Bellman optimality87

equation for the same.88

iii) We present modified DD𝑄N algorithm by utilizing the concepts introduced in ii) and design an SDC strategy89

to stabilize the PBCNs at a given equilibrium point. Under this strategy, the presented algorithm concurrently90

designs the controller and sampled period. Our algorithm generalises to different networks and can easily handle91

large-scale PBCNs to solve control-theoretic problems in model-free framework.92

The rest of the paper is organized as follows. Section 2 introduces definitions and basics of PBCNs, MDPs, 𝑄L,93

and DD𝑄Ns. Section 3 presents the main results of the paper. The SDC problem is defined first. Then options are94

introduced, followed by hierarchical options. Further, a multi-time model is presented to compute optimal SDC policy95

utilizing the options framework. Next, a DD𝑄N algorithm with PER and options is presented that delivers an optimal96

SDC policy (i.e., control action and sampled period in tandem) to stabilize unknown PBCNs at a given equilibrium97

point. In Section 4 simulation results are given wherein three different PBCN models of GRNs are considered to verify98

the presented DD𝑄N algorithm. Finally, Section 5 concludes the paper.99

Yerudkar et al.: Preprint submitted to Elsevier Page 2 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

2. Preliminaries100

In this section, we introduce PBCNs and MDPs. Then, we extend the discussion to a model-free RL framework for101

𝑄L and DD𝑄N methods which will be utilized to solve the control problem of PBCNs.102

Notation. ℝ, ℤ and ℤ+ denote the sets of real numbers, positive integers and nonnegative integers, respectively.103

 ∶= {0, 1}, and 𝑛 ∶= ×… ×
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑛

. We denote by ¬, ∧, ∨, the logical operators Negation, And, Or, respectively.104

𝔼[⋅] is the expected value operator. ⊤ denotes the transpose of a vector or matrix. | ⋅ | represents the cardinality of a105

set.106

2.1. Probabilistic Boolean Control Networks107

A PBCN with 𝑛 nodes and 𝑚 control inputs is defined as follows:
 𝑖(𝑡 + 1) = 𝑓𝜎(𝑡)𝑖 ((𝑡), (𝑡)) , 𝑖 = 1,… , 𝑛, (1)

where (𝑡) = 𝑡 ∶=
(

1(𝑡),… ,𝑛(𝑡)
)

∈ 𝑛 and (𝑡) = 𝑡 ∶=
(

 1(𝑡),… , 𝑚(𝑡)
)

∈ 𝑚 are the state and108

input variables at time 𝑡 ∈ ℤ+, respectively. The logical functions 𝑓𝑖 ∈ 𝑖 = {𝑓 1
𝑖 , 𝑓

2
𝑖 , … , 𝑓 𝑙𝑖𝑖 } ∶ 𝑛+𝑚 → ,109

𝑖 = 1,… , 𝑛, are randomly chosen with probability {𝖯1𝑖 , 𝖯2𝑖 , … , 𝖯
𝑙𝑖
𝑖 }, where ∑𝑙𝑖

𝑗=1 𝖯
𝑗
𝑖 = 1 and 𝖯𝑗𝑖 ≥ 0. We denote110

by Λ =
∏𝑛

𝑖=1 𝑙𝑖, the total number of sub-networks of (1). The switching signal 𝜎(𝑡) ∈ [1, Λ] is an independently and111

identically distributed (i.i.d.) process that governs switching among the sub-networks. Given an initial state (0) ∈ 𝑛112

and a control sequence 𝑡 ∶= { (⋅)[0, 𝑡−1]} in the discrete time interval [0, 𝑡 − 1], denote the solution to PBCN (1)113

by
(

𝑡; (0), 𝑡
). A state (0) = 0 ∈ 𝑛 is called an equilibrium point if, there exists a control (0) ∈ 𝑚 such114

that 𝖯{ (1; (0), (0)) = (0)} = 1.115

Definition 2.1 ([3]). A PBCN (1) is said to be asymptotically stabilizable at a given equilibrium point 𝑒 ∈ 𝑛 in116

distribution, if for every 0 ∈ 𝑛 there exists 𝑡 such that lim𝑡→∞ 𝖯{(𝑡; 0, 𝑡) = 𝑒} = 1.117

In the following, we present MDPs, which have been adopted as a popular framework for modeling PBCNs.118

2.2. Markov Decision Processes119

A discrete-time Markov decision process (MDP) [30] is a tuple (𝐗, 𝐔, 𝐏, 𝐆), where 𝐗 is the state-space, 𝐔 is
the action-space. 𝐏 ∶ 𝐗 × 𝐔 × 𝐗 → [0, 1] is the function of state-transition probabilities describing the conditional
probability 𝐏𝑢𝑡𝑥𝑡,𝑥𝑡+1 = 𝖯{𝑥𝑡+1|𝑥𝑡, 𝑢𝑡} of transitioning from 𝑥𝑡 to 𝑥𝑡+1 when 𝑢𝑡 is taken, for each state 𝑥𝑡 ∈ 𝐗 and action
𝑢𝑡 ∈ 𝐔, where 𝑡 ∈ ℤ+ is the discrete time-step, and state and action values at 𝑡 are 𝑥𝑡 and 𝑢𝑡, respectively. Moreover,
let 𝐆 ∶ 𝐗 ×𝐔 ×𝐗 → ℝ denote the cost function; given 𝑥𝑡 and 𝑢𝑡 is selected, the expected cost paid after transitioning
to state 𝑥𝑡+1 is 𝐆𝑢𝑡

𝑥𝑡,𝑥𝑡+1 = 𝔼[𝑔𝑡+1|𝑥𝑡, 𝑢𝑡], with 𝑔𝑡+1 = 𝑔𝑡+1(𝑥𝑡, 𝑢𝑡, 𝑥𝑡+1). In an infinite-horizon discounted cost setting,
the objective is to find a policy 𝜋 ∶ 𝐗 → 𝐔 that minimizes the expected total discounted cost, i.e.,

min
𝜋

𝔼𝐏

[∞
∑

𝑖=𝑡+1
𝛾 𝑖−𝑡−1𝑔(𝑥𝑖, 𝑢𝑖)

]

, (2)

where 𝛾 ∈ [0, 1) is the discount factor weighting costs along the trajectories, 𝔼𝐏[⋅] is the expected value operator w.r.t.120

the dynamics. If 𝜋 admits only one control action for each state with probability 1 (w.p.1), it is called deterministic121

policy, i.e., of the form 𝜇(𝑥𝑡), mapping states 𝑥𝑡 into controls 𝑢𝑡 = 𝜇(𝑥𝑡),∀𝑥𝑡.122

Given an initial state 𝑥0 and following the acting behavior 𝜋, the value function of the state 𝑥0 is defined in terms
of the expected future cost as:

𝑣𝜋(𝑥0) ∶= 𝔼𝐏

[∞
∑

𝑖=1
𝛾 𝑖−1𝑔(𝑥𝑖, 𝑢𝑖)

|

|

|

|

𝑥0

]

, for all 𝑥0 ∈ 𝐗. (3)

Similarly, let the action-value function 𝑞𝜋(𝑥𝑡, 𝑢𝑡) be defined as the cost-to-go function when starting from state 𝑥0,
performing action 𝑢0, and following policy 𝜋 thereafter. A fundamental property of 𝑞𝜋(𝑥𝑡, 𝑢𝑡) is that it satisfies the
recursive Bellman equation [34], of the form

𝑞𝜋(𝑥𝑡, 𝑢𝑡) =
∑

𝑥∈𝐗
𝖯
𝑢𝑡
𝑥𝑡,𝑥

[

𝐆𝑢𝑡
𝑥𝑡,𝑥 + 𝛾

∑

𝑢∈𝐔
𝜋(𝑢|𝑥)𝑞𝜋(𝑥, 𝑢)

]

, (4)

Yerudkar et al.: Preprint submitted to Elsevier Page 3 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

for all 𝑥𝑡 ∈ 𝐗 and 𝑢𝑡 ∈ 𝐔. This equation has a unique fixed point at which the action-value function is minimum,
denoted by 𝑞∗(𝑥𝑡, 𝑢𝑡) ∶= 𝑞𝜋∗ (𝑥𝑡, 𝑢𝑡), where 𝜋∗ is the policy that minimizes (2). Given a solution 𝑞∗(𝑥𝑡, 𝑢𝑡), one can
obtain an optimal deterministic policy as:

𝜇∗(𝑥𝑡) ∶= argmin
𝑢∈𝐔

𝑞∗(𝑥𝑡, 𝑢), for all states 𝑥𝑡 ∈ 𝐗. (5)

It is worth highlighting that the action-value function remains the same in the case of multiple optimal deterministic123

policies. Further, we assume that the agent has no knowledge of the transition probability distribution, which is124

realistic for large-scale GRNs. Thus, we resort to an approach, wherein the expected value of a state-action pair 𝑞𝜋125

is approximated with an estimation 𝑄 ∶ 𝐗 × 𝐔 → ℝ computed along trajectories. This idea is known as temporal-126

difference (TD) learning [34].127

2.3. 𝑄-learning Algorithm128

𝑄L is a model-free RL algorithm introduced by [42]. It is an off-policy TD control algorithm, where the agent
finds an optimal policy to maximize the cumulative reward by exploring the unknown environment. In 𝑄L, the only
information available to the agent is the state-space and possible actions. A value is assigned to each state-action
pair, namely a 𝑄-value, which, for a given state, represents the quality of the action. Given a pair (𝑥𝑡, 𝑢𝑡), 𝑞𝜋(𝑥𝑡, 𝑢𝑡)is estimated as 𝑄(𝑥𝑡, 𝑢𝑡) = 𝑔𝑡+1 + 𝛾 𝑄𝜋(𝑥𝑡+1, 𝜇(𝑥𝑡+1)), where 𝑥𝑡 ∈ 𝐗 and 𝑢𝑡 ∈ 𝐔. The estimates are improved using
Bellman equation [34] as follows

𝑄𝑡+1(𝑥𝑡, 𝑢𝑡) = 𝑄𝑡(𝑥𝑡, 𝑢𝑡) + 𝛼𝑡
[

𝑔𝑡+1 + 𝛾 min
𝑢∈

𝑄𝑡(𝑥𝑡+1, 𝑢) −𝑄𝑡(𝑥𝑡, 𝑢𝑡)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇𝐷𝐸𝑡+1

, (6)

where:129

• 𝑇𝐷𝐸𝑡+1: difference between the old estimated value 𝑄𝑡(𝑥𝑡, 𝑢𝑡) and the new estimate [𝑔𝑡+1 + 𝛾 min
𝑢
𝑄𝑡(𝑥𝑡+1, 𝑢)];130

• 𝛼𝑡: learning rate or step-size rule of convergence and 0 < 𝛼𝑡 ≤ 1.131

The agent explores the environment for a sufficiently large number of episodes1. Watkin et al. [42] proved the132

convergence of 𝑄L to an optimal value 𝑄∗(𝑥𝑡, 𝑢𝑡) ∶= 𝑞∗(𝑥𝑡, 𝑢𝑡), ∀𝑥𝑡 ∈ 𝐗, ∀𝑢𝑡 ∈ 𝐔, w.p.1. Sufficient exploration133

of the environment is achieved by choosing the actions 𝑢𝑡 in a proper way, e.g., by following an 𝜖-greedy policy, i.e.,134

choosing a greedy action 𝑢𝑡 = argmin
𝑢∈𝐔

𝑄𝑡(𝑥𝑡, 𝑢) w.p.(1− 𝜖), and a random action 𝑢𝑡 = rand(𝐔) w.p.𝜖, thereby devising135

better optimal policy, where rand(⋅) is the discrete uniform distribution and 0 < 𝜖 ≤ 1.136

2.4. Double Deep-𝑄 Network137

In 𝑄L method, a 𝑄-table (or look-up table) is created which performs well for environments with small state-
space. For large-scale GRNs, an exponential increase in the state-space makes 𝑄L intractable [3]. To mitigate this
issue, artificial neural networks (ANNs) were introduced as function approximators that can take vector input (state
information) and learn to map them to 𝑄-values for all possible actions. Since ANNs are employed to create a
parameterized model that estimates 𝑄-values, this method is called deep 𝑄-learning. Particularly, in deep 𝑄-learning
ANN provides an estimation 𝑄 ∶ 𝐗 × 𝐔 × → ℝ of 𝑞𝜋(⋅, ⋅), where represents the set of tunable parameters
responsible for the quality of the approximation. Given 𝑥𝑡 and a set of values for , for every possible action 𝑢, deep
𝑄-network provides the output vector of approximated action-values as follows

𝑄(𝑥𝑡, 𝑢,) = 𝜓 (𝐿)(𝑊 (𝐿)(…𝜓 (2)(𝑊 (2)𝜓 (1)(𝑊 (1)𝑥𝑡 + 𝑏(1)) + 𝑏(2))…) + 𝑏(𝐿)), (7)
where 𝐿 is the number of layers of the network, 𝑊 (𝑙) ∈ ℝ𝑛(𝑙)×𝑛(𝑙−1) are the ANN weights, 𝑏(𝑙) ∈ ℝ𝑛(𝑙) is the bias
vector and 𝜓 (𝑙) is the activation function in the 𝑙-th layer. We denote by {𝑛(𝑙)}𝐿𝑙=0, the number of neurons for each layer,
i.e., 𝑛(𝐿) = |𝐔|. The aim of D𝑄Ns is to learn the network parameters = {𝑊 (𝑙), 𝑏(𝑙)}𝐿𝑙=0 such that 𝑄(𝑥𝑡, 𝑢𝑡,)

1An episode is a structured agent-environment (i.e., controller-unknown system, respectively) interaction process that aims to improve the
agent’s understanding of the environment by imparting information (in the form of a reward) to the agent.

Yerudkar et al.: Preprint submitted to Elsevier Page 4 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

converges to an optimal 𝑞∗(𝑥𝑡, 𝑢𝑡), for all 𝑥𝑡 ∈ 𝐗 and 𝑢𝑡 ∈ 𝐔. Thus, given a tuple (𝑥𝑡, 𝑢𝑡, 𝑔𝑡+1, 𝑥𝑡+1), the parameters
of the network are updated to minimize the following differentiable loss function called the Bellman error

L () = 1
2
|

|

|

|

|

|

|

|

𝑄(𝑥𝑡, 𝑢𝑡,) − 𝑦𝑡+1
|

|

|

|

|

|

|

|

2
, (8)

i.e., the error between the estimated 𝑄-value and the target value 𝑦𝑡+1 = 𝑔𝑡+1 + 𝛾 min
𝑢∈

𝑄(𝑥𝑡+1, 𝑢,) that this is the
parameterized form of TDE in (6). Then, the stochastic gradient descent (SGD) method can be used to update as
follows

 = − 𝛼∇L () = − 𝛼
[

𝑄(𝑥𝑡, 𝑢𝑡,) − 𝑦𝑡+1
]

∇𝑄(𝑥𝑡, 𝑢𝑡,). (9)
The convergence of deep 𝑄-network is a challenging issue which mainly occurs due to i) samples are uncorrelated138

in the SGD method. However, according to (9), the network parameters are updated sequentially over tuples139

{(𝑥𝑡, 𝑢𝑡, 𝑔𝑡+1, 𝑥𝑡+1)}𝑡=0,1,…, that, in general, are temporally correlated. This leads to locally over-fit data to each region of140

the state-space; ii) 𝑦𝑡+1 in (9) depends on the ANN parameters , and consequently its value changes over time-steps.141

An important feature added to deep 𝑄-network is experience replay [19], which can alleviate the stability issues.
Specifically, let be a data-set of transitions {(𝑥𝑗 , 𝑢𝑗 , 𝑔𝑗+1, 𝑥𝑗+1)}𝑗=0,1,…,|−1| stored by the agent. Then, a mini-
batch 1, where 1 ⊆, can be uniformly sampled by following the loss function

L
′
() = 𝔼(�̄�𝑗 ,�̄�𝑗 ,�̄�𝑗+1,�̄�𝑗+1)∈

[
|1−1|
∑

𝑗=0
L𝑗()

]

, (10)

where henceforth the notation ̄(⋅)𝑗 denotes the 𝑗-th experience and not to the value at time-step 𝑗, and L𝑗(⋅) is the
loss function (8) computed on the experience 𝑗. Thus, if is large, experience replay uses an exploratory policy to
sample independent transitions. Moreover, the prioritized experience replay (PER) was introduced in [32], following
the idea that some experiences can be more informative than others. Let �̄�𝑗+1 ∶= 𝑄(�̄�𝑗 , �̄�𝑗 ,) − �̄�𝑗+1 be the error of
an experience (�̄�𝑗 , �̄�𝑗 , �̄�𝑗+1, �̄�𝑗+1), where �̄�𝑗 ∈ 𝐗 and �̄�𝑗 ∈ 𝐔. Consequently, the probability of sampling such tuple
from can be computed with the following proportional prioritization criterion

𝖯{(�̄�𝑗 , �̄�𝑗 , �̄�𝑗+1, �̄�𝑗+1) ∈ } =
(�̄�𝑗+1)𝜔

∑

|−1|
𝑘=0 (�̄�𝑘+1)𝜔

, (11)

where �̄�𝑗+1 ∶= |�̄�𝑗+1| + 𝜁 , 𝜔 decides the magnitude of prioritization — 𝜔 = 0 gives a uniform experience replay —,
and 𝜁 is a small positive constant. However, PER may create a bias in learning process due to more often sampling of
the experiences with high errors. To compensate for this bias, the following weighted importance-sampling (W-IS) [24]
can be used

�̄�𝑗+1 =
(

1
||

1
𝖯{ ̄(⋅)𝑗 ∈ }

)𝛽
, (12)

where 𝖯{ ̄(⋅)𝑗 ∈ } is the probability of sampling the experience (�̄�𝑗 , �̄�𝑗 , �̄�𝑗+1, �̄�𝑗+1) from , and 𝛽 is a parameter142

used to anneal the amount of importance sampling over the episodes.143

Authors in [38] suggested the implementation of DD𝑄N to mitigate the issue that the target value 𝑦𝑡+1 changes
over time-steps in (9). The traditional Double 𝑄L [37] addresses the overestimation problem of 𝑄(⋅, ⋅) linked to the
“min” operator in (6), thereby preventing the instabilities to propagate quickly by using a double estimator, namely𝑄𝐴
and 𝑄𝐵 . One of the estimators is selected randomly for the evaluation of 𝑢𝑡 at each time-step 𝑡, followed by an update
in terms of the other estimator. The DD𝑄N extends the technique of two networks as follows: i) an online network
with parameters , responsible for selecting the policy; ii) a target network with parameters −, used to evaluate the
current action. Thus, given a mini-batch {(�̄�𝑗 , �̄�𝑗 , �̄�𝑗+1, �̄�𝑗+1)}𝑗=0,1,…,|1−1|, the parameter update (9) in PER based
DD𝑄N with W-IS is replaced by

 = − 𝛼
|1−1|
∑

𝑗=0
�̄�𝑗+1�̄�

′

𝑗+1∇𝑄(�̄�𝑗 , �̄�𝑗 ,), (13)

Yerudkar et al.: Preprint submitted to Elsevier Page 5 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

where
�̄�

′

𝑗+1 = [𝑄(�̄�𝑗 , �̄�𝑗 ,) − �̄�𝑗+1 − 𝛾𝑄(�̄�𝑗+1, argmin
�̄�∈

𝑄(�̄�𝑗+1, �̄�,),−)]. (14)

Authors in [38] proposed one way of performing the update rule of the target network, wherein − remains constant144

over time-steps and updated as − = after every 𝑘 iterations. Another possibility presented in [18], considers the145

use of the soft update through Polyak averaging, i.e., − = (1 − 𝜏)− + 𝜏 , with 0 < 𝜏 ≤ 1 a parameter that146

constrains the target ANN to change slowly, greatly improving the stability of learning.147

3. Sampled-data Control Design for PBCNs148

In this section, we formulate the SDC problem of PBCNs and find an optimal solution in a model-free context. In149

particular, we present a modified DD𝑄N algorithm that utilizes the temporal abstraction of actions, namely options,150

and devises a feedback control law as well as the sampling periods to stabilize the PBCNs at a given equilibrium point.151

3.1. Sampled-data Control using DD𝑄N and Options152

Let the PBCN (1) be the environment unknown to the agent. Further, knowledge of the equilibrium point 𝑒 ∈ 𝑛
and the dimensions of the state-space are available to the agent. Under the SDC implementation, the control input 𝐮(𝑡)
is obtained as

𝐮(𝑡) = 𝐱(𝑡𝑘), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 ∈ ℤ+, and 𝑡𝑘+1 = 𝑡𝑘 + 𝜏(𝐱(𝑡𝑘)), (15)
where the state 𝐱(𝑡𝑘) and 𝐮(𝑡) are in canonical vector form2, and ∈ 2𝑚×2𝑛 is gain matrix of the sampled-data state153

feedback controller. It is worth noting that is not necessarily unique. Further, {𝑡𝑘}𝑘∈ℤ+
is the sampling instant, i.e.,154

the time instant at which the sampled-data controller (15) is updated. With 𝑡0 = 0, and 𝜏(𝐱(𝑡𝑘)) ∈ ℕ is called the155

sampling period, i.e., 𝜏(𝐱(𝑡𝑘)) = 𝑡𝑘+1 − 𝑡𝑘. In this paper, during the sampling period [𝑡𝑘, 𝑡𝑘+1), the control 𝐮(𝑡) is held156

constant allowing no communication between the system and the controller.157

The aim of this paper is the co-design of:158

i. a sampled-data state feedback gain matrix that stabilizes the closed-loop system at a given equilibrium point;159

ii. an SDC scheme i.e., a map 𝜏 ∶ 𝑛 → ℕ determining the next update time 𝑡𝑘+1 of the controller as a function160

of the state 𝐱(𝑡𝑘) at the time 𝑡𝑘.161

The following assumption is made to achieve the above-mentioned SDC co-design aim in a model-free framework.162

Assumption 1. Definition 2.1 is valid for the unknown PBCN of the form (1).163

Definition 3.1. Given an equilibrium point 𝑒 ∈ 𝑛, the PBCN (1) unknown to the agent is asymptotically sampled-
data stabilized to 𝑒 with probability one if there exists a feedback control law (15) such that

lim
𝑡→∞

𝖯{(𝑡; 0, 𝑡) = 𝑒} = 1, ∀0 ∈ 𝑛,

where 𝑡 denotes the control sequence generated by the feedback (15).164

In the following, we introduce options that are studied in the literature to solve various planning and control165

problems in the RL framework. Here, we utilize options with the DD𝑄N model to devise an SDC co-design strategy.166

2𝛿𝑖𝑛 denotes the 𝑖-th canonical vector of size 𝑛, and 𝑛 the set of all 𝑛-dimensional canonical vectors. A matrix 𝐿 = [𝛿𝑖1𝑚 … 𝛿𝑖𝑛𝑚] for suitable
indices 𝑖1,… , 𝑖𝑛 ∈ {1, 2, 3,… , 𝑚}, is called logical matrix, and briefly expressed as 𝐿 = 𝛿𝑚

[

𝑖1 𝑖2 … 𝑖𝑛
]. 𝑚×𝑛 is the set of all 𝑚 × 𝑛 logical

matrices. A bijective correspondence between a Boolean variable ∈ and a vector 𝐱 ∈ 2 is defined by the relationship 𝐱 =
[

¬

]

. A bijective

correspondence between 𝑛 and 2𝑛 is defined as: given = [1 ⋯ 𝑛]⊤ ∈ 𝑛, we have 𝐱 ∶=
[

1

¬1

]

⋉ ⋯⋉
[

𝑛

¬𝑛

]

, where “⋉” is called the
semi-tensor product (STP) [7] of matrices.

Yerudkar et al.: Preprint submitted to Elsevier Page 6 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

3.1.1. Options167

Options were first introduced by Sutton et al. [35] and are a generalization of macro-actions and temporally abstract168

actions developed for MDPs. An option is a way of behaving – a closed-loop policy for taking action. Options are169

initiated, decisions regarding which actions to take for some time steps are made, and then terminated. When an option170

terminates, the agent selects another option to be executed. In general, an option is triple (, 𝜋, 𝜉) with: i) initiation171

set ⊆ 𝐗 that contains the states in which option may initiate; ii) policy 𝜋 ∶ 𝐗 × 𝐔 → [0, 1] that determines the172

way in which the option selects actions; iii) stochastic termination condition 𝜉. An option is available at state 𝑥𝑡 if and173

only if 𝑥𝑡 ∈ . Once the option is initiated, the agent selects the actions according to policy 𝜋 until the termination of174

the option, which follows the stochastic condition 𝜉. However, in this paper, we consider that option can initiate at any175

initial condition and the termination condition is deterministic. Moreover, the actions taken by the agent are Boolean176

values; thus, the policy results in a control action, either one or zero.177

Considering the PBCN model and the MDP formulation introduced earlier, we formally define the option as follows.178

Definition 3.2 (Options). Given a state 𝑡 ∈ 𝑛, an option U𝑡 is a couple

U𝑡 ∶=
(

𝜇cn(𝑡), 𝜇sp(𝑡)
)

, (16)
where 𝜇cn ∶ 𝑛 → 𝑚 is the control policy that determines the optimal actions to be executed, and 𝜇sp ∶ 𝑛 → ℤ is179

a termination condition that specifies the number of discrete time-steps to complete the current option.180

It is worth to highlight that, in our study 𝜇cn and 𝜇sp are directly mapped into the sampled-data state feedback controller181

and sampling period, respectively.182

Once a particular option is selected, action 𝜇cn is kept constant by the agent with no other decision-making activities183

until the termination of the option. Then, a new action can be devised with the selection of the next option. Note184

that primitive actions ∈ 𝑚 are special case of options. Each action corresponds to an option that selects 185

everywhere is available, and that always lasts exactly one step. In other words, an option of duration 1 is called186

basic or primitive action. Because the primitive actions are options, the agent’s choice at each decision point is entirely187

among options, some of which persist for a single step, while others are temporally extended. Further, for the sampling188

period 𝜏(⋅), we set a user-defined upper bound , i.e., 𝜏(⋅) ∈ [1,]. With this setting, we introduce the augmented189

action-space 𝑚+ that comprises all options, i.e., 𝑚+ ∶=

⋃

𝜏=1

2𝑚
⋃

𝑖=1
(𝑖, 𝜏), with |𝑚+

| = 2𝑚 .190

3.1.2. Hierarchical Options191

The options framework discussed in the previous subsection provides one level of abstraction on top of the primitive192

actions. We considered that an option makes choices among the primitive actions and termination conditions. In this193

subsection, we introduce a natural extension to options, namely hierarchical options, which make their choices among194

other options. Before defining the hierarchical options formally, we first introduce some notation as follows.195

• A partial history ℎ𝑡,𝑇 is the sequence of all states, actions and rewards from time 𝑡 up to time 𝑇 ≥ 𝑡, defined as196

ℎ𝑡,𝑇 ∶= (𝑡,𝑡, 𝑔𝑡+1,𝑡+1,… ,𝑇).197

• We denote by the set of all possible partial histories, and 𝑡 the set of all possible partial histories from198

time 𝑡 onward.199

• We denote by 𝜂 the explicit representation of option (16). 𝜂 is a mapping from partial histories3 and actions to200

probabilities of taking each action after each partial history: 𝜂 ∶ ×𝑚 → [0, 1], where 𝜂((𝑡0 ,… ,𝑡),
)

=201

𝖯
{

𝑡 = |𝜂 is initiated at 𝑡0, (𝑡0 ,… ,𝑡)
}.202

Because an option specifies a probability distribution over actions after each partial history, we have4
∑

∈𝑚
𝜂(ℎ𝑡,𝑇 ,) = 1, ∀ℎ𝑡,𝑇 ∈ .

3Here, 𝜇sp(𝑡), i.e., the termination condition in (16) acts as a reset action, thereby generating partial histories.
4In episodic tasks, the termination of an episode also terminates any option that could be executed at that time: 𝜂(ℎ𝑡,𝑇 ,) = 1 for all partial

histories ℎ𝑡,𝑇 for which 𝑠𝑇 is a terminal state of the MDP.

Yerudkar et al.: Preprint submitted to Elsevier Page 7 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

Let be a set of options and ⊆ 𝑚+ . A history over options 𝜒𝑡,𝑇 is a sequence of states, options and rewards:203

𝜒𝑡,𝑇 = (𝑡,U𝑡, 𝑔𝑡+1,𝑡+1,… ,𝑇 ,U𝑇), where U𝑇 denotes the option chosen at 𝑇 and which is currently executing.204

It is worth noting that in a stochastic environment like PBCNs, a history over options can lead to many corresponding205

partial histories. Given a set of options , we denote by the set of all possible histories over options.206

Definition 3.3 (Hierarchical Options). Given an option U𝑡, a hierarchical option Û𝑡 is a couple Û𝑡 ∶
(

𝜇(U𝑡), 𝛽(U𝑡)
)

,207

where 𝜇 ∶ × → [0, 1] is an internal policy over options, and 𝛽 ∶ → [0, 1] is a termination condition.208

Compared to the Definition 3.2, the main difference is that the internal policy chooses among general options instead209

of only among primitive actions. We now show that for any hierarchical option, there is an explicit representation that210

generates the same distribution over histories. This property enables us to treat hierarchical options in the same way211

as (16), thereby providing an effective way of designing SDC for unknown PBCNs.212

Executing hierarchical options involves two basic operations: sequencing of two or more options, and stochastic213

choice from the given set of of options. In the following, we show that for each of these basic operations, there is an214

explicit representation that generates the same history distribution.215

Lemma 3.1 (Sequencing). Given an unknown PBCN environment. For any two explicit representations of options,216

𝜂1 and 𝜂2, there exists 𝜂 whose execution from any state 𝑡 ∈ 𝑛 produces the same distribution of histories as the217

execution of 𝜂1 at 𝑡, followed by the execution of 𝜂2.218

PROOF. Let ℎ𝑡,𝑇 ∈ be a history obtained by executing 𝜂1 followed by 𝜂2. If no additional information is available219

about the option that is executing, then in general, two situations are possible:220

a. 𝜂1 is still executing, in which case it is still picking primitive actions;221

b. 𝜂1 terminated at some intermediate time step 𝑘 and 𝜂2 has taken over from there.222

By resorting to these observations, 𝜂 can be specified as follows:

𝜂(ℎ𝑡,𝑇 ,𝑗) = 𝜂1(ℎ𝑡,𝑇 ,𝑗) +
𝑇
∑

𝑘=𝑡
𝜂1(ℎ𝑡,𝑘, 𝜇sp)𝜂2(ℎℎ𝑘,𝑇 ,𝑗), ∀𝑗 ∈ 𝑚;

𝜂(ℎ𝑡,𝑇 , 𝜇sp) =
𝑇
∑

𝑘=𝑡
𝜂1(ℎ𝑡,𝑘, 𝜇sp)𝜂2(ℎℎ𝑘,𝑇 , 𝜇sp).

By this consideration, the distribution of actions after any given history is the same for 𝜂 as it is for the execution of 𝜂1223

followed by 𝜂2. Then, it is straightforward to prove by induction that, if two options generate the same action choices224

after each history, then they will generate the same distribution over histories. This completes the proof. □225

Lemma 3.2 (Stochastic Choice). Let = {𝜂1,… , 𝜂𝑛} be a finite set of options and let 𝜇 ∶ × → [0, 1] be a226

Markov policy that chooses from the options in . Then, for a given unknown PBCN environment, there exists an227

explicit representation of option 𝜂 such that, the execution of 𝜂 starting from any state 𝑡 ∈ 𝑛 generates the same228

distribution over histories as a single choice of option performed at 𝑡 according to distribution 𝜇
(

𝑡, ⋅
)

.229

PROOF. Let ℎ ∈ be a history over primitive actions since 𝜇 was initiated. Then 𝜂 should take into account the
likelihood of each of the possible options being active, given the observed history, and average the suggested choices
of action from each option. Formally, 𝜂 can be defined as follows:

𝜂 =
∑

𝜂𝑖∈
𝖯{𝜂𝑖|ℎ}𝜂𝑖(ℎ, 𝜇sp), 𝑖 = 1,… , 𝑛;

𝜂(ℎ,𝑗) =
∑

𝜂𝑖∈
𝖯{𝑗|𝜂𝑖, ℎ} =

∑

𝜂𝑖∈
𝖯{𝜂𝑖|ℎ}𝜂𝑖(ℎ,𝑗).

Because ℎ has been observed, using Bayes’ rule, we have
𝖯{𝜂𝑖|ℎ} = 𝜇(𝑡, 𝜂𝑖)𝖯{ℎ|𝜂𝑖},

where 𝑡 is the first state of ℎ. The second factor can be computed immediately from 𝜂𝑖 and from the dynamics of the230

PBCN.231

By this construction, 𝜂 makes the same actions choices for any history as applying 𝜇 for one step. By induction on232

the length of the history, 𝜂 and 𝜇 will generate the same distribution over histories. □233

Yerudkar et al.: Preprint submitted to Elsevier Page 8 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

Based on the above results, we now show that any hierarchical option has an explicit representation. This property234

enables us to treat hierarchical options in the same as options in (16), without designing special-purpose methods.235

Theorem 3.3. For an unknown PBCN environment modeled as an MDP, let Û𝑡 =
(

𝜇(U𝑡), 𝛽(U𝑡)
)

be a hierarchical236

option that chooses an explicit representation of options U𝑡 from the set = {𝜂1,… , 𝜂𝑛}. Then, there exists an explicit237

representation 𝜂 such that the execution of 𝜂 from any state 𝑡 ∈ 𝑛 produces the same distribution of histories as the238

execution of Û𝑡 starting at 𝑡.239

PROOF. The proof is based on the results and proofs of Lemmas 3.1 and 3.2. Consider a history ℎ𝑡,𝑇 . We have to
determine all the possible histories over options that could have generated this real history in the environment. Such
histories can have from one option to at most 𝑇 − 𝑡 options in them, and we have to consider all possible breakdown
points. So the choice of 𝜂 for each history can be written as a sum of probabilities, taking into account all these possible
breakdown points:

𝜂(ℎ𝑡,𝑇 , 𝜇sp) =
𝑇−𝑡
∑

𝑘=0
𝖯𝑘(ℎ𝑡,𝑇 , 𝜇sp); 𝜂(ℎ𝑡,𝑇 ,𝑗) =

𝑇−𝑡
∑

𝑘=0
𝖯𝑘
(

ℎ𝑡,𝑇 ,𝑗)
)

,

where 𝖯𝑘(ℎ𝑡,𝑇 , 𝜇sp) and 𝖯𝑘(ℎ𝑡,𝑇 ,𝑗)) denote the probabilities of taking termination action 𝜇sp and action 𝑗 ,240

respectively after ℎ𝑡,𝑇 assuming that 𝑘 reset points have occurred between 𝑡 and 𝑇 .241

Now consider that the first option initiated by 𝜂 is still executing. This is the stochastic choice case presented in
Lemma 3.2, so 𝖯0 can be expressed as follows:

𝖯0(ℎ𝑡,𝑇 ,𝑗) =
∑

𝜂𝑖∈
𝖯{𝜂𝑖|ℎ𝑡,𝑇 , 𝜇}𝜂𝑖(ℎ𝑡,𝑇 ,𝑗), ∀𝑗 ∈ 𝑚;

𝖯0(ℎ𝑡,𝑇 , 𝜇sp) =
∑

𝜂𝑖∈
𝖯{𝜂𝑖|ℎ𝑡,𝑇 , 𝜇}𝜂𝑖(ℎ𝑡,𝑇 , 𝜇sp)𝛽

(

(𝑡, 𝜂𝑖, 𝑔𝑡,𝑇 ,𝑇)
)

,

where 𝑔𝑡,𝑇 is the total discounted reward observed during the period from 𝑡 to 𝑇 , i.e., 𝑔𝑡,𝑇 = 𝑔𝑡 +…+ 𝛾𝑇−𝑡𝑔𝑇 . Based
on the proof of Lemma 3.2 we have

𝖯{𝜂𝑖|ℎ𝑡,𝑇 , 𝜇} = 𝜇(𝑡, 𝜂𝑖)𝖯{ℎ𝑡,𝑇 |𝜂𝑖}.

Let us now consider the case in which one termination occurred between 𝑡 and 𝑇 . In this case, the probabilities 𝖯1can be determined analogously to Lemma 3.1 as follows:

𝖯1(ℎ𝑡,𝑇 ,𝑗) =
𝑇
∑

𝑘=𝑡+1

∑

𝜂𝑖,𝜂𝑗∈
𝖯{(𝑡, 𝜂𝑖, 𝑔𝑡,𝑘,𝑘, 𝜂𝑗)|ℎ𝑡,𝑇 , 𝜇}𝜂𝑗(ℎ𝑘,𝑇 ,𝑗);

𝖯1(ℎ𝑡,𝑇 , 𝜇sp) =
𝑇
∑

𝑘=𝑡+1

∑

𝜂𝑖,𝜂𝑗∈
𝖯{(𝑡, 𝜂𝑖, 𝑔𝑡,𝑘,𝑘, 𝜂𝑗)|ℎ𝑡,𝑇 , 𝜇}𝜂𝑗(ℎ𝑘,𝑇 ,𝑗)𝛽

(

(𝑡, 𝜂𝑖, 𝑔𝑡,𝑘,𝑘, 𝜂𝑗 , 𝑔𝑘,𝑇 ,𝑇)
)

.

The conditional probability of the history over options can be decomposed as follows:
𝖯{𝑡, 𝜂𝑖, 𝑔𝑡,𝑘,𝑘, 𝜂𝑗)|ℎ𝑡,𝑇 , 𝜇} = 𝖯{𝜂𝑖|ℎ𝑡,𝑘, 𝜇}𝜂𝑖(ℎ𝑡,𝑘, 𝜇sp)𝖯{𝜂𝑗|(𝑡, 𝜂𝑖, 𝑔𝑡,𝑘,𝑘), ℎ𝑘,𝑇 , 𝜇}

= 𝖯{𝜂𝑖|ℎ𝑡,𝑘, 𝜇}𝜂𝑖(ℎ𝑡,𝑘, 𝜇sp)𝜇
(

(𝑡, 𝜂𝑖, 𝑔𝑡,𝑘,𝑘), 𝜂𝑗
)

𝖯{ℎ𝑘,𝑇 |𝜂𝑗}.

Likewise, any term 𝖯𝑘 can be computed by using the unrolling technique as above.242

By this construction, and by resorting to Lemmas 3.1 and 3.2, 𝜂 produces the same distribution of histories as243

hierarchical option Û𝑡. □244

Henceforth, we use the general term “options” regardless whether the representation is standard (i.e., (16)) or245

hierarchical or explicit. The above results describe how options can be specified and executed. But knowing how an246

option is executed is not enough for an agent that is trying to make decisions about the selection of options. In order247

Yerudkar et al.: Preprint submitted to Elsevier Page 9 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

to make decisions, the agent needs long-term predictions about the consequences of behaving according to different248

policies over options. In the following, we generalize the conventional value functions to apply to options and policies249

over options.250

Let Ξ(𝜋, , 𝑡) denote the event of policy 𝜋 being initiated in at time 𝑡. Similarly, let Ξ(𝜂, ℎ, 𝑡) be the event of an251

option 𝜂 continuing from history ℎ at time 𝑡, where ℎ is a history ending in 𝑡.252

Definition 3.4. The value of a state ∈ 𝑛 under a policy 𝜋 is the expected return if the policy is initiated in :

𝑣𝜋() ∶= 𝔼{𝑔𝑡+1 + 𝛾𝑔𝑡+2 + 𝛾2𝑔𝑡+3 +⋯ |Ξ(𝜋, , 𝑡)}.

Further, we generalize the action-value functions to option-value functions. Given an explicit representation of253

option 𝜂 and a policy over options 𝜇, let 𝜂𝜇 denote the policy that first follows 𝜂 until it terminates and then starts254

choosing according to 𝜇 in the resulting state.255

Definition 3.5. The value of taking options 𝜂 in state ∈ 𝑛 under policy 𝜇 is

𝑞𝜇(, 𝜂) ∶= 𝔼{𝑔𝑡+1 + 𝛾𝑔𝑡+2 + 𝛾2𝑔𝑡+3 +⋯ |Ξ(𝜂𝜇, , 𝑡)}.

With this setting, we now discuss results on how to compute optimal policies for different sets of options. To this256

aim, we present the multi-time models that allow us to plan ways of behaving using options.257

3.1.3. Multi-time Models258

In order to reach our aim of SDC co-design with options we require a model of their consequences. For each state in
which an option may be initiated, such models predict the state in which the option will terminate and the total reward
received along the way. These quantities are discounted in a particular way. For any option U𝑡, let Ξ(U𝑡,𝑡) denote the
event of U𝑡 being initiated in state at time 𝑡. Then the reward part of the model of U𝑡 for any state 𝑡 ∈ 𝑛 is

𝐆U𝑡
𝑡

= 𝔼{𝑔𝑡+1 + 𝛾𝑔𝑡+2 +…+ 𝛾𝑘−1𝑔𝑡+𝑘|Ξ(U𝑡,𝑡)}, (17)
where 𝑡 + 𝑘 is the sampling instant at which the controller (15) is updated or U𝑡 terminates. The state prediction part
of the model of U𝑡 for state 𝑡 is

U𝑡
𝑡,𝑡+1

=
∞
∑

𝑘=1
𝖯(𝑡+1, 𝑘)𝛾𝑘, ∀𝑡+1 ∈ 𝑛, (18)

where 𝖯(𝑡+1, 𝑘) is the probability that the option terminates in 𝑡+1 after 𝑘 steps. Equations (17) and (18) together259

are called as multi-time model because it describes the outcome of an option not at a single time but at potentially260

different times, appropriately combined. For the detailed discussion on multi-time models we refer to [28, 29]. It is261

worth highlighting that, under the multi-time model the transition from 𝑡 to 𝑡+1 for an action U𝑡 ∈ 𝑚+ is not simply262

the corresponding transition probability, but the transition probability times the discount factor 𝛾 .263

Based on the definition of multi-time model, we now derive the following Bellman equation.
𝑞𝜇(𝑡,U𝑡) = 𝔼{𝑔𝑡+1 +…+ 𝛾𝑘−1𝑔𝑡+𝑘 + 𝛾𝑘

∑

U ∈𝑚+
𝜇(𝑡+𝑘,U)𝑞𝜇(𝑡+𝑘,U)|Ξ(U𝑡,𝑡)}

𝑞𝜇(𝑡,U𝑡) = 𝐆U𝑡
𝑡

+
∑

𝑡+1

U𝑡
𝑡,𝑡+1

∑

U ∈𝑚+
𝜇(𝑡+1,U)𝑞𝜇(𝑡+1,U). (19)

Similarly, the optimal Bellman equation can be expressed as:
𝑞𝜇∗ (𝑡,U𝑡) = 𝔼{𝑔𝑡+1 +…+ 𝛾𝑘−1𝑔𝑡+𝑘 + 𝛾𝑘 min

U ∈𝑚+
𝑞𝜇∗ (𝑡+𝑘,U)|Ξ(U𝑡,𝑡)},

𝑞𝜇∗ (𝑡,U𝑡) = 𝐆U𝑡
𝑡

+
∑

𝑡+1

U𝑡
𝑡,𝑡+1

min
U ∈𝑚+

𝑞𝜇∗ (𝑡+𝑘,U). (20)

Each of the Bellman equations for options, (19), (20), defines a system of equations whose unique solution is the264

corresponding value function. Based on the options framework, we now present an algorithm to design an SDC policy265

to control unknown PBCNs.266

Yerudkar et al.: Preprint submitted to Elsevier Page 10 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

3.2. DD𝑄Ns with Options267

As outlined in Section 2.4 and (7), a primary function of DD𝑄Ns is to output the approximated action-values for268

each possible action 𝑡 ∈ 𝑚, with each action corresponding to a single output neuron of a D𝑄N. Leveraging this269

functionality of DD𝑄Ns, we extend the options framework for DD𝑄Ns to reach our aim. Although options are action270

tuples of the form U𝑡 =
(

𝜇cn(𝑡), 𝜇sp(𝑡)
), they are easily applicable to DD𝑄Ns, when sub-policies 𝜇cn and 𝜇sp are271

learned in tandem, such as in the co-design scheme presented in this paper.272

In our implementation, we set the output layer of the DD𝑄N to contain |𝑚+
| neurons, with each neuron273

corresponding to a single option. For the sake of practicality, we encode between mapping an option U𝑖 = (, 𝜏)274

to the 𝑖-th neuron, where 𝑖 = (𝜏 − 1) ⋅ 2𝑚 + bin(), with bin ∶ 𝑚 → ℤ+ being a function that returns the unsigned275

integer as a Boolean vector in 𝑚.276

Thus, for a mini batch of transitions 1 = (𝑡,𝑚
+ ,𝐆,𝑡+1, �̄�) we can perform a weight update in a very similar

fashion to (13), without decomposing the option into its primitive counterparts:
 ← − 𝛼∇ (L ()) ⋅ �̄�);
L () = 𝑄(𝑡,U𝑡;) −𝐆 − 𝛾𝑄(𝑡+1, argmin

U ∈𝑚+
𝑄(𝑡+1,U ,);−). (21)

It is worth noting that the temporal abstraction does not affect the DD𝑄N-learning algorithm, and hence the lack of277

a dramatic change to the TD-error L (). When the DD𝑄N+PER based RL agent selects an option, it can be certain278

with regards to the sampling period that will elapse. Therefore, there is no need to either aggressively discount costs279

received in the cost trajectory learned in the unknown PBCN environment as a result of the option, or further discount280

the expected cost within the TD-error. In the following, we discuss the cost function to be optimized using option-based281

DD𝑄N algorithm to devise the SDC policy.282

3.2.1. Cost Function283

Given a state 𝑡 ∈ 𝑛, applying the option U𝑡 will result in a cost of 𝑔𝑡 = ∑𝑡+𝑘
𝑗=𝑡 𝑔𝑗 , where 𝑘 is the sampling period,

and

𝑔𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑓 ⋅ (−𝑠𝑐 − 1) + 1, 𝑗 = 𝑒,
1, 𝑗 ≠ 𝑒 ∧ 𝑗 ≠ 𝑛, ∀𝑛 ∈ 𝑛,
2, ∃𝑛 ⇒ 𝑗 = 𝑛,

(22)

where 𝑒 and 𝑛 denote the desired and undesired equilibrium points, respectively. Additionally, 𝑓 is a special variable
with the following behavior:

𝑓 =

{

1, 𝑒 not reached yet,
0, otherwise. (23)

In practice, this means that for all time steps where the PBCN is not in a desired, or undesired equilibrium point, the284

cost is 1. For time steps where the PBCN is in an undesired equilibrium point, the cost is 2. For the first time step,285

where the desired equilibrium point is reached, the cost is “−𝑠𝑐”. For all others, the cost is the same as the second case286

of (23). 𝑠𝑐 is a hyperparameter that can affect the learned SDC policy. A typical value considered in the paper is 𝑠𝑐 = 5287

or 𝑠𝑐 = 10.288

With these settings of options-based DD𝑄N algorithm and such selection of cost function, the SDC co-design
problem in a model-free framework can be formulated as

min
𝜇(⋅)

𝔼𝜇
[∞
∑

𝑡=0
𝛾 𝑡𝑔𝑡+1(𝑡, 𝑡,𝑡+1)

]

, ∀0 ∈ 𝑛

subject to (unknown) system (1) and Assumption 1.

(24)

To solve the problem (24), we here present a modified DD𝑄N algorithm (Algorithm 1) that utilizes PER and options289

with multi-time model to devise an SDC strategy for PBCNs in a model-free framework. The output of the algorithm290

produces two concurrent policies 𝜇∗cn(𝑡) and 𝜇∗sp(𝑡) corresponding to an optimal control action and sampling period291

to update the devised control action at each state, respectively.292

Yerudkar et al.: Preprint submitted to Elsevier Page 11 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

Algorithm 1 Co-design of SDC policy using DD𝑄N+PER and Options
Input: 𝑒, 𝑁 , 𝛾 , 𝛽, min𝜖 , horizon, |1|, 𝛼, updateInterval
Output: 𝜇∗cn(𝑡), 𝜇∗sp(𝑡), ∀𝑡 ∈ 𝑛

1: ← rand({0, 1}), − ← ⊳ Initialize network weights
2: ← ∅, inc𝛽 ← 𝛽

0.75⋅𝑁 ,max𝑝 ← 1 ⊳ Initialize prioritized experience replay
3: 𝜖 ← 1, dec𝜖 ←

1−min𝜖
𝑁 ⊳ Initialize 𝜖-greedy

4: 𝑡𝑐 ← 0
5: for episode ∈ [0, 𝑁] do
6: 𝑡 ← 0,𝑡 ← rand(𝑛) ⊳ Initialize the network in a random state
7: while 𝑡 ≠ horizon ∧ 𝑡 ≠ 𝑒 do
8: U𝑡 ← 𝜖-greedy(𝜖,𝑡)
9: 𝑡 + 1,𝑡+1, 𝑔𝑡+1 ← apply(U𝑡) ⊳ Apply the action to the environment

10: Store (𝑡,U𝑡, 𝑔𝑡+1,𝑡+1) in the replay buffer with 𝑝𝑡+1 = max𝑝
11: if || ≥ batchSize then
12: Sample a batch of transitions 1 = (𝑡,𝑚

+ ,𝐆,𝑡+1, �̄�) of size |1|,
13: where ∀𝑖 ∈ 1 was sampled with probability 𝖯{𝑖} according to (11)
14: and 𝜃𝑖 ∈ �̄� is the normalized IS weight for the transition, computed according to (12).
15: L () ← 𝑄(𝑡,U𝑡;) −𝐆 − 𝛾𝑄(𝑡+1, argmin

U ∈𝑚+
𝑄(𝑡+1,U ,);−)

16: ∀𝑗 ∈ 1 update priorities with �̄�𝑗+1 ← |L ()𝑗+1| + 𝜁
17: ← − 𝛼∇ (L () ⋅ �̄�) ⊳ Stochastic gradient descent
18: 𝑡𝑐 ← 𝑡𝑐 + 1
19: if 𝑡𝑐 mod updateInterval = 0 then ⊳ Update target DQN
20: − ←
21: end if
22: end if
23: end while
24: 𝛽 ← min(𝛽 + inc𝛽 , 1), 𝜖 ← max(𝜖 − dec𝜖 ,min𝜖) ⊳ Update Hyperparameters
25: end for
26:

(

𝜇∗cn(𝑡), 𝜇
∗
sp(𝑡)

)

← argmin
U

𝑄(𝑡,U ,);−), ∀𝑡 ∈ 𝑛. ⊳ Devising control action and sampling period.

4. Simulation Results and Discussion293

To evaluate the performance of the presented SDC co-design algorithm, we implemented three different GRNs of294

varying sizes modeled as PBCNs. Network dynamics of these PBCNs is given below. Further, we compare the results295

with state-of-the-art feedback controllers for PBCNs such as shortest path controller and self-triggered controller.296

Example 4.1 (Bacteriophage 𝜆: 4-1). We consider a 5-gene (four nodes and one control input) PBCN model of the297

bacteriophage 𝜆 as:298

1
+ = ¬2∧¬4;2

+ = ¬4∧¬ ∧(2∨3);3
+ = ¬2∧¬4∧1, 𝖯 = 0.7 and3

+ = 0, 𝖯 = 0.3;4
+ = ¬2∧¬3,299

where 𝑖
+ represents the value of 𝑖-th node at the next time-step. 1,2,3, and 4, represent four phage genes 𝑁 ,300

𝑐𝐼 , 𝑐𝐼𝐼 , 𝑐𝑟𝑜, respectively. is the control input which represents the environmental conditions. 𝑒 = (0 0 0 1) is301

given, which represents the lytic pathway of bacteriophage. Our aim is to find a sampled-data controller with sampling302

periods to stabilize the system at a given 𝑒. We refer to [46] for the detailed description of the genes in the network.303

Example 4.2 (Ara Operon in the Escherichia Coli: 9-4). The network dynamics with a total of 13 genes is shown304

below. The network has nine genes which are represented by variables 1 to 9, respectively as follows: intracellular305

arabinose (𝐴), intracellular arabinose (𝐴𝑚), arabinose-bound AraC protein (𝐴𝑟𝑎+), cAMP–CAP protein complex306

(𝐶), enzymes AraA, AraB, and AraD (𝐸), DNA loop (𝐷), mRNA of the structural genes (𝑀𝑠), mRNA of the transport307

genes (𝑀𝑇), and transport proteins (𝑇). The parameters extracellular arabinose (𝐴𝑒), extracellular arabinose (𝐴𝑒𝑚),308

AraC protein (𝐴𝑟𝑎−), and extracellular glucose (𝐺𝑒) are considered as control inputs and represented by 1 to 4,309

Yerudkar et al.: Preprint submitted to Elsevier Page 12 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

respectively. We consider a given equilibrium point 𝑒 = (0 1 1 1 1 0 1 1 1) as the ON state of the network and design310

an SDC scheme to stabilize the network at 𝑒.311

1 = 𝑓 (1)
1 ∶ (1 ∧ 8), 𝑝(1)1 = 1

2 = 𝑓 (1)
2 ∶ (2 ∧ 9) ∨ 1, 𝑝(1)2 = 1

3 =

{

𝑓 (1)
3 ∶ (2 ∨ 1) ∧ 3, 𝑝(1)3 = 0.8
𝑓 (2)
3 ∶ 3, 𝑝(2)3 = 0.2

4 = 𝑓 (1)
4 ∶ ¬ 4, 𝑝(1)4 = 1

5 =

{

𝑓 (1)
5 ∶ 7, 𝑝(1)5 = 0.8
𝑓 (2)
5 ∶ ¬7, 𝑝(2)5 = 0.2

6 =

{

𝑓 (1)
6 ∶ ¬3 ∧ 3, 𝑝(1)6 = 0.7
𝑓 (2)
6 ∶ 6, 𝑝(1)6 = 0.3

7 =

{

𝑓 (1)
7 ∶ 3 ∧ 4 ∧ ¬6, 𝑝(1)7 = 0.8
𝑓 (2)
7 ∶ 3 ∧ 4 ∧ 6, 𝑝(2)7 = 0.2

8 = 𝑓 (1)
8 ∶ 3 ∧ 4, 𝑝(1)8 = 1

9 = 𝑓 (1)
9 ∶ 8, 𝑝(1)9 = 1.

312

Example 4.3 (28-gene Escherichia Coli: 28-3). Consider the following 28-gene PBCN model with three control313

inputs:314

1
+ = 6 ∧13; 2

+ = 25; 3
+ = 2; 4

+ = 28; 5
+ = 21; 6

+ = 5; 7
+ = (15 ∧ 2) ∨ (26 ∧ 2); 8

+ = 14;315

9
+ = 18; 10

+ = 25 ∧ 28; 11
+ = ¬9; 12

+ = 24; 13
+ = 12; 14

+ = 28; 15
+ = (¬20) ∧ 1 ∧ 2;316

16
+ = 3; 17

+ = ¬11; 18
+ = 2; 19

+ = (10 ∧11 ∧25 ∧28) ∨ (11 ∧23 ∧25 ∧28); 20
+ = 7 ∨ ¬26;317

21
+ = 11 ∨ 22; 22

+ = 2 ∧ 18; 23
+ = 15; 24

+ = 18; 25
+ = 8; 26

+ = ¬4 ∧ 3, 𝖯 = 0.5, and318

26
+ = 26, 𝖯 = 0.5; 27

+ = 7 ∨ (15 ∧ 26); 28
+ = ¬4 ∧ 15 ∧ 24.319

The model is a reduced-order model of the 32-gene T-cell receptor kinetics model given in [13]. We aim to design320

an SDC strategy such that the network is stabilized at (0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0).321

4.1. Training & DD𝑄N Architecture322

For the purposes of evaluation, we trained DD𝑄N+PER agents over 250,000 episodes on the sampled-data control323

problem applied on the aforementioned networks using = 10. The discount factor 𝛾 for 𝑄-Learning was set to 0.99.324

min𝜖 for the 𝜖-greedy policy followed during training was set to 0.01. For PER, 𝛽 was set to 0.4 at the start of training325

and increased up to a maximum of max𝛽 = 1 through the course of training.326

The decision horizon was set to 11. The decision horizon denotes the maximum number of environment327

interactions the Agent is given to control the network with before the episode is reset. That is, the Agent can select328

up to horizon = 11 options sequentially to attempt to steer the PBCN’s state trajectory into the desired equilibrium329

point 𝑒.330

In terms of ANN Architecture, the DD𝑄Ns were initialized with three hidden layers of 50 neurons each. While331

a larger scale ANN could have been used, the aforementioned architecture did not seem to showcase issues such as332

over-fitting or inability to learn the control problem, and as such it did not seem necessary to do so. Each layer also333

includes an additive bias, and passes through a rectified linear activation function (ReLU). Regarding the outer layers334

of the ANN, the input layer was set to 𝑁 neurons, while the output layer contains 2𝑚 neurons – one corresponding335

to each possible SDC action U ∈ 𝑚+ .336

Simulations were performed using a Python implementation of the sampled-data PBCN environment, and a337

PyTorch implementation of the DD𝑄N+PER Agent. The training was carried out on a standard personal computer338

with an NVIDIA RTX 3070 GPU and an AMD Ryzen 5 5600X CPU.339

4.2. Evaluation Scenario340

An episode in our evaluation scenario is defined as follows:341

(1) Initialize the PBCN with a state 0.342

(2) Select a control option 𝑡 using the DD𝑄N.343

(3) Read in the new network state 𝑡+1.344

(4) Repeat until 𝑡+1 = 𝑒 or the horizon is reached.345

We initialize and run an episode ∀0 ∈ 𝑛 ⧵ {̄𝑒} and record metrics of interest, such as the following:346

(a) Winrate: the percentage of initial states 0 that can be steered to 𝑒 with an application of a possible SDC policy.347

Yerudkar et al.: Preprint submitted to Elsevier Page 13 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

(b) Number of interactions: the average number of options the agent had to select in its attempt to control the unknown348

PBCN, per episode.349

(c) Number of time steps 𝑡: the average number of time steps the PBCN iterated for.350

For networks where the size of the state-space did not permit us to run an episode for every possible initial state,351

such as Example 4.3, we instead randomly select 200,000 initial states to evaluate from.352

4.3. Comparison with Shortest Path Controller and Self-Triggering Control353

4-1 9-4 28-3
0

20

40

60

80

100

W
in

ra
te

(%
)

STC
SDC

Shortest Path

4-1 9-4 28-3
0

2

4

6

8

10

In
te

ra
ct

io
ns

(𝑛
)

STC
SDC

Shortest Path

4-1 9-4 28-3
0

5

10

15

T
im

e
St

ep
s
𝑡
(𝑛

)

STC
SDC

Shortest Path

Figure 1: Comparison of the proposed SDC strategy with STC and shortest path controller to stabilize the PBCN at a
given equilibrium point. [left] winrate (higher is better); [center] number of interactions (lower is better); [right] number
of time steps (lower is better).

The baseline for comparison is a shortest path controller for the three PBCNs, derived using the DD𝑄N+PER354

method introduced by [27], but using the training settings outlined in the previous section. The results on the three355

aforementioned key metrics, as seen in Figure 1 confirms that the SDC algorithm does indeed drastically reduce the356

number of controller-environment interactions across the board. Most notably, in the third example, the PBCN with 28357

nodes, where the number of interactions has been cut by two thirds.358

At the same time, the sampled-data controller is almost identical, again across all examples, to the optimal shortest-359

path controller, as the time step comparison figure reveals. As a result, we have managed to, as proposed, cut down360

the number of interactions with the PBCN without compromising in terms of optimality. In terms of success rate both361

seem to achieve similar results, with the exception of the third example where the shortest path controller seems to362

struggle for a small number of states, indicating that the temporal abstraction of SDC allows for more controllability363

in certain cases.364

In the very same figures, we also compare SDC with self-triggering control, another approach that aims to cut365

down the amount of agent-environment interaction and provide a temporal abstraction over the control actions. We366

adapted the method outlined by [2] to our DD𝑄N+PER framework in much the same way we implemented the SDC367

option scheme within deep reinforcement learning. The training settings used were identical to the ones used for the368

sampled-data controller training, with the main self-triggering control hyperparameter being which we set to 5, much369

like in the original paper. The two approaches seem to perform similarly, with the primary difference being that SDC370

is much closer to the shortest path controller than STC is. The SDC also pulls ahead of STC as far as the number of371

interactions goes in all examples.372

Figure 2 shows how the designed sampled-data controller (red line) utilizes the temporal abstraction technique to373

reach the equilibrium point with only one change in the control action. Whereas the traditional STP-based controller374

(blue line) changes control action twice in order to steer the initial state to 𝑒.375

Further, in Figure 3 we show the effectiveness of the designed SDC policy for Example 4.2. State trajectories for376

all genes reach the desired equilibrium point 𝑒 = (0 1 1 1 1 0 1 1 1) in less than 10 steps.377

4.4. The hyperparameter378

A factor that greatly seems to affect the derived SDC policy is the hyperparameter , which defines the upper379

bound for the sampling period delay the agent can choose to impose. We compare between three values: 5, 10 and380

15, for Example 4.3, as depicted in Figure 4.381

Yerudkar et al.: Preprint submitted to Elsevier Page 14 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

0010

1100

1000

0100

0000

1001

1011

0100 0100

0000 0000

1001

0000

1001

0001

0001

𝑈 = 1

U = (1, 3)

𝑈 = 1

𝑈 = 0

𝑈 = 1

U = (1, 3)

U = (0, 2)

𝑡𝑘 = 3𝑡𝑘 = 2𝑡𝑘 = 1𝑡𝑘 = 0 𝑡𝑘 = 4 𝑡𝑘 = 5

→ STP Action
→ SDC Option

Figure 2: Demonstration of sampled-data control versus a shortest path controller (i.e., STP Action) for Example 4.1.
Nodes represent network states, and edges represent the ability for the network to evolve from one state to another in the
next time-step 𝑡𝑘. Each highlighted arrow represents an agent-environment interaction and is annotated with the control
action that took place.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Time step 𝑡

A
ve

ra
ge

no
de

va
lu

e

1 2 3
4 5 6
7 8 9

Figure 3: Demonstration of the evolution of genes (or nodes) under the SDC scheme for Example 4.2, averaged across
multiple simulations. The system is stabilized at 𝑒 = (0 1 1 1 1 0 1 1 1) under the designed SDC.

As one would expect, lowering the value leads to a larger number of interactions with the environment, as the382

agent is not allowed to pick larger intervals that would help minimize that metric. However, raising it seems to provide383

diminishing returns, as for = 15 we do not observe a drastic decrease in average number of environment interactions384

during evaluation, and instead we do observe a larger number of time steps taken until convergence to the desired385

equilibrium point, which is undesired behavior. Nonetheless, we do not observe any difference in success rate across386

all three cases, however. Overall, it becomes clear that setting the value properly is crucial to deriving the best387

sampled-data controllers possible.388

5. Conclusions389

In this paper, a model-free and scalable control technique has been presented to control GRNs modeled as PBCNs.390

In particular, a model-free SDC algorithm has been developed by utilizing DD𝑄N, PER and the concept of temporal391

abstractions called options. The devised controllers are energy efficient since the sampling period to update the392

controller is obtained smartly by utilizing the temporal abstraction framework in model-free setting. The performance393

of the proposed method has been compared with the state-of-the-art techniques such as state feedback control and394

self-triggering control. A brief discussion on the reward setting has been included in Section 4 to highlight how a395

change in the reward could affect the overall control policy.396

Yerudkar et al.: Preprint submitted to Elsevier Page 15 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

4 6 8 10 12 14 16
0

1

2

3

4

5

6

In
te

ra
ct

io
ns

6

8

10

12

14

16

18

20

22

T
im

e
st

ep
s
𝑡

Interactions
Time steps 𝑡

Figure 4: Comparison of the number of time steps and number of interactions for different values (Example 4.3).
Larger allows the agent to take more steps in the environment while agent-environment interactions do not change
drastically.

References397

[1] A. Acernese, A. Yerudkar, L. Glielmo, and C. Del Vecchio. Double deep-q learning-based output tracking of probabilistic Boolean control398

networks. IEEE Access, 8:199254–199265, 2020.399

[2] A. Acernese, A. Yerudkar, L. Glielmo, and C. Del Vecchio. Model-free self-triggered control co-design for probabilistic Boolean control400

networks. IEEE Control Systems Letters, 5(5):1639–1644, 2020.401

[3] A. Acernese, A. Yerudkar, L. Glielmo, and C. Del Vecchio. Reinforcement learning approach to feedback stabilization problem of probabilistic402

Boolean control networks. IEEE Control Systems Letters, 5(1):337 – 342, 2020.403

[4] P. Bajaria, A. Yerudkar, and C. Del Vecchio. Aperiodic sampled-data stabilization of probabilistic Boolean control networks: Deep q-learning404

approach with relaxed Bellman operator. In 2021 European Control Conference (ECC), pages 836–841. IEEE, 2021.405

[5] P. Bajaria, A. Yerudkar, and C. Del Vecchio. Random forest q-learning for feedback stabilization of probabilistic Boolean control networks.406

In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 1539–1544. IEEE, 2021.407

[6] B. Chen, J. Cao, Y. Luo, and L. Rutkowski. Asymptotic output tracking of probabilistic Boolean control networks. IEEE Transactions on408

Circuits and Systems I: Regular Papers, 67(8):2780–2790, 2020.409

[7] D. Cheng, H. Qi, and Z. Li. Analysis and control of Boolean networks: a semi-tensor product approach. London, U.K.: Springer, 2011.410

[8] D. P. De Farias and B. Van Roy. The linear programming approach to approximate dynamic programming. Operations Research, 51(6):411

850–865, 2003.412

[9] E. Fornasini and M. E. Valcher. Optimal control of Boolean control networks. IEEE Transactions on Automatic Control, 59(5):1258–1270,413

2014.414

[10] X.-G. Han, W.-D. Yang, X.-Y. Chen, Z.-W. Li, and Z.-Q. Chen. Detectability vverification of probabilistic Boolean networks. Information415

Sciences, 548:313–327, 2021.416

[11] C. Huang, J. Lu, D. W. Ho, G. Zhai, and J. Cao. Stabilization of probabilistic Boolean networks via pinning control strategy. Information417

Sciences, 510:205–217, 2020.418

[12] M. R. Karlsen and S. Moschoyiannis. Evolution of control with learning classifier systems. Applied Network Science, 3(1):30, 2018.419

[13] S. Kharade, S. Sutavani, S. Wagh, A. Yerudkar, C. Del Vecchio, and N. Singh. Optimal control of probabilistic Boolean control networks: A420

scalable infinite horizon approach. International Journal of Robust and Nonlinear Control, 2021, DOI:10.1002/rnc.5909.421

[14] H. Li, Y. Wang, and P. Guo. State feedback based output tracking control of probabilistic Boolean networks. Information Sciences, 349:1–11,422

2016.423

[15] L. Li, A. Zhang, and J. Lu. Robust set stability of probabilistic Boolean networks under general stochastic function perturbation. Information424

Sciences, 582:833–849, 2022.425

[16] Y. Li, J. Zhu, B. Li, Y. Liu, and J. Lu. A necessary and sufficient graphic condition for the original disturbance decoupling of Boolean networks.426

IEEE Transactions on Automatic Control, 66(8):3765–3772, 2020.427

[17] Y. Li, J.-e. Feng, and B. Wang. Output feedback observability of switched Boolean control networks. Information Sciences, 612:612–625,428

2022.429

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep reinforcement430

learning. arXiv:1509.02971v6, 2016.431

[19] L.-J. Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8(3):293 – 321, 1992.432

[20] J. Liu, Y. Liu, Y. Guo, and W. Gui. Sampled-data state-feedback stabilization of probabilistic Boolean control networks: A control Lyapunov433

function approach. IEEE Transactions on Cybernetics, 50(9):3928–3937, 2019.434

[21] Y. Liu, H. Chen, J. Lu, and B. Wu. Controllability of probabilistic Boolean control networks based on transition probability matrices.435

Automatica, 52:340–345, 2015.436

Yerudkar et al.: Preprint submitted to Elsevier Page 16 of 17

Sampled-data Control of PBCNs: A Deep RL Approach

[22] Y. Liu, L. Wang, J. Lu, and J. Cao. Sampled-data stabilization of probabilistic Boolean control networks. Systems & Control Letters, 124:437

106–111, 2019.438

[23] Z. Liu, J. Zhong, Y. Liu, and W. Gui. Weak stabilization of Boolean networks under state-flipped control. IEEE Transactions on Neural439

Networks and Learning Systems, 2021, DOI: 10.1109/TNNLS.2021.3106918.440

[24] A. R. Mahmood, H. P. van Hasselt, and R. S. Sutton. Weighted importance sampling for off-policy learning with linear function approximation.441

Advances in Neural Information Processing Systems, 27:3014–3022, 2014.442

[25] R. Pal, A. Datta, M. L. Bittner, and E. R. Dougherty. Intervention in context-sensitive probabilistic Boolean networks. Bioinformatics, 21(7):443

1211–1218, 2005.444

[26] G. Papagiannis and S. Moschoyiannis. Learning to control random boolean networks: A deep reinforcement learning approach. In International445

Conference on Complex Networks and Their Applications, pages 721–734. Springer, 2019.446

[27] G. Papagiannis and S. Moschoyiannis. Deep reinforcement learning for control of probabilistic Boolean networks. In International Conference447

on Complex Networks and Their Applications, pages 361–371. Springer, 2020.448

[28] D. Precup and R. S. Sutton. Multi-time models for reinforcement learning. In Proceedings of the ICML’97 Workshop on Modelling in449

Reinforcement Learning, 1997.450

[29] D. Precup and R. S. Sutton. Multi-time models for temporally abstract planning. Advances in Neural Information Processing Systems, 10,451

1997.452

[30] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.453

[31] K. Sarda, A. Yerudkar, and C. Del Vecchio. Disturbance decoupling control design for Boolean control networks: a Boolean algebra approach.454

IET Control Theory & Applications, 14(16):2339–2347, 2020.455

[32] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint arXiv:1511.05952, 2015.456

[33] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory457

networks. Bioinformatics, 18(2):261–274, 2002.458

[34] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.459

[35] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning.460

Artificial Intelligence, 112(1-2):181–211, 1999.461

[36] H. Tian and Y. Hou. State feedback design for set stabilization of probabilistic Boolean control networks. Journal of the Franklin Institute,462

356(8):4358–4377, 2019.463

[37] H. van Hasselt. Double q-learning. Advances in Neural Information Processing Systems, 23:2613–2621, 2010.464

[38] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. Proceedings of the Thirtieth AAAI Conference465

on Artificial Intelligence, 2016.466

[39] B. Wang and J.-e. Feng. On detectability of probabilistic Boolean networks. Information Sciences, 483:383–395, 2019.467

[40] J. Wang, W. Liu, S. Fu, and J. Xia. On robust set stability and set stabilization of probabilistic Boolean control networks. Applied Mathematics468

and Computation, 422:126992, 2022.469

[41] L. Wang, Y. Liu, Z.-G. Wu, J. Lu, and L. Yu. Stabilization and finite-time stabilization of probabilistic Boolean control networks. IEEE470

Transactions on Systems, Man, and Cybernetics: Systems, 51(3):1559–1566, 2019.471

[42] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.472

[43] Y. Wu, Y. Guo, and M. Toyoda. Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks.473

IEEE Transactions on Neural Networks and Learning Systems, 32(7):2910–2924, 2020.474

[44] M. Xu, Y. Liu, J. Lou, Z.-G. Wu, and J. Zhong. Set stabilization of probabilistic Boolean control networks: A sampled-data control approach.475

IEEE Transactions on Cybernetics, 50(8):3816–3823, 2019.476

[45] X. Yang and H. Li. On state feedback asymptotical stabilization of probabilistic Boolean control networks. Systems & Control Letters, 160:477

105107, 2022.478

[46] A. Yerudkar, C. Del Vecchio, and L. Glielmo. Control of switched Boolean control networks by state feedback. In 2019 18th European479

Control Conference (ECC), pages 1999–2004. IEEE, 2019.480

[47] A. Yerudkar, C. Del Vecchio, and L. Glielmo. Output tracking control of probabilistic Boolean control networks. In 2019 IEEE International481

Conference on Systems, Man and Cybernetics (SMC), pages 2109–2114. IEEE, 2019.482

[48] A. Yerudkar, C. Del Vecchio, and L. Glielmo. Sampled-data set stabilization of switched Boolean control networks. IFAC-PapersOnLine, 53483

(2):6139–6144, 2020.484

[49] R. Zhou, Y. Guo, Y. Wu, and W. Gui. Asymptotical feedback set stabilization of probabilistic Boolean control networks. IEEE Transactions485

on Neural Networks and Learning Systems, 31(11):4524–4537, 2019.486

[50] S. Zhu, J. Lu, Y. Liu, T. Huang, and J. Kurths. Output tracking of probabilistic Boolean networks by output feedback control. Information487

Sciences, 483:96–105, 2019.488

Yerudkar et al.: Preprint submitted to Elsevier Page 17 of 17

	Introduction
	Preliminaries
	Probabilistic Boolean Control Networks
	Markov Decision Processes
	Q-learning Algorithm
	Double Deep-Q Network

	Sampled-data Control Design for PBCNs
	Sampled-data Control using DDQN and Options
	Options
	Hierarchical Options
	Multi-time Models

	DDQNs with Options
	Cost Function

	Simulation Results and Discussion
	Training & DDQN Architecture
	Evaluation Scenario
	Comparison with Shortest Path Controller and Self-Triggering Control
	The T hyperparameter

	Conclusions

